JP4807427B2 - Fixing apparatus and image forming apparatus - Google Patents

Fixing apparatus and image forming apparatus Download PDF

Info

Publication number
JP4807427B2
JP4807427B2 JP2009076255A JP2009076255A JP4807427B2 JP 4807427 B2 JP4807427 B2 JP 4807427B2 JP 2009076255 A JP2009076255 A JP 2009076255A JP 2009076255 A JP2009076255 A JP 2009076255A JP 4807427 B2 JP4807427 B2 JP 4807427B2
Authority
JP
Japan
Prior art keywords
temperature
fixing
magnetic
fixing belt
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009076255A
Other languages
Japanese (ja)
Other versions
JP2010230820A (en
Inventor
隆幸 内山
基文 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2009076255A priority Critical patent/JP4807427B2/en
Publication of JP2010230820A publication Critical patent/JP2010230820A/en
Application granted granted Critical
Publication of JP4807427B2 publication Critical patent/JP4807427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Description

本発明は、定着装置及び画像形成装置に関する。   The present invention relates to a fixing device and an image forming apparatus.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。この電磁誘導加熱方式は、導電性層を有する回転体に誘導コイルによって発生させた磁界を作用させ、導電性層に発生する渦電流により回転体を直接発熱させるものである。
例えば、特許文献1には、銅発熱層を有する定着ベルトと励磁コイルとを、2つの磁性部材で挿んで磁路形成し、銅発熱層を電磁誘導加熱する電磁誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known. In this electromagnetic induction heating method, a magnetic field generated by an induction coil is applied to a rotating body having a conductive layer, and the rotating body is directly heated by an eddy current generated in the conductive layer.
For example, Patent Document 1 describes an electromagnetic induction heating type fixing device that forms a magnetic path by inserting a fixing belt having a copper heat generation layer and an excitation coil with two magnetic members to electromagnetically heat the copper heat generation layer. Has been.

特開2008−152247号公報JP 2008-152247 A

ここで、一般に電磁誘導コイルにより加熱される定着部材を熱容量の小さいベルト部材で構成すると、熱消費の少ない非通紙領域が過剰に昇温する。そこで、磁路形成部材の内側に、彎曲した板状の非磁性金属部材を非接触で設け、非通紙領域の過度な昇温を抑制している。このとき、熱膨張率の差が大きい材料でそれぞれ構成された磁路形成部材と非磁性金属部材を近接して取り付けた場合、磁路形成部材の変形が生じる。
本発明の目的は、電磁誘導加熱方式の定着装置において、磁路形成部材の変形を抑制することにある。
Here, if the fixing member generally heated by the electromagnetic induction coil is formed of a belt member having a small heat capacity, the temperature of the non-sheet passing region with low heat consumption is excessively increased. Therefore, a curved plate-like nonmagnetic metal member is provided in a non-contact manner inside the magnetic path forming member to suppress an excessive temperature rise in the non-sheet passing region. At this time, when a magnetic path forming member and a nonmagnetic metal member each made of a material having a large difference in thermal expansion coefficient are attached close to each other, the magnetic path forming member is deformed.
An object of the present invention is to suppress deformation of a magnetic path forming member in an electromagnetic induction heating type fixing device.

請求項1に係る発明は、導電層を有し、当該導電層が電磁誘導加熱されることにより記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、当該磁界生成部材で生成された交流磁界を誘導して磁路を形成する磁路形成部材と、前記磁路形成部材の一部に接触しつつ前記定着部材とは反対側に配置され、当該磁路形成部材を透過した交流磁界を内部に誘導する誘導部材と、前記誘導部材と前記磁路形成部材とを支持する支持部材と、本体の一部を打ち抜いた打ち抜き部に、ネジ孔が形成されたネジ受け部と当該ネジ受け部と当該本体とを一体に連結する連結部とを有する固定部位が形成され、当該固定部位にて前記誘導部材を前記支持部材に固定すると共に、当該誘導部材との間に前記磁路形成部材を挟みつつ当該磁路形成部材を当該誘導部材の外側に取り付ける取り付け用プレートと、を備えることを特徴とする定着装置である。   The invention according to claim 1 includes a conductive layer, and the conductive layer is heated by electromagnetic induction to generate a fixing member that fixes toner on the recording material, and an alternating magnetic field that intersects the conductive layer of the fixing member. A magnetic field generating member that is disposed opposite to the magnetic field generating member with the fixing member interposed therebetween, and that induces an alternating magnetic field generated by the magnetic field generating member to form a magnetic path; and An induction member that is disposed on the opposite side of the fixing member while contacting a part of the path formation member, and that induces an alternating magnetic field that has passed through the magnetic path formation member, and the induction member and the magnetic path formation member. A fixing portion having a support member that supports the screw, a screw receiving portion in which a screw hole is formed, and a connecting portion that integrally connects the screw receiving portion and the main body are formed in a punched portion obtained by punching a part of the main body. And the guide part at the fixed site And a mounting plate for attaching the magnetic path forming member to the outside of the guide member while sandwiching the magnetic path forming member between the guide member and the guide member. Device.

請求項2に係る発明は、前記取り付け用プレートは、当該取り付け用プレートの全体が変形することなく、前記固定部位だけが締め付け具の締め付けにより変形することを特徴とする請求項1に記載の定着装置である。
請求項3に係る発明は、前記磁路形成部材は、締め付け具によりネジ止めすることなく、前記誘導部材と前記取り付け用プレートとの間に挟まれた状態で固定されることを特徴とする請求項1又は2に記載の定着装置である。
請求項4に係る発明は、前記磁路形成部材には、前記取り付け用プレートの前記固定部位に対応する位置に、当該固定部位が変形して前記誘導部材と接触するように切り欠きが形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の定着装置である。
請求項5に係る発明は、前記取り付け用プレートは、非磁性金属材料から構成されることを特徴とする請求項1乃至4のいずれか1項に記載の定着装置である。
請求項6に係る発明は、前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項1乃至5のいずれか1項に記載の定着装置である。
According to a second aspect of the present invention, in the fixing plate according to the first aspect, only the fixing portion is deformed by tightening of a fastening tool without deformation of the whole mounting plate. Device.
The invention according to claim 3 is characterized in that the magnetic path forming member is fixed in a state of being sandwiched between the guide member and the mounting plate without being screwed by a fastening tool. Item 3. The fixing device according to Item 1 or 2.
According to a fourth aspect of the present invention, the magnetic path forming member is formed with a notch at a position corresponding to the fixed portion of the mounting plate so that the fixed portion is deformed to contact the guide member. The fixing device according to claim 1, wherein the fixing device is a fixing device.
The invention according to claim 5 is the fixing device according to any one of claims 1 to 4, wherein the mounting plate is made of a nonmagnetic metal material.
The invention according to claim 6 is the fixing device according to any one of claims 1 to 5, wherein the magnetic path forming member is disposed in non-contact with the fixing member.

請求項7に係る発明は、トナー像を形成するトナー像形成部と、前記トナー像形成部により形成されたトナー像を記録材上に転写する転写部と、前記記録材に転写されたトナー像を当該記録材上に定着する定着部と、を備え、前記定着部は、導電層を有し、当該導電層が電磁誘導加熱されることにより記録材にトナーを定着する定着ベルトと、前記定着ベルトの前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着ベルトを挟んで前記磁界生成部材と対向して配置され、当該磁界生成部材で生成された交流磁界を誘導して磁路を形成する磁路形成部材と、前記磁路形成部材の一部に接触しつつ前記定着ベルトとは反対側に配置され、当該磁路形成部材を透過した交流磁界を内部に誘導する誘導部材と、前記誘導部材と前記磁路形成部材とを支持する支持部材と、本体の一部を打ち抜いた打ち抜き部に、ネジ孔が形成されたネジ受け部と当該ネジ受け部と当該本体とを一体に連結する連結部とを有する固定部位が形成され、当該固定部位にて前記誘導部材を前記支持部材に固定すると共に、当該誘導部材との間に前記磁路形成部材を挟みつつ当該磁路形成部材を当該誘導部材の外側に取り付ける取り付け用プレートと、を有することを特徴とする画像形成装置である。   The invention according to claim 7 is a toner image forming portion that forms a toner image, a transfer portion that transfers a toner image formed by the toner image forming portion onto a recording material, and a toner image that is transferred to the recording material. A fixing unit that fixes the toner onto the recording material, and the fixing unit includes a conductive layer, and the conductive layer is heated by electromagnetic induction to fix the toner on the recording material. A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the belt, and a magnetic field generating member that is disposed opposite to the magnetic field generating member with the fixing belt interposed therebetween, and induces an alternating magnetic field generated by the magnetic field generating member to magnetize the magnetic field. A magnetic path forming member that forms a path, and an induction member that is disposed on the opposite side of the fixing belt while being in contact with a part of the magnetic path forming member, and that induces an alternating magnetic field transmitted through the magnetic path forming member to the inside And the induction member and the magnetic path A fixing member having a supporting member that supports the component member, a screw receiving portion in which a screw hole is formed in a punched portion in which a part of the main body is punched, and a connecting portion that integrally connects the screw receiving portion and the main body. A portion is formed, and the guide member is fixed to the support member at the fixing portion, and the magnetic path forming member is attached to the outside of the guide member while the magnetic path forming member is sandwiched between the guide member and the guide member. An image forming apparatus having an attachment plate.

請求項8に係る発明は、前記磁路形成部材は、前記支持部材にネジ止めすることなく、前記誘導部材と前記取り付け用プレートとの間に挟まれた状態で固定されることを特徴とする請求項7に記載の画像形成装置である。
請求項9に係る発明は、前記磁路形成部材は、前記誘導部材の熱膨張に起因する変形が抑制されることを特徴とする請求項7又は8に記載の画像形成装置である。
The invention according to claim 8 is characterized in that the magnetic path forming member is fixed in a state of being sandwiched between the guide member and the mounting plate without being screwed to the support member. An image forming apparatus according to claim 7.
The invention according to claim 9 is the image forming apparatus according to claim 7 or 8, wherein the magnetic path forming member is prevented from being deformed due to thermal expansion of the induction member.

請求項1の発明によれば、本発明を採用しない場合に比べ、電磁誘導加熱方式の定着装置において、磁路形成部材の変形が抑制される。   According to the first aspect of the present invention, the deformation of the magnetic path forming member is suppressed in the electromagnetic induction heating type fixing device as compared with the case where the present invention is not adopted.

請求項2の発明によれば、本発明を採用しない場合に比べ、磁路形成部材にネジ止めの締め付けが作用しない。   According to the second aspect of the present invention, the screwing tightening does not act on the magnetic path forming member as compared with the case where the present invention is not adopted.

請求項3の発明によれば、本発明を採用しない場合に比べ、磁路形成部材が誘導部材の熱膨張の影響を受けにくい。   According to the third aspect of the present invention, the magnetic path forming member is less susceptible to the thermal expansion of the induction member than when the present invention is not adopted.

請求項4の発明によれば、本発明を採用しない場合に比べ、取り付け用プレートと誘導部材との接触が容易となる。   According to the fourth aspect of the present invention, the attachment plate and the guide member can be easily contacted as compared with the case where the present invention is not adopted.

請求項5の発明によれば、本発明を採用しない場合に比べ、電磁誘導加熱システムに影響を与えない。   According to the fifth aspect of the present invention, the electromagnetic induction heating system is not affected as compared with the case where the present invention is not adopted.

請求項6の発明によれば、本発明を採用しない場合に比べ、ウォームアップタイムが短縮される。   According to the invention of claim 6, the warm-up time is shortened compared to the case where the present invention is not adopted.

請求項7の発明によれば、本発明を採用しない場合に比べ、電磁誘導加熱方式の定着装置において、磁路形成部材の変形が抑制される。   According to the seventh aspect of the present invention, the deformation of the magnetic path forming member is suppressed in the electromagnetic induction heating type fixing device as compared with the case where the present invention is not adopted.

請求項8の発明によれば、本発明を採用しない場合に比べ、電磁誘導加熱方式の定着装置において、磁路形成部材にネジ止めの締め付けが作用しない。   According to the eighth aspect of the present invention, as compared with the case where the present invention is not adopted, in the electromagnetic induction heating type fixing device, the fastening with screws is not applied to the magnetic path forming member.

請求項9の発明によれば、本発明を採用しない場合に比べ、電磁誘導加熱方式の定着装置において、発熱機能の低下が防止される。   According to the ninth aspect of the present invention, compared to the case where the present invention is not adopted, in the electromagnetic induction heating type fixing device, the heat generation function is prevented from being lowered.

本実施の形態の定着装置を備えた画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus including a fixing device according to an exemplary embodiment. 本実施の形態が適用される定着ユニットの構成を示す正面図である。FIG. 3 is a front view illustrating a configuration of a fixing unit to which the exemplary embodiment is applied. 図2における定着装置のX−X断面図である。FIG. 3 is an XX cross-sectional view of the fixing device in FIG. 2. 定着ベルトの断面層構成図である。FIG. 3 is a cross-sectional layer configuration diagram of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。(A) is a side view of an end cap member, (b) is a top view of the end cap member seen from the Z direction. IHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of an IH heater. IHヒータの積層構造を説明する図である。It is a figure explaining the laminated structure of an IH heater. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。FIG. 6 is a diagram illustrating an outline of a temperature distribution in a width direction of a fixing belt when small-size paper is continuously passed. 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。FIG. 6 is a diagram for explaining a state of magnetic lines of force when the temperature of the fixing belt in a non-sheet passing region is in a temperature range exceeding the permeability change start temperature. 感温磁性部材に形成されるスリットを示した図である。It is the figure which showed the slit formed in a temperature sensitive magnetic member. 定着装置における感温磁性部材と誘導部材の取り付けを説明する概略断面図である。It is a schematic sectional drawing explaining attachment of the temperature-sensitive magnetic member and induction | guidance | derivation member in a fixing device. ホルダ、誘導部材、感温磁性部材、取り付け用プレートの積層構造を説明する図である。It is a figure explaining the laminated structure of a holder, a guide member, a temperature-sensitive magnetic member, and a mounting plate. 取り付け用プレートの一例を説明する図である。It is a figure explaining an example of the plate for attachment. 取り付け部の詳細を説明する断面図である。It is sectional drawing explaining the detail of an attaching part.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態が適用される定着装置を備えた画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらに、例えば、パーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し、予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus including a fixing device to which the exemplary embodiment is applied. An image forming apparatus 1 shown in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data and a control unit 31 that controls the operation of the entire image forming apparatus 1. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3, an image reading device (scanner) 4, and the like. An image processing unit 33 that performs image processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成部の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units that are arranged in parallel at regular intervals. I have. Each image forming unit 11 forms an electrostatic latent image and a photosensitive drum 12 as an example of an image holding body that holds a toner image, and charging that uniformly charges the surface of the photosensitive drum 12 with a predetermined potential. 13, an LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 charged by the charger 13 based on each color image data, and a developer that develops an electrostatic latent image formed on the photosensitive drum 12. 15. A drum cleaner 16 for cleaning the surface of the photosensitive drum 12 after transfer is provided.
Each of the image forming units 11 is configured in substantially the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). To do.

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred and superimposed on the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and each color toner that is secondarily transferred. A fixing unit 60 is provided as an example of a fixing unit (fixing device) that fixes the image on the paper P. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば、黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, the image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data for each color. It is done. For example, in the image forming unit 11K that forms a black (K) color toner image, the photosensitive drum 12 is uniformly charged at a predetermined potential by the charger 13 while rotating in the direction of arrow A, and the image processing unit The LED print head 14 scans and exposes the photosensitive drum 12 based on the K-color image data transmitted from 33. As a result, an electrostatic latent image relating to the K color image is formed on the photosensitive drum 12. The K-color electrostatic latent image formed on the photosensitive drum 12 is developed by the developing unit 15, and a K-color toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1における画像形成処理が、プリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of cycles corresponding to the number of prints.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は、本実施の形態が適用される定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるX−X断面図である。
図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成部材の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する磁路形成部材としての感温磁性部材64、感温磁性部材64を通過した磁力線を内部に誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材70を備えている。そして、感温磁性部材64の一部と誘導部材66の一部とが接触しつつ支持部材としてのホルダ65に支持される。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are diagrams showing the configuration of the fixing unit 60 to which the present exemplary embodiment is applied. FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line XX in FIG.
As shown in FIG. 3, the fixing unit 60 is an example of an IH (Induction Heating) heater 80 as an example of a magnetic field generating member that generates an alternating magnetic field, and an example of a fixing member that is electromagnetically heated by the IH heater 80 to fix a toner image. A fixing belt 61, a pressure roll 62 disposed so as to face the fixing belt 61, and a pressing pad 63 pressed from the pressure roll 62 via the fixing belt 61.
Further, the fixing unit 60 includes a temperature-sensitive magnetic member 64 as a magnetic path forming member that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path, and magnetic lines of force that have passed through the temperature-sensitive magnetic member 64. A guiding member 66 for guiding and a peeling assisting member 70 for assisting the peeling of the paper P from the fixing belt 61 are provided. A part of the temperature-sensitive magnetic member 64 and a part of the guide member 66 are supported by a holder 65 as a support member while being in contact with each other.

<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば、原形(円筒形状)時の直径が30mm、幅方向長が370mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
<Description of fixing belt>
The fixing belt 61 is formed of an endless belt member having an original cylindrical shape. For example, the fixing belt 61 has a diameter of 30 mm and a length in the width direction of 370 mm when the original shape (cylindrical shape) is used. Further, as shown in FIG. 4 (cross-sectional layer configuration diagram of the fixing belt 61), the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 laminated on the base material layer 611, and a toner image fixability. The belt member has a multilayer structure including an elastic layer 613 for improving the surface and a surface release layer 614 coated on the uppermost layer.

基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を有する材料、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30μm〜200μm(好ましくは50μm〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60μm〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the thin conductive heat generating layer 612 and forms the mechanical strength of the fixing belt 61 as a whole. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64. It is formed. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 μm to 200 μm (preferably 50 μm to 150 μm), a resin material having a thickness of 60 μm to 200 μm, or the like is used.

導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより渦電流を発生させる。
通常、IHヒータ80に交流電流を供給する励磁回路(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20kHz〜100kHzとなる。それにより、導電発熱層612は、周波数20kHz〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an example of a conductive layer, and is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. The conductive heat generating layer 612 generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit that supplies an alternating current to the IH heater 80 (see also FIG. 6 below). Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 kHz to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 kHz to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μrは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20kHz〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). In the equation (1), f is the frequency of the alternating magnetic field (for example, 20 kHz), ρ is the specific resistance (Ω · m), and μr is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) so that an alternating magnetic field having a frequency of 20 kHz to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured in a thinner layer. Further, as a material constituting the conductive heat generating layer 612, for example, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, Sb, or a metal alloy thereof is used.

Figure 0004807427
Figure 0004807427

具体的には、導電発熱層612として、厚さ2μm〜20μm、固有抵抗2.7×10−8Ω・m以下の、例えば、Cu等の非磁性金属(比透磁率が、概ね1の常磁性体)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
Specifically, as the conductive heat generating layer 612, a nonmagnetic metal such as Cu having a thickness of 2 μm to 20 μm and a specific resistance of 2.7 × 10 −8 Ω · m or less (relative permeability is generally 1). Magnetic material) is used.
Further, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is preferably formed as a thin layer.

弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば、厚みが100μm〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材料が使用される。例えば、テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さが過度に薄いと、耐摩耗性の面で充分でなく、定着ベルト61の寿命が短くなる傾向がある。表面離型層614の厚さが過度に厚いと、定着ベルト61の熱容量が増大し、ウォームアップタイムが長くなる傾向がある。本実施の形態では、表面離型層614の厚さは、耐摩耗性と熱容量とのバランスを考慮し、1μm〜50μmが好適である。
The elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, a silicone rubber having a thickness of 100 μm to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is suitable for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, tetrafluoroethylene perfluoroalkyl vinyl ether polymer (PFA), polytetrafluoroethylene (PTFE), silicone copolymer, or a composite layer thereof is used. When the thickness of the surface release layer 614 is excessively thin, the wear resistance is not sufficient, and the life of the fixing belt 61 tends to be shortened. When the thickness of the surface release layer 614 is excessively large, the heat capacity of the fixing belt 61 increases and the warm-up time tends to be long. In the present embodiment, the thickness of the surface release layer 614 is preferably 1 μm to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、シリコーンゴム等やフッ素ゴム等のゴム状弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is made of a rubber-like elastic body such as silicone rubber or fluorine rubber, and is supported by the holder 65 at a position facing the pressure roll 62. Then, it is arranged in a state of being pressed from the pressure roll 62 via the fixing belt 61, and a nip portion N is formed with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, in the pre-nip region 63 a, the surface on the pressure roll 62 side is formed in an arc shape that substantially follows the outer peripheral surface of the pressure roll 62, thereby forming a uniform and wide nip portion N. Further, the peeling nip region 63b is formed so as to be locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small. As a result, a curl (down curl) in a direction away from the surface of the fixing belt 61 is formed on the paper P passing through the peeling nip region 63b to promote the peeling of the paper P from the surface of the fixing belt 61.

尚、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材70を配置している。剥離補助部材70は、剥離バッフル71が定着ベルト61の回転移動方向と対向する向き(所謂、カウンタ方向)に、定着ベルト61と近接する状態でホルダ72によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル71により支持し、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, the peeling assisting member 70 is disposed on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling assisting member 70 is supported by the holder 72 in a state in which the peeling baffle 71 is close to the fixing belt 61 in a direction facing the rotational movement direction of the fixing belt 61 (so-called counter direction). Then, the curled portion formed on the paper P at the outlet of the pressing pad 63 is supported by the peeling baffle 71, and the paper P is prevented from moving toward the fixing belt 61.

<感温磁性部材の説明>
感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成されている。感温磁性部材64は、定着ベルト61の内周面とは、予め定めた間隙(例えば、0.5mm〜1.5mm)を有するように近接させ、非接触で配置される。
感温磁性部材64を定着ベルト61と近接させて配置することにより、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する。このため、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となる。
また、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱される際、定着ベルト61の熱が感温磁性部材64に流入するのを抑制し、ウォームアップタイムが短縮する。
<Description of temperature-sensitive magnetic member>
The temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61. The temperature-sensitive magnetic member 64 is disposed close to the inner peripheral surface of the fixing belt 61 so as to have a predetermined gap (for example, 0.5 mm to 1.5 mm) and is not contacted.
By arranging the temperature-sensitive magnetic member 64 close to the fixing belt 61, the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61. For this reason, the temperature of the temperature-sensitive magnetic member 64 is substantially the same as the temperature of the fixing belt 61.
Further, when the main switch of the image forming apparatus 1 is turned on and the fixing belt 61 is heated to the fixing set temperature, the heat of the fixing belt 61 is suppressed from flowing into the temperature-sensitive magnetic member 64, and the warm-up time is shortened. To do.

また、感温磁性部材64は、その磁気特性の透磁率が急変する温度である「透磁率変化開始温度」(後段参照)を有する材料により構成される。透磁率変化開始温度は、その磁気特性の透磁率が急変する温度である。本実施の形態では、感温磁性部材64を構成する材料の透磁率変化開始温度は、各色トナー像が溶融する定着設定温度以上であり、且つ、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と非磁性(常磁性)との間を可逆的に変化する特性(「感温磁性」)を有する材料で構成される。そして、感温磁性部材64は、強磁性を呈する透磁率変化開始温度以下の温度範囲において磁路形成部材として機能し、IHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。それにより、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後述する図6を参照)とを内部に包み込むような閉磁路を形成する。
一方、透磁率変化開始温度を超える温度範囲において、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
尚、ここでの「透磁率変化開始温度」とは、透磁率(例えば、JIS C2531で測定される透磁率)が連続的に低下を開始する温度であり、例えば、感温磁性部材64等の部材を透過する磁束量(磁力線の数)が変化し始める温度点をいう。したがって、透磁率変化開始温度は、磁性が消失する温度であるキュリー点に近い温度となるが、キュリー点とは異なる概念を有するものである。
Further, the temperature-sensitive magnetic member 64 is made of a material having a “permeability change start temperature” (see the subsequent stage), which is a temperature at which the magnetic permeability of the magnetic characteristics changes suddenly. The permeability change start temperature is a temperature at which the permeability of the magnetic characteristics changes suddenly. In the present embodiment, the temperature change start temperature of the material constituting the temperature-sensitive magnetic member 64 is equal to or higher than the fixing set temperature at which each color toner image is melted, and the elastic layer 613 and the surface release layer of the fixing belt 61. It is set within a temperature range lower than the heat resistant temperature of 614. That is, the temperature-sensitive magnetic member 64 is made of a material having a characteristic (“temperature-sensitive magnetism”) that reversibly changes between ferromagnetic and non-magnetic (paramagnetic) in a temperature range including the fixing set temperature. . The temperature-sensitive magnetic member 64 functions as a magnetic path forming member in a temperature range that is equal to or lower than the permeability change start temperature exhibiting ferromagnetism, and induces magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 to the inside. Thus, a magnetic path passing through the inside of the temperature-sensitive magnetic member 64 is formed. As a result, the temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and an exciting coil 82 of the IH heater 80 (see FIG. 6 described later).
On the other hand, in the temperature range exceeding the permeability change start temperature, the temperature-sensitive magnetic member 64 transmits the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 so as to cross the thickness direction of the temperature-sensitive magnetic member 64. Let Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80.
The “permeability change start temperature” here is a temperature at which the magnetic permeability (for example, the magnetic permeability measured by JIS C2531) starts to decrease continuously. For example, the temperature-sensitive magnetic member 64 or the like The temperature point at which the amount of magnetic flux (number of lines of magnetic force) passing through the member starts to change. Therefore, the permeability change start temperature is a temperature close to the Curie point, which is the temperature at which magnetism disappears, but has a concept different from the Curie point.

感温磁性部材64に用いる材料としては、透磁率変化開始温度が、例えば、140℃(定着設定温度)〜240℃の範囲内に設定された、例えば、Fe−Ni合金(パーマロイ)等の二元系感温磁性合金やFe−Ni−Cr合金等の三元系の感温磁性合金等が用いられる。例えば、Fe−Niの二元系感温磁性合金においては、約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや感温磁性合金等の金属合金等は、成型性や加工性に優れ、伝熱性も高く安価である等の理由から、感温磁性部材64に適する。その他の材料としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも厚い厚さで形成される。具体的には、例えば、Fe−Ni合金を用いた場合には50μm〜300μm程度に設定される。なお、感温磁性部材64の構成や機能に関しては、後段でさらに詳述する。
As a material used for the temperature-sensitive magnetic member 64, for example, a magnetic permeability change start temperature is set in a range of 140 ° C. (fixing set temperature) to 240 ° C., for example, a Fe—Ni alloy (permalloy) or the like. A ternary thermosensitive magnetic alloy such as a ternary thermosensitive magnetic alloy or an Fe—Ni—Cr alloy is used. For example, in a Fe-Ni binary temperature-sensitive magnetic alloy, the permeability change start temperature can be set to around 225 ° C. by setting it to about Fe 64% and Ni 36% (atomic ratio). Such metal alloys such as permalloy and temperature-sensitive magnetic alloy are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high heat conductivity, and are inexpensive. As other materials, metal alloys made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo, or the like are used.
Further, the temperature-sensitive magnetic member 64 is formed with a thickness greater than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 μm to 300 μm. The configuration and function of the temperature-sensitive magnetic member 64 will be described in further detail later.

<ホルダの説明>
感温磁性部材64、誘導部材66、押圧パッド63等の構成部材を支持するホルダ65は、例えば、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。
さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えば、Al,Cu,Ag等の非磁性金属材料等が用いられる。
感温磁性部材64、誘導部材66をホルダ65に取り付ける方法については後述する。
<Description of holder>
For example, the holder 65 that supports the structural members such as the temperature-sensitive magnetic member 64, the guide member 66, and the pressing pad 63 has a certain amount of deflection when the pressing pad 63 receives a pressing force from the pressing roll 62. The material is made of a material having high rigidity. Thereby, the uniformity of the pressure in the longitudinal direction (nip pressure N) at the nip portion N is maintained.
Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass mixed PPS (polyphenylene sulfide) or a nonmagnetic metal material such as Al, Cu, or Ag is used.
A method for attaching the temperature-sensitive magnetic member 64 and the guide member 66 to the holder 65 will be described later.

<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは、予め定めた間隙(例えば、1.0mm〜5.0mm)を有するように非接触に配置される。また、誘導部材66は、例えば、Ag,Cu,Al等の固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導し、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い、予め定めた厚さ(例えば、1.0mm)で形成される。
<Description of induction member>
The induction member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and is a predetermined gap (for example, 1.0 mm to 5.0 mm) from the inner peripheral surface of the temperature-sensitive magnetic member 64. It is arrange | positioned in non-contact so that it may have. In addition, the guide member 66 is made of a nonmagnetic metal having a relatively small specific resistance value such as Ag, Cu, or Al. When the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and an eddy current is generated from the conductive heating layer 612 of the fixing belt 61. A state in which I is likely to occur is formed. Thereby, the thickness of the induction member 66 is a predetermined thickness (for example, 1.0 mm) that is sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I can easily flow. Formed with.

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
図2に示すように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2, end cap members that rotationally drive the fixing belt 61 in the circumferential direction while maintaining the circular cross-sectional shape of both ends of the fixing belt 61 at the axial ends of the holder 65 (see FIG. 3). 67 is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.

ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材166を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材料としては、機械的強度や耐熱性の高い、所謂、エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the Z direction. As shown in FIG. 5, the end cap member 67 is formed with a fixing portion 67 a fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and when the end cap member 67 is attached to the fixing belt 61. Rotating through a flange portion 67d formed so as to project radially from the fixing belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 166. A bearing bearing portion 67c that is freely coupled is provided. Then, as shown in FIG. 2, the support portions 65a at both ends of the holder 65 are fixed to both ends of the casing 69 of the fixing unit 60, whereby the end cap member 67 is coupled to the support portion 65a. It is rotatably supported via the bearing bearing portion 67c.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin and the like are suitable.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1N・m〜0.5N・m程度のトルクが作用する。
本実施の形態の定着ベルト61では、基材層611を機械的強度の高い、例えば、非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1N・m〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, generally a torque of about 0.1 N · m to 0.5 N · m acts.
In the fixing belt 61 of the present embodiment, the base material layer 611 is made of high mechanical strength, for example, nonmagnetic stainless steel. Therefore, even when a torsional torque of about 0.1 N · m to 0.5 N · m is applied to the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.

また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えている。その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1N〜5N程度の圧縮力が働く。本実施の形態では、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態で使用する定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性・フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Further, the flange portion 67 d of the end cap member 67 suppresses the deviation of the fixing belt 61. The fixing belt 61 at that time generally has a compressive force of about 1N to 5N from the end (flange portion 67d) side in the axial direction. In the present embodiment, even when the fixing belt 61 receives such a compressive force, the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, so that buckling or the like occurs. It is suppressed.
As described above, the fixing belt 61 used in the present embodiment rotates by receiving a driving force directly from both ends of the fixing belt 61, so that stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. is doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed in a thin layer to ensure the flexibility and flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば、直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された、例えば、厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに、例えば、厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により、例えば、25kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 is, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. The layer 622 and a release layer 623 made of, for example, a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating are laminated. Then, the pressing pad 68 is pressed by the pressing spring 68 (see FIG. 2) via the fixing belt 61 with a load of 25 kgf, for example.

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば、耐熱性樹脂等の非磁性体から構成される支持体81、交流磁界を生成する励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment. As shown in FIG. 6, the IH heater 80 includes, for example, a support 81 made of a nonmagnetic material such as a heat resistant resin, and an exciting coil 82 that generates an alternating magnetic field. Further, an elastic support member 83 made of an elastic body that fixes the excitation coil 82 on the support 81 and a magnetic core 84 that forms a magnetic path of an alternating magnetic field generated by the excitation coil 82 are provided. Furthermore, a shield 85 that shields the magnetic field, a pressure member 86 that pressurizes the magnetic core 84 toward the support 81, and an excitation circuit 88 that supplies an alternating current to the excitation coil 82 are provided.

支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5mm〜2mm)を保つように形成されている。また、支持体81を構成する材料としては、耐熱性を有する非磁性材料が用いられる。例えば、耐熱ガラス等のガラス;ポリカーボネート、ポリエーテルサルフォン、ポリフェニレンサルファイド(PPS)等の耐熱性樹脂、または、これらにガラス繊維を混合した耐熱性樹脂等が挙げられる。
励磁コイル82は、相互に絶縁された、例えば、直径0.17mmの銅線材を、例えば、90本束ねたリッツ線が、長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20kHz〜100kHzが用いられる。
The support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (supporting surface) 81 a that supports the exciting coil 82 has a predetermined gap (for example, 0) from the surface of the fixing belt 61. 0.5 mm to 2 mm). Moreover, as a material which comprises the support body 81, the nonmagnetic material which has heat resistance is used. Examples thereof include glass such as heat-resistant glass; heat-resistant resins such as polycarbonate, polyethersulfone, and polyphenylene sulfide (PPS), or heat-resistant resins obtained by mixing glass fibers with these.
The exciting coil 82 is formed by winding, for example, 90 litz wires, which are bundled with, for example, 90 copper wires having a diameter of 0.17 mm, which are insulated from each other, into a closed loop with a hollow space such as an ellipse, an ellipse, or a rectangle. Configured. Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 kHz to 100 kHz generated by the general-purpose power source.

磁心84は、磁路形成手段として機能する。磁心84の材料としては、例えば、ソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、パーマロイ、感温磁性合金等の高透磁率の酸化物や合金材料で構成される強磁性体が挙げられる。
磁心84は、磁力線の通路(磁路)を形成する。この磁力線の通路(磁路)は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻る。
The magnetic core 84 functions as a magnetic path forming unit. Examples of the material of the magnetic core 84 include ferromagnetic materials composed of oxides or alloy materials having high magnetic permeability such as soft ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, and temperature-sensitive magnetic alloy. It is done.
The magnetic core 84 forms a path (magnetic path) for lines of magnetic force. This magnetic line of force (magnetic path) induces a magnetic line of force (magnetic flux) generated by the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core 84 toward the temperature-sensitive magnetic member 64. It passes through the warm magnetic member 64 and returns to the magnetic core 84.

すなわち、励磁コイル82にて生成された交流磁界が、磁心84の内部と感温磁性部材64の内部とを通過するように構成し、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が、定着ベルト61の磁心84と対向する領域に集中される。
ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(例えば、スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらに、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
That is, the AC magnetic field generated by the excitation coil 82 is configured to pass through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64, and the lines of magnetic force wrap the fixing belt 61 and the excitation coil 82 inside. A closed magnetic circuit is formed. As a result, the magnetic field lines of the alternating magnetic field generated by the exciting coil 82 are concentrated in a region facing the magnetic core 84 of the fixing belt 61.
Here, the magnetic core 84 is preferably made of a material having a small loss due to magnetic path formation. Specifically, the magnetic core 84 is desirably used in a form that reduces the eddy current loss (for example, current path interruption or division by a slit or the like, bundled thin plates, etc.), and is preferably formed of a material having a small hysteresis loss. .
Further, the length of the magnetic core 84 along the rotation direction of the fixing belt 61 is configured to be smaller than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the leakage of magnetic lines of force to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit 60 is suppressed, and the heat generation efficiency in the fixing belt 61 (conductive heat generation layer 612) is increased.

<励磁コイルの固定方法の説明>
次に、本実施の形態のIHヒータ80における励磁コイル82の支持体81への固定方法について述べる。
本実施の形態のIHヒータ80では、励磁コイル82を支持体81に支持する弾性支持部材83は、例えば、シリコーンゴム等やフッ素ゴム等のゴム状弾性体で構成される。そして、弾性支持部材83が励磁コイル82を支持体81に対して押圧しながら弾性変形することで、励磁コイル82を支持体81の支持面に支持する。すなわち、弾性支持部材83は、ヤング率が低い材料で構成され、弾性支持部材83が励磁コイル82を支持体81に向けて押圧するに際して、ヤング率の低い弾性支持部材83が弾性変形して、励磁コイル82を支持体81に支持する。
<Description of fixing method of excitation coil>
Next, a method for fixing the exciting coil 82 to the support 81 in the IH heater 80 of the present embodiment will be described.
In the IH heater 80 of the present embodiment, the elastic support member 83 that supports the exciting coil 82 on the support 81 is made of a rubber-like elastic body such as silicone rubber or fluorine rubber, for example. The elastic support member 83 is elastically deformed while pressing the excitation coil 82 against the support 81, thereby supporting the excitation coil 82 on the support surface of the support 81. That is, the elastic support member 83 is made of a material having a low Young's modulus, and when the elastic support member 83 presses the exciting coil 82 against the support 81, the elastic support member 83 with a low Young's modulus is elastically deformed, The exciting coil 82 is supported on the support body 81.

図7は、本実施の形態のIHヒータ80の積層構造を説明する図である。図7に示したように、励磁コイル82は、支持体81の支持面81a上にて、励磁コイル82の閉ループ中空部82aが支持面81aの長手方向中心軸に設けられた凸部81bを囲むように設置される。支持面81aは、上記したエンドキャップ部材67(図2参照)に支持されて略円形状の軌跡を描きながら回転移動する定着ベルト61との距離が、規定値(設計値)に設定された位置設定面として形成されている。それにより、励磁コイル82が支持面81a上に密着して配置されることで、励磁コイル82と定着ベルト61との距離が設計値に設定されることとなる。   FIG. 7 is a view for explaining the laminated structure of the IH heater 80 of the present embodiment. As shown in FIG. 7, in the exciting coil 82, on the support surface 81a of the support 81, the closed loop hollow portion 82a of the exciting coil 82 surrounds the convex portion 81b provided on the central axis in the longitudinal direction of the support surface 81a. Installed. The support surface 81a is supported by the above-described end cap member 67 (see FIG. 2), and the distance between the support surface 81a and the fixing belt 61 that rotates while drawing a substantially circular locus is set to a specified value (design value). It is formed as a setting surface. As a result, the exciting coil 82 is disposed in close contact with the support surface 81a, whereby the distance between the exciting coil 82 and the fixing belt 61 is set to a design value.

そのために、本実施の形態のIHヒータ80では、支持体81の支持面81a上に配置された励磁コイル82は、弾性支持部材83により支持面81a側に向けて押圧されるように構成される。すなわち、励磁コイル82の上部に配置される磁心84は、磁心84の両端部84aが支持体81の両側部に設けられた支持レール部81cに取り付けられる(図6も参照)。それにより、磁心84の下側面(支持体81側の側面)に配置された弾性支持部材83は、励磁コイル82の上面と接触して設置される。一方、磁心84は、シールド85が支持体81に取り付けられることで、シールド85の下部面に設けられた加圧部材86により支持体81側に加圧される。それにより、励磁コイル82は、磁心84からの加圧力を受けた弾性支持部材83からの弾性力を受け、加圧力により弾性変形する弾性支持部材83によって支持面81a側に向けて押圧されながら支持面81a上に支持される。それによって、励磁コイル82が支持面81a上に密着し、励磁コイル82と定着ベルト61との距離が設計値に設定される。
なお、加圧部材86としては、例えばシリコーンゴム等やフッ素ゴム等のゴム状弾性体の他に、バネ等の弾性部材を用いてもよい。
Therefore, in the IH heater 80 of the present embodiment, the excitation coil 82 disposed on the support surface 81a of the support 81 is configured to be pressed toward the support surface 81a by the elastic support member 83. . That is, the magnetic core 84 disposed on the upper portion of the exciting coil 82 is attached to the support rail portions 81c provided at both end portions 84a of the support body 81 (see also FIG. 6). Thereby, the elastic support member 83 disposed on the lower surface of the magnetic core 84 (the side surface on the support body 81 side) is placed in contact with the upper surface of the exciting coil 82. On the other hand, when the shield 85 is attached to the support body 81, the magnetic core 84 is pressed to the support body 81 side by the pressing member 86 provided on the lower surface of the shield 85. Thereby, the exciting coil 82 receives the elastic force from the elastic support member 83 that receives the pressure from the magnetic core 84, and is supported while being pressed toward the support surface 81a by the elastic support member 83 that is elastically deformed by the pressure. It is supported on the surface 81a. As a result, the exciting coil 82 comes into close contact with the support surface 81a, and the distance between the exciting coil 82 and the fixing belt 61 is set to a design value.
As the pressing member 86, for example, an elastic member such as a spring may be used in addition to a rubber-like elastic body such as silicone rubber or fluororubber.

一般に、励磁コイル82にて交流磁界が生成されると、励磁コイル82近傍に配置された磁心84や定着ベルト61の内周面側に配置された感温磁性部材64等との間で相互に磁力が作用し、励磁コイル82自身に振動(磁歪)が発生する。そのため、支持体81に対し、例えば、接着剤等の所謂剛性体(ヤング率が高い材料)を用いて励磁コイル82を固定すると、定着装置60の長期に亘る累積使用により、励磁コイル82の振動が要因となって、接着剤等の剛性体と励磁コイル82との間が剥離し易くなる。そして、励磁コイル82が接着剤等の剛性体から剥離すると、励磁コイル82が支持面81a上で位置ずれを起こし、或いは、励磁コイル82に変形が生じる。そうなると、励磁コイル82の定着ベルト61との距離が当初の設計値から外れ、磁心84を経て定着ベルト61を通過する磁力線の密度(磁束密度)が、定着ベルト61表面で部分的にばらつくこととなる。そのために、定着ベルト61で発生する渦電流Iの大きさに不均一が生じ、定着ベルト61表面での発熱量に部分的なばらつきが生じた状態が形成される場合がある。   In general, when an alternating magnetic field is generated by the exciting coil 82, the magnetic core 84 disposed in the vicinity of the exciting coil 82, the temperature-sensitive magnetic member 64 disposed on the inner peripheral surface side of the fixing belt 61, etc. Magnetic force acts, and vibration (magnetostriction) is generated in the exciting coil 82 itself. Therefore, when the exciting coil 82 is fixed to the support 81 using, for example, a so-called rigid body (a material having a high Young's modulus) such as an adhesive, the vibration of the exciting coil 82 is caused by cumulative use of the fixing device 60 over a long period of time. As a result, the rigid body such as an adhesive and the exciting coil 82 are easily separated. When the exciting coil 82 is peeled off from a rigid body such as an adhesive, the exciting coil 82 is displaced on the support surface 81a, or the exciting coil 82 is deformed. Then, the distance between the exciting coil 82 and the fixing belt 61 deviates from the initial design value, and the density of magnetic lines of force (magnetic flux density) passing through the fixing belt 61 via the magnetic core 84 partially varies on the surface of the fixing belt 61. Become. For this reason, the magnitude of the eddy current I generated in the fixing belt 61 may be uneven, and a state may be formed in which the amount of heat generated on the surface of the fixing belt 61 varies partially.

また、接着剤等の剛性体を用いて励磁コイル82を支持体81に固定する場合には、接着剤等が固化するまでの間、励磁コイル82の全面を支持体81との位置ずれが生じないように固定しておく必要がある。ところが、励磁コイル82は例えばリッツ線を閉ループ状に束ねて接着されたものであるため、変形が生じ易い。そのため、接着剤等が固化するまで励磁コイル82を支持体81と位置ずれが生じないように固定しておくことは困難を伴い、励磁コイル82の支持体81に対する位置精度が低下し易くなる。励磁コイル82の支持体81に対する位置精度が低下すると、上記の同様に、定着ベルト61表面での発熱量に部分的なばらつきが生じた状態が形成される。   Further, when the excitation coil 82 is fixed to the support 81 using a rigid body such as an adhesive, the entire surface of the excitation coil 82 is displaced from the support 81 until the adhesive or the like is solidified. It is necessary to fix so that there is no. However, since the exciting coil 82 is, for example, a litz wire bundled in a closed loop and bonded, the deformation is likely to occur. For this reason, it is difficult to fix the exciting coil 82 with the support 81 so as not to be displaced until the adhesive or the like is solidified, and the positional accuracy of the exciting coil 82 with respect to the support 81 tends to be lowered. When the positional accuracy of the exciting coil 82 with respect to the support 81 is lowered, a state in which a partial variation occurs in the amount of heat generated on the surface of the fixing belt 61 is formed as described above.

そこで、本実施の形態のIHヒータ80では、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成された弾性支持部材83が、励磁コイル82を支持体81に対して押圧することで、支持体81の支持面81aに支持するように構成している。そして、弾性体で構成された弾性支持部材83は、励磁コイル82の振動を吸収しながら、励磁コイル82の振動に合わせて弾性支持部材83自身が弾性変形する。それにより、定着装置60の長期に亘る累積使用によって励磁コイル82の振動の累積数が多大となっても、弾性支持部材83と励磁コイル82との間は剥離せず、支持体81と励磁コイル82との間を初期に設定された両者の位置関係に維持する。   Therefore, in the IH heater 80 according to the present embodiment, the elastic support member 83 made of an elastic body such as silicone rubber or fluorine rubber presses the excitation coil 82 against the support 81 to thereby support the support body. The support surface 81a of 81 is comprised so that it may support. The elastic support member 83 formed of an elastic body elastically deforms itself according to the vibration of the excitation coil 82 while absorbing the vibration of the excitation coil 82. Accordingly, even if the cumulative number of vibrations of the excitation coil 82 becomes large due to the cumulative use of the fixing device 60 over a long period of time, the elastic support member 83 and the excitation coil 82 are not separated, and the support 81 and the excitation coil are separated. 82 is maintained in the initial positional relationship.

また、弾性支持部材83は、製造時に厚さ(設定値)が、予め定めた寸法精度に収まるように管理される。そのため、励磁コイル82を支持面81a上に支持する長手方向に亘る押圧力がほぼ均等となるように設定される。特に、本実施の形態のIHヒータ80では、励磁コイル82の長手方向に亘って分割して設けられた複数の磁心84が励磁コイル82を長手方向に亘って均一に押圧する。それにより、励磁コイル82と支持面81aとの密着性が長手方向に亘って高められ、励磁コイル82と定着ベルト61との位置が長手方向に亘って設定される。
さらには、IHヒータ80の製造時には、接着剤等が固化するまでの時間を要さず、短時間で励磁コイル82が取り付けられる。
In addition, the elastic support member 83 is managed so that the thickness (set value) falls within a predetermined dimensional accuracy at the time of manufacture. Therefore, the pressing force in the longitudinal direction for supporting the exciting coil 82 on the support surface 81a is set to be substantially equal. In particular, in the IH heater 80 according to the present embodiment, a plurality of magnetic cores 84 divided and provided along the longitudinal direction of the excitation coil 82 press the excitation coil 82 uniformly along the longitudinal direction. Thereby, the adhesion between the exciting coil 82 and the support surface 81a is enhanced in the longitudinal direction, and the positions of the exciting coil 82 and the fixing belt 61 are set in the longitudinal direction.
Further, when the IH heater 80 is manufactured, the exciting coil 82 is attached in a short time without requiring time for the adhesive or the like to solidify.

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140℃〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64 is within a temperature range that is not less than the set fixing temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61 (for example, 140 ° C. ˜240 ° C.). When the temperature of the fixing belt 61 is equal to or lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 is also started corresponding to the temperature of the fixing belt 61. Below temperature. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図8は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図8に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 8 is a diagram for explaining the state of the lines of magnetic force (H) when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature. As shown in FIG. 8, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 are transmitted through the fixing belt 61. A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, the number of magnetic field lines H (magnetic flux density) per unit area in the region crossing the conductive heat generating layer 612 of the fixing belt 61 increases.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて発生する。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。   That is, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through the regions R1 and R2 across the conductive heat generating layer 612 of the fixing belt 61, the magnetic field lines H enter the temperature-sensitive magnetic member 64 that is a ferromagnetic material. Be guided. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 increases. Further, even when the magnetic field lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84 again, in the region R3 that crosses the conductive heating layer 612 in the thickness direction, the magnetic field in the temperature-sensitive magnetic member 64 is increased. It is concentrated toward the magnetic core 84 from the lower part. Therefore, the magnetic force lines H that cross the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core 84, and the magnetic flux density in the region R3 is also increased.

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図8に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. Thereby, as shown in FIG. 8, a large eddy current I is generated in the regions R1, R2 and R3 where the amount of change in magnetic flux density is large. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. Thereby, a large Joule heat W is generated in the conductive heat generating layer 612 where the large eddy current I is generated.
As described above, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, large heat is generated in the regions R1 and R2 and the region R3 where the lines of magnetic force H cross the conductive heat generating layer 612. Thereby, the fixing belt 61 is heated.

ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   By the way, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the fixing belt 61 on the inner peripheral surface side of the fixing belt 61. As a result, the magnetic core 84 that guides the magnetic force lines H generated by the exciting coil 82 to the inside and the temperature-sensitive magnetic member 64 that guides the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction are close to each other. The configuration is realized. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

<定着ベルトの非通紙部の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙部の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図9は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図9においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
<Description of function for suppressing temperature rise of non-sheet passing portion of fixing belt>
Next, the function of suppressing the temperature rise at the non-sheet passing portion of the fixing belt 61 will be described.
First, a case where small-size paper P (small-size paper P1) is continuously passed through the fixing unit 60 will be described. FIG. 9 is a diagram showing an outline of the temperature distribution in the width direction of the fixing belt 61 when the small size paper P1 is continuously fed. In FIG. 9, the maximum sheet passing area which is the maximum size width (for example, A3 width) of the sheet P used in the image forming apparatus 1 is Ff, and the small size sheet P1 (for example, smaller than the maximum size sheet P) (for example, , A4 (vertical feed) passes through the area (small size paper passing area) as Fs, and the non-sheet passing area through which the small size paper P1 does not pass is Fb. In the image forming apparatus 1, it is assumed that the sheet is passed based on the center position.

図9に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。   As shown in FIG. 9, when small-size paper P1 is continuously passed, heat for fixing is consumed in the small-size paper passing area Fs through which the small-size paper P1 passes. Therefore, the temperature adjustment control at the fixing set temperature is performed by the control unit 31 (see FIG. 1), and the temperature of the fixing belt 61 in the small size paper passing area Fs is maintained within the range near the fixing set temperature. On the other hand, temperature adjustment control similar to that of the small-size paper passing area Fs is performed also in the non-paper passing area Fb. However, heat for fixing is not consumed in the non-sheet passing area Fb. For this reason, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Then, when the continuous passage of the small size paper P1 is continued in this state, the temperature of the non-sheet passing region Fb rises, for example, higher than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61, and the fixing belt. 61 may be damaged.

そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に透磁率変化開始温度が設定された例えばFe−Ni合金等で構成されている。すなわち、図9に示したように、感温磁性部材64の透磁率変化開始温度Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。   Therefore, as described above, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is equal to or higher than the preset fixing temperature and is, for example, equal to or lower than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. For example, an Fe—Ni alloy or the like having a magnetic permeability change start temperature set within the temperature range is used. That is, as shown in FIG. 9, the magnetic permeability change start temperature Tcu of the temperature-sensitive magnetic member 64 is equal to or higher than the fixing set temperature Tf, for example, a temperature equal to or lower than the heat resistance temperature Tlim of the elastic layer 613 and the surface release layer 614. It is set in the area.

それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64の透磁率変化開始温度を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に透磁率変化開始温度を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
Thereby, when the small size paper P1 is continuously passed, the temperature in the non-sheet passing region Fb of the fixing belt 61 exceeds the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64. Accordingly, the temperature in the non-sheet passing region Fb of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also exceeds the permeability change start temperature in the same manner as the fixing belt 61 corresponding to the temperature of the fixing belt 61. For this reason, the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb has a relative magnetic permeability close to 1, and the properties as a ferromagnetic material disappear. The relative magnetic permeability of the temperature-sensitive magnetic member 64 decreases and approaches 1 so that the magnetic field lines H in the non-sheet-passing region Fb are not guided into the temperature-sensitive magnetic member 64 but pass through the temperature-sensitive magnetic member 64. become. Therefore, in the non-sheet passing region Fb of the fixing belt 61, the magnetic field lines H after passing through the conductive heat generating layer 612 are diffused, and the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 is reduced. Thereby, the eddy current I generated in the conductive heat generation layer 612 is reduced, and the heat generation amount (Joule heat W) in the fixing belt 61 is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb is suppressed, and damage to the fixing belt 61 is suppressed.
As described above, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 and suppresses an increase in temperature that suppresses an excessive temperature increase of the fixing belt 61 according to the detected temperature of the fixing belt 61. It also has a function as a department.

感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。   The lines of magnetic force H after passing through the temperature-sensitive magnetic member 64 reach the guide member 66 (see FIG. 3) and are guided into this. When the magnetic flux reaches the induction member 66 and is induced therein, more eddy current I flows toward the induction member 66 where the eddy current I flows more easily than the conductive heat generation layer 612. Therefore, the amount of eddy current flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise in the non-sheet passing region Fb is suppressed.

その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材料、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を、例えば、4mm)に配置している。その他の材料としては、AgやCuが好適である。   At this time, the thickness, material, and shape of the induction member 66 are selected so that the induction member 66 induces most of the magnetic field lines H from the exciting coil 82 and suppresses leakage of the magnetic field lines H from the fixing unit 60. . Specifically, the guide member 66 may be made of a material having a sufficiently thick skin depth δ. Thereby, even if the eddy current I flows through the induction member 66, the amount of heat generation is also minimized. In the present embodiment, the guide member 66 is made of Al (aluminum) having a substantially circular shape along the temperature-sensitive magnetic member 64 and having a thickness of 1 mm, and is not in contact with the temperature-sensitive magnetic member 64 (average distance is 4 mm). As other materials, Ag and Cu are suitable.

ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の透磁率変化開始温度よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も透磁率変化開始温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   By the way, when the temperature in the non-sheet-passing region Fb of the fixing belt 61 becomes lower than the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64, the temperature in the non-sheet-passing region Fb of the temperature-sensitive magnetic member 64 is also permeable. It becomes lower than the change start temperature. As a result, the temperature-sensitive magnetic member 64 changes to ferromagnetic again, and the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heating layer 612. Therefore, the fixing belt 61 is heated again.

図10は、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図10に示したように、定着ベルト61の温度が非通紙領域Fbにて透磁率変化開始温度を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。   FIG. 10 is a diagram for explaining the state of the lines of magnetic force H when the temperature of the fixing belt 61 in the non-sheet passing region Fb is in the temperature range exceeding the permeability change start temperature. As shown in FIG. 10, when the temperature of the fixing belt 61 is in the temperature range exceeding the magnetic permeability change start temperature in the non-sheet passing area Fb, the temperature-sensitive magnetic member 64 in the non-sheet passing area Fb has a ratio. Magnetic permeability decreases. Therefore, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 change so as to easily pass through the temperature-sensitive magnetic member 64. Accordingly, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (excitation coil 82) are radiated so as to diffuse from the magnetic core 84 toward the fixing belt 61 and reach the induction member 66.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
That is, in the regions R1 and R2 where the magnetic force lines H are radiated from the magnetic core 84 of the IH heater 80 and cross the conductive heat generating layer 612 of the fixing belt 61, the magnetic force lines H are difficult to be guided to the temperature-sensitive magnetic member 64 and thus diffuse radially. As a result, the magnetic flux density (number of magnetic force lines H per unit area) of the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction decreases. Further, even in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction when the magnetic force line H returns to the magnetic core 84 again, the magnetic force line H returns to the magnetic core 84 from the diffused wide region. The magnetic flux density of the magnetic field lines H crossing 612 in the thickness direction decreases.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H crossing the conductive heating layer 612 in the thickness direction in the regions R1, R2, and R3 decreases. It becomes. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. As a result, the temperature of the fixing belt 61 decreases.

このように、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば、小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
As described above, when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in the temperature range equal to or higher than the magnetic permeability change start temperature, the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64 in the non-sheet-passing area Fb. The magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 cross the conductive heat generating layer 612 of the fixing belt 61 while diffusing in the thickness direction. Therefore, the magnetic path of the alternating magnetic field generated by the exciting coil 82 forms a long loop, and the magnetic flux density in the magnetic path passing through the conductive heating layer 612 of the fixing belt 61 decreases.
Thereby, for example, in the non-sheet passing region Fb in which the small size paper P1 is continuously passed and the temperature is increased, the eddy current I generated in the conductive heat generating layer 612 of the fixing belt 61 is reduced and the fixing belt 61 is not turned on. The amount of heat generation (joule heat W) in the sheet passing area Fb is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb can be suppressed.

<感温磁性部材の昇温を抑制する構成の説明>
感温磁性部材64が、上記した非通紙領域Fbでの過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度が、それに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に自己発熱した熱が蓄積され、通紙領域(図9参照)でも感温磁性部材の温度が上昇傾向を呈する。このように渦電流損による自己発熱が大きいと温度が上昇して、意図せず透磁率変化開始温度まで到達してしまい、通紙領域と非通紙領域の磁気特性に差がなくなって昇温抑制効果が効かなくなってしてしまうことがある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
<Description of the configuration for suppressing the temperature rise of the temperature-sensitive magnetic member>
In order for the temperature-sensitive magnetic member 64 to perform the function of suppressing an excessive temperature rise in the non-sheet-passing region Fb, the temperature of each region in the longitudinal direction of the temperature-sensitive magnetic member 64 is the temperature of the fixing belt 61 facing it. It changes in accordance with the temperature of each region in the longitudinal direction and needs to function as a detection unit that detects the temperature of the fixing belt 61 described above.
Therefore, regarding the temperature-sensitive magnetic member 64 itself, a configuration that is difficult to be induction-heated by the magnetic field lines H is adopted. That is, even if the temperature of the fixing belt 61 is equal to or lower than the permeability change start temperature and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the temperature-sensitive magnetic member 64 is included in the magnetic force lines H from the IH heater 80. There is a magnetic field line H that crosses in the thickness direction. As a result, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and a slight amount of heat is generated in the temperature-sensitive magnetic member 64 itself. For this reason, for example, when a large amount of image formation is continuously performed, the heat-sensitive magnetic member 64 accumulates heat generated by itself, and the temperature of the temperature-sensitive magnetic member also increases in the paper passing area (see FIG. 9). It shows an upward trend. Thus, if the self-heating due to eddy current loss is large, the temperature rises and unintentionally reaches the temperature at which the permeability change starts, and there is no difference in the magnetic characteristics between the paper passing area and the non-paper passing area. The suppression effect may stop working. Therefore, the correspondence between the temperature of the temperature-sensitive magnetic member 64 and the temperature of the fixing belt 61 is maintained, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. It is necessary to suppress the Joule heat W generated in the member 64 itself.

そこで、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材料が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも透磁率変化開始温度以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く形成される。
Therefore, first, for the temperature-sensitive magnetic member 64, a material having physical properties (specific resistance value and magnetic permeability) that is difficult to be induction-heated by the magnetic field lines H is selected.
Second, the thickness of the temperature-sensitive magnetic member 64 exhibits ferromagnetism so that the magnetic field lines H are difficult to cross in the thickness direction of the temperature-sensitive magnetic member 64 at least in the temperature range below the permeability change start temperature. It is formed thicker than the skin depth δ in the state.

さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断する複数のスリット64sが形成される。誘導加熱され難いように感温磁性部材64の材料や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するジュール熱Wを低く抑えている。   Third, the temperature-sensitive magnetic member 64 is formed with a plurality of slits 64 s that divide the flow of the eddy current I generated by the lines of magnetic force H. Even if the material and thickness of the temperature-sensitive magnetic member 64 are selected so that induction heating is difficult, it is difficult to reduce the eddy current I generated in the temperature-sensitive magnetic member 64 to zero. Therefore, by dividing the flow of the eddy current I generated in the temperature-sensitive magnetic member 64 by the plurality of slits 64s, the eddy current I is reduced and the Joule heat W generated in the temperature-sensitive magnetic member 64 is kept low. .

図11は、感温磁性部材64に形成されるスリットを示した図である。図11(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図11に示したように、感温磁性部材64では、磁力線Hによって発生する渦電流Iの流れる方向に直交して複数のスリット64sが形成される。そのため、スリット64sが無い場合には感温磁性部材64の長手方向の全体に亘って大きな渦となって流れる渦電流I(図11(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64内を流れる渦電流I(図11(a)実線)は、スリット64sとスリット64sとの間の領域内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現する。したがって、複数のスリット64sは、渦電流Iを分断する渦電流分断部として機能する。   FIG. 11 is a view showing slits formed in the temperature-sensitive magnetic member 64. FIG. 11A is a side view showing a state in which the temperature-sensitive magnetic member 64 is installed in the holder 65, and FIG. 11B is a plan view seen from above (a direction). As shown in FIG. 11, in the temperature-sensitive magnetic member 64, a plurality of slits 64 s are formed orthogonal to the direction in which the eddy current I generated by the lines of magnetic force H flows. Therefore, when there is no slit 64s, the eddy current I (broken line in FIG. 11B) that flows as a large eddy over the entire length of the temperature-sensitive magnetic member 64 is divided by the slit 64s. Thereby, when the slit 64s is formed, the eddy current I flowing through the temperature-sensitive magnetic member 64 (solid line in FIG. 11 (a)) becomes a small eddy in the region between the slit 64s and the slit 64s, The amount of eddy current I as a whole is reduced. As a result, the amount of heat generated by the temperature-sensitive magnetic member 64 (Joule heat W) is reduced, and a configuration that hardly generates heat is realized. Therefore, the plurality of slits 64 s function as an eddy current dividing unit that divides the eddy current I.

なお、図11に例示した感温磁性部材64では、スリット64sを渦電流Iの流れる方向に直交して形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して傾斜したスリットを形成してもよい。また、図11に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部に形成してもよい。また、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、傾斜角等を設定してもよい。
また、スリットの傾斜角が最大となった状態として、感温磁性部材64がスリット部で小片に分割された状態となる小片分割群となってもよく、このような形態であっても本発明の効果は同様に得られる。
In the temperature-sensitive magnetic member 64 illustrated in FIG. 11, the slit 64s is formed perpendicular to the direction in which the eddy current I flows. However, if the flow of the eddy current I is divided, for example, the eddy current I flows. You may form the slit inclined with respect to the direction. In addition to the configuration in which the slits 64 s as shown in FIG. 11 are formed over the entire region in the width direction of the temperature-sensitive magnetic member 64, the slit 64 s may be formed in a part in the width direction of the temperature-sensitive magnetic member 64. Further, the number, position, inclination angle, and the like of the slits may be set according to the amount of heat generated in the temperature-sensitive magnetic member 64.
Moreover, as a state where the inclination angle of the slit is maximized, the temperature-sensitive magnetic member 64 may be a small piece divided group in which the temperature-sensitive magnetic member 64 is divided into small pieces at the slit portion. The effect of is obtained similarly.

さらに、上記した感温磁性部材64の機能から、感温磁性部材64の温度は定着ベルト61の温度と略同じ温度で維持されることが望ましい。そのことから、本実施の形態では、感温磁性部材64と感温磁性部材64の内部に配置された誘導部材66等の他の部材とが、非接触状態が維持されるように構成される。すなわち、感温磁性部材64と誘導部材66等の間に空気層を介在させることで、感温磁性部材64からの熱の流出が過度になることを抑えている。それにより、例えば、大量の画像形成が連続して行われた場合等のような、感温磁性部材64にて発生した熱が蓄積される状況が生じた場合において、定着ベルト61の温度を超える発熱分の熱量を感温磁性部材64から放熱しやすくするように構成されている。   Further, from the function of the temperature-sensitive magnetic member 64 described above, it is desirable that the temperature of the temperature-sensitive magnetic member 64 is maintained at substantially the same temperature as the temperature of the fixing belt 61. Therefore, in the present embodiment, the temperature-sensitive magnetic member 64 and the other members such as the induction member 66 disposed inside the temperature-sensitive magnetic member 64 are configured to maintain a non-contact state. . That is, an air layer is interposed between the temperature-sensitive magnetic member 64 and the induction member 66 and the like, so that excessive heat outflow from the temperature-sensitive magnetic member 64 is suppressed. Thereby, for example, when a situation occurs in which heat generated by the temperature-sensitive magnetic member 64 is accumulated, such as when a large amount of image formation is continuously performed, the temperature of the fixing belt 61 is exceeded. It is configured so that the amount of heat generated can be easily radiated from the temperature-sensitive magnetic member 64.

次に、感温磁性部材64と誘導部材66の取り付けについて説明する。
図12は、定着装置60における感温磁性部材64と誘導部材66の取り付けを説明する概略断面図である。尚、ここでは、定着ベルト61(図3参照)等は省略している。
本実施の形態が適用される定着ユニット60では、感温磁性部材64と誘導部材66とが、ホルダ65に取り付けられている。図3において説明したように、円弧形状に形成された感温磁性部材64と、感温磁性部材64の内周面に倣った円弧形状で形成された誘導部材66とは、定着ベルト61(図3参照)の内側において、それぞれの部材の一部である片側側端部641,661を接触させつつ、予め定めた間隙を有するように非接触に配置されている。
図12に示すように、円弧形状に形成された感温磁性部材64の片側側端部641と誘導部材66の片側側端部661とが積層される。さらにその外側から取り付け用プレート100を重ね、感温磁性部材64を誘導部材66と取り付け用プレート100とで挟むようにしている。そして、誘導部材66と感温磁性部材64と取り付け用プレート100を重ねた部分を、締め付け具としての取り付けネジ300を締め込むことにより、これらはホルダ65に取り付けられている。
Next, attachment of the temperature-sensitive magnetic member 64 and the induction member 66 will be described.
FIG. 12 is a schematic cross-sectional view for explaining the attachment of the temperature-sensitive magnetic member 64 and the guide member 66 in the fixing device 60. Here, the fixing belt 61 (see FIG. 3) and the like are omitted.
In the fixing unit 60 to which this exemplary embodiment is applied, the temperature-sensitive magnetic member 64 and the guide member 66 are attached to the holder 65. As described with reference to FIG. 3, the temperature-sensitive magnetic member 64 formed in an arc shape and the guide member 66 formed in an arc shape following the inner peripheral surface of the temperature-sensitive magnetic member 64 include the fixing belt 61 (FIG. 3) is disposed in a non-contact manner so as to have a predetermined gap while contacting the one-side end portions 641 and 661 which are a part of the respective members.
As shown in FIG. 12, the one side end portion 641 of the temperature-sensitive magnetic member 64 formed in an arc shape and the one side end portion 661 of the guide member 66 are laminated. Further, the mounting plate 100 is stacked from the outside, and the temperature-sensitive magnetic member 64 is sandwiched between the guide member 66 and the mounting plate 100. And the part which piled up the induction | guidance | derivation member 66, the temperature sensitive magnetic member 64, and the plate 100 for attachment is fastened to the holder 65 by fastening the attachment screw 300 as a fastener.

図13は、ホルダ65、誘導部材66、感温磁性部材64、取り付け用プレート100の積層構造を説明する図である。本実施の形態では、感温磁性部材64の片側側端部641は、中央部において2分割されている。また、感温磁性部材64の2分割された片側側端部641にそれぞれ対応させて2個の取り付け用プレート100を用いている。
図13に示すように、先ず、ホルダ65の片側側端部651と誘導部材66の片側側端部661とを重ねる。このとき、誘導部材66の片側側端部661に設けたネジ孔662とホルダ65の片側側端部651に設けたネジ孔652とが一致するように配置する。そして、誘導部材66の片側側端部661に設けたネジ孔662に取り付けネジ200を締め込むことにより、誘導部材66をホルダ65に取り付ける。またこのとき、誘導部材66の片側側端部661に形成した複数のネジ孔663の位置とホルダ65に設けた複数のネジ孔653の位置とを一致させる。
FIG. 13 is a diagram illustrating a laminated structure of the holder 65, the guide member 66, the temperature-sensitive magnetic member 64, and the mounting plate 100. In the present embodiment, one end 641 of temperature-sensitive magnetic member 64 is divided into two at the center. Further, two mounting plates 100 are used in correspondence with the one-side end portion 641 of the temperature-sensitive magnetic member 64 that is divided into two.
As shown in FIG. 13, first, the one-side end 651 of the holder 65 and the one-side end 661 of the guide member 66 are overlapped. At this time, it arrange | positions so that the screw hole 662 provided in the one side edge part 661 of the guide member 66 and the screw hole 652 provided in the one side edge part 651 of the holder 65 may correspond. Then, the guide member 66 is attached to the holder 65 by tightening the attachment screw 200 into the screw hole 662 provided in the one-side end 661 of the guide member 66. At this time, the positions of the plurality of screw holes 663 formed in the one-side end 661 of the guide member 66 and the positions of the plurality of screw holes 653 provided in the holder 65 are matched.

次に、ホルダ65に取り付けた誘導部材66の片側側端部661と感温磁性部材64の片側側端部641とを重ねる。感温磁性部材64の片側側端部641には、複数個の切り欠き642が形成されている。複数個の切り欠き642は、片側側端部641の一部を切り取り、後述する取り付け用プレート100に形成された固定部位103が、誘導部材66の片側側端部661に接触するように形成されている。このとき、感温磁性部材64に形成した切り欠き642の位置と誘導部材66に形成した複数のネジ孔663の位置とを一致させる。また、感温磁性部材64の円弧形状で形成された部分と誘導部材66の円弧形状で形成された部分とが、予め定めた間隙を設けるように配置する。
尚、本実施の形態では、感温磁性部材64の2分割された片側側端部641の中央部分には、前述した誘導部材66をホルダ65に取に付けた取り付けネジ200の頭が露出している。
Next, the one side end 661 of the induction member 66 attached to the holder 65 and the one side end 641 of the temperature-sensitive magnetic member 64 are overlapped. A plurality of notches 642 are formed at one end 641 of the temperature-sensitive magnetic member 64. The plurality of cutouts 642 are formed such that a part of the one side end portion 641 is cut out and a fixing portion 103 formed on the mounting plate 100 described later comes into contact with the one side end portion 661 of the guide member 66. ing. At this time, the positions of the notches 642 formed in the temperature-sensitive magnetic member 64 and the positions of the plurality of screw holes 663 formed in the guide member 66 are matched. Further, the arc-shaped portion of the temperature-sensitive magnetic member 64 and the arc-shaped portion of the guide member 66 are arranged so as to provide a predetermined gap.
In the present embodiment, the head of the mounting screw 200 that attaches the guide member 66 to the holder 65 is exposed at the center portion of the one-side end portion 641 of the temperature-sensitive magnetic member 64 that is divided into two. ing.

続いて、誘導部材66に重ねた感温磁性部材64の片側側端部641に取り付け用プレート100を重ねる。取り付け用プレート100には、感温磁性部材64に形成された複数個の切り欠き642にそれぞれ対応する位置に固定部位103が形成されている。このとき、取り付け用プレート100の固定部位103の位置と感温磁性部材64に形成された複数個の切り欠き642の位置とを一致させる。そして、取り付け用プレート100の複数個の固定部位103にそれぞれ取り付けネジ300を締め込むことにより、誘導部材66と感温磁性部材64と取り付け用プレート100をホルダ65に取り付ける。これにより、誘導部材66の片側側端部661と取り付け用プレート100との間に感温磁性部材64の片側側端部641が挟まれた状態で固定される。   Subsequently, the mounting plate 100 is overlaid on one end 641 of the temperature-sensitive magnetic member 64 overlaid on the induction member 66. In the mounting plate 100, fixing portions 103 are formed at positions corresponding to the plurality of notches 642 formed in the temperature-sensitive magnetic member 64. At this time, the position of the fixing portion 103 of the mounting plate 100 and the positions of the plurality of notches 642 formed in the temperature-sensitive magnetic member 64 are matched. The induction member 66, the temperature-sensitive magnetic member 64, and the attachment plate 100 are attached to the holder 65 by tightening attachment screws 300 into the plurality of fixing portions 103 of the attachment plate 100. As a result, the one-side end portion 641 of the temperature-sensitive magnetic member 64 is fixed between the one-side end portion 661 of the guide member 66 and the mounting plate 100.

次に、取り付け用プレート100について説明する。
図14は、取り付け用プレート100の一例を説明する図である。図14(a)は、平面図、図14(b)は、図14(a)のY−Y断面図、図14(c)は、図14(a)のZ−Z断面図である。
本実施の形態では、取り付け用プレート100は、感温磁性部材64(図13参照)の片側側端部641に倣った板状形状で形成されたプレート本体101と、プレート本体101の上部にL字状に形成されたフレーム部102と、プレート本体101の一部を打ち抜いて形成された固定部位103とから構成されている。固定部位103は、前述した感温磁性部材64の片側側端部641に形成された複数個の切り欠き642(図13参照)に対応する位置に形成されている。
Next, the mounting plate 100 will be described.
FIG. 14 is a view for explaining an example of the mounting plate 100. 14A is a plan view, FIG. 14B is a YY sectional view of FIG. 14A, and FIG. 14C is a ZZ sectional view of FIG. 14A.
In the present embodiment, the mounting plate 100 includes a plate main body 101 formed in a plate shape following the one end 641 of the temperature-sensitive magnetic member 64 (see FIG. 13), and an L on the upper portion of the plate main body 101. The frame portion 102 is formed in a letter shape, and the fixing portion 103 is formed by punching a part of the plate body 101. The fixing portion 103 is formed at a position corresponding to a plurality of cutouts 642 (see FIG. 13) formed at one end 641 of the temperature-sensitive magnetic member 64 described above.

図14(a)に示すように、取り付け用プレート100の固定部位103は、プレート本体101の一部を打ち抜いた打ち抜き部105の中央部分に位置するように形成されている。固定部位103は、中央部分に取り付けネジ300(図13参照)が挿入されるネジ孔104が形成されたネジ受け部1031と、ネジ受け部1031の上下とプレート本体101とを一体に連結させる連結部1032とから構成されている。
本実施の形態では、取り付け用プレート100を構成する材料としては、非磁性金属材料が好ましい。非磁性金属材料としては、例えば、SUS、銅、アルミニウム等が挙げられる。本実施の形態では、SUSを使用している。取り付け用プレート100のプレート本体101の厚さは、通常、0.15mm〜0.8mmの範囲で選択される。本実施の形態では、0.4mmである。
後述するように、取り付け用プレート100の固定部位103は、取り付けネジ300(図13参照)を締め付けることにより撓み、変形して誘導部材66(図13参照)に押し付けられる。
As shown in FIG. 14 (a), the fixing portion 103 of the mounting plate 100 is formed so as to be positioned at the center portion of the punched portion 105, in which a part of the plate body 101 is punched. The fixing portion 103 has a screw receiving portion 1031 formed with a screw hole 104 into which a mounting screw 300 (see FIG. 13) is inserted in the central portion, and a connection for integrally connecting the upper and lower sides of the screw receiving portion 1031 and the plate main body 101. Part 1032.
In the present embodiment, the material constituting the mounting plate 100 is preferably a nonmagnetic metal material. Examples of the nonmagnetic metal material include SUS, copper, and aluminum. In this embodiment, SUS is used. The thickness of the plate body 101 of the mounting plate 100 is usually selected in the range of 0.15 mm to 0.8 mm. In the present embodiment, it is 0.4 mm.
As will be described later, the fixing portion 103 of the mounting plate 100 is bent and deformed by tightening the mounting screw 300 (see FIG. 13) and pressed against the guide member 66 (see FIG. 13).

図15は、取り付け部の詳細を説明する断面図である。
図15(a)に示すように、ホルダ65に対し、感温磁性部材64の片側側端部641は、誘導部材66の片側側端部661と取り付け用プレート100との間に挟まれた状態で配置される。ここで、取り付けネジ300のネジ部分302が挿入されるように、ホルダ65のネジ孔653の位置と誘導部材66のネジ孔663の位置とを一致させている。さらに、感温磁性部材64の切り欠き642の略中央部に誘導部材66のネジ孔663が位置するように感温磁性部材64が配置されている。そして、取り付け用プレート100の固定部位103が、感温磁性部材64に形成された切り欠き642の略中央部に対応するように、取り付け用プレート100は配置されている。このとき、感温磁性部材64を挟んだ誘導部材66と取り付け用プレート100との間には、感温磁性部材64の切り欠き642に対応する箇所に隙間が形成され、誘導部材66と取り付け用プレート100とは非接触の状態である。
FIG. 15 is a cross-sectional view illustrating details of the attachment portion.
As shown in FIG. 15A, the one-side end 641 of the temperature-sensitive magnetic member 64 is sandwiched between the one-side end 661 of the guide member 66 and the mounting plate 100 with respect to the holder 65. It is arranged with. Here, the position of the screw hole 653 of the holder 65 and the position of the screw hole 663 of the guide member 66 are matched so that the screw portion 302 of the mounting screw 300 is inserted. Further, the temperature-sensitive magnetic member 64 is arranged so that the screw hole 663 of the guide member 66 is positioned at the approximate center of the notch 642 of the temperature-sensitive magnetic member 64. The mounting plate 100 is arranged so that the fixing portion 103 of the mounting plate 100 corresponds to the substantially central portion of the notch 642 formed in the temperature-sensitive magnetic member 64. At this time, a gap is formed between the induction member 66 sandwiching the temperature-sensitive magnetic member 64 and the mounting plate 100 at a position corresponding to the notch 642 of the temperature-sensitive magnetic member 64, and the induction member 66 and the attachment plate 100 are attached. The plate 100 is in a non-contact state.

次に、図15(b)に示すように、取り付け用プレート100の外側から取り付けネジ300のネジ部分302を挿入し、ネジ頭301を回転させて取り付けネジ300を締め付ける。そうすると、取り付け用プレート100の固定部位103がネジ頭301に押し付けられて撓む。そして、固定部位103が感温磁性部材64に形成された切り欠き642の隙間を埋めるように変形し、誘導部材66の片側側端部661と接触する。これにより、取り付け用プレート100によって誘導部材66がホルダ65に直接固定される。一方、感温磁性部材64には、取り付けネジ300の締め付けが作用しない。これにより、感温磁性部材64は、取り付けネジ300によるネジ止めをすることなく、誘導部材66と取り付け用プレート100との間に挟まれた状態で固定される。
本実施の形態では、取り付けネジ300の締め付けによって取り付け用プレート100の全体が変形するのではなく、固定部位103だけが変形するように形成されている。固定部位103だけが変形し、誘導部材66を締め付けると、固定部位103の変形力がそのまま感温磁性部材64を挟み込む力になる。
Next, as shown in FIG. 15B, the screw portion 302 of the attachment screw 300 is inserted from the outside of the attachment plate 100, and the attachment screw 300 is tightened by rotating the screw head 301. Then, the fixing portion 103 of the mounting plate 100 is pressed against the screw head 301 and bent. Then, the fixing portion 103 is deformed so as to fill a gap between the notches 642 formed in the temperature-sensitive magnetic member 64, and comes into contact with the one side end portion 661 of the guide member 66. Thereby, the guide member 66 is directly fixed to the holder 65 by the mounting plate 100. On the other hand, the fastening screw 300 does not act on the temperature-sensitive magnetic member 64. Accordingly, the temperature-sensitive magnetic member 64 is fixed in a state of being sandwiched between the guide member 66 and the mounting plate 100 without being screwed by the mounting screw 300.
In the present embodiment, the entire mounting plate 100 is not deformed by tightening the mounting screw 300, but only the fixing portion 103 is deformed. When only the fixed portion 103 is deformed and the guide member 66 is tightened, the deformation force of the fixed portion 103 becomes a force for sandwiching the temperature-sensitive magnetic member 64 as it is.

感温磁性部材64をネジ止めすることなく固定することにより、定着ユニット60の運転中、感温磁性部材64の変形が抑制される。感温磁性部材64の変形は、感温磁性部材64と誘導部材66をそれぞれ構成する材料の熱膨張率の差が大きいことに起因していると考えられる。
即ち、一般に電磁誘導コイルにより加熱される定着部材を熱容量の小さいベルト部材で構成することにより、定着部材を定着可能温度まで上昇させる時間(ウォームアップタイム)が短縮される。ところが、例えば、小サイズの用紙を連続して通紙した場合等に、熱消費の少ない非通紙領域が過剰に昇温し、定着部材に損傷が生じる場合がある。そこで、磁路形成部材の内側に彎曲した板状の非磁性金属部材を非接触で設けることにより、非通紙領域の過度な昇温が抑制される。
しかし、磁路形成部材と非磁性金属部材をそれぞれ構成する材料の熱膨張率の差が大きいと、これらを近接して取り付けた場合、磁路形成部材の変形が生じることが判明している。例えば、本実施の形態では、感温磁性部材64を、Fe−Ni合金(熱膨張率:1.2×10−6[W/mK]で構成し、誘導部材66を、例えば、Al(熱膨張率:2.3×10−5[W/mK]で構成している。この場合、感温磁性部材64と誘導部材66とを共通の固定部材により単純に共締めすると、加熱時に誘導部材66が熱膨張することにより、共締めした部位において誘導部材66に比べて熱膨張が小さい感温磁性部材64が変形する。感温磁性部材64の円弧状の形状が変形すると、定着ユニット60の電磁誘導加熱方式そのものが影響を受け、発熱機能が低下することになる。
By fixing the temperature-sensitive magnetic member 64 without screwing, the deformation of the temperature-sensitive magnetic member 64 is suppressed during the operation of the fixing unit 60. It is considered that the deformation of the temperature-sensitive magnetic member 64 is caused by a large difference in coefficient of thermal expansion between the materials constituting the temperature-sensitive magnetic member 64 and the induction member 66.
That is, in general, the fixing member heated by the electromagnetic induction coil is formed of a belt member having a small heat capacity, so that the time required for raising the fixing member to a fixable temperature (warm-up time) is shortened. However, for example, when a small-size sheet is continuously passed, the non-sheet passing area with low heat consumption may be excessively heated, and the fixing member may be damaged. Therefore, by providing a plate-like nonmagnetic metal member that is bent inside the magnetic path forming member in a non-contact manner, excessive temperature rise in the non-sheet passing region is suppressed.
However, it has been found that if the difference in the coefficient of thermal expansion between the materials constituting the magnetic path forming member and the nonmagnetic metal member is large, the magnetic path forming member is deformed when they are mounted close to each other. For example, in this embodiment, the temperature-sensitive magnetic member 64 is made of an Fe—Ni alloy (thermal expansion coefficient: 1.2 × 10 −6 [W / mK]), and the induction member 66 is made of, for example, Al (thermal Expansion coefficient: 2.3 × 10 −5 [W / mK] In this case, when the temperature-sensitive magnetic member 64 and the induction member 66 are simply fastened together by a common fixing member, the induction member is heated during heating. Due to the thermal expansion of 66, the temperature-sensitive magnetic member 64, which has a smaller thermal expansion than the induction member 66, is deformed at the jointed portion, and the arc-shaped shape of the temperature-sensitive magnetic member 64 is deformed. The electromagnetic induction heating method itself is affected, and the heat generation function is lowered.

従来のこのような問題は、感温磁性部材64をネジ止めすることなく、感温磁性部材64を誘導部材66と取り付け用プレート100との間に挟み固定することにより解決された。上述したように、取り付けネジ300を締め付けることにより、取り付け用プレート100の固定部位103を変形させ、誘導部材66がホルダ65に直接固定される。このとき、取り付け用プレート100の固定部位103は変形により誘導部材66に接触するが、感温磁性部材64はネジ止めされない。これにより、加熱時に、誘導部材66と感温磁性部材64は、従来の共締めした場合とは相違して、それぞれ熱膨張する。その結果、誘導部材66の熱膨張による感温磁性部材64の変形が抑制される。   Such a conventional problem has been solved by sandwiching and fixing the temperature-sensitive magnetic member 64 between the induction member 66 and the mounting plate 100 without screwing the temperature-sensitive magnetic member 64. As described above, by tightening the attachment screw 300, the fixing portion 103 of the attachment plate 100 is deformed, and the guide member 66 is directly fixed to the holder 65. At this time, the fixing portion 103 of the mounting plate 100 contacts the guide member 66 by deformation, but the temperature-sensitive magnetic member 64 is not screwed. Thereby, at the time of a heating, the induction member 66 and the temperature-sensitive magnetic member 64 are each thermally expanded unlike the case where it fastens together. As a result, deformation of the temperature-sensitive magnetic member 64 due to thermal expansion of the guide member 66 is suppressed.

以上、説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、定着ベルト61(図3参照)の内側において、円弧形状に形成された感温磁性部材64と、感温磁性部材64の内周面に倣った円弧形状で形成された誘導部材66とを配置している。そして、誘導部材66を取り付け用プレート100の固定部位103を変形させることによりネジ止めし、一方、感温磁性部材64をネジ止めすることなく、感温磁性部材64を誘導部材66と取り付け用プレート100との間に挟み固定している。それにより、誘導部材66の熱膨張による感温磁性部材64の変形が抑制される。そして、感温磁性部材64の変形が抑制されることにより、電磁誘導加熱方式において、定着ベルト62の発熱層が安定的に電磁誘導加熱することができる。さらに、熱膨張率の差が大きい金属材料でそれぞれ構成された誘導部材66と感温磁性部材64とを近接して配置することにより、定着ユニット60の小型化が可能となる。   As described above, in the fixing unit 60 provided in the image forming apparatus 1 of the present embodiment, the temperature-sensitive magnetic member 64 formed in an arc shape on the inner side of the fixing belt 61 (see FIG. 3), and the sensitivity An induction member 66 formed in an arc shape that follows the inner peripheral surface of the warm magnetic member 64 is disposed. Then, the induction member 66 is screwed by deforming the fixing portion 103 of the attachment plate 100, while the temperature-sensitive magnetic member 64 is attached to the induction member 66 and the attachment plate without screwing the temperature-sensitive magnetic member 64. It is pinched and fixed between 100. Thereby, deformation of the temperature-sensitive magnetic member 64 due to thermal expansion of the induction member 66 is suppressed. In addition, by suppressing the deformation of the temperature-sensitive magnetic member 64, the heat generation layer of the fixing belt 62 can be stably heated by electromagnetic induction in the electromagnetic induction heating method. Furthermore, the fixing unit 60 can be reduced in size by arranging the induction member 66 and the temperature-sensitive magnetic member 64 each made of a metal material having a large difference in thermal expansion coefficient in proximity to each other.

1…画像形成装置、60…定着装置、61…定着ベルト、62…加圧ロール、64…感温磁性部材、66…誘導部材、80…IHヒータ、82…励磁コイル、84…磁心、100…取り付けプレート、103…固定部位、611…基材層、612…導電発熱層 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing apparatus, 61 ... Fixing belt, 62 ... Pressure roll, 64 ... Temperature-sensitive magnetic member, 66 ... Induction member, 80 ... IH heater, 82 ... Excitation coil, 84 ... Magnetic core, 100 ... Mounting plate, 103 ... fixed portion, 611 ... base material layer, 612 ... conductive heating layer

Claims (9)

導電層を有し、当該導電層が電磁誘導加熱されることにより記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、当該磁界生成部材で生成された交流磁界を誘導して磁路を形成する磁路形成部材と、
前記磁路形成部材の一部に接触しつつ前記定着部材とは反対側に配置され、当該磁路形成部材を透過した交流磁界を内部に誘導する誘導部材と、
前記誘導部材と前記磁路形成部材とを支持する支持部材と、
本体の一部を打ち抜いた打ち抜き部に、ネジ孔が形成されたネジ受け部と当該ネジ受け部と当該本体とを一体に連結する連結部とを有する固定部位が形成され、当該固定部位にて前記誘導部材を前記支持部材に固定すると共に、当該誘導部材との間に前記磁路形成部材を挟みつつ当該磁路形成部材を当該誘導部材の外側に取り付ける取り付け用プレートと、
を備えることを特徴とする定着装置。
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
A magnetic path forming member that is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween, and that forms a magnetic path by inducing an alternating magnetic field generated by the magnetic field generation member;
An induction member that is disposed on the opposite side of the fixing member while being in contact with a part of the magnetic path forming member, and that induces an alternating magnetic field that has passed through the magnetic path forming member;
A support member that supports the guide member and the magnetic path forming member;
A fixed part having a screw receiving part in which a screw hole is formed and a connecting part that integrally connects the screw receiving part and the main body is formed in a punched part obtained by punching a part of the main body. An attachment plate for fixing the guide member to the support member and attaching the magnetic path forming member to the outside of the guide member while sandwiching the magnetic path forming member with the guide member;
A fixing device comprising:
前記取り付け用プレートは、当該取り付け用プレートの全体が変形することなく、前記固定部位だけが締め付け具の締め付けにより変形することを特徴とする請求項1に記載の定着装置。   2. The fixing device according to claim 1, wherein the mounting plate is not deformed as a whole but only the fixing portion is deformed by tightening a tightening tool. 前記磁路形成部材は、締め付け具によりネジ止めすることなく、前記誘導部材と前記取り付け用プレートとの間に挟まれた状態で固定されることを特徴とする請求項1又は2に記載の定着装置。   The fixing according to claim 1, wherein the magnetic path forming member is fixed in a state of being sandwiched between the guide member and the mounting plate without being screwed by a fastening tool. apparatus. 前記磁路形成部材には、前記取り付け用プレートの前記固定部位に対応する位置に、当該固定部位が変形して前記誘導部材と接触するように切り欠きが形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の定着装置。   The magnetic path forming member is formed with a notch at a position corresponding to the fixed portion of the mounting plate so that the fixed portion is deformed and comes into contact with the guide member. Item 4. The fixing device according to any one of Items 1 to 3. 前記取り付け用プレートは、非磁性金属材料から構成される
ことを特徴とする請求項1乃至4のいずれか1項に記載の定着装置。
The fixing device according to claim 1, wherein the mounting plate is made of a nonmagnetic metal material.
前記磁路形成部材は、前記定着部材と非接触に配置されたことを特徴とする請求項1乃至5のいずれか1項に記載の定着装置。   The fixing device according to claim 1, wherein the magnetic path forming member is disposed in non-contact with the fixing member. トナー像を形成するトナー像形成部と、
前記トナー像形成部により形成されたトナー像を記録材上に転写する転写部と、
前記記録材に転写されたトナー像を当該記録材上に定着する定着部と、を備え、
前記定着部は、
導電層を有し、当該導電層が電磁誘導加熱されることにより記録材にトナーを定着する定着ベルトと、
前記定着ベルトの前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着ベルトを挟んで前記磁界生成部材と対向して配置され、当該磁界生成部材で生成された交流磁界を誘導して磁路を形成する磁路形成部材と、
前記磁路形成部材の一部に接触しつつ前記定着ベルトとは反対側に配置され、当該磁路形成部材を透過した交流磁界を内部に誘導する誘導部材と、
前記誘導部材と前記磁路形成部材とを支持する支持部材と、
本体の一部を打ち抜いた打ち抜き部に、ネジ孔が形成されたネジ受け部と当該ネジ受け部と当該本体とを一体に連結する連結部とを有する固定部位が形成され、当該固定部位にて前記誘導部材を前記支持部材に固定すると共に、当該誘導部材との間に前記磁路形成部材を挟みつつ当該磁路形成部材を当該誘導部材の外側に取り付ける取り付け用プレートと、
を有することを特徴とする画像形成装置。
A toner image forming unit for forming a toner image;
A transfer unit that transfers the toner image formed by the toner image forming unit onto a recording material;
A fixing unit for fixing the toner image transferred to the recording material on the recording material,
The fixing unit is
A fixing belt having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing belt;
A magnetic path forming member that is disposed opposite to the magnetic field generating member with the fixing belt interposed therebetween, and that forms a magnetic path by inducing an alternating magnetic field generated by the magnetic field generating member;
An induction member that is disposed on the opposite side of the fixing belt while being in contact with a part of the magnetic path forming member, and that induces an alternating magnetic field that has passed through the magnetic path forming member;
A support member that supports the guide member and the magnetic path forming member;
A fixed part having a screw receiving part in which a screw hole is formed and a connecting part that integrally connects the screw receiving part and the main body is formed in a punched part obtained by punching a part of the main body. An attachment plate for fixing the guide member to the support member and attaching the magnetic path forming member to the outside of the guide member while sandwiching the magnetic path forming member with the guide member;
An image forming apparatus comprising:
前記磁路形成部材は、前記支持部材にネジ止めすることなく、前記誘導部材と前記取り付け用プレートとの間に挟まれた状態で固定されることを特徴とする請求項7に記載の画像形成装置。   The image forming apparatus according to claim 7, wherein the magnetic path forming member is fixed in a state of being sandwiched between the guide member and the mounting plate without being screwed to the support member. apparatus. 前記磁路形成部材は、前記誘導部材の熱膨張に起因する変形が抑制されることを特徴とする請求項7又は8に記載の画像形成装置。   The image forming apparatus according to claim 7, wherein the magnetic path forming member is prevented from being deformed due to thermal expansion of the guide member.
JP2009076255A 2009-03-26 2009-03-26 Fixing apparatus and image forming apparatus Expired - Fee Related JP4807427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076255A JP4807427B2 (en) 2009-03-26 2009-03-26 Fixing apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076255A JP4807427B2 (en) 2009-03-26 2009-03-26 Fixing apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010230820A JP2010230820A (en) 2010-10-14
JP4807427B2 true JP4807427B2 (en) 2011-11-02

Family

ID=43046731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076255A Expired - Fee Related JP4807427B2 (en) 2009-03-26 2009-03-26 Fixing apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4807427B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029656B2 (en) 2009-06-22 2012-09-19 富士ゼロックス株式会社 Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
JP5693196B2 (en) 2010-12-14 2015-04-01 キヤノン株式会社 Image heating device
JP2013083941A (en) 2011-09-30 2013-05-09 Konica Minolta Business Technologies Inc Fixing device and image forming apparatus having the same
JP6036588B2 (en) 2013-07-19 2016-11-30 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774777B2 (en) * 2005-03-24 2011-09-14 富士ゼロックス株式会社 Fixing device
JP5141204B2 (en) * 2006-11-24 2013-02-13 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus
JP2008134487A (en) * 2006-11-29 2008-06-12 Konica Minolta Business Technologies Inc Fixing device

Also Published As

Publication number Publication date
JP2010230820A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4793467B2 (en) Fixing apparatus and image forming apparatus
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP4807427B2 (en) Fixing apparatus and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4888509B2 (en) Image forming apparatus, fixing apparatus, and program
JP4788789B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP4711003B2 (en) Fixing device and image forming apparatus
JP5845651B2 (en) Fixing apparatus and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5375393B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP2010224342A (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP4893763B2 (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
JP5299137B2 (en) Image forming apparatus
JP4873035B2 (en) Fixing apparatus and image forming apparatus
JP2010224032A (en) Fixing unit and image forming apparatus
JP5083263B2 (en) Fixing apparatus and image forming apparatus
JP4947222B2 (en) Fixing device and image forming apparatus
JP4858561B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5644054B2 (en) Fixing device and image forming apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees