JP2010224342A - Fixing device and image forming apparatus - Google Patents

Fixing device and image forming apparatus Download PDF

Info

Publication number
JP2010224342A
JP2010224342A JP2009073250A JP2009073250A JP2010224342A JP 2010224342 A JP2010224342 A JP 2010224342A JP 2009073250 A JP2009073250 A JP 2009073250A JP 2009073250 A JP2009073250 A JP 2009073250A JP 2010224342 A JP2010224342 A JP 2010224342A
Authority
JP
Japan
Prior art keywords
temperature
fixing
magnetic
fixing belt
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009073250A
Other languages
Japanese (ja)
Inventor
Motofumi Baba
基文 馬場
Nobuyoshi Komatsu
伸嘉 小松
Eiichiro Tokuhiro
英一郎 徳弘
Shuichi Suzuki
修一 鈴木
Motoi Notani
基 野谷
Takeshi Haruhara
剛 春原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009073250A priority Critical patent/JP2010224342A/en
Publication of JP2010224342A publication Critical patent/JP2010224342A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress excessive temperature rise in a paper non-passing area and to suppress degradation of fixing performance in a paper passing area, in an induction heating type fixing device. <P>SOLUTION: A temperature sensitive magnetic member 64 that forms a magnetic path of AC magnetic field generated by an IH heater is arranged to face an IH heater across a fixing belt. A slit 64s for adjusting a self-calorific value is formed so that temperature in an area where paper passes may be maintained within a temperature range lower than a transition area where magnetic characteristics are changed between ferromagnetism and paramagnetism in accordance with the temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、定着装置、および画像形成装置に関する。   The present invention relates to a fixing device and an image forming apparatus.

電子写真方式を用いた複写機、プリンタ等の画像形成装置に搭載する定着装置として、電磁誘導加熱方式を用いたものが知られている。
例えば特許文献1には、磁束発生手段としての電磁誘導コイルが磁性金属製の芯金シリンダからなる定着ロールの内部に配置され、電磁誘導コイルにて生成した誘導磁界により定着ロールに渦電流を誘起させて、定着ロールを直接的に加熱する誘導加熱方式の定着装置が記載されている。
As a fixing device mounted on an image forming apparatus such as a copying machine or a printer using an electrophotographic system, an apparatus using an electromagnetic induction heating system is known.
For example, in Patent Document 1, an electromagnetic induction coil as a magnetic flux generating means is arranged inside a fixing roll made of a core metal cylinder made of magnetic metal, and an eddy current is induced in the fixing roll by an induced magnetic field generated by the electromagnetic induction coil. An induction heating type fixing device that directly heats the fixing roll is described.

特開2003−186322号公報JP 2003-186322 A

ここで一般に、例えば電磁誘導方式で加熱される定着部材を熱容量の小さいベルト部材で構成することにより、定着部材を定着可能温度まで上昇させる時間(ウォームアップタイム)が短縮される。ところが、例えば小サイズの用紙を連続して通紙した場合等に、熱消費の少ない非通紙領域が過剰に昇温して、定着部材に損傷が生じることがある。
本発明は、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制するとともに、通紙領域での定着性能の低下を抑制することを目的とする。
Here, in general, for example, the fixing member heated by an electromagnetic induction method is formed of a belt member having a small heat capacity, so that the time required to raise the fixing member to a fixable temperature (warm-up time) is shortened. However, for example, when a small-size sheet is continuously passed, the non-sheet passing area with low heat consumption may be excessively heated to damage the fixing member.
An object of the present invention is to suppress an excessive temperature rise in a non-sheet passing area in an induction heating type fixing device, and to suppress a decrease in fixing performance in the sheet passing area.

請求項1に記載の発明は、導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、前記記録材が通過する領域での温度が磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域よりも低い温度範囲に維持されるように自己発熱量を調整する発熱調整部が形成され、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材とを備えたことを特徴する定着装置である。   According to the first aspect of the present invention, there is provided a fixing member that has a conductive layer, the toner is fixed to the recording material by electromagnetically heating the conductive layer, and an alternating magnetic field that intersects the conductive layer of the fixing member. The magnetic field generating member to be generated is disposed opposite the magnetic field generating member with the fixing member interposed therebetween, and the temperature in the region through which the recording material passes is between ferromagnetic and paramagnetic depending on the temperature. A heat generation adjusting unit that adjusts the amount of self-heating so as to be maintained in a temperature range lower than a transition region that transitions at a magnetic path forming member that forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member; A fixing device characterized by comprising:

請求項2に記載の発明は、前記磁路形成部材は、前記発熱調整部が前記定着部材の移動方向と直交する方向に対して交差する角度方向に向けて形成された複数の切り欠き部で構成され、相互に隣接する当該切り欠き部の間隔が当該定着部材の移動方向と直交する方向に沿って3.5mm以上6.8mm以下に設定されたことを特徴とする請求項1記載の定着装置である。
請求項3に記載の発明は、前記磁路形成部材は、磁気特性に関する前記遷移領域の温度幅が20°以下となるように構成されたことを特徴とする請求項1記載の定着装置である。
請求項4に記載の発明は、前記磁路形成部材は、前記遷移領域の開始温度が記録材上のトナーを溶融して当該記録材に定着させるための温度として前記定着部材に設定される温度よりも高く設定されたことを特徴とする請求項3記載の定着装置である。
請求項5に記載の発明は、前記磁路形成部材は、厚さが前記遷移領域よりも低い温度領域での表皮深さよりも大きく構成されたことを特徴とする請求項1記載の定着装置である。
According to a second aspect of the present invention, the magnetic path forming member includes a plurality of cutout portions formed in an angular direction in which the heat generation adjusting portion intersects a direction orthogonal to the moving direction of the fixing member. 2. The fixing device according to claim 1, wherein an interval between the notch portions which are configured and adjacent to each other is set to be 3.5 mm or more and 6.8 mm or less along a direction orthogonal to the moving direction of the fixing member. Device.
The invention according to claim 3 is the fixing device according to claim 1, wherein the magnetic path forming member is configured such that a temperature width of the transition region relating to magnetic characteristics is 20 ° or less. .
According to a fourth aspect of the present invention, in the magnetic path forming member, the temperature at which the start temperature of the transition region is set in the fixing member as a temperature for melting and fixing the toner on the recording material to the recording material 4. The fixing device according to claim 3, wherein the fixing device is set higher than the fixing device.
According to a fifth aspect of the present invention, in the fixing device according to the first aspect, the magnetic path forming member is configured to have a thickness larger than a skin depth in a temperature region lower than the transition region. is there.

請求項6に記載の発明は、トナー像を形成するトナー像形成手段と、前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、前記定着手段は、導電層を有し、当該導電層が電磁誘導加熱されることで前記記録材にトナーを定着する定着部材と、前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材と、前記磁路形成部材に配置され、前記記録材が通過する領域での当該磁路形成部材の温度が前記遷移領域よりも低い温度範囲に維持されるように自己発熱量を調整する発熱調整部とを備えたことを特徴する画像形成装置である。   According to a sixth aspect of the present invention, there is provided a toner image forming unit that forms a toner image, a transfer unit that transfers the toner image formed by the toner image forming unit onto a recording material, and a toner image that is transferred onto the recording material. A fixing member for fixing the toner image to the recording material, the fixing unit having a conductive layer, and fixing the toner to the recording material by electromagnetically heating the conductive layer. A magnetic field generating member that generates an alternating magnetic field that intersects with the conductive layer of the fixing member, and a magnetic field generating member that is opposed to the magnetic field generating member with the fixing member interposed therebetween. A magnetic path forming member that has a transition region that transitions between magnetism and forms a magnetic path of an alternating magnetic field generated by the magnetic field generating member, and is disposed on the magnetic path forming member, through which the recording material passes. The temperature of the magnetic path forming member in the region is Serial is an image forming apparatus characterized by comprising a heating adjusting portion for adjusting a self-heating value to be maintained in a temperature range lower than the transition region.

請求項7に記載の発明は、前記定着手段の前記発熱調整部は、前記定着部材の移動方向と直交する方向に対して交差する角度方向に向けて形成された前記磁路形成部材での複数の切り欠き部で構成され、相互に隣接する当該切り欠き部の間隔が当該定着部材の移動方向と直交する方向に沿って3.5mm以上6.8mm以下に設定されたことを特徴とする請求項6記載の画像形成装置である。
請求項8に記載の発明は、前記定着手段の前記磁路形成部材は、磁気特性に関する前記遷移領域の温度幅が20°以下となるように構成されたことを特徴とする請求項6記載の画像形成装置である。
請求項9に記載の発明は、前記定着手段の前記磁路形成部材は、厚さが前記遷移領域よりも低い温度領域での表皮深さよりも大きく構成されたことを特徴とする請求項6記載の画像形成装置である。
According to a seventh aspect of the present invention, the heat generation adjusting portion of the fixing unit includes a plurality of magnetic path forming members formed in an angle direction intersecting with a direction orthogonal to the moving direction of the fixing member. The interval between the notch portions adjacent to each other is set to 3.5 mm or more and 6.8 mm or less along a direction orthogonal to the moving direction of the fixing member. Item 7. The image forming apparatus according to Item 6.
The invention according to claim 8 is characterized in that the magnetic path forming member of the fixing means is configured such that a temperature width of the transition region relating to magnetic characteristics is 20 ° or less. An image forming apparatus.
The invention according to claim 9 is characterized in that the magnetic path forming member of the fixing unit is configured to have a thickness larger than a skin depth in a temperature region lower than the transition region. This is an image forming apparatus.

請求項1の発明によれば、本発明を採用しない場合に比べ、誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制するとともに、通紙領域での定着性能の低下を抑制することができる。
請求項2の発明によれば、磁路形成部材における記録材の通過領域での温度が磁気特性の遷移領域よりも10°以上低い温度範囲に維持されるように、磁路形成部材での自己発熱量を調整することができる。
請求項3の発明によれば、本発明を採用しない場合に比べ、定着部材の非通紙領域が定着部材の耐熱温度を超えて昇温することをより確実に抑制することができる。
請求項4の発明によれば、本発明を採用しない場合に比べ、定着部材において記録材上のトナーを定着するのに充分な発熱量を確保することができる。
請求項5の発明によれば、本発明を採用しない場合に比べ、磁路形成部材に発生する渦電流を低減することができる。
According to the first aspect of the present invention, as compared with the case where the present invention is not adopted, an excessive temperature rise in the non-sheet passing region in the induction heating type fixing device is suppressed, and the fixing performance in the sheet passing region is reduced. Can be suppressed.
According to the second aspect of the present invention, the self in the magnetic path forming member is maintained so that the temperature in the passage region of the recording material in the magnetic path forming member is maintained in a temperature range that is 10 ° or more lower than the transition region of the magnetic characteristics. The calorific value can be adjusted.
According to the third aspect of the present invention, it is possible to more reliably suppress the temperature rise of the non-sheet passing region of the fixing member beyond the heat resistance temperature of the fixing member, as compared with the case where the present invention is not adopted.
According to the fourth aspect of the present invention, compared to the case where the present invention is not adopted, it is possible to secure a sufficient amount of heat generation for fixing the toner on the recording material on the fixing member.
According to the fifth aspect of the present invention, eddy current generated in the magnetic path forming member can be reduced as compared with the case where the present invention is not adopted.

請求項6の発明によれば、本発明を採用しない場合に比べ、画像形成装置に搭載した誘導加熱方式の定着装置における非通紙領域での過剰な昇温を抑制するとともに、通紙領域での定着性能の低下を抑制することができる。
請求項7の発明によれば、磁路形成部材における記録材の通過領域での温度が磁気特性の遷移領域よりも10°以上低い温度範囲に維持されるように、磁路形成部材での自己発熱量を調整することができる。
請求項8の発明によれば、本発明を採用しない場合に比べ、定着部材の非通紙領域が定着部材の耐熱温度を超えて昇温することをより確実に抑制することができる。
請求項9の発明によれば、本発明を採用しない場合に比べ、磁路形成部材に発生する渦電流を低減することができる。
According to the sixth aspect of the present invention, as compared with the case where the present invention is not adopted, an excessive temperature rise in the non-sheet passing region in the induction heating type fixing device mounted on the image forming apparatus is suppressed, and in the sheet passing region. Decrease in fixing performance can be suppressed.
According to the seventh aspect of the present invention, the self in the magnetic path forming member is maintained so that the temperature in the recording material passage region in the magnetic path forming member is maintained in a temperature range lower than the magnetic property transition region by 10 ° or more. The calorific value can be adjusted.
According to the eighth aspect of the present invention, it is possible to more reliably suppress the temperature rise of the non-sheet passing region of the fixing member beyond the heat resistance temperature of the fixing member as compared with the case where the present invention is not adopted.
According to the ninth aspect of the present invention, eddy current generated in the magnetic path forming member can be reduced as compared with the case where the present invention is not adopted.

本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。1 is a diagram illustrating a configuration example of an image forming apparatus to which a fixing device according to an exemplary embodiment is applied. 本実施の形態の定着ユニットの構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a fixing unit of the present embodiment. 図2における定着ユニットのII−II断面図である。FIG. 3 is a II-II sectional view of the fixing unit in FIG. 2. 定着ベルトの断面層構成図である。FIG. 3 is a cross-sectional layer configuration diagram of a fixing belt. (a)がエンドキャップ部材の側面図であり、(b)がZ方向から見たエンドキャップ部材の平面図である。(a) is a side view of an end cap member, (b) is a top view of the end cap member seen from the Z direction. IHヒータの構成を説明する断面図である。It is sectional drawing explaining the structure of an IH heater. 定着ベルトの温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線の状態を説明する図である。It is a figure explaining the state of a line of magnetic force in case the temperature of a fixing belt exists in the temperature range below the magnetic permeability change start temperature. 小サイズ紙を連続して通紙した際の定着ベルトの幅方向の温度分布の概略を示した図である。FIG. 6 is a diagram illustrating an outline of a temperature distribution in a width direction of a fixing belt when small-size paper is continuously passed. 非通紙領域での定着ベルトの温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線の状態を説明する図である。FIG. 6 is a diagram for explaining a state of magnetic lines of force when the temperature of the fixing belt in a non-sheet passing region is in a temperature range exceeding the permeability change start temperature. 感温磁性部材の比透磁率に関する温度特性の一例を示した図である。It is the figure which showed an example of the temperature characteristic regarding the relative magnetic permeability of a temperature-sensitive magnetic member. 感温磁性部材に形成されるスリットを示した図である。It is the figure which showed the slit formed in a temperature sensitive magnetic member. 感温磁性部材に形成された相互に隣接するスリットの間隔と、通紙領域での感温磁性部材の温度との関係を示した図である。It is the figure which showed the relationship between the space | interval of the mutually adjacent slit formed in the temperature-sensitive magnetic member, and the temperature of the temperature-sensitive magnetic member in a paper passing area | region.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
<画像形成装置の説明>
図1は本実施の形態の定着装置が適用される画像形成装置の構成例を示した図である。図1に示す画像形成装置1は、所謂タンデム型のカラープリンタであり、画像データに基づき画像形成を行う画像形成部10、画像形成装置1全体の動作を制御する制御部31を備えている。さらには、例えばパーソナルコンピュータ(PC)3や画像読取装置(スキャナ)4等との通信を行って画像データを受信する通信部32、通信部32にて受信された画像データに対し予め定めた画像処理を施す画像処理部33を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
<Description of Image Forming Apparatus>
FIG. 1 is a diagram illustrating a configuration example of an image forming apparatus to which the fixing device of the present embodiment is applied. An image forming apparatus 1 shown in FIG. 1 is a so-called tandem color printer, and includes an image forming unit 10 that forms an image based on image data and a control unit 31 that controls the operation of the entire image forming apparatus 1. Further, for example, a communication unit 32 that receives image data by communicating with a personal computer (PC) 3 or an image reading device (scanner) 4, and a predetermined image for the image data received by the communication unit 32. An image processing unit 33 that performs processing is provided.

画像形成部10は、一定の間隔を置いて並列的に配置されるトナー像形成手段の一例である4つの画像形成ユニット11Y,11M,11C,11K(「画像形成ユニット11」とも総称する)を備えている。各画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定めた電位で一様に帯電する帯電器13、帯電器13によって帯電された感光体ドラム12を各色画像データに基づき露光するLED(Light Emitting Diode)プリントヘッド14、感光体ドラム12上に形成された静電潜像を現像する現像器15、転写後の感光体ドラム12表面を清掃するドラムクリーナ16を備えている。
画像形成ユニット11各々は、現像器15に収納されるトナーを除いて略同様に構成され、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
The image forming unit 10 includes four image forming units 11Y, 11M, 11C, and 11K (also collectively referred to as “image forming unit 11”), which are examples of toner image forming units arranged in parallel at a predetermined interval. I have. Each image forming unit 11 forms an electrostatic latent image and a photosensitive drum 12 as an example of an image holding body that holds a toner image, and charging that uniformly charges the surface of the photosensitive drum 12 with a predetermined potential. 13, an LED (Light Emitting Diode) print head 14 that exposes the photosensitive drum 12 charged by the charger 13 based on each color image data, and a developer that develops an electrostatic latent image formed on the photosensitive drum 12. 15. A drum cleaner 16 for cleaning the surface of the photosensitive drum 12 after transfer is provided.
Each of the image forming units 11 is configured in substantially the same manner except for the toner stored in the developing device 15, and each forms a toner image of yellow (Y), magenta (M), cyan (C), and black (K). To do.

また、画像形成部10は、各画像形成ユニット11の感光体ドラム12にて形成された各色トナー像が多重転写される中間転写ベルト20、各画像形成ユニット11にて形成された各色トナー像を中間転写ベルト20に順次転写(一次転写)する一次転写ロール21を備えている。さらに、中間転写ベルト20上に重畳して転写された各色トナー像を記録材(記録紙)である用紙Pに一括転写(二次転写)する二次転写ロール22、二次転写された各色トナー像を用紙P上に定着させる定着手段(定着装置)の一例としての定着ユニット60を備えている。なお、本実施の形態の画像形成装置1では、中間転写ベルト20、一次転写ロール21、および二次転写ロール22により転写手段が構成される。   The image forming unit 10 also receives the intermediate transfer belt 20 onto which the color toner images formed on the photosensitive drums 12 of the image forming units 11 are transferred, and the color toner images formed on the image forming units 11. A primary transfer roll 21 that sequentially transfers (primary transfer) to the intermediate transfer belt 20 is provided. Further, a secondary transfer roll 22 that batch-transfers (secondary transfer) each color toner image transferred and superimposed on the intermediate transfer belt 20 onto a sheet P that is a recording material (recording paper), and each color toner that is secondarily transferred. A fixing unit 60 is provided as an example of a fixing unit (fixing device) that fixes the image on the paper P. In the image forming apparatus 1 of the present embodiment, the intermediate transfer belt 20, the primary transfer roll 21, and the secondary transfer roll 22 constitute a transfer unit.

本実施の形態の画像形成装置1では、制御部31による動作制御の下で、次のようなプロセスによる画像形成処理が行われる。すなわち、PC3やスキャナ4からの画像データは通信部32にて受信され、画像処理部33により予め定めた画像処理が施された後、各色毎の画像データとなって各画像形成ユニット11に送られる。そして、例えば黒(K)色トナー像を形成する画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら帯電器13により予め定めた電位で一様に帯電され、画像処理部33から送信されたK色画像データに基づきLEDプリントヘッド14が感光体ドラム12を走査露光する。それにより、感光体ドラム12上にはK色画像に関する静電潜像が形成される。感光体ドラム12上に形成されたK色静電潜像は現像器15により現像され、感光体ドラム12上にK色トナー像が形成される。同様に、画像形成ユニット11Y,11M,11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。   In the image forming apparatus 1 of the present embodiment, under the operation control by the control unit 31, image forming processing is performed by the following process. That is, the image data from the PC 3 or the scanner 4 is received by the communication unit 32, subjected to predetermined image processing by the image processing unit 33, and then sent to each image forming unit 11 as image data for each color. It is done. For example, in the image forming unit 11K that forms a black (K) toner image, the photosensitive drum 12 is uniformly charged at a predetermined potential by the charger 13 while rotating in the arrow A direction, and the image processing unit 33 is charged. The LED print head 14 scans and exposes the photosensitive drum 12 based on the K-color image data transmitted from. As a result, an electrostatic latent image relating to the K color image is formed on the photosensitive drum 12. The K-color electrostatic latent image formed on the photosensitive drum 12 is developed by the developing unit 15, and a K-color toner image is formed on the photosensitive drum 12. Similarly, yellow (Y), magenta (M), and cyan (C) color toner images are formed in the image forming units 11Y, 11M, and 11C, respectively.

各画像形成ユニット11の感光体ドラム12に形成された各色トナー像は、一次転写ロール21により矢印B方向に移動する中間転写ベルト20上に順次静電転写(一次転写)され、各色トナーが重畳された重畳トナー像が形成される。中間転写ベルト20上の重畳トナー像は、中間転写ベルト20の移動に伴って二次転写ロール22が配置された領域(二次転写部T)に搬送される。重畳トナー像が二次転写部Tに搬送されると、そのタイミングに合わせて用紙保持部40から用紙Pが二次転写部Tに供給される。そして、重畳トナー像は、二次転写部Tにて二次転写ロール22が形成する転写電界により、搬送されてきた用紙P上に一括して静電転写(二次転写)される。   Each color toner image formed on the photosensitive drum 12 of each image forming unit 11 is sequentially electrostatically transferred (primary transfer) onto the intermediate transfer belt 20 that moves in the direction of arrow B by the primary transfer roll 21, and each color toner is superimposed. A superimposed toner image is formed. The superimposed toner image on the intermediate transfer belt 20 is conveyed to a region (secondary transfer portion T) where the secondary transfer roll 22 is disposed as the intermediate transfer belt 20 moves. When the superimposed toner image is conveyed to the secondary transfer unit T, the paper P is supplied from the paper holding unit 40 to the secondary transfer unit T in accordance with the timing. The superimposed toner image is collectively electrostatically transferred (secondary transfer) onto the conveyed paper P by the transfer electric field formed by the secondary transfer roll 22 in the secondary transfer portion T.

その後、重畳トナー像が静電転写された用紙Pは、定着ユニット60まで搬送される。定着ユニット60に搬送された用紙P上のトナー像は、定着ユニット60によって熱および圧力を受け、用紙P上に定着される。そして、定着画像が形成された用紙Pは、画像形成装置1の排出部に設けられた用紙積載部45に搬送される。
一方、一次転写後に感光体ドラム12に付着しているトナー(一次転写残トナー)、および二次転写後に中間転写ベルト20に付着しているトナー(二次転写残トナー)は、それぞれドラムクリーナ16、およびベルトクリーナ25によって除去される。
このようにして、画像形成装置1での画像形成処理がプリント枚数分のサイクルだけ繰り返し実行される。
Thereafter, the sheet P on which the superimposed toner image is electrostatically transferred is conveyed to the fixing unit 60. The toner image on the paper P conveyed to the fixing unit 60 receives heat and pressure by the fixing unit 60 and is fixed on the paper P. Then, the paper P on which the fixed image is formed is conveyed to a paper stacking unit 45 provided in the discharge unit of the image forming apparatus 1.
On the other hand, the toner (primary transfer residual toner) adhering to the photosensitive drum 12 after the primary transfer and the toner (secondary transfer residual toner) adhering to the intermediate transfer belt 20 after the secondary transfer are respectively drum cleaner 16. , And the belt cleaner 25.
In this way, the image forming process in the image forming apparatus 1 is repeatedly executed for the number of printed sheets.

<定着ユニットの構成の説明>
次に、本実施の形態の定着ユニット60について説明する。
図2および図3は本実施の形態の定着ユニット60の構成を示す図であり、図2は正面図、図3は図2におけるII−II断面図である。
まず、断面図である図3に示すように、定着ユニット60は、交流磁界を生成する磁界生成部材の一例としてのIH(Induction Heating)ヒータ80、IHヒータ80により電磁誘導加熱されてトナー像を定着する定着部材の一例としての定着ベルト61、定着ベルト61に対向するように配置された加圧ロール62、定着ベルト61を介して加圧ロール62から押圧される押圧パッド63を備えている。
さらに、定着ユニット60は、押圧パッド63等の構成部材を支持するホルダ65、IHヒータ80にて生成された交流磁界を誘導して磁路を形成する感温磁性部材64、感温磁性部材64を通過した磁力線を誘導する誘導部材66、定着ベルト61からの用紙Pの剥離を補助する剥離補助部材173を備えている。
<Description of fixing unit configuration>
Next, the fixing unit 60 of this embodiment will be described.
2 and 3 are views showing the configuration of the fixing unit 60 of the present embodiment, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line II-II in FIG.
First, as shown in FIG. 3, which is a cross-sectional view, the fixing unit 60 is heated by electromagnetic induction by an IH (Induction Heating) heater 80 and an IH heater 80 as an example of a magnetic field generating member that generates an alternating magnetic field, thereby generating a toner image. A fixing belt 61 as an example of a fixing member to be fixed, a pressure roll 62 disposed so as to face the fixing belt 61, and a pressure pad 63 pressed from the pressure roll 62 via the fixing belt 61 are provided.
Further, the fixing unit 60 includes a holder 65 that supports constituent members such as the pressure pad 63, a temperature-sensitive magnetic member 64 that induces an alternating magnetic field generated by the IH heater 80 to form a magnetic path, and a temperature-sensitive magnetic member 64. A guide member 66 that guides the lines of magnetic force that have passed through the fixing belt 61, and a peeling auxiliary member 173 that assists in peeling the paper P from the fixing belt 61.

<定着ベルトの説明>
定着ベルト61は、原形が円筒形状の無端のベルト部材で構成され、例えば原形(円筒形状)時の直径が30mm、幅方向長が370mmに形成されている。また、図4(定着ベルト61の断面層構成図)に示したように、定着ベルト61は、基材層611、基材層611の上に積層された導電発熱層612、トナー像の定着性を向上させる弾性層613、最上層に被覆された表面離型層614からなる多層構造のベルト部材である。
<Description of fixing belt>
The fixing belt 61 is formed of an endless belt member having an original cylindrical shape, and has a diameter of 30 mm and a length in the width direction of 370 mm in the original shape (cylindrical shape), for example. Further, as shown in FIG. 4 (cross-sectional layer configuration diagram of the fixing belt 61), the fixing belt 61 includes a base material layer 611, a conductive heat generating layer 612 laminated on the base material layer 611, and a toner image fixability. The belt member has a multilayer structure including an elastic layer 613 for improving the surface and a surface release layer 614 coated on the uppermost layer.

基材層611は、薄層の導電発熱層612を支持するとともに、定着ベルト61全体としての機械的強度を形成する耐熱性のシート状部材で構成される。また、基材層611は、IHヒータ80にて生成された交流磁界が感温磁性部材64まで作用するように、磁界を通過させる物性(比透磁率、固有抵抗)を持った材質、厚さで形成される。一方、基材層611自身は、磁界の作用により発熱しないか、または発熱し難く構成される。
具体的には、基材層611として、例えば、厚さ30〜200μm(好ましくは50〜150μm)の非磁性ステンレススチール等の非磁性金属や、厚さ60〜200μmの樹脂材料等が用いられる。
The base material layer 611 is composed of a heat-resistant sheet-like member that supports the thin conductive heat generating layer 612 and forms the mechanical strength of the fixing belt 61 as a whole. In addition, the base material layer 611 is made of a material having a physical property (relative magnetic permeability, specific resistance) that allows the magnetic field to pass therethrough so that the AC magnetic field generated by the IH heater 80 acts to the temperature-sensitive magnetic member 64, and the thickness. Formed with. On the other hand, the base material layer 611 itself is configured not to generate heat or hardly generate heat due to the action of a magnetic field.
Specifically, as the base material layer 611, for example, a nonmagnetic metal such as nonmagnetic stainless steel having a thickness of 30 to 200 μm (preferably 50 to 150 μm), a resin material having a thickness of 60 to 200 μm, or the like is used.

導電発熱層612は、導電層の一例であって、IHヒータ80にて生成される交流磁界によって電磁誘導加熱される電磁誘導発熱体層である。すなわち、導電発熱層612は、IHヒータ80からの交流磁界が厚さ方向に通過することにより、渦電流を発生させる層である。
通常、IHヒータ80に交流電流を供給する励磁回路88(後段の図6も参照)の電源として、安価に製造できる汎用電源が使用される。そのため、IHヒータ80により生成される交流磁界の周波数は、一般に、汎用電源による20k〜100kHzとなる。それにより、導電発熱層612は、周波数20k〜100kHzの交流磁界が侵入し通過するように構成される。
The conductive heating layer 612 is an example of a conductive layer, and is an electromagnetic induction heating element layer that is electromagnetically heated by an alternating magnetic field generated by the IH heater 80. That is, the conductive heat generating layer 612 is a layer that generates an eddy current when the AC magnetic field from the IH heater 80 passes in the thickness direction.
In general, a general-purpose power source that can be manufactured at low cost is used as a power source for an excitation circuit 88 (see also FIG. 6 below) that supplies an AC current to the IH heater 80. Therefore, the frequency of the alternating magnetic field generated by the IH heater 80 is generally 20 k to 100 kHz by a general-purpose power source. Thereby, the conductive heat generating layer 612 is configured such that an alternating magnetic field having a frequency of 20 k to 100 kHz enters and passes therethrough.

導電発熱層612に交流磁界が侵入できる領域は、交流磁界が1/eに減衰する領域である「表皮深さ(δ)」として規定され、次の(1)式から導かれる。(1)式において、fは交流磁界の周波数(例えば、20kHz)、ρは固有抵抗値(Ω・m)、μは比透磁率である。
そのため、導電発熱層612の厚さは、周波数20k〜100kHzの交流磁界が導電発熱層612を侵入し通過するように、(1)式で規定される導電発熱層612の表皮深さ(δ)よりも薄層に構成される。また、導電発熱層612を構成する材料として、例えば、Au,Ag,Al,Cu,Zn,Sn,Pb,Bi,Be,Sb等の金属や、これらの金属合金が用いられる。
The region where the alternating magnetic field can enter the conductive heat generating layer 612 is defined as “skin depth (δ)”, which is a region where the alternating magnetic field attenuates to 1 / e, and is derived from the following equation (1). (1) In the equation, f is the AC magnetic field frequency (e.g., 20 kHz), [rho is resistivity (Omega · m), the mu r is the relative permeability.
Therefore, the thickness of the conductive heat generating layer 612 is determined by the skin depth (δ) of the conductive heat generating layer 612 defined by the equation (1) such that an alternating magnetic field having a frequency of 20 k to 100 kHz penetrates and passes through the conductive heat generating layer 612. It is configured in a thinner layer. Further, as a material constituting the conductive heat generating layer 612, for example, a metal such as Au, Ag, Al, Cu, Zn, Sn, Pb, Bi, Be, Sb, or a metal alloy thereof is used.

Figure 2010224342
Figure 2010224342

具体的には、導電発熱層612として、厚さ2〜20μm、固有抵抗2.7×10−8Ω・m以下の例えばCu等の非磁性金属(比透磁率が概ね1)が用いられる。
また、定着ベルト61が定着設定温度まで加熱されるまでに要する時間(以下、「ウォームアップタイム」)を短縮する観点からも、導電発熱層612は、薄層に構成するのが好ましい。
Specifically, a nonmagnetic metal such as Cu having a thickness of 2 to 20 μm and a specific resistance of 2.7 × 10 −8 Ω · m or less (relative magnetic permeability is approximately 1) is used as the conductive heating layer 612.
Further, from the viewpoint of shortening the time required for the fixing belt 61 to be heated to the fixing set temperature (hereinafter referred to as “warm-up time”), the conductive heat generating layer 612 is preferably formed as a thin layer.

次に、弾性層613は、シリコーンゴム等の耐熱性の弾性体で構成される。定着対象となる用紙Pに保持されるトナー像は、粉体である各色トナーが積層して形成されている。そのため、ニップ部Nにおいてトナー像の全体に均一に熱を供給するには、用紙P上のトナー像の凹凸に倣って定着ベルト61表面が変形することが好ましい。そこで、弾性層613には、例えば厚みが100〜600μm、硬度が10°〜30°(JIS−A)のシリコーンゴムが好適である。
表面離型層614は、用紙P上に保持された未定着トナー像と直接接触するため、離型性の高い材質が使用される。例えば、PFA(テトラフルオロエチレンパーフルオロアルキルビニルエーテル重合体)、PTFE(ポリテトラフルオロエチレン)、シリコーン共重合体、またはこれらの複合層等が用いられる。表面離型層614の厚さとしては、薄すぎると、耐摩耗性の面で充分でなく、定着ベルト61の寿命を短くする。その一方で、厚すぎると、定着ベルト61の熱容量が大きくなりすぎ、ウォームアップタイムが長くなる。そこで、表面離型層614の厚さとして、耐摩耗性と熱容量とのバランスを考慮し、1〜50μmが好適である。
Next, the elastic layer 613 is composed of a heat-resistant elastic body such as silicone rubber. The toner image held on the sheet P to be fixed is formed by laminating each color toner as powder. Therefore, in order to supply heat uniformly to the entire toner image at the nip portion N, it is preferable that the surface of the fixing belt 61 is deformed following the unevenness of the toner image on the paper P. Therefore, for example, silicone rubber having a thickness of 100 to 600 μm and a hardness of 10 ° to 30 ° (JIS-A) is suitable for the elastic layer 613.
Since the surface release layer 614 is in direct contact with the unfixed toner image held on the paper P, a material having a high release property is used. For example, PFA (tetrafluoroethylene perfluoroalkyl vinyl ether polymer), PTFE (polytetrafluoroethylene), silicone copolymer, or a composite layer thereof is used. If the thickness of the surface release layer 614 is too thin, it is not sufficient in terms of wear resistance, and the life of the fixing belt 61 is shortened. On the other hand, if it is too thick, the heat capacity of the fixing belt 61 becomes too large and the warm-up time becomes long. Therefore, the thickness of the surface release layer 614 is preferably 1 to 50 μm in consideration of the balance between wear resistance and heat capacity.

<押圧パッドの説明>
押圧パッド63は、シリコーンゴム等やフッ素ゴム等の弾性体で構成され、加圧ロール62と対向する位置にてホルダ65に支持される。そして、定着ベルト61を介して加圧ロール62から押圧される状態で配置され、加圧ロール62との間でニップ部Nを形成する。
また、押圧パッド63は、ニップ部Nの入口側(用紙Pの搬送方向上流側)のプレニップ領域63aと、ニップ部Nの出口側(用紙Pの搬送方向下流側)の剥離ニップ領域63bとで異なるニップ圧が設定されている。すなわち、プレニップ領域63aでは、加圧ロール62側の面がほぼ加圧ロール62の外周面に倣う円弧形状に形成され、均一で幅の広いニップ部Nを形成する。また、剥離ニップ領域63bでは、剥離ニップ領域63bを通過する定着ベルト61の曲率半径が小さくなるように、加圧ロール62表面から局所的に大きなニップ圧で押圧されるように形成される。それにより、剥離ニップ領域63bを通過する用紙Pに定着ベルト61表面から離れる方向のカール(ダウンカール)を形成して、用紙Pに対する定着ベルト61表面からの剥離を促進させている。
<Description of pressing pad>
The pressing pad 63 is made of an elastic body such as silicone rubber or fluorine rubber, and is supported by the holder 65 at a position facing the pressure roll 62. Then, it is arranged in a state of being pressed from the pressure roll 62 via the fixing belt 61, and a nip portion N is formed with the pressure roll 62.
The pressing pad 63 includes a pre-nip region 63a on the inlet side of the nip portion N (upstream side in the conveyance direction of the paper P) and a peeling nip region 63b on the outlet side of the nip portion N (downstream side in the conveyance direction of the paper P). Different nip pressures are set. That is, in the pre-nip region 63 a, the surface on the pressure roll 62 side is formed in an arc shape that substantially follows the outer peripheral surface of the pressure roll 62, thereby forming a uniform and wide nip portion N. Further, the peeling nip region 63b is formed so as to be locally pressed from the surface of the pressure roll 62 with a large nip pressure so that the radius of curvature of the fixing belt 61 passing through the peeling nip region 63b becomes small. As a result, a curl (down curl) in a direction away from the surface of the fixing belt 61 is formed on the paper P passing through the peeling nip region 63b to promote the peeling of the paper P from the surface of the fixing belt 61.

なお、本実施の形態では、押圧パッド63による剥離の補助手段として、ニップ部Nの下流側に、剥離補助部材173を配置している。剥離補助部材173は、剥離バッフル171が定着ベルト61の回転移動方向と対向する向き(所謂カウンタ方向)に定着ベルト61と近接する状態でホルダ172によって支持される。そして、押圧パッド63の出口にて用紙Pに形成されたカール部分を剥離バッフル171により支持することで、用紙Pが定着ベルト61方向に向かうことを抑制する。   In the present embodiment, a peeling assisting member 173 is arranged on the downstream side of the nip portion N as a peeling assisting means by the pressing pad 63. The peeling auxiliary member 173 is supported by the holder 172 in a state where the peeling baffle 171 is close to the fixing belt 61 in a direction opposite to the rotational movement direction of the fixing belt 61 (so-called counter direction). The curled portion formed on the paper P at the outlet of the pressing pad 63 is supported by the peeling baffle 171 to suppress the paper P from moving toward the fixing belt 61.

<感温磁性部材の説明>
次に、感温磁性部材64は、定着ベルト61の内周面に倣った円弧形状で形成され、定着ベルト61の内周面とは予め定めた間隙(例えば、0.5〜1.5mm)を有するように近接させるが、非接触で配置される。感温磁性部材64を定着ベルト61と近接させて配置するのは、感温磁性部材64の温度が定着ベルト61の温度に対応して変化する、すなわち、感温磁性部材64の温度が定着ベルト61の温度と略同じ温度となるように構成するためである。また、感温磁性部材64を定着ベルト61と非接触で配置するのは、画像形成装置1のメインスイッチがオンされ、定着ベルト61が定着設定温度まで加熱される際に、定着ベルト61の熱が感温磁性部材64に流入するのを抑制して、ウォームアップタイムの短縮を図るためである。
<Description of temperature-sensitive magnetic member>
Next, the temperature-sensitive magnetic member 64 is formed in an arc shape that follows the inner peripheral surface of the fixing belt 61, and a predetermined gap (for example, 0.5 to 1.5 mm) from the inner peripheral surface of the fixing belt 61. Are arranged close to each other but in a non-contact manner. The temperature-sensitive magnetic member 64 is disposed close to the fixing belt 61 because the temperature of the temperature-sensitive magnetic member 64 changes corresponding to the temperature of the fixing belt 61, that is, the temperature of the temperature-sensitive magnetic member 64 is changed. This is because the temperature is substantially the same as the temperature 61. Further, the temperature-sensitive magnetic member 64 is disposed in a non-contact manner with the fixing belt 61 because the heat of the fixing belt 61 is increased when the main switch of the image forming apparatus 1 is turned on and the fixing belt 61 is heated to the fixing set temperature. This is to prevent the temperature from flowing into the temperature-sensitive magnetic member 64 and shorten the warm-up time.

また、感温磁性部材64は、その磁気特性の透磁率が急変する温度である「透磁率変化開始温度」が各色トナー像が溶融する定着設定温度以上であって、定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも低い温度範囲内に設定された材質で構成される。すなわち、感温磁性部材64は、定着設定温度を含む温度領域において強磁性と非磁性(常磁性)との間を可逆的に変化する特性(「感温磁性」)を有する材質で構成される。それにより、感温磁性部材64は、強磁性を呈する透磁率変化開始温度以下の温度範囲において磁路形成部材として機能し、IHヒータ80にて生成され定着ベルト61を透過した磁力線を内部に誘導して、感温磁性部材64の内部を通過する磁路を形成する。そして、感温磁性部材64は、定着ベルト61とIHヒータ80の励磁コイル82(後段の図6参照)とを内部に包み込むような閉磁路を形成する。一方、透磁率変化開始温度を超える温度範囲においては、感温磁性部材64は、IHヒータ80にて生成され定着ベルト61を透過した磁力線を、感温磁性部材64の厚さ方向に横切るように透過させる。それにより、IHヒータ80にて生成され定着ベルト61を透過した磁力線は、感温磁性部材64を透過し、誘導部材66の内部を通過してIHヒータ80に戻る磁路を形成する。
なお、感温磁性部材64の感温磁性については、後段で詳細に説明する。
Further, the temperature-sensitive magnetic member 64 has a “permeability change start temperature”, which is a temperature at which the magnetic permeability of the magnetic characteristics changes suddenly, equal to or higher than a preset fixing temperature at which each color toner image is melted. Or a material set in a temperature range lower than the heat resistant temperature of the surface release layer 614. That is, the temperature-sensitive magnetic member 64 is made of a material having a characteristic (“temperature-sensitive magnetism”) that reversibly changes between ferromagnetic and non-magnetic (paramagnetic) in a temperature range including the fixing set temperature. . As a result, the temperature-sensitive magnetic member 64 functions as a magnetic path forming member in a temperature range that is equal to or lower than the permeability change start temperature exhibiting ferromagnetism, and induces magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 to the inside. Thus, a magnetic path passing through the inside of the temperature-sensitive magnetic member 64 is formed. The temperature-sensitive magnetic member 64 forms a closed magnetic path that encloses the fixing belt 61 and the exciting coil 82 of the IH heater 80 (see FIG. 6 at a later stage). On the other hand, in the temperature range exceeding the permeability change start temperature, the temperature-sensitive magnetic member 64 crosses the magnetic field lines generated by the IH heater 80 and transmitted through the fixing belt 61 in the thickness direction of the temperature-sensitive magnetic member 64. Make it transparent. Thereby, the magnetic lines of force generated by the IH heater 80 and transmitted through the fixing belt 61 form a magnetic path that passes through the temperature-sensitive magnetic member 64, passes through the inside of the guide member 66, and returns to the IH heater 80.
The temperature-sensitive magnetism of the temperature-sensitive magnetic member 64 will be described in detail later.

感温磁性部材64に用いる材質としては、透磁率変化開始温度が定着設定温度として用いられる例えば140℃〜240℃の範囲内に設定された、例えばFe−Ni合金(パーマロイ)等の二元系感温磁性合金やFe−Ni−Cr合金等の三元系の感温磁性合金等が用いられる。例えば、Fe−Niの二元系感温磁性合金においては約Fe64%、Ni36%(原子数比)とすることで225℃前後に透磁率変化開始温度を設定することができる。このようなパーマロイや感温磁性合金等の金属合金等は、成型性や加工性に優れ、伝熱性も高く安価である等の理由から、感温磁性部材64に適する。その他の材質としては、Fe,Ni,Si,B,Nb,Cu,Zr,Co,Cr,V,Mn,Mo等からなる金属合金が用いられる。
また、感温磁性部材64は、IHヒータ80により生成された交流磁界(磁力線)に対する表皮深さδ(上記(1)式参照)よりも厚く形成される。具体的には、例えばFe−Ni合金を用いた場合には50〜300μm程度に設定される。
As a material used for the temperature-sensitive magnetic member 64, a binary system such as an Fe—Ni alloy (permalloy), for example, in which a magnetic permeability change start temperature is set in a range of 140 ° C. to 240 ° C. used as a fixing set temperature, for example. A ternary temperature-sensitive magnetic alloy such as a temperature-sensitive magnetic alloy or an Fe—Ni—Cr alloy is used. For example, in a Fe-Ni binary temperature-sensitive magnetic alloy, the magnetic permeability change start temperature can be set to around 225 ° C. by setting it to about Fe 64% and Ni 36% (atomic ratio). Such metal alloys such as permalloy and temperature-sensitive magnetic alloy are suitable for the temperature-sensitive magnetic member 64 because they are excellent in moldability and workability, have high heat conductivity, and are inexpensive. As other materials, a metal alloy made of Fe, Ni, Si, B, Nb, Cu, Zr, Co, Cr, V, Mn, Mo or the like is used.
Further, the temperature-sensitive magnetic member 64 is formed thicker than the skin depth δ (see the above formula (1)) with respect to the AC magnetic field (lines of magnetic force) generated by the IH heater 80. Specifically, for example, when an Fe—Ni alloy is used, the thickness is set to about 50 to 300 μm.

<ホルダの説明>
押圧パッド63を支持するホルダ65は、押圧パッド63が加圧ロール62からの押圧力を受けた状態での撓み量が一定量以下となるように、剛性の高い材料で構成される。それにより、ニップ部Nにおける長手方向の圧力(ニップ圧N)の均一性を維持している。さらに、本実施の形態の定着ユニット60では、電磁誘導を用いて定着ベルト61を加熱する構成を採用していることから、ホルダ65は、誘導磁界に影響を与えないか、または与え難い材料であり、かつ、誘導磁界から影響を受けないか、または受け難い材料で構成される。例えば、ガラス混入PPS(ポリフェニレンサルファイド)等の耐熱性樹脂や、例えばAl,Cu,Ag等の非磁性金属材料等が用いられる。
<Description of holder>
The holder 65 that supports the pressing pad 63 is made of a material having high rigidity so that the amount of bending in a state where the pressing pad 63 receives the pressing force from the pressing roll 62 becomes a certain amount or less. Thereby, the uniformity of the pressure in the longitudinal direction (nip pressure N) at the nip portion N is maintained. Furthermore, since the fixing unit 60 according to the present embodiment employs a configuration in which the fixing belt 61 is heated using electromagnetic induction, the holder 65 is made of a material that does not affect or hardly gives influence to the induced magnetic field. It is made of a material that is not affected or hardly affected by the induced magnetic field. For example, a heat-resistant resin such as glass-mixed PPS (polyphenylene sulfide) or a nonmagnetic metal material such as Al, Cu, or Ag is used.

<誘導部材の説明>
誘導部材66は、感温磁性部材64の内周面に倣った円弧形状で形成され、感温磁性部材64の内周面とは予め定めた間隙(例えば、1.0〜5.0mm)を有する非接触に配置される。また、誘導部材66は、例えばAg,Cu,Alといった固有抵抗値が比較的小さい非磁性金属で構成される。そして、感温磁性部材64が透磁率変化開始温度以上の温度に上昇した際に、IHヒータ80により生成された交流磁界(磁力線)を誘導して、定着ベルト61の導電発熱層612よりも渦電流Iが発生し易い状態を形成する。それにより、誘導部材66の厚さは、渦電流Iが流れ易いように、表皮深さδ(上記(1)式参照)よりも充分に厚い厚さ(例えば、1.0mm)で形成される。
<Description of induction member>
The induction member 66 is formed in an arc shape that follows the inner peripheral surface of the temperature-sensitive magnetic member 64, and has a predetermined gap (for example, 1.0 to 5.0 mm) from the inner peripheral surface of the temperature-sensitive magnetic member 64. Having a non-contact arrangement. The induction member 66 is made of a nonmagnetic metal having a relatively small specific resistance value, such as Ag, Cu, or Al. Then, when the temperature-sensitive magnetic member 64 rises to a temperature equal to or higher than the permeability change start temperature, an alternating magnetic field (line of magnetic force) generated by the IH heater 80 is induced, and the vortex is more vortexed than the conductive heating layer 612 of the fixing belt 61. A state in which the current I is easily generated is formed. Thereby, the thickness of the induction member 66 is formed with a thickness (for example, 1.0 mm) sufficiently thicker than the skin depth δ (see the above formula (1)) so that the eddy current I flows easily. .

<定着ベルトの駆動機構の説明>
次に、定着ベルト61の駆動機構について説明する。
正面図である図2に示したように、ホルダ65(図3参照)の軸方向両端部には、定着ベルト61の両端部の断面形状を円形に維持しながら定着ベルト61を周方向に回転駆動するエンドキャップ部材67が固定されている。そして、定着ベルト61は、両端部からエンドキャップ部材67を介した回転駆動力を直接的に受けて、例えば140mm/sのプロセススピードで図3の矢印C方向に回転移動する。
ここで図5は、(a)がエンドキャップ部材67の側面図であり、(b)がZ方向から見たエンドキャップ部材67の平面図である。図5に示したように、エンドキャップ部材67は、定着ベルト61の両端部内側に嵌合される固定部67a、固定部67aより外径が大きく形成され、定着ベルト61に装着された際に定着ベルト61よりも半径方向に張り出すように形成されたフランジ部67d、回転駆動力が伝達されるギヤ部67b、ホルダ65の両端部に形成された支持部65aと結合部材166を介して回転自在に結合されたベアリング軸受部67cを備える。そして、上記図2に示したように、ホルダ65の両端部の支持部65aが定着ユニット60の筐体69の両端部に固定されることで、エンドキャップ部材67は、支持部65aに結合されたベアリング軸受部67cを介して回転自在に支持される。
エンドキャップ部材67を構成する材質としては、機械的強度や耐熱性の高い所謂エンジニアリングプラスチックスが用いられる。例えば、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂、LCP樹脂等が適する。
<Description of Fixing Belt Drive Mechanism>
Next, a driving mechanism for the fixing belt 61 will be described.
As shown in FIG. 2 which is a front view, the fixing belt 61 is rotated in the circumferential direction while maintaining the cross-sectional shape of both ends of the fixing belt 61 in a circular shape at both axial ends of the holder 65 (see FIG. 3). An end cap member 67 to be driven is fixed. The fixing belt 61 directly receives the rotational driving force from both ends via the end cap member 67, and rotates and moves in the direction of arrow C in FIG. 3 at a process speed of 140 mm / s, for example.
5A is a side view of the end cap member 67, and FIG. 5B is a plan view of the end cap member 67 viewed from the Z direction. As shown in FIG. 5, the end cap member 67 is formed with a fixing portion 67 a fitted inside the both ends of the fixing belt 61 and has an outer diameter larger than that of the fixing portion 67 a, and when the end cap member 67 is attached to the fixing belt 61. Rotating through a flange portion 67d formed so as to project radially from the fixing belt 61, a gear portion 67b to which rotational driving force is transmitted, a support portion 65a formed at both ends of the holder 65, and a coupling member 166. A bearing bearing portion 67c that is freely coupled is provided. Then, as shown in FIG. 2, the support portions 65a at both ends of the holder 65 are fixed to both ends of the casing 69 of the fixing unit 60, whereby the end cap member 67 is coupled to the support portion 65a. It is rotatably supported via the bearing bearing portion 67c.
As a material constituting the end cap member 67, so-called engineering plastics having high mechanical strength and heat resistance are used. For example, phenol resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, LCP resin and the like are suitable.

そして、図2に示すように、定着ユニット60では、駆動モータ90からの回転駆動力が伝達ギヤ91,92を介してシャフト93に伝達され、シャフト93に結合された伝達ギヤ94,95から両エンドキャップ部材67のギヤ部67b(図5参照)に伝達される。それによって、エンドキャップ部材67から定着ベルト61に回転駆動力が伝わり、エンドキャップ部材67と定着ベルト61とが一体となって回転駆動される。
このように、定着ベルト61が定着ベルト61の両端部から駆動力を直接受けて回転するので、定着ベルト61は安定して回転する。
As shown in FIG. 2, in the fixing unit 60, the rotational driving force from the drive motor 90 is transmitted to the shaft 93 via the transmission gears 91 and 92, and both are transmitted from the transmission gears 94 and 95 coupled to the shaft 93. It is transmitted to the gear portion 67b (see FIG. 5) of the end cap member 67. As a result, a rotational driving force is transmitted from the end cap member 67 to the fixing belt 61, and the end cap member 67 and the fixing belt 61 are integrally rotated.
Thus, the fixing belt 61 rotates by receiving the driving force directly from both ends of the fixing belt 61, so that the fixing belt 61 rotates stably.

ここで、定着ベルト61が両端部のエンドキャップ部材67から駆動力を直接受けて回転する場合には、一般に、0.1〜0.5N・m程度のトルクが作用する。ところが、本実施の形態の定着ベルト61では、基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成している。そのため、定着ベルト61全体に0.1〜0.5N・m程度のねじりトルクが作用した場合でも、定着ベルト61には座屈等が生じ難い。
また、エンドキャップ部材67のフランジ部67dにより定着ベルト61の片寄りを抑えているが、その際の定着ベルト61には、一般に、端部(フランジ部67d)側から軸方向に向けて1〜5N程度の圧縮力が働く。しかし、定着ベルト61がこのような圧縮力を受けた場合においても、定着ベルト61の基材層611が非磁性ステンレススチール等で構成されていることから、座屈等の発生が抑制される。
上記のように、本実施の形態の定着ベルト61においては、定着ベルト61の両端部から駆動力を直接受けて回転するので、安定した回転が行われる。また、その際に、定着ベルト61の基材層611を機械的強度の高い例えば非磁性ステンレススチール等で構成することで、ねじりトルクや圧縮力に対して座屈等が発生し難い構成を実現している。さらには、基材層611および導電発熱層612を薄層に形成して、定着ベルト61全体としての柔軟性/フレキシブル性を確保しているので、ニップ部Nに倣った変形と形状復元とが行われる。
Here, when the fixing belt 61 rotates by receiving a driving force directly from the end cap members 67 at both ends, a torque of about 0.1 to 0.5 N · m is generally applied. However, in the fixing belt 61 of the present embodiment, the base material layer 611 is made of, for example, nonmagnetic stainless steel having high mechanical strength. For this reason, even when a torsional torque of about 0.1 to 0.5 N · m acts on the entire fixing belt 61, buckling or the like hardly occurs in the fixing belt 61.
Further, the flange portion 67d of the end cap member 67 suppresses the deviation of the fixing belt 61. In general, the fixing belt 61 at that time is generally 1 to 5 in the axial direction from the end portion (flange portion 67d) side. A compressive force of about 5N works. However, even when the fixing belt 61 receives such a compressive force, since the base material layer 611 of the fixing belt 61 is made of nonmagnetic stainless steel or the like, occurrence of buckling or the like is suppressed.
As described above, the fixing belt 61 according to the present embodiment rotates by receiving a driving force directly from both end portions of the fixing belt 61, and thus stable rotation is performed. At that time, the base material layer 611 of the fixing belt 61 is made of, for example, non-magnetic stainless steel having high mechanical strength, thereby realizing a structure in which buckling or the like hardly occurs against torsion torque or compression force. is doing. Furthermore, since the base material layer 611 and the conductive heat generating layer 612 are formed in a thin layer to ensure the flexibility / flexibility of the fixing belt 61 as a whole, deformation and shape restoration following the nip portion N are prevented. Done.

図3に戻り、加圧ロール62は、定着ベルト61に対向するように配置され、定着ベルト61に従動して図3の矢印D方向に、例えば140mm/sのプロセススピードで回転する。そして、加圧ロール62と押圧パッド63とにより定着ベルト61を挟持した状態でニップ部Nを形成し、このニップ部Nに未定着トナー像を保持した用紙Pを通過させることで、熱および圧力を加えて未定着トナー像を用紙Pに定着する。
加圧ロール62は、例えば直径18mmの中実のアルミニウム製コア(円柱状芯金)621と、コア621の外周面に被覆された例えば厚さ5mmのシリコーンスポンジ等の耐熱性弾性体層622と、さらに例えば厚さ50μmのカーボン配合のPFA等の耐熱性樹脂被覆または耐熱性ゴム被覆による離型層623とが積層されて構成される。そして、押圧バネ68(図2参照)により例えば25kgfの荷重で定着ベルト61を介して押圧パッド63を押圧している。
Returning to FIG. 3, the pressure roll 62 is arranged so as to face the fixing belt 61, and rotates in the direction of arrow D in FIG. 3 at a process speed of 140 mm / s, for example, following the fixing belt 61. Then, a nip portion N is formed in a state where the fixing belt 61 is sandwiched between the pressure roll 62 and the pressing pad 63, and the sheet P holding the unfixed toner image is passed through the nip portion N, so that the heat and pressure To fix the unfixed toner image on the paper P.
The pressure roll 62 includes, for example, a solid aluminum core (cylindrical metal core) 621 having a diameter of 18 mm, and a heat-resistant elastic body layer 622 such as a silicone sponge having a thickness of 5 mm, which is coated on the outer peripheral surface of the core 621. Further, for example, a release layer 623 made of a heat-resistant resin coating such as PFA containing carbon having a thickness of 50 μm or a heat-resistant rubber coating is laminated. Then, the pressing pad 63 is pressed through the fixing belt 61 with a load of 25 kgf, for example, by a pressing spring 68 (see FIG. 2).

<IHヒータの説明>
続いて、定着ベルト61の導電発熱層612に交流磁界を作用させて電磁誘導加熱するIHヒータ80について説明する。
図6は、本実施の形態のIHヒータ80の構成を説明する断面図である。図6に示したように、IHヒータ80は、例えば耐熱性樹脂等の非磁性体から構成される支持体81、交流磁界を生成する励磁コイル82を備えている。また、励磁コイル82を支持体81上に固定する弾性体で構成された弾性支持部材83、励磁コイル82にて生成された交流磁界の磁路を形成する磁心84を備えている。さらには、磁界を遮蔽するシールド85、磁心84を支持体81側に加圧する加圧部材86、励磁コイル82に交流電流を供給する励磁回路88を備えている。
<Description of IH heater>
Next, the IH heater 80 that performs electromagnetic induction heating by applying an AC magnetic field to the conductive heat generating layer 612 of the fixing belt 61 will be described.
FIG. 6 is a cross-sectional view illustrating the configuration of the IH heater 80 of the present embodiment. As shown in FIG. 6, the IH heater 80 includes a support 81 made of a nonmagnetic material such as a heat resistant resin, and an exciting coil 82 that generates an alternating magnetic field. Further, an elastic support member 83 made of an elastic body that fixes the excitation coil 82 on the support 81 and a magnetic core 84 that forms a magnetic path of an alternating magnetic field generated by the excitation coil 82 are provided. Furthermore, a shield 85 that shields the magnetic field, a pressure member 86 that pressurizes the magnetic core 84 toward the support 81, and an excitation circuit 88 that supplies an alternating current to the excitation coil 82 are provided.

支持体81は、断面が定着ベルト61の表面形状に沿って湾曲した形状で形成され、励磁コイル82を支持する上部面(支持面)81aが定着ベルト61表面と予め定めた間隙(例えば、0.5〜2mm)を保つように形成され設定されている。また、支持体81には、支持面81aの定着ベルト61移動方向中央部にて長手方向に平行に配置された一対の磁心支持部81bと、支持面81aの定着ベルト61移動方向両端部にて磁心84の配置位置を定着ベルト61移動方向に規制する磁心規制部81cとが配置されている。そして、一対の磁心支持部81bは、支持面81a両端部に設けられた磁心規制部81cの間で、磁心84を定着ベルト61移動方向の前後に移動自在に支持する。それにより、製造時の熱処理によって形状にばらつきが生じ易い磁心84と支持面81aとの間隙が、定着ベルト61移動方向中央部を中心として上流側領域と下流側領域とにおいて略対称となるように磁心84を支持する。
支持体81を構成する材質としては、例えば、耐熱ガラス、ポリカーボネート、ポリエーテルサルフォン、PPS(ポリフェニレンサルファイド)等の耐熱性樹脂、またはこれらにガラス繊維を混合した耐熱性樹脂等の耐熱性のある非磁性材料が用いられる。
The support 81 is formed in a shape whose cross section is curved along the surface shape of the fixing belt 61, and an upper surface (supporting surface) 81 a that supports the exciting coil 82 has a predetermined gap (for example, 0) from the surface of the fixing belt 61. 0.5 to 2 mm). Further, the support 81 has a pair of magnetic core support portions 81b disposed in parallel to the longitudinal direction at the center of the support surface 81a in the moving direction of the fixing belt 61, and both ends of the support surface 81a in the moving direction of the fixing belt 61. A magnetic core restricting portion 81 c that restricts the arrangement position of the magnetic core 84 in the moving direction of the fixing belt 61 is arranged. The pair of magnetic core support portions 81b support the magnetic core 84 so as to be movable forward and backward in the moving direction of the fixing belt 61 between the magnetic core restricting portions 81c provided at both ends of the support surface 81a. As a result, the gap between the magnetic core 84 and the support surface 81a, the shape of which is likely to vary in shape due to heat treatment during manufacturing, is substantially symmetric in the upstream region and the downstream region with the center in the moving direction of the fixing belt 61 as the center. The magnetic core 84 is supported.
Examples of the material constituting the support 81 include heat-resistant resins such as heat-resistant glass, polycarbonate, polyethersulfone, and PPS (polyphenylene sulfide), or heat-resistant resins obtained by mixing glass fibers with these materials. A non-magnetic material is used.

励磁コイル82は、相互に絶縁された例えば直径0.17mmの銅線材を例えば90本束ねたリッツ線が長円形状や楕円形状、長方形状等の中空きの閉ループ状に巻かれて構成される。そして、励磁コイル82に励磁回路88から予め定めた周波数の交流電流が供給されることにより、励磁コイル82の周囲には、閉ループ状に巻かれたリッツ線を中心とする交流磁界が生成される。励磁回路88から励磁コイル82に供給される交流電流の周波数は、一般に、上記した汎用電源により生成される20k〜100kHzが用いられる。
弾性支持部材83は、例えばシリコーンゴム等やフッ素ゴム等の弾性体で構成されたシート状部材である。弾性支持部材83は、励磁コイル82が支持体81の支持面81aに密着して固定されるように、励磁コイル82を支持体81に対して押圧するように設定されている。
The exciting coil 82 is configured by winding, for example, 90 litz wires, which are bundled with, for example, 90 copper wires having a diameter of 0.17 mm and wound in a closed loop with a hollow shape such as an ellipse, an ellipse, or a rectangle. . Then, when an alternating current having a predetermined frequency is supplied to the exciting coil 82 from the exciting circuit 88, an alternating magnetic field centered around a litz wire wound in a closed loop is generated around the exciting coil 82. . Generally, the frequency of the alternating current supplied from the excitation circuit 88 to the excitation coil 82 is 20 k to 100 kHz generated by the general-purpose power source.
The elastic support member 83 is a sheet-like member made of an elastic body such as silicone rubber or fluorine rubber. The elastic support member 83 is set to press the excitation coil 82 against the support 81 so that the excitation coil 82 is fixed in close contact with the support surface 81a of the support 81.

磁心84は、例えばソフトフェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ、感温磁性合金等の高透磁率の酸化物や合金材質で構成される強磁性体が用いられ、磁路形成手段として機能する。磁心84は、励磁コイル82にて生成された交流磁界による磁力線(磁束)を内部に誘導し、磁心84から定着ベルト61を横切って感温磁性部材64方向に向かい、感温磁性部材64の中を通過して磁心84に戻るといった磁力線の通路(磁路)を形成する。すなわち、励磁コイル82にて生成された交流磁界が磁心84の内部と感温磁性部材64の内部とを通過するように構成して、磁力線が定着ベルト61と励磁コイル82とを内部に包み込むような閉磁路を形成する。それにより、励磁コイル82にて生成された交流磁界の磁力線が定着ベルト61の磁心84と対向する領域に集中される。
ここで、磁心84は磁路形成による損失が小さい材料が望ましい。具体的には、磁心84は渦電流損を小さくする形態(スリット等による電流経路遮断や分断化、薄板束ね等)での使用が望ましく、ヒステリシス損の小さい材料で形成されることが望ましい。
また、定着ベルト61の回転方向に沿った磁心84の長さは、感温磁性部材64の定着ベルト61の回転方向に沿った長さよりも小さく構成される。それにより、磁力線のIHヒータ80周辺への漏洩が減り、力率が向上する。さらには、定着ユニット60を構成する金属製部材への電磁誘導を抑え、定着ベルト61(導電発熱層612)での発熱効率を高める。
The magnetic core 84 is made of, for example, a ferromagnetic material made of a high-permeability oxide or alloy material such as soft ferrite, ferrite resin, amorphous alloy (amorphous alloy), permalloy, or temperature-sensitive magnetic alloy. It functions as a path forming means. The magnetic core 84 induces a magnetic force line (magnetic flux) generated by the alternating magnetic field generated by the exciting coil 82, and crosses the fixing belt 61 from the magnetic core 84 toward the temperature-sensitive magnetic member 64. A path of magnetic lines of force (magnetic path) is formed so as to pass through and return to the magnetic core 84. That is, the AC magnetic field generated by the excitation coil 82 is configured to pass through the inside of the magnetic core 84 and the inside of the temperature-sensitive magnetic member 64 so that the magnetic lines of force wrap the fixing belt 61 and the excitation coil 82 inside. A closed magnetic circuit is formed. As a result, the magnetic field lines of the alternating magnetic field generated by the exciting coil 82 are concentrated in a region facing the magnetic core 84 of the fixing belt 61.
Here, the magnetic core 84 is preferably made of a material having a small loss due to magnetic path formation. Specifically, the magnetic core 84 is desirably used in a form that reduces the eddy current loss (current path interruption or division by slits, thin plate bundling, etc.), and is preferably formed of a material having a small hysteresis loss.
Further, the length of the magnetic core 84 along the rotation direction of the fixing belt 61 is configured to be smaller than the length of the temperature-sensitive magnetic member 64 along the rotation direction of the fixing belt 61. Thereby, the leakage of magnetic lines of force to the periphery of the IH heater 80 is reduced, and the power factor is improved. Furthermore, electromagnetic induction to the metal member constituting the fixing unit 60 is suppressed, and the heat generation efficiency of the fixing belt 61 (conductive heat generation layer 612) is increased.

<定着ベルトが発熱する状態の説明>
引き続いて、IHヒータ80により生成された交流磁界によって定着ベルト61が発熱する状態を説明する。
まず、上記したように、感温磁性部材64の透磁率変化開始温度は、各色トナー像を定着する定着設定温度以上であって定着ベルト61の耐熱温度以下となる温度範囲内(例えば、140〜240℃)に設定されている。そして、定着ベルト61の温度が透磁率変化開始温度以下の状態にある場合には、定着ベルト61に近接する感温磁性部材64の温度も定着ベルト61の温度に対応して、透磁率変化開始温度以下となる。そのため、感温磁性部材64は強磁性を呈するので、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向に沿って通過する磁路を形成する。ここでの「広がり方向」とは、感温磁性部材64の厚さ方向と直交する方向を意味する。
<Description of the state in which the fixing belt generates heat>
Subsequently, a state in which the fixing belt 61 generates heat by the alternating magnetic field generated by the IH heater 80 will be described.
First, as described above, the permeability change start temperature of the temperature-sensitive magnetic member 64 is within a temperature range that is not less than the set fixing temperature for fixing each color toner image and not more than the heat resistance temperature of the fixing belt 61 (for example, 140 to 240 ° C.). When the temperature of the fixing belt 61 is equal to or lower than the magnetic permeability change start temperature, the temperature of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 is also started corresponding to the temperature of the fixing belt 61. Below temperature. Therefore, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 pass through the fixing belt 61 and then pass through the inside of the temperature-sensitive magnetic member 64 along the spreading direction. To form a magnetic path. Here, the “spreading direction” means a direction orthogonal to the thickness direction of the temperature-sensitive magnetic member 64.

図7は、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合の磁力線(H)の状態を説明する図である。図7に示したように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、IHヒータ80により生成された交流磁界の磁力線Hは、定着ベルト61を透過し、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。そのため、定着ベルト61の導電発熱層612を横切る領域での単位面積あたりの磁力線Hの数(磁束密度)は多くなる。   FIG. 7 is a diagram for explaining the state of the lines of magnetic force (H) when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature. As shown in FIG. 7, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the permeability change start temperature, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 are transmitted through the fixing belt 61. A magnetic path passing through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction orthogonal to the thickness direction) is formed. Therefore, the number of magnetic field lines H (magnetic flux density) per unit area in the region crossing the conductive heat generating layer 612 of the fixing belt 61 increases.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2を通過した後、磁力線Hは強磁性体である感温磁性部材64の内部に誘導される。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは感温磁性部材64の内部に進入するように集中し、領域R1,R2での磁束密度は高くなる。また、感温磁性部材64の内部を広がり方向に沿って通過した磁力線Hが再び磁心84に戻るに際しても、導電発熱層612を厚さ方向に横切る領域R3では、感温磁性部材64内の磁位の低い部分から集中して磁心84に向けて発生する。そのため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hは、感温磁性部材64から集中して磁心84に向かうこととなり、領域R3での磁束密度も高くなる。   That is, after the magnetic field lines H are radiated from the magnetic core 84 of the IH heater 80 and pass through the regions R1 and R2 across the conductive heat generating layer 612 of the fixing belt 61, the magnetic field lines H enter the inside of the temperature-sensitive magnetic member 64 which is a ferromagnetic material. Be guided. Therefore, the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated so as to enter the inside of the temperature-sensitive magnetic member 64, and the magnetic flux density in the regions R1 and R2 increases. Further, even when the magnetic field lines H that have passed through the inside of the temperature-sensitive magnetic member 64 along the spreading direction return to the magnetic core 84 again, in the region R3 that crosses the conductive heating layer 612 in the thickness direction, the magnetic field in the temperature-sensitive magnetic member 64 is increased. It is concentrated toward the magnetic core 84 from the lower part. Therefore, the magnetic force lines H that cross the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction are concentrated from the temperature-sensitive magnetic member 64 toward the magnetic core 84, and the magnetic flux density in the region R3 is also increased.

磁力線Hが厚さ方向に横切る定着ベルト61の導電発熱層612では、単位面積当たりの磁力線Hの数(磁束密度)の変化量に比例した渦電流Iが発生する。それにより、図7に示したように、磁束密度の変化量が大きい領域R1,R2および領域R3では、大きな渦電流Iが発生する。導電発熱層612に生じた渦電流Iは、導電発熱層612の固有抵抗値Rと渦電流Iの二乗の積であるジュール熱W(W=IR)を発生させる。それにより、大きな渦電流Iが発生した導電発熱層612では、大きなジュール熱Wが発生する。
このように、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合には、磁力線Hが導電発熱層612を横切る領域R1,R2や領域R3において大きな熱が発生する。それにより、定着ベルト61は加熱される。
In the conductive heating layer 612 of the fixing belt 61 where the magnetic lines H cross in the thickness direction, an eddy current I proportional to the amount of change in the number of magnetic lines H per unit area (magnetic flux density) is generated. Thereby, as shown in FIG. 7, a large eddy current I is generated in the regions R1, R2 and R3 where the amount of change in magnetic flux density is large. The eddy current I generated in the conductive heat generation layer 612 generates Joule heat W (W = I 2 R), which is the product of the specific resistance value R of the conductive heat generation layer 612 and the square of the eddy current I. Thereby, a large Joule heat W is generated in the conductive heat generating layer 612 where the large eddy current I is generated.
As described above, when the temperature of the fixing belt 61 is in the temperature range equal to or lower than the permeability change start temperature, large heat is generated in the regions R1 and R2 and the region R3 where the lines of magnetic force H cross the conductive heat generating layer 612. Thereby, the fixing belt 61 is heated.

ところで、本実施の形態の定着ユニット60では、定着ベルト61の内周面側において定着ベルト61に近接させて感温磁性部材64を配置している。それにより、励磁コイル82にて生成された磁力線Hを内部に誘導する磁心84と、定着ベルト61を厚さ方向に横切って透過した磁力線Hを内部に誘導する感温磁性部材64とが近接した構成を実現している。そのため、IHヒータ80(励磁コイル82)により生成された交流磁界は、磁路が短いループを形成するので、磁路内での磁束密度や磁気結合度は高まる。それにより、定着ベルト61の温度が透磁率変化開始温度以下の温度範囲にある場合、定着ベルト61にはさらに効率的に熱が発生する。   By the way, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the fixing belt 61 on the inner peripheral surface side of the fixing belt 61. As a result, the magnetic core 84 that guides the magnetic force lines H generated by the exciting coil 82 to the inside and the temperature-sensitive magnetic member 64 that guides the magnetic force lines H transmitted through the fixing belt 61 in the thickness direction are close to each other. The configuration is realized. For this reason, the AC magnetic field generated by the IH heater 80 (excitation coil 82) forms a loop with a short magnetic path, so that the magnetic flux density and the magnetic coupling degree in the magnetic path increase. Accordingly, when the temperature of the fixing belt 61 is in a temperature range equal to or lower than the magnetic permeability change start temperature, heat is more efficiently generated in the fixing belt 61.

<定着ベルトの非通紙領域の昇温を抑制する機能の説明>
次に、定着ベルト61の非通紙領域の昇温を抑制する機能について説明する。
ここでまず、定着ユニット60に小サイズの用紙P(小サイズ紙P1)を連続して通紙した場合について述べる。図8は、小サイズ紙P1を連続して通紙した際の定着ベルト61の幅方向の温度分布の概略を示した図である。図8においては、画像形成装置1にて使用される用紙Pの最大サイズ幅(例えば、A3横幅)である最大通紙領域をFf、最大サイズ用紙Pよりも横幅の小さな小サイズ紙P1(例えば、A4縦送り)が通過する領域(小サイズ紙通紙領域)をFs、小サイズ紙P1が通過しない非通紙領域をFbとする。なお、画像形成装置1では中央位置基準で通紙が行われるものとする。
<Description of function for suppressing temperature rise in non-sheet passing area of fixing belt>
Next, the function of suppressing the temperature rise in the non-sheet passing area of the fixing belt 61 will be described.
First, a case where small-size paper P (small-size paper P1) is continuously passed through the fixing unit 60 will be described. FIG. 8 is a diagram showing an outline of the temperature distribution in the width direction of the fixing belt 61 when the small size paper P1 is continuously fed. In FIG. 8, the maximum sheet passing area which is the maximum size width (for example, A3 width) of the sheet P used in the image forming apparatus 1 is Ff, and the small size sheet P1 (for example, smaller than the maximum size sheet P) (for example, , A4 (vertical feed) passes through the area (small size paper passing area) as Fs, and the non-sheet passing area through which the small size paper P1 does not pass is Fb. In the image forming apparatus 1, it is assumed that the sheet is passed based on the center position.

図8に示したように、小サイズ紙P1が連続して通紙された場合に、小サイズ紙P1が通過する小サイズ紙通紙領域Fsでは定着のための熱が消費される。そのため、制御部31(図1参照)による定着設定温度での温度調整制御が行われ、小サイズ紙通紙領域Fsでの定着ベルト61の温度は定着設定温度の近傍範囲内に維持される。その一方で、非通紙領域Fbにおいても、小サイズ紙通紙領域Fsと同様の温度調整制御が行われる。しかし、非通紙領域Fbでは定着のための熱が消費されない。そのために、非通紙領域Fbの温度は、定着設定温度よりも高い温度に上昇し易い。そして、その状態で小サイズ紙P1の連続通紙を続けると、非通紙領域Fbの温度が例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度よりも上昇して、定着ベルト61を損傷させる場合がある。   As shown in FIG. 8, when the small size paper P1 is continuously passed, heat for fixing is consumed in the small size paper passing area Fs through which the small size paper P1 passes. Therefore, the temperature adjustment control at the fixing set temperature is performed by the control unit 31 (see FIG. 1), and the temperature of the fixing belt 61 in the small size paper passing area Fs is maintained within the range near the fixing set temperature. On the other hand, temperature adjustment control similar to that of the small-size paper passing area Fs is performed also in the non-paper passing area Fb. However, heat for fixing is not consumed in the non-sheet passing area Fb. For this reason, the temperature of the non-sheet passing area Fb is likely to rise to a temperature higher than the fixing set temperature. Then, when the continuous passage of the small size paper P1 is continued in this state, the temperature of the non-sheet passing region Fb rises, for example, higher than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61, 61 may be damaged.

そこで、上記したように、本実施の形態の定着ユニット60では、感温磁性部材64は、定着設定温度以上であって、例えば定着ベルト61の弾性層613や表面離型層614の耐熱温度以下の温度範囲内に透磁率変化開始温度が設定された例えばFe−Ni合金等で構成されている。すなわち、図8に示したように、感温磁性部材64の透磁率変化開始温度Tcuは、定着設定温度Tf以上であって、例えば弾性層613や表面離型層614の耐熱温度Tlim以下の温度領域に設定されている。   Therefore, as described above, in the fixing unit 60 of the present embodiment, the temperature-sensitive magnetic member 64 is equal to or higher than the preset fixing temperature and is, for example, equal to or lower than the heat resistance temperature of the elastic layer 613 and the surface release layer 614 of the fixing belt 61. For example, an Fe—Ni alloy or the like having a magnetic permeability change start temperature set within the temperature range is used. That is, as shown in FIG. 8, the magnetic permeability change start temperature Tcu of the temperature-sensitive magnetic member 64 is equal to or higher than the fixing set temperature Tf, for example, a temperature equal to or lower than the heat resistance temperature Tlim of the elastic layer 613 and the surface release layer 614. It is set in the area.

それにより、小サイズ紙P1が連続通紙されると、定着ベルト61の非通紙領域Fbでの温度は、感温磁性部材64の透磁率変化開始温度を超える。それによって、定着ベルト61に近接する感温磁性部材64の非通紙領域Fbでの温度も定着ベルト61の温度に対応して、定着ベルト61と同様に透磁率変化開始温度を超える。そのため、非通紙領域Fbでの感温磁性部材64は比透磁率が1に近づき、強磁性体としての性質が消失する。感温磁性部材64の比透磁率が低下して1に近づくことで、非通紙領域Fbでの磁力線Hは感温磁性部材64の内部に誘導されず、感温磁性部材64を透過するようになる。そのため、定着ベルト61の非通紙領域Fbでは、導電発熱層612を通過した後の磁力線Hは拡散し、導電発熱層612を横切る磁力線Hの磁束密度は低下する。それにより、導電発熱層612で発生する渦電流Iは減少して、定着ベルト61での発熱量(ジュール熱W)は低減される。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられ、定着ベルト61の損傷が抑制される。
このように、感温磁性部材64は、定着ベルト61の温度を検知する検知部としての機能と、検知した定着ベルト61の温度に応じて定着ベルト61の過度の温度上昇を抑制する昇温抑制部としての機能とを併せ持っている。
Accordingly, when the small size paper P1 is continuously passed, the temperature in the non-sheet passing region Fb of the fixing belt 61 exceeds the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64. Accordingly, the temperature in the non-sheet passing region Fb of the temperature-sensitive magnetic member 64 adjacent to the fixing belt 61 also exceeds the permeability change start temperature in the same manner as the fixing belt 61 corresponding to the temperature of the fixing belt 61. For this reason, the temperature-sensitive magnetic member 64 in the non-sheet-passing region Fb has a relative magnetic permeability close to 1, and the properties as a ferromagnetic material disappear. The relative magnetic permeability of the temperature-sensitive magnetic member 64 decreases and approaches 1 so that the magnetic field lines H in the non-sheet-passing region Fb are not guided into the temperature-sensitive magnetic member 64 but pass through the temperature-sensitive magnetic member 64. become. Therefore, in the non-sheet passing region Fb of the fixing belt 61, the magnetic field lines H after passing through the conductive heat generating layer 612 are diffused, and the magnetic flux density of the magnetic field lines H crossing the conductive heat generating layer 612 is reduced. Thereby, the eddy current I generated in the conductive heat generation layer 612 is reduced, and the heat generation amount (Joule heat W) in the fixing belt 61 is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb is suppressed, and damage to the fixing belt 61 is suppressed.
As described above, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 and suppresses an increase in temperature that suppresses an excessive temperature increase of the fixing belt 61 according to the detected temperature of the fixing belt 61. It also has a function as a department.

感温磁性部材64を通過した後の磁力線Hは、誘導部材66(図3参照)に到達してこの内部に誘導される。磁束が誘導部材66に到達してその内部に誘導されるようになると、導電発熱層612より渦電流Iの流れ易い誘導部材66の方に多くの渦電流Iが流れる。そのため、導電発熱層612で流れる渦電流量はさらに抑制され、非通紙領域Fbでの温度上昇は抑えられる。   The lines of magnetic force H after passing through the temperature-sensitive magnetic member 64 reach the guide member 66 (see FIG. 3) and are guided into this. When the magnetic flux reaches the induction member 66 and is induced therein, more eddy current I flows toward the induction member 66 where the eddy current I flows more easily than the conductive heat generation layer 612. Therefore, the amount of eddy current flowing in the conductive heat generating layer 612 is further suppressed, and the temperature rise in the non-sheet passing region Fb is suppressed.

その際に、誘導部材66が励磁コイル82からの磁力線Hの殆どを誘導して定着ユニット60からの磁力線Hの漏洩を抑えるように、誘導部材66の厚さ、材質、および形状が選定される。具体的には、誘導部材66を表皮深さδが充分に厚い材料で構成すればよい。それにより、誘導部材66に渦電流Iが流れても発熱量も極力小さくなる。本実施の形態では、誘導部材66を感温磁性部材64に沿う略円形形状の厚さ1mmのAl(アルミニウム)で構成し、感温磁性部材64とは非接触(平均的な距離を例えば4mm)に配置している。その他の材料としては、AgやCuが好適である。   At this time, the thickness, material, and shape of the guiding member 66 are selected so that the guiding member 66 guides most of the magnetic force lines H from the exciting coil 82 and suppresses leakage of the magnetic force lines H from the fixing unit 60. . Specifically, the guide member 66 may be made of a material having a sufficiently thick skin depth δ. Thereby, even if the eddy current I flows through the induction member 66, the amount of heat generation is also minimized. In the present embodiment, the guide member 66 is made of Al (aluminum) having a substantially circular shape with a thickness of 1 mm along the temperature-sensitive magnetic member 64, and is not in contact with the temperature-sensitive magnetic member 64 (an average distance of, for example, 4 mm). ). As other materials, Ag and Cu are suitable.

ところで、その後、定着ベルト61の非通紙領域Fbでの温度が感温磁性部材64の透磁率変化開始温度よりも低くなると、感温磁性部材64の非通紙領域Fbでの温度も透磁率変化開始温度よりも低くなる。それにより、感温磁性部材64は再び強磁性に変化して磁力線Hが感温磁性部材64の内部に誘導されるので、導電発熱層612に渦電流Iが多く流れるようになる。そのため、定着ベルト61が再び加熱されるようになる。   By the way, when the temperature in the non-sheet-passing region Fb of the fixing belt 61 becomes lower than the magnetic permeability change start temperature of the temperature-sensitive magnetic member 64, the temperature in the non-sheet-passing region Fb of the temperature-sensitive magnetic member 64 is also permeable. It becomes lower than the change start temperature. As a result, the temperature-sensitive magnetic member 64 changes to ferromagnetic again, and the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64, so that a large amount of eddy current I flows through the conductive heating layer 612. Therefore, the fixing belt 61 is heated again.

図9は、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度を超えた温度範囲にある場合の磁力線Hの状態を説明する図である。図9に示したように、定着ベルト61の温度が非通紙領域Fbにて透磁率変化開始温度を超えた温度範囲にある場合には、非通紙領域Fbの感温磁性部材64は比透磁率が低下する。そのため、IHヒータ80により生成された交流磁界の磁力線Hは感温磁性部材64を容易に透過するように変化する。それにより、IHヒータ80(励磁コイル82)により生成された交流磁界の磁力線Hは、磁心84から定着ベルト61側に向けて拡散するように放射され、誘導部材66に到達するようになる。   FIG. 9 is a diagram illustrating the state of the lines of magnetic force H when the temperature of the fixing belt 61 in the non-sheet passing region Fb is in the temperature range exceeding the permeability change start temperature. As shown in FIG. 9, when the temperature of the fixing belt 61 is in the temperature range exceeding the permeability change start temperature in the non-sheet passing area Fb, the temperature-sensitive magnetic member 64 in the non-sheet passing area Fb has a ratio. Magnetic permeability decreases. Therefore, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 change so as to easily pass through the temperature-sensitive magnetic member 64. Accordingly, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (excitation coil 82) are radiated so as to diffuse from the magnetic core 84 toward the fixing belt 61 and reach the induction member 66.

すなわち、IHヒータ80の磁心84から磁力線Hが放射されて定着ベルト61の導電発熱層612を横切る領域R1,R2では、磁力線Hが感温磁性部材64に誘導され難いため、放射状に拡散する。それにより、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度(単位面積当たりの磁力線Hの数)が減少する。また、磁力線Hが再び磁心84に戻る際に導電発熱層612を厚さ方向に横切る領域R3でも、拡散した広い領域から磁力線Hが磁心84に戻ることとなるため、定着ベルト61の導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少する。
そのため、定着ベルト61の温度が透磁率変化開始温度を超える温度範囲にある場合には、領域R1,R2や領域R3において導電発熱層612を厚さ方向に横切る磁力線Hの磁束密度が減少することとなる。それにより、磁力線Hが厚さ方向に横切る導電発熱層612に発生する渦電流Iは減り、定着ベルト61に発生するジュール熱Wは減少する。それにより、定着ベルト61の温度は低下する。
That is, in the regions R1 and R2 where the magnetic force lines H are radiated from the magnetic core 84 of the IH heater 80 and cross the conductive heat generating layer 612 of the fixing belt 61, the magnetic force lines H are difficult to be guided to the temperature-sensitive magnetic member 64 and thus diffuse radially. As a result, the magnetic flux density (number of magnetic force lines H per unit area) of the magnetic field lines H crossing the conductive heat generating layer 612 of the fixing belt 61 in the thickness direction decreases. Further, even in the region R3 that crosses the conductive heat generating layer 612 in the thickness direction when the magnetic force line H returns to the magnetic core 84 again, the magnetic force line H returns to the magnetic core 84 from the diffused wide region. The magnetic flux density of the magnetic field lines H crossing 612 in the thickness direction decreases.
Therefore, when the temperature of the fixing belt 61 is in a temperature range exceeding the permeability change start temperature, the magnetic flux density of the magnetic field lines H that cross the conductive heating layer 612 in the thickness direction decreases in the regions R1, R2, and R3. It becomes. As a result, the eddy current I generated in the conductive heating layer 612 where the magnetic field lines H cross in the thickness direction is reduced, and the Joule heat W generated in the fixing belt 61 is reduced. As a result, the temperature of the fixing belt 61 decreases.

このように、非通紙領域Fbでの定着ベルト61の温度が透磁率変化開始温度以上の温度範囲にある場合において、非通紙領域Fbでの感温磁性部材64の内部に磁力線Hが誘導され難くなり、励磁コイル82により生成された交流磁界の磁力線Hは、定着ベルト61の導電発熱層612を厚さ方向を拡散しながら横切る。そのため、励磁コイル82により生成された交流磁界の磁路は長いループを形成することとなり、定着ベルト61の導電発熱層612を通過する磁路での磁束密度は減少する。
それにより、例えば小サイズ紙P1が連続通紙されて、温度が上昇した非通紙領域Fbでは、定着ベルト61の導電発熱層612に発生する渦電流Iが減って、定着ベルト61の非通紙領域Fbでの発熱量(ジュール熱W)は低減する。その結果、非通紙領域Fbでの過剰な温度上昇は抑えられる。
As described above, when the temperature of the fixing belt 61 in the non-sheet-passing area Fb is in the temperature range equal to or higher than the magnetic permeability change start temperature, the magnetic field lines H are induced inside the temperature-sensitive magnetic member 64 in the non-sheet-passing area Fb. The magnetic field lines H of the alternating magnetic field generated by the exciting coil 82 cross the conductive heat generating layer 612 of the fixing belt 61 while diffusing in the thickness direction. Therefore, the magnetic path of the alternating magnetic field generated by the exciting coil 82 forms a long loop, and the magnetic flux density in the magnetic path passing through the conductive heating layer 612 of the fixing belt 61 decreases.
Thereby, for example, in the non-sheet passing region Fb where the small size paper P1 is continuously passed and the temperature rises, the eddy current I generated in the conductive heat generating layer 612 of the fixing belt 61 is reduced and the fixing belt 61 is not passed. The amount of heat generation (joule heat W) in the paper region Fb is reduced. As a result, an excessive temperature rise in the non-sheet passing area Fb can be suppressed.

<感温磁性部材の感温磁性に関する説明>
ここで、感温磁性部材64が有する上記の「感温磁性」について説明する。
本実施の形態の感温磁性部材64は、透磁率(例えば、JIS C2531で測定される透磁率)が上記した「透磁率変化開始温度」に到達した温度から減少への変化を開始し、物質が磁性を消失する温度であるキュリー点(「CP:Curie Point」)に到達するまで減少を続けるという磁気特性を有する。このような特定の温度領域において強磁性と非磁性(常磁性)との間で可逆的に変化する感温磁性部材64の磁気特性を「感温磁性」と称している。
<Explanation on temperature-sensitive magnetism of temperature-sensitive magnetic member>
Here, the “temperature-sensitive magnetism” of the temperature-sensitive magnetic member 64 will be described.
The temperature-sensitive magnetic member 64 of the present embodiment starts a change from a temperature at which the magnetic permeability (for example, the magnetic permeability measured by JIS C2531) reaches the above-described “permeability change start temperature” to a decrease, Has a magnetic property that continues to decrease until reaching a Curie Point (“CP”), which is a temperature at which the magnetism disappears. The magnetic characteristic of the temperature-sensitive magnetic member 64 that reversibly changes between ferromagnetism and non-magnetism (paramagnetism) in a specific temperature range is referred to as “temperature-sensitive magnetism”.

本実施の形態の感温磁性部材64は、「透磁率変化開始温度」が各色トナー像を用紙に定着させるために定着ベルト61に設定する温度(定着設定温度)以上であって、定着ベルト61(弾性層613や表面離型層614)の耐熱温度よりも低い温度範囲内に設定された材質によって構成されている。それにより、定着設定温度領域においては、感温磁性部材64は強磁性を呈するので、上記図7に示したように、IHヒータ80(図3参照)により生成された交流磁界の磁力線Hは、定着ベルト61を透過した後、感温磁性部材64の内部を広がり方向(厚さ方向と直交する方向)に沿って通過する磁路を形成する。それによって、定着ベルト61を横切る磁力線Hの磁束密度は高くなり(図7の領域R1,R2,R3)、定着ベルト61に大きな熱が発生する。   In the temperature-sensitive magnetic member 64 of the present embodiment, the “permeability change start temperature” is equal to or higher than the temperature (fixing set temperature) set in the fixing belt 61 for fixing each color toner image on the paper. It is comprised with the material set in the temperature range lower than the heat-resistant temperature of (the elastic layer 613 or the surface release layer 614). Accordingly, since the temperature-sensitive magnetic member 64 exhibits ferromagnetism in the fixing set temperature region, as shown in FIG. 7, the magnetic field lines H of the alternating magnetic field generated by the IH heater 80 (see FIG. 3) are After passing through the fixing belt 61, a magnetic path is formed that passes through the inside of the temperature-sensitive magnetic member 64 along the spreading direction (direction perpendicular to the thickness direction). As a result, the magnetic flux density of the magnetic field lines H crossing the fixing belt 61 is increased (regions R1, R2, and R3 in FIG. 7), and a large amount of heat is generated in the fixing belt 61.

一方、透磁率変化開始温度を超えた温度領域においては、感温磁性部材64の透磁率はキュリー点CPに到達して比透磁率が1になるまで減少する。それにより、定着ベルト61の非通紙領域(例えば、図8の非通紙領域Fb)の温度が定着設定温度領域を超えると、非通紙領域に対向する領域の感温磁性部材64が非磁性(常磁性)に変化するので、定着ベルト61を横切る磁力線Hの磁束密度は温度変化に応じて小さくなり(図9の領域R1,R2,R3)、発熱量が減少する。それにより、定着ベルト61の非通紙領域の昇温が抑制される。   On the other hand, in the temperature range exceeding the magnetic permeability change start temperature, the magnetic permeability of the temperature-sensitive magnetic member 64 reaches the Curie point CP and decreases until the relative permeability becomes 1. As a result, when the temperature of the non-sheet-passing area (for example, the non-sheet-passing area Fb in FIG. 8) of the fixing belt 61 exceeds the fixing set temperature area, the temperature-sensitive magnetic member 64 in the area facing the non-sheet-passing area is not. Since it changes to magnetism (paramagnetism), the magnetic flux density of the magnetic field lines H crossing the fixing belt 61 decreases according to the temperature change (regions R1, R2, R3 in FIG. 9), and the amount of heat generation decreases. Thereby, the temperature rise in the non-sheet passing region of the fixing belt 61 is suppressed.

この場合、定着ベルト61の非通紙領域での昇温を効果的に抑制するには、透磁率変化開始温度を超えた温度領域において、感温磁性部材64の透磁率がキュリー点CPに向けて急峻に減少する特性を有することが好ましい。すなわち、感温磁性部材64の磁気特性が強磁性と非磁性(常磁性)との間で遷移する温度領域(「遷移領域」)がある程度の狭い温度範囲内、例えば20℃以内に設定されることにより、感温磁性部材64による非通紙領域での昇温抑制機能が高められる。   In this case, in order to effectively suppress the temperature rise in the non-sheet passing region of the fixing belt 61, the magnetic permeability of the temperature-sensitive magnetic member 64 is directed toward the Curie point CP in the temperature region exceeding the magnetic permeability change start temperature. Therefore, it is preferable to have a characteristic of sharply decreasing. That is, the temperature region (“transition region”) in which the magnetic characteristics of the temperature-sensitive magnetic member 64 transition between ferromagnetic and non-magnetic (paramagnetic) is set within a certain narrow temperature range, for example, within 20 ° C. Thereby, the temperature rise suppression function in the non-sheet passing region by the temperature-sensitive magnetic member 64 is enhanced.

ここで、図10は、本実施の形態の感温磁性部材64の比透磁率μに関する温度特性の一例を示した図である。図10に示したように、本実施の形態の感温磁性部材64の比透磁率μは、透磁率変化開始温度TP1までの温度領域においては、温度Tの上昇に伴って一次関数F(T)に従って漸増する傾向を示す。ところが、感温磁性部材64の温度Tが透磁率変化開始温度TP1を超えると比透磁率μは減少を開始し、その後は、温度Tの上昇に伴って一次関数F(T)に従って急峻に減少する。そして、感温磁性部材64の温度Tがキュリー点CP(TP4)に到達することで、感温磁性部材64の比透磁率μは1(感温磁性部材64の透磁率μ=μ:μ=真空の透磁率)となる。 Here, FIG. 10 is a diagram showing an example of the temperature characteristic regarding the relative permeability μ r of the temperature-sensitive magnetic member 64 of the present embodiment. As shown in FIG. 10, the relative permeability μ r of the temperature-sensitive magnetic member 64 of the present embodiment is a linear function F 1 as the temperature T rises in the temperature range up to the permeability change start temperature TP1. The tendency which increases gradually according to (T) is shown. However, the relative magnetic permeability mu r starts decreasing when the temperature T of the temperature-sensitive magnetic member 64 is greater than the permeability change start temperature TP1, then steeply according to the primary function F 2 with increasing temperature T (T) To decrease. Then, when the temperature T of the temperature-sensitive magnetic member 64 reaches the Curie point CP (TP4), the relative permeability mu r of the temperature-sensitive magnetic member 64 1 (magnetic permeability of the temperature-sensitive magnetic member 64 mu = mu 0: μ 0 = vacuum permeability).

本実施の形態では、このような感温磁性部材64の比透磁率μの温度特性における強磁性と非磁性との間の遷移領域を定量的に評価する指標として、指標温度TP2と指標温度TP3とを定義することとする。図10に示したように、指標温度TP2は、遷移領域の開始温度の一例であって、透磁率変化開始温度TP1までの温度範囲における温度Tと比透磁率μとの関係を表す第1の関数の一例である一次関数F(T)と、透磁率変化開始温度TP1を超えた温度範囲における温度Tと比透磁率μとの関係を表す第2の関数の一例である一次関数F(T)との交点の温度である。
また、指標温度TP3は、遷移領域の終了温度の一例であって、一次関数F(T)と比透磁率μ=1との交点の温度である。
なお、図10に示したように、透磁率変化開始温度TP1を超えた温度範囲においては、比透磁率μが多次関数で減少する領域が存在するが、第2の関数の一例である一次関数F(T)は、透磁率変化開始温度TP1を超えた温度範囲において一次関数で減少する領域での温度Tと比透磁率μとの関係を表すものである。
In this embodiment, as quantitatively evaluating index transition region between the ferromagnetic and non-magnetic in the temperature characteristic of the relative permeability mu r of such temperature-sensitive magnetic member 64, the index temperature TP2 and index temperature Let us define TP3. As shown in FIG. 10, the index temperature TP2 is an example of a starting temperature of the transition region, first representing the relationship between the temperature T and relative permeability mu r in a temperature range up to the permeability change start temperature TP1 Is a linear function F 1 (T) that is an example of the function of, and a linear function that is an example of a second function that represents the relationship between the temperature T in the temperature range exceeding the permeability change start temperature TP1 and the relative permeability μ r. It is the temperature of the intersection with F 2 (T).
The index temperature TP3 is an example of the end temperature of the transition region, and is the temperature at the intersection of the linear function F 2 (T) and the relative permeability μ r = 1.
Incidentally, as shown in FIG. 10, in a temperature range exceeding the permeability change start temperature TP1, although area relative permeability mu r decreases with multidimensional function is present, which is an example of a second function The linear function F 2 (T) represents the relationship between the temperature T and the relative permeability μ r in the region where the linear function decreases in the temperature range exceeding the permeability change start temperature TP1.

指標温度TP2は、感温磁性部材64の磁気特性が強磁性から非磁性(常磁性)への変化を開始する指標となる温度であって、感温磁性部材64が実質的に定着ベルト61の非通紙領域の昇温を抑制するという機能を発現し始める温度(機能発現温度)として捉えることができる。すなわち、感温磁性部材64の温度が透磁率変化開始温度TP1を超えても、一次関数F(T)で減少する温度領域までは、比透磁率μの減少量は大きくはない。そのため、この透磁率変化開始温度TP1以上であって一次関数F(T)で減少する温度領域以下の温度領域では、感温磁性部材64は強磁性として機能している。そのため、指標温度TP2は、感温磁性部材64の機能が実質的に発現し始める機能発現温度として捉えることができる。
一方、温度Tと比透磁率μとが一次関数F(T)で減少する温度領域の最も高温の領域部分では感温磁性部材64の比透磁率μは殆ど1となる。そのため、指標温度TP3は、実質的なキュリー点CPとして捉えることができる。
そのため、指標温度TP3と指標温度TP2との間の温度領域は、感温磁性部材64の磁気特性が強磁性と非磁性(常磁性)との間で遷移する「遷移領域」として定義付けることができる。
The index temperature TP2 is a temperature at which the magnetic characteristic of the temperature-sensitive magnetic member 64 starts to change from ferromagnetic to non-magnetic (paramagnetic), and the temperature-sensitive magnetic member 64 is substantially equal to that of the fixing belt 61. It can be understood as a temperature at which the function of suppressing the temperature rise in the non-paper passing region starts to appear (function expression temperature). That is, the temperature of the temperature-sensitive magnetic member 64 be greater than the permeability change start temperature TP1, to a temperature region decreases as a linear function F 2 (T), the decrease in the relative permeability mu r is not large. Therefore, the temperature-sensitive magnetic member 64 functions as a ferromagnetism in a temperature range that is equal to or higher than the magnetic permeability change start temperature TP1 and is equal to or lower than a temperature range that decreases with the linear function F 2 (T). Therefore, the index temperature TP2 can be regarded as a function expression temperature at which the function of the temperature-sensitive magnetic member 64 starts to be substantially realized.
On the other hand, the relative permeability mu r of temperature T and relative permeability mu r and is a linear function F 2 the temperature-sensitive magnetic member 64 in the hottest region part of the temperature range to be reduced by (T) is almost 1. Therefore, the index temperature TP3 can be regarded as a substantial Curie point CP.
Therefore, the temperature region between the index temperature TP3 and the index temperature TP2 can be defined as a “transition region” in which the magnetic characteristics of the temperature-sensitive magnetic member 64 transition between ferromagnetic and nonmagnetic (paramagnetic). .

そして、本実施の形態の感温磁性部材64では、磁気特性の遷移領域である指標温度TP3と指標温度TP2との間の温度幅(指標温度TP3と指標温度TP2との差分温度)を20°以内となるように構成して、透磁率変化開始温度を超える温度領域において透磁率(比透磁率μ)が急峻に減少する磁性特性を実現している。例えば、図10に例示した感温磁性部材64では、指標温度TP2が例えば205℃、指標温度TP3が例えば216℃となるように構成し、指標温度TP3と指標温度TP2との温度幅を20°以内である11°に設定している。
このように、磁気特性の遷移領域(指標温度TP3と指標温度TP2との温度幅)を20°以内に構成することにより、定着ベルト61の非通紙領域の温度が指標温度TP2から20°(図10の例では11°)を超えて変化すれば、非通紙領域での感温磁性部材64の磁気特性は非磁性(常磁性)に変化する。それにより、定着設定温度を例えば160℃〜180℃程度に高く設定しても、例えば220℃程度の耐熱温度の定着ベルト61において損傷が発生することが抑制される。
In the temperature-sensitive magnetic member 64 of the present embodiment, the temperature range between the index temperature TP3 and the index temperature TP2 (the difference temperature between the index temperature TP3 and the index temperature TP2) that is the transition region of the magnetic characteristics is 20 °. The magnetic characteristics in which the permeability (relative permeability μ r ) sharply decreases in the temperature range exceeding the permeability change start temperature are realized. For example, the temperature-sensitive magnetic member 64 illustrated in FIG. 10 is configured such that the index temperature TP2 is, for example, 205 ° C. and the index temperature TP3 is, for example, 216 ° C., and the temperature width between the index temperature TP3 and the index temperature TP2 is 20 °. It is set to 11 ° which is within.
As described above, by configuring the transition region of the magnetic characteristics (temperature range between the index temperature TP3 and the index temperature TP2) within 20 °, the temperature of the non-sheet passing region of the fixing belt 61 is 20 ° (from the index temperature TP2). If the angle changes beyond 11 ° in the example of FIG. 10, the magnetic characteristics of the temperature-sensitive magnetic member 64 in the non-sheet-passing region change to non-magnetic (paramagnetic). As a result, even if the fixing set temperature is set to a high value of, for example, about 160 ° C. to 180 ° C., the occurrence of damage in the fixing belt 61 having a heat resistant temperature of about 220 ° C. is suppressed.

すなわち、感温磁性部材64の機能を考慮すれば、指標温度TP3と指標温度TP2との温度幅(磁気特性の遷移領域)は0となることが理想的ではある。しかし、実際には、感温磁性部材64を構成する材質には、磁気特性が強磁性と非磁性(常磁性)との間で遷移するある程度の温度幅を持った遷移領域が存在する。この遷移領域の温度幅が大きいと、定着ベルト61が定着設定温度を超えて昇温しても、感温磁性部材64の磁気特性は非磁性(常磁性)に向けて緩慢に変化する。そうすると、定着設定温度を超えて昇温した非通紙領域の定着ベルト61の温度が定着設定温度に向けて低下するまでの時間差が大きくなり、非通紙領域における昇温抑制が有効に作用し難い。また、例えば用紙サイズを大判に変更した場合に、新たに非通紙領域から通紙領域となった領域においては定着ベルト61の温度が定着設定温度まで上昇する速度も低下するので、定着不良が生じ易くなる。
そこで、強磁性と非磁性との間の遷移領域の温度幅は0であることが理想的ではあるが、定着ベルト61の非通紙領域の昇温を効果的に抑制できる許容範囲として、感温磁性部材64における磁気特性の遷移領域(指標温度TP3と指標温度TP2との温度幅)を20°以内に設定している。
In other words, considering the function of the temperature-sensitive magnetic member 64, it is ideal that the temperature width (magnetic property transition region) between the index temperature TP3 and the index temperature TP2 is zero. However, in practice, the material constituting the temperature-sensitive magnetic member 64 has a transition region having a certain temperature range in which the magnetic characteristics transition between ferromagnetic and nonmagnetic (paramagnetic). If the temperature range of the transition region is large, even if the fixing belt 61 exceeds the fixing set temperature, the magnetic characteristics of the temperature-sensitive magnetic member 64 change slowly toward non-magnetism (paramagnetism). As a result, the time difference until the temperature of the fixing belt 61 in the non-sheet-passing area, where the temperature has risen above the fixing set temperature, decreases toward the fixing set temperature increases, and the temperature rise suppression in the non-sheet-passing area effectively works. hard. Also, for example, when the paper size is changed to a large size, the speed at which the temperature of the fixing belt 61 rises to the fixing set temperature also decreases in the area that has newly changed from the non-sheet passing area to the sheet passing area. It tends to occur.
Therefore, although it is ideal that the temperature range of the transition region between ferromagnetic and non-magnetic is 0, the permissible range in which the temperature rise in the non-sheet passing region of the fixing belt 61 can be effectively suppressed is considered. The transition region (temperature range between the index temperature TP3 and the index temperature TP2) of the magnetic characteristics in the warm magnetic member 64 is set within 20 °.

<感温磁性部材の昇温を抑制する構成の説明>
次に、感温磁性部材64自体の昇温を抑制する構成について説明する。
感温磁性部材64が定着ベルト61の非通紙領域(例えば、図8の非通紙領域Fb)での過剰な温度上昇を抑える機能を果たすには、感温磁性部材64の長手方向の領域毎の温度がそれに対向する定着ベルト61の長手方向の領域毎の温度に対応して変化し、上記した定着ベルト61の温度を検知する検出部としての機能を果たす必要がある。
そのために、感温磁性部材64自身に関しては、磁力線Hによって誘導加熱され難い構成が採用される。すなわち、定着ベルト61の温度が透磁率変化開始温度以下であり、感温磁性部材64が強磁性を呈する状態であっても、IHヒータ80からの磁力線Hの中には、感温磁性部材64を厚さ方向に横切る磁力線Hは存在する。それにより、感温磁性部材64内部には弱い渦電流Iが発生しており、感温磁性部材64自身においても若干の発熱が生じる。そのため、例えば、大量の画像形成が連続して行われた場合等には、感温磁性部材64に自己発熱した熱が蓄積され、通紙領域(図8参照)でも感温磁性部材64の温度が上昇傾向を呈する。このように渦電流損による自己発熱が大きいと感温磁性部材64の温度が上昇して、意図せず透磁率変化開始温度まで到達してしまい、通紙領域と非通紙領域の磁気特性に差が殆どなくなって昇温抑制効果が充分得られないことがある。そこで、感温磁性部材64の温度と定着ベルト61の温度との対応関係が維持され、感温磁性部材64が定着ベルト61の温度を検知する検知部として精度良く機能するために、感温磁性部材64自身に発生するジュール熱Wを抑える必要がある。
<Description of the configuration for suppressing the temperature rise of the temperature-sensitive magnetic member>
Next, a configuration for suppressing the temperature rise of the temperature-sensitive magnetic member 64 itself will be described.
In order for the temperature-sensitive magnetic member 64 to perform the function of suppressing an excessive temperature rise in the non-sheet-passing region (for example, the non-sheet-passing region Fb in FIG. 8) of the fixing belt 61, the longitudinal region of the temperature-sensitive magnetic member 64 is used. Each temperature changes corresponding to the temperature of each region in the longitudinal direction of the fixing belt 61 opposed to the temperature, and it is necessary to function as a detection unit that detects the temperature of the fixing belt 61 described above.
Therefore, regarding the temperature-sensitive magnetic member 64 itself, a configuration that is difficult to be induction-heated by the magnetic field lines H is adopted. That is, even if the temperature of the fixing belt 61 is equal to or lower than the permeability change start temperature and the temperature-sensitive magnetic member 64 exhibits ferromagnetism, the temperature-sensitive magnetic member 64 is included in the magnetic force lines H from the IH heater 80. There is a magnetic field line H that crosses in the thickness direction. As a result, a weak eddy current I is generated inside the temperature-sensitive magnetic member 64, and a slight amount of heat is generated in the temperature-sensitive magnetic member 64 itself. For this reason, for example, when a large amount of image formation is continuously performed, the self-heat generated heat is accumulated in the temperature-sensitive magnetic member 64, and the temperature of the temperature-sensitive magnetic member 64 is also in the paper passing area (see FIG. 8). Shows an upward trend. Thus, when the self-heating due to eddy current loss is large, the temperature of the temperature-sensitive magnetic member 64 rises and unintentionally reaches the temperature at which the permeability change starts, and the magnetic characteristics of the paper passing area and the non-paper passing area are improved. The difference is almost eliminated and the temperature rise suppression effect may not be obtained sufficiently. Therefore, the correspondence between the temperature of the temperature-sensitive magnetic member 64 and the temperature of the fixing belt 61 is maintained, and the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. It is necessary to suppress the Joule heat W generated in the member 64 itself.

そこで、感温磁性部材64での渦電流損やヒステリシス損を小さくするために、まず第1として、感温磁性部材64は、磁力線Hによって誘導加熱され難い物性(固有抵抗値および透磁率)を持った材質が選定される。
また、第2として、感温磁性部材64の厚さは、少なくとも透磁率変化開始温度以下の温度範囲にて磁力線Hが感温磁性部材64の厚さ方向に横切り難いように、強磁性を呈する状態での表皮深さδよりも厚く(大きく)形成される。
Therefore, in order to reduce the eddy current loss and hysteresis loss in the temperature-sensitive magnetic member 64, first, the temperature-sensitive magnetic member 64 has physical properties (specific resistance value and magnetic permeability) that are difficult to be induction-heated by the lines of magnetic force H. Selected material is selected.
Second, the thickness of the temperature-sensitive magnetic member 64 exhibits ferromagnetism so that the magnetic field lines H are difficult to cross in the thickness direction of the temperature-sensitive magnetic member 64 at least in the temperature range below the permeability change start temperature. It is formed thicker (larger) than the skin depth δ in the state.

さらに、第3として、感温磁性部材64には、磁力線Hによって発生する渦電流Iの流れを分断するように、定着ベルト61の移動方向に直交する方向に対して90°で交差(直交)する角度方向に向けて、切り欠き部の一例としての複数のスリット64s(後段図11参照)が形成される。誘導加熱され難いように感温磁性部材64の材質や厚さを選定しても、感温磁性部材64内部に発生する渦電流Iを0とすることは困難である。そこで、感温磁性部材64に発生した渦電流Iの流れを複数のスリット64sにより分断することで、渦電流Iを減少させて、感温磁性部材64に発生するもジュール熱Wを低く抑えている。   Third, the temperature-sensitive magnetic member 64 intersects (orthogonally) at 90 ° with respect to a direction orthogonal to the moving direction of the fixing belt 61 so as to divide the flow of the eddy current I generated by the magnetic field lines H. A plurality of slits 64s (see FIG. 11 at a later stage) are formed as an example of the cutout portion in the angle direction. Even if the material and thickness of the temperature-sensitive magnetic member 64 are selected so that induction heating is difficult, it is difficult to set the eddy current I generated in the temperature-sensitive magnetic member 64 to zero. Therefore, by dividing the flow of the eddy current I generated in the temperature-sensitive magnetic member 64 by the plurality of slits 64s, the eddy current I is reduced and the Joule heat W generated in the temperature-sensitive magnetic member 64 is kept low. Yes.

図11は、感温磁性部材64に形成されるスリット64sを示した図である。図11(a)は、感温磁性部材64がホルダ65に設置された状態の側面図であり、(b)は、(a)の上方(z方向)から見た平面図である。図11に示したように、感温磁性部材64では、磁力線Hによって発生する渦電流Iの流れる方向(定着ベルト61の移動方向(x方向)に直交する方向(y方向))に直交して複数のスリット64sが形成される。そのため、スリット64sが無い場合には感温磁性部材64の長手方向の全体に亘って大きな渦となって流れる渦電流I(図11(b)破線)が、スリット64sにより分断される。それにより、スリット64sを形成した場合には、感温磁性部材64内を流れる渦電流I(図11(b)実線)は、スリット64sとスリット64sとで分断された各領域(「分断領域」)内での小さな渦となり、全体としての渦電流Iの電流量は低減される。その結果、感温磁性部材64での発熱量(ジュール熱W)は減少し、発熱し難い構成が実現される。このように、複数のスリット64sは、感温磁性部材64に生じる渦電流Iが分断領域毎に分断されることで自己発熱量が低減することを利用して、感温磁性部材64の自己発熱量を調整する発熱調整部として機能する。   FIG. 11 is a view showing slits 64 s formed in the temperature-sensitive magnetic member 64. FIG. 11A is a side view showing a state in which the temperature-sensitive magnetic member 64 is installed in the holder 65, and FIG. 11B is a plan view seen from above (a direction). As shown in FIG. 11, the temperature-sensitive magnetic member 64 is orthogonal to the direction in which the eddy current I generated by the magnetic field lines H flows (direction perpendicular to the moving direction (x direction) of the fixing belt 61 (y direction)). A plurality of slits 64s are formed. Therefore, when there is no slit 64s, the eddy current I (broken line in FIG. 11B) that flows as a large eddy over the entire length of the temperature-sensitive magnetic member 64 is divided by the slit 64s. Accordingly, when the slit 64s is formed, the eddy current I flowing through the temperature-sensitive magnetic member 64 (solid line in FIG. 11B) is divided into the respective regions ("divided regions") divided by the slits 64s and 64s. ), And the amount of eddy current I as a whole is reduced. As a result, the amount of heat generated by the temperature-sensitive magnetic member 64 (Joule heat W) is reduced, and a configuration that hardly generates heat is realized. As described above, the plurality of slits 64 s utilize the fact that the self-heating amount is reduced by dividing the eddy current I generated in the temperature-sensitive magnetic member 64 for each divided region, and thus the self-heating of the temperature-sensitive magnetic member 64. It functions as a heat generation adjustment unit that adjusts the amount.

ところで、感温磁性部材64の分断領域毎に生じる渦電流Iにより発生する自己発熱量は、感温磁性部材64に形成された相互に隣接するスリット64sの間隔(mm)に対応して変化する。
ここで図12は、感温磁性部材64に形成された相互に隣接するスリット64sの間隔と、通紙領域での感温磁性部材64の温度との関係を示した図である。図12では、上記図10に示した感温磁性を有する感温磁性部材64を用い、定着ベルト61での定着設定温度を160℃に設定した場合について示している。
図12に示したように、通紙領域での感温磁性部材64の温度Tは、スリット64sの間隔sに対して一次関数G(s)で変化する特性を有する。そして、相互に隣接するスリット64sの間隔sが13mm以上では自己発熱量が多くなり、通紙領域での感温磁性部材64の温度Tが指標温度TP2である205℃を超える。それにより、上記図10に示したように、通紙領域においても比透磁率μが減少するため、通紙領域での定着ベルト61の温度が非通紙領域と同様に低下して、定着設定温度が維持されない。そのために、通紙領域においても充分な定着が行われ難くなる。
By the way, the amount of self-heating generated by the eddy current I generated in each divided region of the temperature-sensitive magnetic member 64 changes corresponding to the interval (mm) between the slits 64s adjacent to each other formed in the temperature-sensitive magnetic member 64. .
Here, FIG. 12 is a diagram showing the relationship between the interval between adjacent slits 64 s formed in the temperature-sensitive magnetic member 64 and the temperature of the temperature-sensitive magnetic member 64 in the paper passing region. FIG. 12 shows a case where the temperature setting magnetic member 64 having the temperature sensitivity shown in FIG. 10 is used and the fixing set temperature of the fixing belt 61 is set to 160 ° C.
As shown in FIG. 12, the temperature T of the temperature-sensitive magnetic member 64 in the sheet passing region has a characteristic that changes with a linear function G (s) with respect to the interval s between the slits 64s. When the interval s between adjacent slits 64s is 13 mm or more, the amount of self-heating increases, and the temperature T of the temperature-sensitive magnetic member 64 in the sheet passing region exceeds 205 ° C., which is the index temperature TP2. Thereby, as shown in FIG. 10, since the relative permeability mu r is reduced even in a sheet passing area, the temperature of the fixing belt 61 in the paper passing area is reduced similarly to the non-paper passing area, fixing The set temperature is not maintained. Therefore, it is difficult to perform sufficient fixing even in the paper passing area.

一方、スリット64sの間隔sが9.75mm以下の領域では自己発熱量が低下するため、通紙領域での感温磁性部材64の温度Tは、透磁率変化開始温度TP1近傍である200℃以下となる。すなわち、スリット64sの間隔sを9.75mm以下に設定することにより、通紙領域での感温磁性部材64の温度Tが透磁率変化開始温度TP1以下となるような自己発熱量に抑えられる。その結果、定着ベルト61の温度は定着設定温度の近傍領域に維持され、通紙領域において良好な定着が行われる。
この場合に、定着ベルト61の温度には、ばらつきやウォームアップ時のオーバーシュート(定着ベルト61の温度が定着設定温度の上限を一時的に超える現象)等が生じる。そのことを考慮すれば、通紙領域での感温磁性部材64の温度Tに対して、透磁率変化開始温度TP1からさらに5°程度の安全値(所謂マージン)を取ることにが、定着性能を安定化させるためには好ましい。
On the other hand, since the amount of self-heating is reduced in the region where the interval s of the slits 64s is 9.75 mm or less, the temperature T of the temperature-sensitive magnetic member 64 in the paper passing region is 200 ° C. or less near the permeability change start temperature TP1. It becomes. That is, by setting the interval s between the slits 64 s to 9.75 mm or less, the amount of self-heating is suppressed so that the temperature T of the temperature-sensitive magnetic member 64 in the paper passing region is equal to or lower than the permeability change start temperature TP1. As a result, the temperature of the fixing belt 61 is maintained in a region near the fixing set temperature, and good fixing is performed in the paper passing region.
In this case, variations in the temperature of the fixing belt 61, overshooting during warm-up (a phenomenon in which the temperature of the fixing belt 61 temporarily exceeds the upper limit of the fixing set temperature), and the like occur. In view of this, it is possible to obtain a safety value (so-called margin) of about 5 ° from the magnetic permeability change start temperature TP1 with respect to the temperature T of the temperature-sensitive magnetic member 64 in the sheet passing region. It is preferable for stabilizing.

そこで、本実施の形態では、感温磁性部材64の温度Tが感温磁性部材64の磁気特性における遷移領域の開始温度となる指標温度TP2(205℃)よりも10°以上低くなるように、相互に隣接するスリット64sの間隔sを設定している。すなわち、図12に示したように、スリット64sの間隔sと通紙領域での感温磁性部材64の温度Tとの関係を示す一次関数G(s)と、指標温度TP2(205℃)よりも10°低い195℃と交差するスリット64sの間隔である6.8mm以下に設定している。
それにより、感温磁性部材64の温度Tは、磁気特性が急激に変化する遷移領域まで10°以上の余裕を持った範囲内に抑えられるので、通紙領域においては定着ベルト61の温度が定着設定温度の近傍領域に維持される。一方、非通紙領域においても自己発熱に起因する温度上昇が抑えられるので、感温磁性部材64は定着ベルト61の温度を検知する検知部として精度良く機能する。そのため、定着ベルト61の非通紙領域が定着設定温度を超えて昇温した場合には、定着ベルト61の温度上昇は抑制される。
Therefore, in the present embodiment, the temperature T of the temperature-sensitive magnetic member 64 is 10 ° or more lower than the index temperature TP2 (205 ° C.) that is the start temperature of the transition region in the magnetic characteristics of the temperature-sensitive magnetic member 64. An interval s between adjacent slits 64s is set. That is, as shown in FIG. 12, from the linear function G (s) indicating the relationship between the interval s between the slits 64s and the temperature T of the temperature-sensitive magnetic member 64 in the paper passing region, and the index temperature TP2 (205 ° C.). Is also set to 6.8 mm or less, which is the interval between the slits 64s intersecting 195 ° C., which is 10 ° lower.
As a result, the temperature T of the temperature-sensitive magnetic member 64 is suppressed within a range having a margin of 10 ° or more until the transition region where the magnetic characteristics change suddenly, so that the temperature of the fixing belt 61 is fixed in the paper passing region. It is maintained in the vicinity of the set temperature. On the other hand, since the temperature rise due to self-heating is suppressed even in the non-sheet passing region, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. Therefore, when the temperature of the non-sheet passing area of the fixing belt 61 exceeds the preset fixing temperature, the temperature increase of the fixing belt 61 is suppressed.

その際に、スリット64sの間隔sを6.8mm以下に設定し、感温磁性部材64の温度Tを遷移領域の開始温度(指標温度TP2)よりも10°以上低くなるように調整することは、感温磁性部材64の磁気特性の遷移領域(指標温度TP3と指標温度TP2との温度幅)を20°以内に設定し、非通紙領域における定着ベルト61の昇温抑制を高めた構成において特に効果的である。   At that time, the interval s between the slits 64s is set to 6.8 mm or less, and the temperature T of the temperature-sensitive magnetic member 64 is adjusted to be 10 ° or more lower than the start temperature (index temperature TP2) of the transition region. In the configuration in which the transition region (temperature range between the index temperature TP3 and the index temperature TP2) of the temperature-sensitive magnetic member 64 is set within 20 °, and the temperature rise suppression of the fixing belt 61 in the non-sheet passing region is enhanced. It is particularly effective.

すなわち、磁気特性の遷移領域を20°以内に設定することにより、非通紙領域においては、感温磁性部材64の温度Tが遷移領域に到達すると、その後に定着ベルト61の温度が20°以内の範囲内で上昇するだけで、定着ベルト61の温度は急速に低下する。そのため、非通紙領域における定着ベルト61の昇温は感度良く抑制される。ところがその反面、そのような定着ベルト61の急速な温度低下は、通紙領域においても同様に発現し易くなる。例えば、感温磁性部材64の自己発熱量が大きい場合には、感温磁性部材64の温度Tが定着ベルト61の温度よりも高くなり、通紙領域における定着ベルト61の温度が感温磁性部材64の遷移領域に到達しないにも拘わらず、感温磁性部材64の温度Tが遷移領域に到達する場合が発生する。そのような場合には、定着ベルト61の温度変化や感温磁性部材64自身の自己発熱等に起因する20°以内の比較的小さな温度変動が感温磁性部材64に生じるだけで、通紙領域においても定着ベルト61の温度が急速に低下する現象が発生する。それにより、非通紙領域における定着ベルト61の昇温抑制を高めた構成においては、感温磁性部材64の自己発熱量を管理する必要性が高い。   That is, by setting the transition region of the magnetic characteristics within 20 °, in the non-sheet passing region, when the temperature T of the temperature-sensitive magnetic member 64 reaches the transition region, the temperature of the fixing belt 61 is thereafter within 20 °. The temperature of the fixing belt 61 decreases rapidly only by increasing within the range. Therefore, the temperature rise of the fixing belt 61 in the non-sheet passing region is suppressed with high sensitivity. However, on the other hand, such a rapid temperature drop of the fixing belt 61 is likely to occur in the paper passing region as well. For example, when the self-heating amount of the temperature-sensitive magnetic member 64 is large, the temperature T of the temperature-sensitive magnetic member 64 becomes higher than the temperature of the fixing belt 61, and the temperature of the fixing belt 61 in the sheet passing region is the temperature-sensitive magnetic member. The temperature T of the temperature-sensitive magnetic member 64 reaches the transition region even though it does not reach the transition region of 64. In such a case, only a relatively small temperature fluctuation within 20 ° caused by a temperature change of the fixing belt 61 or self-heating of the temperature-sensitive magnetic member 64 itself occurs in the temperature-sensitive magnetic member 64, so In this case, the temperature of the fixing belt 61 rapidly decreases. Thereby, in the configuration in which the temperature rise suppression of the fixing belt 61 in the non-sheet passing region is enhanced, it is highly necessary to manage the self-heat generation amount of the temperature-sensitive magnetic member 64.

それに対して、本実施の形態では、スリット64sの間隔sを6.8mm以下に設定して感温磁性部材64の自己発熱量を低減することにより、感温磁性部材64の磁気特性が20°以内の遷移領域を有する場合であっても、感温磁性部材64の温度は定着ベルト61の温度に近い温度に維持される。すなわち、感温磁性部材64の磁気特性が20°以内の遷移領域を有する構成においても、感温磁性部材64は定着ベルト61の温度を検知する検知部として精度良く機能し、通紙領域での感温磁性部材64の温度Tを定着ベルト61に対応して定着設定温度の近傍領域に維持する。それによって、非通紙領域における定着ベルト61の昇温抑制を高めた構成においても、通紙領域においては感温磁性部材64の温度が定着ベルト61の温度とは離れて遷移領域に到達するまで上昇することが抑制され、定着性能が安定的に維持される。   On the other hand, in the present embodiment, the interval s between the slits 64s is set to 6.8 mm or less to reduce the self-heating amount of the temperature-sensitive magnetic member 64, whereby the magnetic characteristic of the temperature-sensitive magnetic member 64 is 20 °. The temperature of the temperature-sensitive magnetic member 64 is maintained at a temperature close to the temperature of the fixing belt 61 even if the transition region is within the range. That is, even in the configuration in which the magnetic characteristics of the temperature-sensitive magnetic member 64 have a transition region of 20 ° or less, the temperature-sensitive magnetic member 64 functions as a detection unit that detects the temperature of the fixing belt 61 with high accuracy. The temperature T of the temperature-sensitive magnetic member 64 is maintained in the vicinity of the fixing set temperature corresponding to the fixing belt 61. As a result, even in the configuration in which the temperature rise suppression of the fixing belt 61 in the non-sheet passing region is increased, the temperature of the temperature-sensitive magnetic member 64 is separated from the temperature of the fixing belt 61 and reaches the transition region in the sheet passing region. The rise is suppressed, and the fixing performance is stably maintained.

ところで、スリット64sの間隔sを小さくしていくと、感温磁性部材64の剛性が低下し、感温磁性部材64と定着ベルト61との間隙を一定に維持することが困難となる傾向が生じる。そのため、スリット64sの間隔sには、感温磁性部材64の剛性に関する観点において下限値が存在する。そして、本発明者の実験では、感温磁性部材64の剛性の観点からは、スリット64sの間隔sを3.5mm以上に設定することにより、感温磁性部材64と定着ベルト61との間隙を安定的に維持できる剛性を確保できることが確認されている。そこで、本実施の形態では、スリット64sの間隔sを3.5mm以上に設定して、定着ベルト61との間隙を安定的に維持する剛性を確保している。   By the way, when the interval s between the slits 64s is reduced, the rigidity of the temperature-sensitive magnetic member 64 is lowered, and it tends to be difficult to keep the gap between the temperature-sensitive magnetic member 64 and the fixing belt 61 constant. . Therefore, a lower limit exists in the interval s between the slits 64 s in terms of the rigidity of the temperature-sensitive magnetic member 64. In the experiments of the present inventor, from the viewpoint of the rigidity of the temperature-sensitive magnetic member 64, the gap between the temperature-sensitive magnetic member 64 and the fixing belt 61 is set by setting the interval s of the slits 64s to 3.5 mm or more. It has been confirmed that the rigidity that can be stably maintained can be secured. Therefore, in this embodiment, the interval s between the slits 64 s is set to 3.5 mm or more to ensure the rigidity for stably maintaining the gap with the fixing belt 61.

なお、上記図11に例示した感温磁性部材64では、スリット64sを渦電流Iの流れる方向(定着ベルト61の移動方向に直交するy方向)に対して直交(x方向)させて形成したが、渦電流Iの流れを分断する構成であれば、例えば渦電流Iの流れる方向に対して90°以外の角度方向(y方向との交差角)に交差したスリットを形成してもよい。また、図11に示したようなスリット64sを感温磁性部材64の幅方向の全域に亘って形成する構成の他に、感温磁性部材64の幅方向の一部領域に形成してもよい。また、感温磁性部材64に発生する熱量に応じて、スリットの数、位置、交差角等を設定してもよい。   In the temperature-sensitive magnetic member 64 illustrated in FIG. 11, the slit 64s is formed to be orthogonal (x direction) to the direction in which the eddy current I flows (y direction orthogonal to the moving direction of the fixing belt 61). As long as the flow of the eddy current I is divided, for example, a slit that intersects the direction of the eddy current I in an angular direction other than 90 ° (crossing angle with the y direction) may be formed. In addition to the configuration in which the slits 64 s as shown in FIG. 11 are formed over the entire region in the width direction of the temperature-sensitive magnetic member 64, the slit 64 s may be formed in a partial region in the width direction of the temperature-sensitive magnetic member 64. . Further, the number of slits, the position, the crossing angle, and the like may be set according to the amount of heat generated in the temperature-sensitive magnetic member 64.

以上説明したように、本実施の形態の画像形成装置1に備えられる定着ユニット60では、定着ベルト61の内周面に近接させて感温磁性部材64を配置している。そして、感温磁性部材64には、感温磁性部材64に生じる渦電流Iを分断し自己発熱を低減するように調整する発熱調整部として、相互の間隔が3.5mm以上6.8mm以下に設定されたスリット64sが形成されている。それにより、定着ベルト61の温度は定着設定温度近傍に維持され、定着の安定性が高められる。また、定着ベルト61の非通紙領域の昇温が抑制される。   As described above, in the fixing unit 60 provided in the image forming apparatus 1 of the present embodiment, the temperature-sensitive magnetic member 64 is disposed in the vicinity of the inner peripheral surface of the fixing belt 61. The temperature-sensitive magnetic member 64 has a mutual interval of 3.5 mm or more and 6.8 mm or less as a heat generation adjustment unit that adjusts the eddy current I generated in the temperature-sensitive magnetic member 64 to divide and reduce self-heating. A set slit 64s is formed. As a result, the temperature of the fixing belt 61 is maintained near the fixing set temperature, and the stability of fixing is improved. Further, the temperature rise in the non-sheet passing area of the fixing belt 61 is suppressed.

1…画像形成装置、60…定着ユニット、61…定着ベルト、62…加圧ロール、64…感温磁性部材、64s…スリット、66…誘導部材、80…IHヒータ、82…励磁コイル、84…磁心、611…基材層、612…導電発熱層 DESCRIPTION OF SYMBOLS 1 ... Image forming apparatus, 60 ... Fixing unit, 61 ... Fixing belt, 62 ... Pressure roll, 64 ... Temperature-sensitive magnetic member, 64s ... Slit, 66 ... Induction member, 80 ... IH heater, 82 ... Excitation coil, 84 ... Magnetic core, 611 ... base material layer, 612 ... conductive heating layer

Claims (9)

導電層を有し、当該導電層が電磁誘導加熱されることで記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、前記記録材が通過する領域での温度が磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域よりも低い温度範囲に維持されるように自己発熱量を調整する発熱調整部が形成され、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材と
を備えたことを特徴する定着装置。
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
The temperature in the region through which the recording material passes is arranged so as to face the magnetic field generating member with the fixing member interposed therebetween, than the transition region in which the magnetic characteristics transition between ferromagnetism and paramagnetism depending on the temperature. A heat generation adjustment unit that adjusts the amount of self-heating to be maintained in a low temperature range is formed, and includes a magnetic path forming member that forms a magnetic path of an alternating magnetic field generated by the magnetic field generation member. Fixing device.
前記磁路形成部材は、前記発熱調整部が前記定着部材の移動方向と直交する方向に対して交差する角度方向に向けて形成された複数の切り欠き部で構成され、相互に隣接する当該切り欠き部の間隔が当該定着部材の移動方向と直交する方向に沿って3.5mm以上6.8mm以下に設定されたことを特徴とする請求項1記載の定着装置。   The magnetic path forming member is composed of a plurality of cutout portions formed in an angle direction intersecting the direction orthogonal to the moving direction of the fixing member, and the cutout portions adjacent to each other. The fixing device according to claim 1, wherein an interval between the notch portions is set to 3.5 mm or more and 6.8 mm or less along a direction orthogonal to a moving direction of the fixing member. 前記磁路形成部材は、磁気特性に関する前記遷移領域の温度幅が20°以下となるように構成されたことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the magnetic path forming member is configured such that a temperature width of the transition region relating to magnetic characteristics is 20 ° or less. 前記磁路形成部材は、前記遷移領域の開始温度が記録材上のトナーを溶融して当該記録材に定着させるための温度として前記定着部材に設定される温度よりも高く設定されたことを特徴とする請求項3記載の定着装置。   In the magnetic path forming member, a start temperature of the transition region is set higher than a temperature set in the fixing member as a temperature for melting and fixing the toner on the recording material to the recording material. The fixing device according to claim 3. 前記磁路形成部材は、厚さが前記遷移領域よりも低い温度領域での表皮深さよりも大きく構成されたことを特徴とする請求項1記載の定着装置。   The fixing device according to claim 1, wherein the magnetic path forming member is configured to have a thickness larger than a skin depth in a temperature region lower than the transition region. トナー像を形成するトナー像形成手段と、
前記トナー像形成手段によって形成された前記トナー像を記録材上に転写する転写手段と、
前記記録材上に転写された前記トナー像を当該記録材に定着する定着手段とを有し、
前記定着手段は、
導電層を有し、当該導電層が電磁誘導加熱されることで前記記録材にトナーを定着する定着部材と、
前記定着部材の前記導電層と交差する交流磁界を生成する磁界生成部材と、
前記定着部材を挟んで前記磁界生成部材と対向して配置され、磁気特性が温度に応じて強磁性と常磁性との間で遷移する遷移領域を有し、当該磁界生成部材で生成された交流磁界の磁路を形成する磁路形成部材と、
前記磁路形成部材に配置され、前記記録材が通過する領域での当該磁路形成部材の温度が前記遷移領域よりも低い温度範囲に維持されるように自己発熱量を調整する発熱調整部と
を備えたことを特徴する画像形成装置。
Toner image forming means for forming a toner image;
Transfer means for transferring the toner image formed by the toner image forming means onto a recording material;
Fixing means for fixing the toner image transferred onto the recording material to the recording material;
The fixing means is
A fixing member having a conductive layer and fixing the toner to the recording material by electromagnetic induction heating of the conductive layer;
A magnetic field generating member that generates an alternating magnetic field that intersects the conductive layer of the fixing member;
An alternating current generated by the magnetic field generation member that is disposed opposite to the magnetic field generation member with the fixing member interposed therebetween and has a transition region in which the magnetic characteristics transition between ferromagnetism and paramagnetism according to temperature. A magnetic path forming member for forming a magnetic path of the magnetic field;
A heat generation adjustment unit that is disposed on the magnetic path forming member and adjusts the amount of self-heating so that the temperature of the magnetic path forming member in a region through which the recording material passes is maintained in a temperature range lower than the transition region; An image forming apparatus comprising:
前記定着手段の前記発熱調整部は、前記定着部材の移動方向と直交する方向に対して交差する角度方向に向けて形成された前記磁路形成部材での複数の切り欠き部で構成され、相互に隣接する当該切り欠き部の間隔が当該定着部材の移動方向と直交する方向に沿って3.5mm以上6.8mm以下に設定されたことを特徴とする請求項6記載の画像形成装置。   The heat generation adjusting unit of the fixing unit includes a plurality of cutout portions in the magnetic path forming member formed in an angle direction intersecting with a direction orthogonal to the moving direction of the fixing member, The image forming apparatus according to claim 6, wherein an interval between the notch portions adjacent to each other is set to 3.5 mm or more and 6.8 mm or less along a direction orthogonal to a moving direction of the fixing member. 前記定着手段の前記磁路形成部材は、磁気特性に関する前記遷移領域の温度幅が20°以下となるように構成されたことを特徴とする請求項6記載の画像形成装置。   The image forming apparatus according to claim 6, wherein the magnetic path forming member of the fixing unit is configured such that a temperature width of the transition region relating to magnetic characteristics is 20 ° or less. 前記定着手段の前記磁路形成部材は、厚さが前記遷移領域よりも低い温度領域での表皮深さよりも大きく構成されたことを特徴とする請求項6記載の画像形成装置。   The image forming apparatus according to claim 6, wherein the magnetic path forming member of the fixing unit is configured to have a thickness larger than a skin depth in a temperature region lower than the transition region.
JP2009073250A 2009-03-25 2009-03-25 Fixing device and image forming apparatus Pending JP2010224342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073250A JP2010224342A (en) 2009-03-25 2009-03-25 Fixing device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073250A JP2010224342A (en) 2009-03-25 2009-03-25 Fixing device and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2010224342A true JP2010224342A (en) 2010-10-07

Family

ID=43041574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073250A Pending JP2010224342A (en) 2009-03-25 2009-03-25 Fixing device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2010224342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002774A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
JP2012168403A (en) * 2011-02-15 2012-09-06 Ricoh Co Ltd Fixing device and image forming apparatus
JP2016128899A (en) * 2015-01-05 2016-07-14 株式会社リコー Fixation device and image forming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161694A (en) * 1995-11-30 1997-06-20 Samsung Electro Mech Co Ltd Deflection yoke with inner arm
JP2002139280A (en) * 2000-11-01 2002-05-17 Kawasaki Heavy Ind Ltd High-frequency induction furnace for melting miscellaneous solid wastes, induction heating body and melting method of miscellaneous solid wastes
JP2004307962A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Apron and hot-rolling facility arranging the same
JP2008152247A (en) * 2006-11-24 2008-07-03 Fuji Xerox Co Ltd Fixing device and image forming device
JP2008224953A (en) * 2007-03-12 2008-09-25 Ricoh Co Ltd Fixing device, and image forming apparatus using the same
JP2008234837A (en) * 2007-03-16 2008-10-02 Fuji Xerox Co Ltd Heating device, fixing device, and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161694A (en) * 1995-11-30 1997-06-20 Samsung Electro Mech Co Ltd Deflection yoke with inner arm
JP2002139280A (en) * 2000-11-01 2002-05-17 Kawasaki Heavy Ind Ltd High-frequency induction furnace for melting miscellaneous solid wastes, induction heating body and melting method of miscellaneous solid wastes
JP2004307962A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Apron and hot-rolling facility arranging the same
JP2008152247A (en) * 2006-11-24 2008-07-03 Fuji Xerox Co Ltd Fixing device and image forming device
JP2008224953A (en) * 2007-03-12 2008-09-25 Ricoh Co Ltd Fixing device, and image forming apparatus using the same
JP2008234837A (en) * 2007-03-16 2008-10-02 Fuji Xerox Co Ltd Heating device, fixing device, and image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002774A (en) * 2009-06-22 2011-01-06 Fuji Xerox Co Ltd Electromagnetic induction heating device, fixing device using the same, and image forming apparatus
US9084301B2 (en) 2009-06-22 2015-07-14 Fuji Xerox Co., Ltd. Electromagnetic induction heating device, fixing device and image forming apparatus using the same
JP2012168403A (en) * 2011-02-15 2012-09-06 Ricoh Co Ltd Fixing device and image forming apparatus
JP2016128899A (en) * 2015-01-05 2016-07-14 株式会社リコー Fixation device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4793467B2 (en) Fixing apparatus and image forming apparatus
JP5691370B2 (en) Fixing apparatus and image forming apparatus
JP4821873B2 (en) Fixing device and image forming apparatus
JP2009258453A (en) Fixing device and image forming apparatus
JP5359362B2 (en) Fixing device and image forming apparatus
JP2012203185A (en) Fixing device and image forming apparatus
JP5369958B2 (en) Fixing apparatus and image forming apparatus
JP4711003B2 (en) Fixing device and image forming apparatus
JP4788789B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP4807427B2 (en) Fixing apparatus and image forming apparatus
JP5532646B2 (en) Fixing device and image forming apparatus
JP5765135B2 (en) Fixing apparatus and image forming apparatus
JP2010224342A (en) Fixing device and image forming apparatus
JP2010224370A (en) Fixing device and image forming apparatus
JP2011022446A (en) Fixing device, image forming apparatus, and magnetic field generating device
JP4715942B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP5375393B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus
JP4893763B2 (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
JP2010224032A (en) Fixing unit and image forming apparatus
JP5644054B2 (en) Fixing device and image forming apparatus
JP4947222B2 (en) Fixing device and image forming apparatus
JP4873035B2 (en) Fixing apparatus and image forming apparatus
JP2012194429A (en) Fixing device, image formation apparatus, and program
JP4858561B2 (en) Fixing apparatus, image forming apparatus, and magnetic field generating apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313