JP2010189350A - Apparatus for converting carbon dioxide to methanol - Google Patents

Apparatus for converting carbon dioxide to methanol Download PDF

Info

Publication number
JP2010189350A
JP2010189350A JP2009037363A JP2009037363A JP2010189350A JP 2010189350 A JP2010189350 A JP 2010189350A JP 2009037363 A JP2009037363 A JP 2009037363A JP 2009037363 A JP2009037363 A JP 2009037363A JP 2010189350 A JP2010189350 A JP 2010189350A
Authority
JP
Japan
Prior art keywords
carbon dioxide
methanol
gas
reaction
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037363A
Other languages
Japanese (ja)
Inventor
Koichi Ito
鉱一 伊藤
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009037363A priority Critical patent/JP2010189350A/en
Publication of JP2010189350A publication Critical patent/JP2010189350A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for converting carbon dioxide to methanol by reducing the carbon dioxide that enables exact, simple and quick measurement of the amount of the methanol converted from the carbon dioxide by determining the amount of the formed methanol using a gas analysis means. <P>SOLUTION: The apparatus for converting carbon dioxide to methanol by reducing the carbon dioxide that measures the amount of the methanol formed from the carbon dioxide by determining the amount of the formed methanol using a gas analysis means includes a flow rate regulating means 1 for carbon dioxide, a flow rate regulating means 2 for a reducing gas, a gas mixer 3 of the carbon dioxide and the reducing gas, a reaction unit 6 equipped with a reaction tube 4 housing a catalyst tube filled with a catalyst and a microwave device 5 to irradiate a microwave to the reaction tube that reduces and converts carbon dioxide contained in a gas introduced into the reaction tube to methanol, a means for measuring temperature in the reaction tube and a means 47 for measuring pressure in the reaction tube. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二酸化炭素を還元してメタノールに転化し、該メタノールの量をガス分析手段によって求めることにより、二酸化炭素のメタノールへの転化量を正確に、かつ簡便、迅速に測定することができる二酸化炭素のメタノールへの転化装置に関する。   In the present invention, carbon dioxide is reduced and converted into methanol, and the amount of methanol is obtained by gas analysis means, whereby the amount of conversion of carbon dioxide into methanol can be measured accurately, simply and quickly. The present invention relates to an apparatus for converting carbon dioxide into methanol.

人間の社会的活動に伴って、発電所、工場、自動車等から大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっている。かかる背景に鑑み、発電所等の排煙や大気中の二酸化炭素を固定化し、除去する方法が種々提案されている。   It is known that carbon dioxide discharged into the atmosphere from power plants, factories, automobiles, etc. due to human social activities is the main cause of global warming. Reduction is a major issue in protecting the global environment. In view of such a background, various methods for fixing and removing flue gas from a power plant or the like and carbon dioxide in the atmosphere have been proposed.

二酸化炭素の固定化方法は、概ね、生物的方法、物理的方法、化学的方法の3種類に分けられる。光合成を利用する生物的方法はかなりの量の二酸化炭素の固定化が期待でき、熱帯林の保護や砂漠化防止にも役立つことから、広範な植樹が実施されており、また新たな手法として、微細藻類の多量かつ連続的な培養、増殖の研究開発が行われている。しかしながら、微細藻類による固定化反応は、水面近くの微細藻類でのみ進行するため、微細藻類で二酸化炭素を固定化するためには広大な面積の水域が必要となる問題がある。   Carbon dioxide immobilization methods are generally classified into three types: biological methods, physical methods, and chemical methods. Biological methods using photosynthesis can be expected to immobilize a considerable amount of carbon dioxide, and are also useful for protecting tropical forests and preventing desertification. Research and development of large-scale and continuous culture and growth of microalgae is underway. However, since the immobilization reaction with microalgae proceeds only with microalgae near the water surface, there is a problem that a large area of water is required to immobilize carbon dioxide with microalgae.

物理的方法は、二酸化炭素の特殊な媒体への溶解、吸着を利用する分離・濃縮法であり、例えば、二酸化炭素をアルカリ溶液に吸収させ、反応後、炭酸塩として分離する方法、或いは、二酸化炭素をゼオライト媒体等に吸着させた後、脱着、濃縮する方法などの研究が行われている。しかしながら、アルカリに吸収させる方法では大掛かりな装置が必要であり、吸着法では二酸化炭素の吸脱着に膨大なエネルギーを要するという問題点がある。   The physical method is a separation / concentration method using dissolution and adsorption of carbon dioxide in a special medium. For example, carbon dioxide is absorbed into an alkaline solution and separated as a carbonate after the reaction, or carbon dioxide. Research has been conducted on methods for desorption and concentration after carbon is adsorbed on a zeolite medium or the like. However, the method of absorbing by alkali requires a large apparatus, and the adsorption method has a problem that enormous energy is required for adsorption and desorption of carbon dioxide.

化学的方法は、電気化学的方法や触媒反応を利用する方法等であり、例えば、電気化学的方法による二酸化炭素の還元としては、特殊な電極を使用して電解溶液中の二酸化炭素を分解し、ギ酸、メタン等を常温で生成する方法が知られている。しかしながら、この方法では、大規模な反応槽が必要であり、反応を促進させるためには大量の電気エネルギーを供給する必要があるため、省エネルギーの方法とは言い難い。   The chemical method includes an electrochemical method and a method utilizing a catalytic reaction. For example, as a reduction of carbon dioxide by an electrochemical method, carbon dioxide in an electrolytic solution is decomposed using a special electrode. A method for producing formic acid, methane, etc. at room temperature is known. However, this method requires a large-scale reaction tank, and a large amount of electrical energy needs to be supplied in order to promote the reaction.

一方、触媒反応を利用する二酸化炭素の還元としては、二酸化炭素を一酸化炭素、メタノール等に転化してそれを燃料等として利用するという手段が知られており、生物的方法や物理的方法に比べて、エネルギーの低減が図れる可能性がある。そして、触媒反応を利用する二酸化炭素の還元において、還元反応時に必要なエネルギーのさらなる低減を図るために、マイクロ波を用いた二酸化炭素の還元反応が検討されてきた(例えば、特許文献1〜3参照)。   On the other hand, as a reduction of carbon dioxide using a catalytic reaction, there is known a method of converting carbon dioxide into carbon monoxide, methanol, etc. and using it as a fuel or the like. In comparison, there is a possibility that energy can be reduced. In the reduction of carbon dioxide using a catalytic reaction, a reduction reaction of carbon dioxide using a microwave has been studied in order to further reduce energy required for the reduction reaction (for example, Patent Documents 1 to 3). reference).

特許文献1〜3の方法においては、二酸化炭素と水素の混合ガスを、触媒を充填した反応管に導入してマイクロ波を照射すると、低温(150〜250℃)でもメタノールやエタノールが生成する。しかしながら、生成したアルコールをインピンジャー中に導入して冷却することで捕集しているため、反応管に導入する混合ガスの流量を多くしたり、あるいは反応圧力を高めた際には、生成したアルコールの全量を捕集することができない場合があり、アルコール転化率を正確に把握できなくなるという問題が生じることが判った。   In the methods of Patent Documents 1 to 3, when a mixed gas of carbon dioxide and hydrogen is introduced into a reaction tube filled with a catalyst and irradiated with microwaves, methanol and ethanol are generated even at a low temperature (150 to 250 ° C.). However, since the generated alcohol is collected by introducing it into the impinger and cooling it, it is generated when the flow rate of the mixed gas introduced into the reaction tube is increased or the reaction pressure is increased. It has been found that there are cases where the total amount of alcohol cannot be collected, and there is a problem that the alcohol conversion rate cannot be accurately grasped.

そのため、このような問題が生じることが無く、二酸化炭素と水素の混合比率、気体の流量、反応温度および反応圧力等の影響を正確に測定できる装置が望まれていた。   Therefore, there has been a demand for an apparatus that can accurately measure the influence of the mixing ratio of carbon dioxide and hydrogen, the gas flow rate, the reaction temperature, the reaction pressure, and the like without causing such problems.

特開2006−169095号公報JP 2006-169095 A 特開2006−216412号公報JP 2006-216212 A 特開2008−247778号公報JP 2008-247778 A

本発明は、上記課題に鑑みてなされたものであり、二酸化炭素を還元してメタノールに転化し、該メタノールの量をガス分析手段によって求めることにより、二酸化炭素のメタノールへの転化量を正確に、かつ簡便、迅速に測定することができる二酸化炭素のメタノールへの転化装置を提供することを目的とする。   The present invention has been made in view of the above problems, and by converting carbon dioxide to methanol and obtaining the amount of methanol by gas analysis means, the amount of conversion of carbon dioxide to methanol is accurately determined. Another object of the present invention is to provide an apparatus for converting carbon dioxide into methanol that can be measured easily and quickly.

上記目的を達成するため、本発明は、下記の装置を提供する。   In order to achieve the above object, the present invention provides the following apparatus.

(1)二酸化炭素を還元してメタノールに転化し、該メタノールの量をガス分析手段によって求めることにより、二酸化炭素のメタノールへの転化量を測定するメタノール転化装置において、
二酸化炭素の流量を調整する流量調整手段と、
還元性気体の流量を調整する流量調整手段と、
二酸化炭素と還元性気体を混合する気体混合部と、
触媒を充填可能な触媒充填管を収容した反応管および該反応管にマイクロ波を照射するマイクロ波装置からなり、反応管に導入された混合気体に含まれる二酸化炭素を還元してメタノールに転化する反応部と、
前記反応管内の温度を測定する温度測定手段と、
前記反応管内の圧力を測定する圧力測定手段と、を備えたことを特徴とする二酸化炭素のメタノールへの転化装置。
(2)前記反応管が、その両端に混合気体の入口と出口を有する、(1)に記載の二酸化炭素のメタノールへの転化装置。
(3)前記還元性気体が水素である、(1)または(2)に記載の二酸化炭素のメタノールへの転化装置。
(1) In a methanol conversion apparatus for measuring the amount of carbon dioxide converted to methanol by reducing carbon dioxide and converting it to methanol, and determining the amount of methanol by gas analysis means,
A flow rate adjusting means for adjusting the flow rate of carbon dioxide;
A flow rate adjusting means for adjusting the flow rate of the reducing gas;
A gas mixing section for mixing carbon dioxide and a reducing gas;
A reaction tube containing a catalyst-filled tube that can be filled with a catalyst, and a microwave device that irradiates the reaction tube with microwaves. The carbon dioxide contained in the mixed gas introduced into the reaction tube is reduced and converted to methanol. A reaction part;
Temperature measuring means for measuring the temperature in the reaction tube;
A pressure measuring means for measuring the pressure in the reaction tube; and a device for converting carbon dioxide into methanol.
(2) The apparatus for converting carbon dioxide to methanol according to (1), wherein the reaction tube has an inlet and an outlet for a mixed gas at both ends thereof.
(3) The apparatus for converting carbon dioxide into methanol according to (1) or (2), wherein the reducing gas is hydrogen.

本発明によれば、二酸化炭素と還元性気体を混合した混合気体を装置に導入し、マイクロ波反応部を利用して二酸化炭素を還元してメタノールに転化し、該メタノールの量をガス分析手段によって求めることにより、二酸化炭素のメタノールへの転化量を簡便かつ迅速に測定することができる。触媒の種類、還元性気体の種類、二酸化炭素および還元性気体の流量、反応温度または反応圧力を適宜変更すれば、メタノール転化率に及ぼす影響因子を評価することが可能となる。   According to the present invention, a mixed gas in which carbon dioxide and a reducing gas are mixed is introduced into the apparatus, carbon dioxide is reduced and converted into methanol using a microwave reaction unit, and the amount of the methanol is measured by gas analysis means. Thus, the conversion amount of carbon dioxide into methanol can be measured easily and quickly. By appropriately changing the type of catalyst, the type of reducing gas, the flow rate of carbon dioxide and reducing gas, the reaction temperature or the reaction pressure, it is possible to evaluate the influencing factors on the methanol conversion.

本発明の二酸化炭素のメタノールへの転化装置を示す概略構成図である。It is a schematic block diagram which shows the conversion apparatus of the carbon dioxide to methanol of this invention. 同反応部の構成を示す図である。It is a figure which shows the structure of the reaction part.

本発明の二酸化炭素のメタノールへの転化装置(以下、装置という。)について図を参照して説明する。図1は、本発明の装置の概略構成図を示したものである。本発明の装置は、二酸化炭素の流量を調整する流量調整手段1と、還元性気体の流量を調整する流量調整手段2と、二酸化炭素と還元性気体を混合する気体混合部3と、触媒を充填した触媒充填管を収容した反応管4および該反応管にマイクロ波を照射するマイクロ波装置5からなり、反応管に導入された混合気体に含まれる二酸化炭素を還元してメタノールに転化する反応部6とを備え、前記反応管4は、該反応管内の温度を測定する温度測定手段45と、該反応管内の圧力を測定する圧力測定手段47を備えている。   An apparatus for converting carbon dioxide to methanol (hereinafter referred to as an apparatus) according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration diagram of the apparatus of the present invention. The apparatus of the present invention includes a flow rate adjusting unit 1 that adjusts the flow rate of carbon dioxide, a flow rate adjusting unit 2 that adjusts the flow rate of reducing gas, a gas mixing unit 3 that mixes carbon dioxide and reducing gas, and a catalyst. Reaction comprising a reaction tube 4 containing a packed catalyst packed tube and a microwave device 5 for irradiating the reaction tube with microwaves, and reducing carbon dioxide contained in the mixed gas introduced into the reaction tube to convert it into methanol The reaction tube 4 includes a temperature measuring means 45 for measuring the temperature in the reaction tube and a pressure measuring means 47 for measuring the pressure in the reaction tube.

二酸化炭素の流量を調整する流量調整手段1および還元性気体の流量を調整する流量調整手段2は、各気体の流量の測定および調整のために設けられる。流量調整手段1の一端には二酸化炭素ボンベなどの原料タンクを連結し、他端には気体混合部3を連結する。流量調整手段2の一端には水素ボンベなどの原料タンクを連結し、他端には気体混合部3を連結する。気体混合部3は、各ボンベから供給された気体を混合するために設けられる。この気体混合部3では、流量調整手段1,2で流量調整された気体が混合されるため、各気体を所定の比率で混合することが可能である。   The flow rate adjusting means 1 for adjusting the flow rate of carbon dioxide and the flow rate adjusting means 2 for adjusting the flow rate of the reducing gas are provided for measuring and adjusting the flow rate of each gas. A raw material tank such as a carbon dioxide cylinder is connected to one end of the flow rate adjusting means 1, and a gas mixing unit 3 is connected to the other end. A raw material tank such as a hydrogen cylinder is connected to one end of the flow rate adjusting means 2, and a gas mixing unit 3 is connected to the other end. The gas mixing part 3 is provided in order to mix the gas supplied from each cylinder. In the gas mixing unit 3, since the gas whose flow rate has been adjusted by the flow rate adjusting means 1 and 2 is mixed, each gas can be mixed at a predetermined ratio.

反応部6は、触媒を充填した触媒充填管を収容した反応管4および該反応管にマイクロ波を照射するマイクロ波装置5からなり、該反応部において、二酸化炭素のメタノールへの転化反応が起こる。二酸化炭素および還元性気体は、気体混合部3から、反応管4の一端(下端)に設けられた入口部41aを通じて、反応管4に導入され、該反応管に導入された混合気体に含まれる二酸化炭素が、マイクロ波装置5から照射されるマイクロ波エネルギーによって還元され、メタノールに転化される。   The reaction unit 6 includes a reaction tube 4 that contains a catalyst-filled tube filled with a catalyst and a microwave device 5 that irradiates the reaction tube with microwaves. In the reaction unit, a conversion reaction of carbon dioxide to methanol occurs. . Carbon dioxide and reducing gas are introduced into the reaction tube 4 from the gas mixing unit 3 through an inlet 41a provided at one end (lower end) of the reaction tube 4, and are included in the mixed gas introduced into the reaction tube. Carbon dioxide is reduced by the microwave energy irradiated from the microwave device 5 and converted into methanol.

反応部6は、図2に示す様に、マイクロ波装置5の庫内スペース(図中の点線で示したスペース)を利用して、マイクロ波装置に、ガラスや耐熱樹脂製のマイクロ波透過性の管41を固定することにより、簡易に構成することができる。この管41に、触媒を充填した触媒充填管42を収容し、該触媒充填管42の中に温度測定手段45として、熱電対、ファイバー温度計などを設置することで、反応管4が作製される。図中46は、熱電対などを収容するセラミック製等の鞘である。該鞘を設けることで、熱電対45からのスパーク等、マイクロ波による地絡を防止することができる。   As shown in FIG. 2, the reaction unit 6 uses the space inside the microwave device 5 (the space indicated by the dotted line in the drawing) to make microwave transmission to the microwave device made of glass or heat-resistant resin. By fixing the tube 41, it can be configured simply. The tube 41 accommodates a catalyst-filled tube 42 filled with a catalyst, and a reaction tube 4 is produced by installing a thermocouple, a fiber thermometer, etc. as temperature measuring means 45 in the catalyst-filled tube 42. The In the figure, 46 is a sheath made of ceramic or the like that accommodates a thermocouple or the like. By providing the sheath, a ground fault due to microwaves such as a spark from the thermocouple 45 can be prevented.

触媒充填管42には触媒43を充填する。触媒43は、触媒充填管の中に設置したガラスフィルター44などの上に充填すると、触媒を固定させることができる。触媒を充填した反応管の中に入口41aから混合気体を導入し、導入された混合気体を反応管4の中を一定の速度で通過させる。   The catalyst filling tube 42 is filled with a catalyst 43. When the catalyst 43 is filled on a glass filter 44 or the like installed in the catalyst filling tube, the catalyst can be fixed. A mixed gas is introduced into the reaction tube filled with the catalyst from the inlet 41a, and the introduced mixed gas is passed through the reaction tube 4 at a constant speed.

反応管に導入された混合気体は、反応管を通過する際に、一定量のマイクロ波が照射されて加熱された触媒と接触して反応する。その際、混合気体に含まれる二酸化炭素が還元性気体によって還元され、少なくとも一部がメタノールに転化する。反応後の気体は、反応管の出口41bから送出される。出口41bには、圧力測定手段47が設けられているため、該圧力測定手段47によって反応管41内の圧力が測定される。   When the mixed gas introduced into the reaction tube passes through the reaction tube, it reacts with a catalyst heated by irradiation with a certain amount of microwaves. At that time, carbon dioxide contained in the mixed gas is reduced by the reducing gas, and at least a part thereof is converted into methanol. The gas after the reaction is sent out from the outlet 41b of the reaction tube. Since the pressure measurement means 47 is provided at the outlet 41b, the pressure in the reaction tube 41 is measured by the pressure measurement means 47.

反応管に混合気体を導入する場合は、該混合気体を、反応管の上流に配設したマスフローコントローラーで流量調整した後、反応管に導入すると、流量調整が容易であるが、さらに、マスフローコントローラーの上流に配設したバッファータンクで圧力調整した後、マスフローコントローラーで流量調整すると、反応を制御し易い。   When a mixed gas is introduced into a reaction tube, the flow rate of the mixed gas is adjusted with a mass flow controller arranged upstream of the reaction tube and then introduced into the reaction tube, so that the flow rate can be easily adjusted. After adjusting the pressure with a buffer tank arranged upstream, the reaction can be controlled easily by adjusting the flow rate with a mass flow controller.

本発明の装置において、混合気体の混合比率は、流量調整手段1,2で調整することにより、適宜な割合に設定することが可能である。反応管を通過させる際の混合気体の空間速度は、特に限定されないが、約600〜30,000h−1の範囲で設定することが可能である。 In the apparatus of the present invention, the mixing ratio of the mixed gas can be set to an appropriate ratio by adjusting the flow rate adjusting means 1 and 2. The space velocity of the mixed gas when passing through the reaction tube is not particularly limited, but can be set in the range of about 600 to 30,000 h- 1 .

還元性気体としては、水素が一般的であるが、メタンなどの炭化水素でも良い。   The reducing gas is generally hydrogen, but may be a hydrocarbon such as methane.

触媒としては、二酸化炭素の還元反応を進行させることができるものであれば、特に限定はされない。Cu、Zn、Cr、Al、Au、Zrのいずれかの元素を一種類以上含む触媒は、好ましく用いることができる例であり、例えば、CuO−ZnO等の二元系触媒、CuO−ZnO−Cr等の三元系触媒、または、これらの触媒をSiO、Al、MgOなどの担体に担持したものなどを挙げることができる。 The catalyst is not particularly limited as long as it can proceed the carbon dioxide reduction reaction. A catalyst containing one or more elements of any one of Cu, Zn, Cr, Al, Au, and Zr is an example that can be preferably used. For example, a binary catalyst such as CuO-ZnO, CuO-ZnO-Cr, etc. Examples thereof include ternary catalysts such as 2 O 3 , or those in which these catalysts are supported on a carrier such as SiO 2 , Al 2 O 3 , and MgO.

触媒は、粉、顆粒、成形品など任意の形状のものを用いることができる。なかでも、成形品は触媒粉末が脱落する恐れが無く、メタノールへの転化量に及ぼす触媒の影響を的確に把握することができる点より、特に好ましい。   As the catalyst, those having any shape such as powder, granule and molded product can be used. Among these, molded articles are particularly preferable because there is no fear that the catalyst powder will fall off and the influence of the catalyst on the amount of conversion to methanol can be accurately grasped.

また、触媒を加熱するときの反応温度は、約150〜300℃の範囲で設定することが可能であるが、用いる触媒の種類によって適宜な温度を設定すれば良い。   The reaction temperature for heating the catalyst can be set in the range of about 150 to 300 ° C., but an appropriate temperature may be set depending on the type of catalyst used.

照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう、PID制御等により電気的に制御するのが良い。マイクロ波の周波数は1GHz〜300GHzとする。マイクロ波の照射は連続照射、間欠照射のいずれの方法であっても良く、照射時間及び照射停止時間は、混合気体中の二酸化炭素の比率、気体流量、反応温度、触媒の種類などに応じて適宜に決定する。   The output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and it is preferable that the microwave is electrically controlled by PID control or the like so that the reaction temperature can be maintained within a predetermined range. The frequency of the microwave is 1 GHz to 300 GHz. Microwave irradiation may be either continuous irradiation or intermittent irradiation, and the irradiation time and irradiation stop time depend on the ratio of carbon dioxide in the mixed gas, gas flow rate, reaction temperature, type of catalyst, etc. Determine as appropriate.

本発明の装置では、反応管を通過した気体(反応後の気体)を、反応管の後流の配管上に設けたサンプリング口8通じて、随時、サンプリングすることができる。そして、サンプリングした気体に含まれるメタノール量を、ガスクロマトグラフィー等の公知のガス分析手段によって求めることにより、メタノール転化量を測定することができる。   In the apparatus of the present invention, the gas that has passed through the reaction tube (the gas after the reaction) can be sampled at any time through the sampling port 8 provided on the downstream pipe of the reaction tube. And the amount of methanol conversion can be measured by calculating | requiring the amount of methanol contained in the sampled gas by well-known gas analysis means, such as a gas chromatography.

本発明の装置では、反応後のメタノールガスをインピンジャーなどでトラップしないので、トラップ漏れの恐れが無く、測定精度が高い。また、1パスで反応させるので、メタノールへの転化量を簡便かつ迅速に測定することが可能である。   In the apparatus of the present invention, methanol gas after reaction is not trapped by an impinger or the like, so there is no risk of trap leakage and measurement accuracy is high. Moreover, since it reacts by 1 pass, it is possible to measure the conversion amount to methanol simply and rapidly.

以下、実施例により、本発明のメタノール転化装置について図面を参照しつつ詳しく説明する。   Hereinafter, the methanol conversion apparatus of the present invention will be described in detail with reference to the drawings by way of examples.

(実施例1)
図1は、本発明のメタノール転化装置を示す概略構成図である。図1において、1,2はマスフローコントローラー(流量調整手段)、3は二酸化炭素と水素の混合気体を収容するバッファータンク(気体混合部)、4は反応管、5はマイクロ波発振装置、6は反応部である。7はガス加熱用リボンヒーター、8はガスサンプリング口である。反応管4には、圧力計47が設けてあり、反応管の前流には圧力微調整用の調整弁48、反応管の後流には反応系内の圧力維持のための背圧弁が設けてある。各装置はSUS管およびテフロン(登録商標)チューブで連結されている。なお、連結部品の材質は、SUSや耐熱樹脂などの耐熱・耐圧素材であれば特に限定はされない。
Example 1
FIG. 1 is a schematic configuration diagram showing a methanol conversion apparatus of the present invention. In FIG. 1, 1 and 2 are mass flow controllers (flow rate adjusting means), 3 is a buffer tank (gas mixing unit) that contains a mixed gas of carbon dioxide and hydrogen, 4 is a reaction tube, 5 is a microwave oscillator, and 6 is It is a reaction part. 7 is a ribbon heater for gas heating, and 8 is a gas sampling port. The reaction tube 4 is provided with a pressure gauge 47. A pressure adjusting valve 48 for fine adjustment of pressure is provided upstream of the reaction tube, and a back pressure valve for maintaining pressure in the reaction system is provided downstream of the reaction tube. It is. Each device is connected by a SUS tube and a Teflon (registered trademark) tube. The material of the connecting part is not particularly limited as long as it is a heat-resistant / pressure-resistant material such as SUS or heat-resistant resin.

図2は、反応管4を拡大して示す説明図である。該反応管4は、耐圧用ガラス管41(内径32mm)、触媒を充填したガラス管42(内径23mm)、触媒43を充填するためのガラスフィルター44から構成され、触媒層は高さ65mm、重量40gである。45は触媒充填層の温度測定用の熱電対、46は熱電対を設置するための鞘である。ただし、ガラスフィルター44は触媒の押え用であるため、使用は任意である。   FIG. 2 is an explanatory view showing the reaction tube 4 in an enlarged manner. The reaction tube 4 is composed of a pressure resistant glass tube 41 (inner diameter 32 mm), a glass tube 42 filled with catalyst (inner diameter 23 mm), and a glass filter 44 for filling the catalyst 43, and the catalyst layer has a height of 65 mm and weight. 40 g. 45 is a thermocouple for measuring the temperature of the catalyst packed bed, and 46 is a sheath for installing the thermocouple. However, since the glass filter 44 is used for holding a catalyst, it can be used arbitrarily.

反応管4への入口41aから導入された混合気体は、反応管の中を通過し、出口41bから送出される。図2の矢印は混合気体が流れる方向を示している。図2に示すように、入口から導入された気体が上昇する間に触媒層で反応が起き、41bから反応管を出た気体は、配管の途中で凝縮しないようにリボンヒーター7で加熱された配管の中を通って、排気される。リボンヒーター7の後流の配管には、サンプリング口8が設けられているので、反応中は随時、該サンプリング口から反応生成物を採取することができる。   The mixed gas introduced from the inlet 41a to the reaction tube 4 passes through the reaction tube and is sent out from the outlet 41b. The arrows in FIG. 2 indicate the direction in which the mixed gas flows. As shown in FIG. 2, the reaction occurred in the catalyst layer while the gas introduced from the inlet was rising, and the gas exiting the reaction tube from 41b was heated by the ribbon heater 7 so as not to condense in the middle of the piping. It is exhausted through the pipe. Since the sampling port 8 is provided in the downstream of the ribbon heater 7, the reaction product can be collected from the sampling port at any time during the reaction.

(試験例1)
上記のメタノール転化装置内に、CuO−ZnO系触媒40gを触媒充填管42の中に充填し、この触媒反応管を装置に設置した。窒素ボンベより装置内に窒素を供給し、装置内の空気を排出した。
二酸化炭素/水素=25/75(体積比)割合で混合気体を調製し、装置手前のレギュレーター(調整弁)48にて圧力調整しながら、装置全体に混合気体を反応管内の圧力が0.5MPaになるように混合気体を流し、反応管手前の気体組成を、ガスクロマトグラフィーにて分析し確認した。
マスフローコントローラー1,2にて、流速を二酸化炭素換算流量が0.2L/min(混合気体流量は0.8L/min)になるよう設定し、周波数2.45GHzのマイクロ波を反応管4に照射して220℃まで昇温させた後、220℃で60分間加熱を行い二酸化炭素の還元反応を行った。
60分間の加熱中、反応後の気体をサンプリング口8より0.2mlずつ3回採取し、ガスクロマトグラフィーにてガス組成(メタノールのvol%)を分析し、同定・定量した。採取した気体の分析結果の平均値からメタノール転化量を求めた。
メタノール転化率(%)は、メタノールのモル数を、反応前の混合ガス中の二酸化炭素のモル数で除した値である。
(Test Example 1)
In the methanol conversion apparatus, 40 g of a CuO—ZnO-based catalyst was filled in the catalyst filling pipe 42, and this catalyst reaction pipe was installed in the apparatus. Nitrogen was supplied into the apparatus from a nitrogen cylinder, and the air in the apparatus was discharged.
A mixed gas is prepared at a ratio of carbon dioxide / hydrogen = 25/75 (volume ratio), and the pressure in the reaction tube is adjusted to 0.5 MPa while adjusting the pressure with a regulator (regulating valve) 48 in front of the apparatus. Then, the mixed gas was flowed so that the gas composition before the reaction tube was analyzed and confirmed by gas chromatography.
With the mass flow controllers 1 and 2, the flow rate is set so that the carbon dioxide equivalent flow rate is 0.2 L / min (mixed gas flow rate is 0.8 L / min), and microwaves with a frequency of 2.45 GHz are applied to the reaction tube 4. Then, the temperature was raised to 220 ° C., followed by heating at 220 ° C. for 60 minutes to carry out a carbon dioxide reduction reaction.
During the heating for 60 minutes, 0.2 ml of the gas after the reaction was sampled from the sampling port 8 three times, and the gas composition (vol% of methanol) was analyzed and identified / quantified by gas chromatography. The methanol conversion amount was determined from the average value of the analysis results of the collected gas.
The methanol conversion rate (%) is a value obtained by dividing the number of moles of methanol by the number of moles of carbon dioxide in the mixed gas before the reaction.

(試験例2)
二酸化炭素/水素=20/80(体積比)割合で混合気体を調製し、流速を二酸化炭素換算流量が0.2L/min(混合気体流量は1.0L/min)になるよう設定した以外は、試験例1と同様、二酸化炭素の還元反応を行った。
(Test Example 2)
A mixed gas was prepared at a ratio of carbon dioxide / hydrogen = 20/80 (volume ratio), and the flow rate was set so that the flow rate converted to carbon dioxide was 0.2 L / min (mixed gas flow rate was 1.0 L / min). As in Test Example 1, a carbon dioxide reduction reaction was performed.

(試験例3)
二酸化炭素/水素=15/85(体積比)割合で混合気体を調製し、流速を二酸化炭素換算流量が0.2L/min(混合気体流量は1.4L/min)になるよう設定した以外は、試験例1と同様、二酸化炭素の還元反応を行った。
(Test Example 3)
A mixed gas was prepared at a ratio of carbon dioxide / hydrogen = 15/85 (volume ratio), and the flow rate was set so that the flow rate converted to carbon dioxide was 0.2 L / min (mixed gas flow rate was 1.4 L / min). As in Test Example 1, a carbon dioxide reduction reaction was performed.

(試験例4)
二酸化炭素/水素=10/90(体積比)割合で混合気体を調製し、流速を二酸化炭素換算流量が0.2L/min(混合気体流量は2.0L/min)になるよう設定した以外は、試験例1と同様、二酸化炭素の還元反応を行った。
(Test Example 4)
A mixed gas was prepared at a ratio of carbon dioxide / hydrogen = 10/90 (volume ratio), and the flow rate was set so that the flow rate converted to carbon dioxide was 0.2 L / min (mixed gas flow rate was 2.0 L / min). As in Test Example 1, a carbon dioxide reduction reaction was performed.

(試験例5)
二酸化炭素/水素=5/95(体積比)割合で混合気体を調製し、流速を二酸化炭素換算流量が0.2L/min(混合気体流量は4.0L/min)になるよう設定した以外は、試験例1と同様、二酸化炭素の還元反応を行った。
(Test Example 5)
A mixed gas was prepared at a ratio of carbon dioxide / hydrogen = 5/95 (volume ratio), and the flow rate was set so that the flow rate converted to carbon dioxide was 0.2 L / min (mixed gas flow rate was 4.0 L / min). As in Test Example 1, a carbon dioxide reduction reaction was performed.

試験例1〜5の実験条件及び実験結果を表1に示す。   Table 1 shows the experimental conditions and experimental results of Test Examples 1 to 5.

Figure 2010189350
Figure 2010189350

(試験例6)
触媒としてCuO−ZnO−LaO系触媒(Cu:Zn:La=70:29:1)19.4gを用い、二酸化炭素/水素=10/90(体積比)割合で混合気体を調製し、反応温度185℃、反応圧力0.4MPa、流速を二酸化炭素換算流量が0.4L/min(混合気体流量は4.0L/min)になるよう設定した以外は、試験例1と同様、二酸化炭素の還元反応を行った。
(Test Example 6)
Using 19.4 g of a CuO—ZnO—LaO-based catalyst (Cu: Zn: La = 70: 29: 1) as a catalyst, a mixed gas was prepared at a ratio of carbon dioxide / hydrogen = 10/90 (volume ratio), and the reaction temperature The reduction of carbon dioxide was the same as in Test Example 1 except that the reaction pressure was set to 185 ° C., the reaction pressure was 0.4 MPa, and the flow rate was set to a carbon dioxide equivalent flow rate of 0.4 L / min (mixed gas flow rate was 4.0 L / min). Reaction was performed.

(試験例7)
反応圧力が0.6MPaになるよう設定した以外は、試験例6と同様、二酸化炭素の還元反応を行った。
(Test Example 7)
The reduction reaction of carbon dioxide was performed in the same manner as in Test Example 6 except that the reaction pressure was set to 0.6 MPa.

(試験例8)
反応圧力が0.8MPaになるよう設定した以外は、試験例6と同様、二酸化炭素の還元反応を行った。
(Test Example 8)
The reduction reaction of carbon dioxide was performed in the same manner as in Test Example 6 except that the reaction pressure was set to 0.8 MPa.

試験例6〜8の実験条件及び実験結果を表2に示す。   Table 2 shows the experimental conditions and experimental results of Test Examples 6-8.

Figure 2010189350
Figure 2010189350

上記の結果、試験例1〜6より、二酸化炭素と水素の混合気体における水素の比率を高めることにより、メタノール転化率が高くなる傾向があることがわかった。試験例6〜8より、反応圧力を高めることにより、メタノール転化率が高くなる傾向があることがわかった。   As a result, from Test Examples 1 to 6, it was found that the methanol conversion rate tends to increase by increasing the ratio of hydrogen in the mixed gas of carbon dioxide and hydrogen. From Test Examples 6 to 8, it was found that the methanol conversion rate tends to increase by increasing the reaction pressure.

上記実施例は、本発明に係る二酸化炭素のメタノールへの転化装置の一例を示すものであり、本発明は上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらの本発明の範囲内に含まれるものであることは言うまでもない。   The above embodiment shows an example of the apparatus for converting carbon dioxide to methanol according to the present invention, and the present invention is not limited to the above embodiment, but within the scope of the invention described in the claims. It goes without saying that various modifications are possible and are included in the scope of the present invention.

本発明の二酸化炭素のメタノールへの転化装置によれば、二酸化炭素の還元反応における触媒や反応条件等の選定を、簡便かつ迅速に行うことができるため、二酸化炭素の低減かつ有効利用策として、地球環境の保護に大いに役立つものである。   According to the apparatus for converting carbon dioxide to methanol of the present invention, since it is possible to easily and quickly select a catalyst, reaction conditions and the like in the reduction reaction of carbon dioxide, as a reduction and effective utilization measure of carbon dioxide, It greatly helps to protect the global environment.

1 二酸化炭素の流量調整手段
2 還元性気体の流量調整手段
3 気体混合部
4 反応管
41 マイクロ波透過性の管
42 触媒充填管
43 触媒
44 ガラスフィルター
45 温度測定手段
46 鞘
47 圧力測定手段
48 レギュレーター
5 マイクロ波装置
6 反応部
7 リボンヒーター
8 サンプリング口
DESCRIPTION OF SYMBOLS 1 Carbon dioxide flow rate adjustment means 2 Reducing gas flow rate adjustment means 3 Gas mixing part 4 Reaction tube 41 Microwave-permeable tube 42 Catalyst filling tube 43 Catalyst 44 Glass filter 45 Temperature measurement means 46 Sheath 47 Pressure measurement means 48 Regulator 5 Microwave device 6 Reaction unit 7 Ribbon heater 8 Sampling port

Claims (3)

二酸化炭素を還元してメタノールに転化し、該メタノールの量をガス分析手段によって求めることにより、二酸化炭素のメタノールへの転化量を測定するメタノール転化装置において、
二酸化炭素の流量を調整する流量調整手段と、
還元性気体の流量を調整する流量調整手段と、
二酸化炭素と還元性気体を混合する気体混合部と、
触媒を充填可能な触媒充填管を収容した反応管および該反応管にマイクロ波を照射するマイクロ波装置からなり、反応管に導入された混合気体に含まれる二酸化炭素を還元してメタノールに転化する反応部と、
前記反応管内の温度を測定する温度測定手段と、
前記反応管内の圧力を測定する圧力測定手段と、を備えたことを特徴とする二酸化炭素のメタノールへの転化装置。
In a methanol conversion apparatus for measuring the amount of conversion of carbon dioxide to methanol by reducing carbon dioxide and converting it to methanol, and determining the amount of methanol by gas analysis means,
A flow rate adjusting means for adjusting the flow rate of carbon dioxide;
A flow rate adjusting means for adjusting the flow rate of the reducing gas;
A gas mixing section for mixing carbon dioxide and a reducing gas;
A reaction tube containing a catalyst-filled tube that can be filled with a catalyst, and a microwave device that irradiates the reaction tube with microwaves. The carbon dioxide contained in the mixed gas introduced into the reaction tube is reduced and converted to methanol. A reaction part;
Temperature measuring means for measuring the temperature in the reaction tube;
A pressure measuring means for measuring the pressure in the reaction tube; and a device for converting carbon dioxide into methanol.
前記反応管が、その両端に混合気体の入口と出口を有する、請求項1に記載の二酸化炭素のメタノールへの転化装置。   The apparatus for converting carbon dioxide to methanol according to claim 1, wherein the reaction tube has an inlet and an outlet for a mixed gas at both ends thereof. 前記還元性気体が水素である、請求項1または2に記載の二酸化炭素のメタノールへの転化装置。



The apparatus for converting carbon dioxide into methanol according to claim 1 or 2, wherein the reducing gas is hydrogen.



JP2009037363A 2009-02-20 2009-02-20 Apparatus for converting carbon dioxide to methanol Pending JP2010189350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037363A JP2010189350A (en) 2009-02-20 2009-02-20 Apparatus for converting carbon dioxide to methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037363A JP2010189350A (en) 2009-02-20 2009-02-20 Apparatus for converting carbon dioxide to methanol

Publications (1)

Publication Number Publication Date
JP2010189350A true JP2010189350A (en) 2010-09-02

Family

ID=42815799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037363A Pending JP2010189350A (en) 2009-02-20 2009-02-20 Apparatus for converting carbon dioxide to methanol

Country Status (1)

Country Link
JP (1) JP2010189350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076028A (en) * 2010-10-01 2012-04-19 Tokyo Electric Power Co Inc:The Methanol synthesis catalyst and method for synthesizing methanol
CN103395742A (en) * 2013-08-05 2013-11-20 四川亚联高科技股份有限公司 New water carbon ratio control device
JP2022152171A (en) * 2021-03-29 2022-10-12 本田技研工業株式会社 fuel synthesizer
CN115888618A (en) * 2022-11-08 2023-04-04 中国科学院深圳先进技术研究院 Reaction device and method for converting carbon dioxide by electric heating and concerted catalysis
JP7349111B1 (en) 2023-03-08 2023-09-22 株式会社アビット・テクノロジーズ Reduction reaction device and method for producing a reduced product of a compound to be treated

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173088A (en) * 1993-09-27 1995-07-11 Abb Res Ltd Manufacture of methanol from carbon dioxide and hydrogen
JP2001205089A (en) * 2000-01-24 2001-07-31 Natl Inst Of Advanced Industrial Science & Technology Meti Catalyst for synthesizing methanol and manufacturing method therfor
JP2005075761A (en) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology Method for producing methanol by biomass
JP2006169095A (en) * 2004-11-17 2006-06-29 Tokyo Electric Power Co Inc:The Method for immobilizing co2 using microwave
JP2006216412A (en) * 2005-02-04 2006-08-17 Tokyo Electric Power Co Inc:The Microwave heating device and carbon dioxide decomposition method using it
JP2007277179A (en) * 2006-04-07 2007-10-25 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether using microwave
JP2007314745A (en) * 2006-04-27 2007-12-06 Tokyo Electric Power Co Inc:The Method for producing fuel from carbon dioxide generated from ethanol fermentation process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173088A (en) * 1993-09-27 1995-07-11 Abb Res Ltd Manufacture of methanol from carbon dioxide and hydrogen
JP2001205089A (en) * 2000-01-24 2001-07-31 Natl Inst Of Advanced Industrial Science & Technology Meti Catalyst for synthesizing methanol and manufacturing method therfor
JP2005075761A (en) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology Method for producing methanol by biomass
JP2006169095A (en) * 2004-11-17 2006-06-29 Tokyo Electric Power Co Inc:The Method for immobilizing co2 using microwave
JP2006216412A (en) * 2005-02-04 2006-08-17 Tokyo Electric Power Co Inc:The Microwave heating device and carbon dioxide decomposition method using it
JP2007277179A (en) * 2006-04-07 2007-10-25 Tokyo Electric Power Co Inc:The Method for synthesizing dimethyl ether using microwave
JP2007314745A (en) * 2006-04-27 2007-12-06 Tokyo Electric Power Co Inc:The Method for producing fuel from carbon dioxide generated from ethanol fermentation process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076028A (en) * 2010-10-01 2012-04-19 Tokyo Electric Power Co Inc:The Methanol synthesis catalyst and method for synthesizing methanol
CN103395742A (en) * 2013-08-05 2013-11-20 四川亚联高科技股份有限公司 New water carbon ratio control device
JP2022152171A (en) * 2021-03-29 2022-10-12 本田技研工業株式会社 fuel synthesizer
JP7212710B2 (en) 2021-03-29 2023-01-25 本田技研工業株式会社 fuel synthesizer
CN115888618A (en) * 2022-11-08 2023-04-04 中国科学院深圳先进技术研究院 Reaction device and method for converting carbon dioxide by electric heating and concerted catalysis
JP7349111B1 (en) 2023-03-08 2023-09-22 株式会社アビット・テクノロジーズ Reduction reaction device and method for producing a reduced product of a compound to be treated

Similar Documents

Publication Publication Date Title
JP5205693B2 (en) Method for immobilizing CO2 using microwaves
JP2010189350A (en) Apparatus for converting carbon dioxide to methanol
Wang et al. Preparation and catalytic performance of Co 3 O 4 catalysts for low-temperature CO oxidation
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
CN110142014A (en) Photo-thermal combines catalytic degradation device and its application
CN104437553B (en) Microwave catalyst, preparation method and application thereof
JP2008224257A (en) Catalytic activity evaluation device and evaluation method
CN110346473A (en) A kind of device and method measuring catalytic reforming catalyst carbon deposition rate
JP5374955B2 (en) Method for synthesizing methanol from carbon dioxide
Popov et al. Effect of pressure on the production of hydrogen and nanofilamentous carbon by the catalytic pyrolysis of methane on Ni-containing catalysts
JP2006241319A (en) Method and installation for removing co2 in mixture gas such as biogas
CN102141550B (en) Micro-inverse device capable of switching evaluation of catalyst and carbon determination of catalyst
CN101923034B (en) Catalyst treatment device and method
CN101934194A (en) Formaldehyde waste gas high-efficiency membrane absorbent
JP2010202590A (en) Method for simulating conversion of carbon dioxide to methanol
JP2008247778A (en) Method for producing ethanol by using microwave
CN104535725A (en) Monitoring system
AU2012354917B2 (en) CO shift conversion device and shift conversion method
Watanabe et al. On-line analysis of catalytic reaction products using a high-pressure tandem micro-reactor GC/MS
JP6406629B2 (en) Hydrogen production system and hydrogen production method
CN113457681A (en) MOFs-derived Co-based catalyst for catalytic combustion of non-methane total hydrocarbons and preparation method and application thereof
JP2009262128A (en) Microwave chemical reactor and microwave chemical reaction method
JP5541055B2 (en) Methanol synthesis catalyst and methanol synthesis method
JP2014037323A (en) Hydrogen manufacturing apparatus
CN208340683U (en) A kind of simple experimental device preparing hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130422