JPH07173088A - Manufacture of methanol from carbon dioxide and hydrogen - Google Patents

Manufacture of methanol from carbon dioxide and hydrogen

Info

Publication number
JPH07173088A
JPH07173088A JP6231442A JP23144294A JPH07173088A JP H07173088 A JPH07173088 A JP H07173088A JP 6231442 A JP6231442 A JP 6231442A JP 23144294 A JP23144294 A JP 23144294A JP H07173088 A JPH07173088 A JP H07173088A
Authority
JP
Japan
Prior art keywords
hydrogen
carbon dioxide
catalyst
mixture
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231442A
Other languages
Japanese (ja)
Inventor
Baldur Dr Eliasson
エリアソン バルドゥール
Eric Killer
キラー エーリク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB RES Ltd
ABB Research Ltd Sweden
Original Assignee
ABB RES Ltd
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB RES Ltd, ABB Research Ltd Sweden filed Critical ABB RES Ltd
Publication of JPH07173088A publication Critical patent/JPH07173088A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To economically convert a mixture consisting of carbon dioxide and hydrogen into methanol in a high yield at a low temperature and under a low pressure by supplying the mixture into a thermal reactor in the presence of a copper catalyst.
CONSTITUTION: A mixture consisting of carbon dioxide and hydrogen is supplied into a reactor at the top of the reactor and subsequently a catalyst based on copper is immersed in the lower zone of the reactor. The dwelling time SV in the catalyst depends on the temperature T in the reactor, the quotient of SV divided by T is in the range of 10-50 and SV is defined as the volume of gas/hr divided by the total gas volume. Concretely, the reaction is carried out employing an H2/CO2 mixture in a molar ratio of 1:1 to 10:1 at a dwelling time of 1/10-10 sec, at a pressure of 1-30 bar and a temperature of 140-300°C. And carbon dioxide is obtained by post treatment of exhausts from an energy generating apparatus by combustion of fossil fuels and hydrogen is obtained by decomposition of water or hydrogen sulfide.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素と水素から
なる混合物を熱反応器に供給し、該熱反応器中で加圧し
ながら、かつ触媒の存在下にメタノールに変換する、二
酸化炭素と水素からメタノールを製造するための方法に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for supplying a mixture of carbon dioxide and hydrogen to a thermal reactor and converting it into methanol while pressurizing in the thermal reactor and in the presence of a catalyst. It relates to a method for producing methanol from hydrogen.

【0002】[0002]

【従来の技術】この場合、本発明は、定期刊行物“HITA
CH REVIEW”、1990年12月、第39巻、No.
6、第318〜319頁、殊に第318頁の図8または
N.Kanoun他、CATALYSIS LETTERS 15、(1992年)
第231〜235頁中の“Catalytic properties of ne
w Cu based catalysts containing Zr and/or V for me
thanol synthesis from a carbon dioxide and hydroge
n mixture”から明らかであるように公知技術に関連し
ている。
2. Description of the Related Art In this case, the present invention is based on the periodical publication "HITA
CH REVIEW ", December 1990, Volume 39, No.
6, pages 318-319, especially FIG. 8 on page 318 or
N. Kanoun et al., CATALYSIS LETTERS 15, (1992)
“Catalytic properties of ne” on pages 231-235.
w Cu based catalysts containing Zr and / or V for me
thanol synthesis from a carbon dioxide and hydroge
It is related to the known art as is clear from "n mixture".

【0003】化石燃料燃焼過程の二酸化炭素放出量は、
大気の組成の世界的規模の変化を生じ、かつ温室効果に
よる重大な気象変化を生じうる程度に達している。19
90年10月/11月にジュネーブで世界気象会議を準
備した気候変動に関する政府間パネル委員会(IPCC-Kom
mission)の報告によれば、大気の二酸化炭素含量を安
定化するためには二酸化炭素の放出量を直ちに60%減
少させなければならないとのことである。
The amount of carbon dioxide released during fossil fuel combustion is
It has caused global changes in the composition of the atmosphere and is capable of causing significant meteorological changes due to the greenhouse effect. 19
Intergovernmental Panel on Climate Change (IPCC-Kom) prepared for the World Meteorological Conference in Geneva in October / November 1990.
According to the report of the mission), in order to stabilize the carbon dioxide content of the atmosphere, the amount of carbon dioxide emission must be immediately reduced by 60%.

【0004】現在では、より多くの量の二酸化炭素を必
要とし、同時に放出量の減少に寄与する極く僅かな使
用、例えば第三石油類採掘(tertiaere Oelfoerderun
g)(増大した石油再生(Enhanced Oil Recovery))だ
けが存在する。提案された最終備蓄構想(Endlagerungs
konzepte)(海水、天然ガス田)は、今世紀中にはほと
んど実現できず、例えば生物学的理由からいつまでも閉
鎖されたままであるかもしれない。これとは異なり、例
えば交通手段または燃焼設備のための燃料として大量に
販売することができる化合物への二酸化炭素の変換が考
えられる。前記化合物とは、第一に、メタノールあるい
はまたメタンである。
[0004] At present, very little use, which requires a higher amount of carbon dioxide and at the same time contributes to the reduction of emissions, eg tertiary petroleum mining (tertiaere Oelfoerderun
g) Only (Enhanced Oil Recovery) exists. Proposed Final Stockpiling Initiative (Endlagerungs
Konzepte (seawater, natural gas fields) are almost unachievable during this century, and may remain closed forever for biological reasons, for example. Alternatively, it is conceivable to convert carbon dioxide into a compound which can be sold in large quantities as a fuel, for example for transportation or combustion equipment. The compound is primarily methanol or methane.

【0005】原理的には、前記物質の合成は、次の全反
応により進行する: CO2 + 3H2 → CH3OH + H2O CO2 + 4H2 → CH4 + 2H2O 古典的な化学処理技術の場合、前記の反応は、高められ
た圧力下に特殊な触媒、例えばロジウムに金属酸化物を
加えたもの、銅/亜鉛にクロム、アルミニウム、マンガ
ン、銀またはバナジウムまたは銅/ニッケル化合物を加
えたものを使用しながら、230〜280℃の温度での
み実施することができる。
In principle, the synthesis of the substance proceeds by the following total reaction: CO 2 + 3H 2 → CH 3 OH + H 2 O CO 2 + 4H 2 → CH 4 + 2H 2 O classical In the case of chemical treatment techniques, the reaction is carried out under special pressure, for example with special catalysts such as rhodium with metal oxides, copper / zinc with chromium, aluminum, manganese, silver or vanadium or copper / nickel compounds. Can be carried out only at a temperature of 230 to 280 ° C.

【0006】冒頭に記載された刊行物“HITACH REVIE
W”、前掲書、図8には、概略的な形で、メタンおよび
メタノールの合成的製造のための古典的方法に、2つの
新しい方法が塩要され、この場合、水もしくは水素が、
二酸化炭素と直接反応する。
The publication "HITACH REVIE" mentioned at the beginning
W ", op. Cit., In schematic form, the classical process for the synthetic production of methane and methanol requires two new processes, in which water or hydrogen is
Reacts directly with carbon dioxide.

【0007】1つの方法(“光−電化学変換法(Photo-
electric chemical conversion)”)の場合、光触媒に
よって水分子が分解される。この場合に生じる陽子(H
+)は、二酸化炭素を還元してメタンまたはメタノール
になる。しかしながら、この場合に意図された効率(エ
ネルギー変換効率)は、1%を下廻っている。更に、極
めて大きな電極面積が必要とされることになる。
One method (“photo-electrochemical conversion method (Photo-
In the case of electric chemical conversion) "), water molecules are decomposed by the photocatalyst. Protons (H
+ ) Reduces carbon dioxide to methane or methanol. However, the intended efficiency (energy conversion efficiency) in this case is below 1%. Moreover, a very large electrode area would be required.

【0008】もう1つの公知方法の場合、二酸化炭素
は、太陽エネルギーによって生じた酸素を用いて接触水
素化され(“水素化”)、既に一酸化炭素の水素化の際
に市場により実施されている方法である。この場合、安
価な水素の準備とともに、この場合に必要とされる高い
圧力および高い温度が経済的な使用のための重要な問題
である。
In another known method, carbon dioxide is catalytically hydrogenated using oxygen generated by solar energy ("hydrogenation"), already carried out by the market during the hydrogenation of carbon monoxide. It is a method. In this case, the high pressure and high temperature required in this case, together with cheap hydrogen preparation, are important issues for economical use.

【0009】最後に、ドイツ連邦共和国特許出願公開第
4220865号明細書の記載から、既に低い温度およ
び低い圧力で経済的に実施可能であるメタンまたはメタ
ノールの合成法は公知である。この場合、反応室中で、
二酸化炭素と水素を含有する物質からなる混合物が静電
放電にさらされる。
Finally, it is known from DE-A 4220865 to describe a process for the synthesis of methane or methanol which can already be carried out economically at low temperatures and pressures. In this case, in the reaction chamber,
A mixture of substances containing carbon dioxide and hydrogen is exposed to electrostatic discharge.

【0010】公知の接触反応法の場合、反応室中の圧力
および温度、触媒(床)中での混合物の滞留時間あるい
はまたは触媒の前処理に関して漠然とした記載のみが存
在する。しかし、前記処理過程の規模の一致は、達成可
能なメタノール收量にとって決定的に重要である。
In the case of the known catalytic reaction processes, there are only vague statements regarding the pressure and temperature in the reaction chamber, the residence time of the mixture in the catalyst (bed) or the pretreatment of the catalyst. However, the scale agreement of the processes is crucial for the achievable methanol yield.

【0011】[0011]

【発明が解決しようとする課題】本発明には、既に低い
温度および低い圧力で経済的に実施可能であり、かつ高
いメタノール收量を実現する、メタノールの製造法を得
るという課題が課されている。
The present invention is subject to the problem of obtaining a process for the production of methanol which is already economically viable at low temperatures and pressures and which achieves high methanol yields. There is.

【0012】[0012]

【課題を解決するための手段】前記課題は、本発明によ
れば、二酸化炭素と水素からなる混合物を上から反応室
中に供給し、次に、触媒を反応室の下部に浸漬し、触媒
として銅を基礎とするものが使用され、触媒中での滞留
時間は、反応室中の温度に依存して、滞留時間svと温
度tとの商の数値が10〜50の値の間であるような程
度に定められることによって解決され、この場合、滞留
時間svは、ガス容量/時間として、全部のガス量で割
って定義され、かつ温度は摂氏が採用される。
According to the present invention, the above-mentioned object is to supply a mixture of carbon dioxide and hydrogen from above into a reaction chamber, and then to immerse the catalyst in the lower portion of the reaction chamber, A copper-based material is used as the material, and the residence time in the catalyst depends on the temperature in the reaction chamber, and the quotient of the residence time sv and the temperature t is between 10 and 50. It is solved by defining such a degree, in which case the residence time sv is defined as the gas volume / hour divided by the total amount of gas, and the temperature is in degrees Celsius.

【0013】前記の教示を使用する場合に、メタノール
をより大量に変動可能な時間で製造し、こうして温室効
果ガスの二酸化炭素をほとんど再利用することが初めて
可能になる。この場合、予め窒素と水素からなる混合物
を用いて数時間の間の状態調節された銅を基礎とする触
媒を使用することは、特に有利であることが判明した。
触媒材料としては、本質的に冒頭に引用された刊行物
“Catalytic propertiesof new Cu based catalysts co
ntaining Zr and/or V for methanol synthesisfrom a
carbon dioxide and hydrogen mixture”、前掲書に記
載された全ての物質が該当し、該触媒材料は、通常、ペ
レット状物として市販されている。
When using the above teachings, it is possible for the first time to produce larger quantities of methanol in variable time and thus to almost recycle the greenhouse gas carbon dioxide. In this case, it has proved to be particularly advantageous to use a copper-based catalyst which has been conditioned for several hours beforehand with a mixture of nitrogen and hydrogen.
As a catalyst material, the publication “Catalytic properties of new Cu based catalysts co
ntaining Zr and / or V for methanol synthesis from a
"Carbon dioxide and hydrogen mixture", all the substances described in the above mentioned are applicable, and the catalyst material is usually marketed as a pellet.

【0014】出発物質の水素は、今日普及している方法
により、例えば電気分解によって製造することができ、
この場合、エネルギー源としては、核エネルギーまたは
再生可能エネルギー源(太陽、風、水力、バイオマス)
を使用することができる。その上、水素は、マイクロ
波、静電放電を用いる硫化水素(H2S)の分解、熱分
解または電気分解によって得ることができる。硫化水素
は、特定の化学的方法の場合にほとんど産業廃棄物とし
て生じ;該硫化水素は、天然ガス処理産業の副産物でも
ある。更に、硫化水素からの水素の取得は、硫化水素の
結合エネルギーが水の結合エネルギーよりも小さいとい
う利点を有する。
The starting material hydrogen can be produced by methods prevailing today, for example by electrolysis,
In this case, the energy source is nuclear energy or renewable energy source (sun, wind, hydropower, biomass)
Can be used. Moreover, hydrogen can be obtained by decomposition of hydrogen sulphide (H 2 S) using microwaves, electrostatic discharge, pyrolysis or electrolysis. Hydrogen sulphide is mostly produced as industrial waste for certain chemical processes; it is also a by-product of the natural gas processing industry. Furthermore, the acquisition of hydrogen from hydrogen sulfide has the advantage that the binding energy of hydrogen sulfide is smaller than that of water.

【0015】メタノール合成のために必要とされたCO
2は、化石燃料エネルギー担体の燃焼の際に望ましくな
い成分として生じる。この種二酸化炭素が水素と混合さ
れ、かつこの後熱反応器に供給される前に、確かに別の
燃料残分から分離されなければならない。前記の目的の
ために、既に今日、二酸化炭素を食料品の使用(食品用
の使用)または化学的使用(化学用の使用)のために用
意する多数の技術が提供されている(ABB Lummus Cres
t、12141 Wickester、Houston、TX 77079-9570アメリカ
合衆国在、の日付なしの社報“CO2 Recovery from Fl
ue Gasを参照のこと)。
CO required for methanol synthesis
2 occurs as an undesired component during the combustion of fossil fuel energy carriers. Before this kind of carbon dioxide is mixed with hydrogen and then fed to the thermal reactor, it must be separated from another fuel residue. To this end, a number of technologies have already been provided today for preparing carbon dioxide for food use (food use) or chemical use (chemical use) (ABB Lummus Cres).
t, 12141 Wickester, Houston, TX 77079-9570, USA Dateless Newsletter “CO 2 Recovery from Fl
See ue Gas).

【0016】本発明による方法は、以下に、図面に基づ
く実施例により詳説される。
The method according to the invention is explained in greater detail below by means of an embodiment on the basis of the drawing.

【0017】[0017]

【実施例】メタノール(CH3OH)の合成のための装
置の略示的な実験室用構造体の場合、純粋な水素および
純粋な二酸化炭素を、それぞれ高圧型量調節器1もしく
は2を介して混合機3へ供給する。
EXAMPLE In the case of a schematic laboratory structure of a device for the synthesis of methanol (CH 3 OH), pure hydrogen and pure carbon dioxide are fed via high-pressure regulators 1 and 2, respectively. And supply it to the mixer 3.

【0018】混合機3は、安全弁4を備えている。この
混合機3から、H2/CO2混合物が円筒状の反応器5中
に到達する。反応器5の底領域中に、触媒6が緩やかに
積み上げられている。該触媒は、実験室用構造体の場合
には、容器の高さの約1/10に達している。この触媒
は、ペレット状物の形で市販されており、予め粉砕さ
れ、粒径250〜500μmの粒度を有する触媒材料を
使用した。この場合、Cuを基礎とした触媒であり、Fi
rma Haldor Topsoe A/S、Nymollevej、DK-2800 Lyn
gby在の型式番号MK−101で販売されている。反応
器は、加熱装置7を有している。反応器から伸びている
導管の途中の圧力調節器8を用いて反応器5の内部の圧
力は、広い範囲で調節することができる。反応器5中の
温度および圧力は、圧力計9および温度計10を用いて
把握される。
The mixer 3 is equipped with a safety valve 4. From this mixer 3, the H 2 / CO 2 mixture arrives in a cylindrical reactor 5. A catalyst 6 is gently stacked in the bottom region of the reactor 5. The catalyst reaches about 1/10 of the height of the container in the case of a laboratory structure. This catalyst is commercially available in the form of pellets and used a pre-ground catalyst material having a particle size of 250-500 μm. In this case, the catalyst is based on Cu and
rma Haldor Topsoe A / S, Nymollevej, DK-2800 Lyn
It is sold under the model number MK-101 of gby. The reactor has a heating device 7. The pressure inside the reactor 5 can be adjusted over a wide range by means of a pressure regulator 8 in the middle of a conduit extending from the reactor. The temperature and pressure in the reactor 5 are grasped using the pressure gauge 9 and the thermometer 10.

【0019】圧力調節器8から、加熱された導管11
(加熱部は12で示されかつ反応器5中で発生したメタ
ノールの凝縮を阻止する)が分岐弁(Mehrwegeventil)
13に通じている。前記分岐弁は、導管11を貫流する
ガス混合物を、ガスクロマトグラフ14または凝縮装置
15に1回供給できるようにする。ガスクロマトグラフ
14中では、反応器5を離れるガス混合物の組成を質的
および量的に定めることができる。凝縮装置15中で
は、約60℃で凝縮するメタノール16が捕集される。
反応していないH2/CO2混合物は、(この実験室用構
造体の場合)野外に放出される。
From the pressure regulator 8 to the heated conduit 11
A branch valve (Mehrwegeventil) is provided (the heating section is shown at 12 and prevents condensation of the methanol generated in the reactor 5).
It leads to 13. The branch valve allows the gas mixture flowing through the conduit 11 to be fed once to the gas chromatograph 14 or the condenser 15. In the gas chromatograph 14, the composition of the gas mixture leaving the reactor 5 can be qualitatively and quantitatively determined. In the condenser 15, the methanol 16 condensed at about 60 ° C. is collected.
The unreacted H 2 / CO 2 mixture is released in the field (for this laboratory structure).

【0020】図2による線図の場合、%でのメタノール
変換率CRと種々の温度で反応室5の内部の圧力Pとの
関係が記載されている。一般に、変換率CRは、圧力増
大とともに上昇する。また、まず、温度上昇とともに変
換率CRは向上し;この変換率は、220〜250℃の
値で、最大に達し、かつ温度上昇の際に再度低下する。
The diagram according to FIG. 2 shows the relationship between the methanol conversion rate CR in% and the pressure P inside the reaction chamber 5 at various temperatures. In general, the conversion rate CR increases with increasing pressure. Also, first, the conversion rate CR increases with increasing temperature; this conversion rate reaches a maximum at a value of 220 to 250 ° C. and decreases again with increasing temperature.

【0021】出願人の認識によれば、2つ競合する過程
が前記の最適値に有用である:メタノールは、反応器5
中で、本質的に次の全反応により形成される: CO2 + 3H2 → CH3OH + H2O (1) メタノール合成は、より低い温度でより高い変換率を生
じるが、しかしこの後、この過程は、より一層緩慢に進
行し、かつ触媒床中での滞留時間は、相応して長くされ
なければならない。これとは異なり、触媒の作用は、詳
細にされた最大処理温度(MK−101型の場合310
℃)にまでの温度上昇とともに増大する。
To the Applicant's knowledge, two competing processes are useful for the above optimum values: methanol is used in the reactor 5
In, essentially all of the following reactions are formed: CO 2 + 3H 2 → CH 3 OH + H 2 O (1) Methanol synthesis yields higher conversions at lower temperatures, but after this The process proceeds even more slowly, and the residence time in the catalyst bed must be correspondingly lengthened. In contrast to this, the action of the catalyst is such that the specified maximum processing temperature (310 for model MK-101).
(° C) increases with increasing temperature.

【0022】実験室用構造体の場合、メタノール合成
は、1:1〜10:1のモル比を有するH2/CO2混合
物を用いて、1/10秒ないし10秒の滞留時間、1〜
30バールの圧力および140〜300℃の温度で実施
された。この場合、最適の收量は、モル比3:1、約1
秒の滞留時間、20バールの圧力および240℃の温度
で生じた。CO2変換率(CO2の供給されたモル数対変
換されたCO2のモル数の%での量)は約10%であ
り、この場合、選択性(CO2の変換されたモル数対C
3OHの形成されたモル数の%での量)は、50%を
上廻っていた。
In the case of a laboratory structure, the methanol synthesis uses a H 2 / CO 2 mixture with a molar ratio of 1: 1 to 10: 1, a residence time of 1/10 seconds to 10 seconds, 1 to 10 seconds.
It was carried out at a pressure of 30 bar and a temperature of 140-300 ° C. In this case, the optimum yield is a molar ratio of 3: 1, about 1
It occurred at a residence time of seconds, a pressure of 20 bar and a temperature of 240 ° C. The CO 2 conversion rate (amount of CO 2 fed vs. amount of converted CO 2 in% of moles) is about 10%, in which case the selectivity (CO 2 converted moles vs. C
The amount of H 3 OH formed in% of the number of moles) was above 50%.

【0023】本発明は、前記の場合、実験室用構造体に
関連し、特定の触媒の使用下に記載された。本発明によ
る方法の大規模工業的な実現の場合、例えば冒頭に記載
された社報“CO2 Recovery from Flue Gasを中に記載
されているような装置から二酸化炭素が生じる。
The invention has been described in the above case in relation to a laboratory structure, using a specific catalyst. In the case of a large-scale industrial realization of the process according to the invention, carbon dioxide is produced, for example, from a device such as that described in the introductory publication "CO 2 Recovery from Flue Gas".

【0024】水素源として、例えば核または太陽エネル
ギーにより運転される水−電気分解装置が該当する。ま
た、水素源としては、硫化水素も該当する。
Suitable hydrogen sources are, for example, water-electrolyzers operated by nuclear or solar energy. Further, hydrogen sulfide is also applicable as the hydrogen source.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実験室規模でのメタノール合成のため
の本発明による方法の実施のための装置を示す略図であ
る。
1 is a schematic diagram showing an apparatus for carrying out the method according to the invention for the synthesis of methanol on a laboratory scale.

【図2】図2は、所定の滞留時間の際のメタノール收量
に対する、熱反応器中の温度および圧力の影響を明示す
るための線図である。
FIG. 2 is a diagram to demonstrate the effect of temperature and pressure in the thermal reactor on the methanol yield at a given residence time.

【符号の説明】[Explanation of symbols]

1、2 量調節器、 3 混合機、 4 安全弁、 5
熱反応器、 6 触媒、 7 加熱装置、 8 圧力
調節器、 9 圧力計、 10 温度計、 11 導
管、 12 導管加熱部、 13 分岐弁、 14 ガ
スクロマトグラフ、 15 凝縮装置、 16 メタノ
ール
1, 2 quantity regulator, 3 mixer, 4 safety valve, 5
Thermal reactor, 6 catalyst, 7 heating device, 8 pressure regulator, 9 pressure gauge, 10 thermometer, 11 conduit, 12 conduit heating part, 13 branch valve, 14 gas chromatograph, 15 condenser, 16 methanol

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素と水素からなる混合物を熱反
応器(5)に供給し、該熱反応器中で加圧しながら、か
つ触媒(6)の存在下にメタノールに変換する、二酸化
炭素と水素からメタノールを製造するための方法におい
て、二酸化炭素と水素からなる混合物を上から熱反応器
(5)中に供給し、次に、触媒を熱反応器の下部に浸漬
し、この場合、触媒として銅を基礎とするものが使用さ
れ、触媒中での滞留時間svは、反応室中の温度Tに依
存して、滞留時間svと温度Tとの商の数値が10〜5
0の値の間であるような程度に定められ、この場合、滞
留時間svは、ガス容量/時間として、全部のガス量で
割って定義され、かつ温度は摂氏が採用されることを特
徴とする、二酸化炭素と水素からのメタノールの製造
法。
1. A carbon dioxide which is fed to a thermal reactor (5) with a mixture of carbon dioxide and hydrogen and which is converted into methanol under pressure in the thermal reactor and in the presence of a catalyst (6). In the process for producing methanol from hydrogen, a mixture of carbon dioxide and hydrogen is fed into the thermal reactor (5) from above and then the catalyst is immersed in the lower part of the thermal reactor, in which case the catalyst A copper-based material is used as the material, and the residence time sv in the catalyst depends on the temperature T in the reaction chamber and the quotient of the residence time sv and the temperature T is 10 to 5
It is characterized in that it is between values of 0, in which case the residence time sv is defined as the gas volume / hour divided by the total amount of gas and the temperature is in degrees Celsius. A method for producing methanol from carbon dioxide and hydrogen.
【請求項2】 反応室(5)中の温度を220〜250
℃の間の値に維持する、請求項1に記載の方法。
2. The temperature in the reaction chamber (5) is 220 to 250.
The method according to claim 1, which is maintained at a value between 0 ° C.
【請求項3】 混合物中で、水素対二酸化炭素のモル比
が1〜10、好ましくは3の値である、請求項1または
2に記載の方法。
3. Process according to claim 1 or 2, wherein in the mixture the molar ratio of hydrogen to carbon dioxide has a value of 1 to 10, preferably 3.
【請求項4】 反応室(5)中の圧力を1〜3バール、
好ましくは20バールの値に維持する、請求項1から3
までのいずれか1項に記載の方法。
4. The pressure in the reaction chamber (5) is 1 to 3 bar,
Preferably it is maintained at a value of 20 bar.
The method according to any one of the above.
【請求項5】 反応室(5)での混合物の滞留時間が
0.1〜10秒間、好ましくは1秒間である、請求項1
から4までのいずれか1項に記載の方法。
5. The residence time of the mixture in the reaction chamber (5) is 0.1 to 10 seconds, preferably 1 second.
The method according to any one of items 1 to 4.
【請求項6】 二酸化炭素を、化石燃料燃焼エネルギー
発生装置の排ガスの後処理によって取得する、請求項1
から5までのいずれか1項に記載の方法。
6. The carbon dioxide is obtained by post-treatment of exhaust gas from a fossil fuel combustion energy generator.
The method according to any one of items 1 to 5.
【請求項7】 水素を水または硫化水素の分解によって
取得する、請求項1から6までのいずれか1項に記載の
方法。
7. The method according to claim 1, wherein hydrogen is obtained by decomposition of water or hydrogen sulfide.
【請求項8】 水素をマイクロ波、静電放電、熱分解お
よび/または電気分解を用いる硫化水素の分解によって
取得する、請求項7に記載の方法。
8. The method according to claim 7, wherein hydrogen is obtained by decomposition of hydrogen sulphide using microwaves, electrostatic discharge, pyrolysis and / or electrolysis.
JP6231442A 1993-09-27 1994-09-27 Manufacture of methanol from carbon dioxide and hydrogen Pending JPH07173088A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332790.7 1993-09-27
DE4332790A DE4332790A1 (en) 1993-09-27 1993-09-27 Process for producing methanol

Publications (1)

Publication Number Publication Date
JPH07173088A true JPH07173088A (en) 1995-07-11

Family

ID=6498699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231442A Pending JPH07173088A (en) 1993-09-27 1994-09-27 Manufacture of methanol from carbon dioxide and hydrogen

Country Status (3)

Country Link
JP (1) JPH07173088A (en)
AU (1) AU686189B2 (en)
DE (1) DE4332790A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2010189350A (en) * 2009-02-20 2010-09-02 Tokyo Electric Power Co Inc:The Apparatus for converting carbon dioxide to methanol

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM561594A0 (en) * 1994-05-16 1994-06-09 Isentropic Systems Ltd Improvements in the utilisation of solar energy and solid fossil fuels
AU688904B2 (en) * 1994-05-16 1998-03-19 Cc Energy Pty Limited Production of methanol
CN1134283C (en) * 1996-02-15 2004-01-14 Abb研究有限公司 Process and device for the conversion of a greenhouse gas
DE19802660A1 (en) * 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Integrating energy production, waste disposal and chemical synthesis, e.g. of polymer precursors, from carbon dioxide
EP2100869B1 (en) * 2008-03-10 2019-11-27 Edgar Harzfeld Method for producing methanol by recovering carbon dioxide from exhaust gases of energy generation facilities powered by fossil fuels
GB201202791D0 (en) 2012-02-20 2012-04-04 Simpson Robert Methods and system for energy conversion and generation
DE102017201691A1 (en) 2016-02-05 2017-08-10 Basf Se Process for the preparation of polyoxymethylene ethers from metallurgical gases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933608A (en) * 1974-08-27 1976-01-20 The United States Of America As Represented By The Secretary Of The Interior Method for the decomposition of hydrogen sulfide
DE3261445D1 (en) * 1981-06-03 1985-01-17 Graetzel Michael Process for producing hydrogen and elemental sulphur by photochemical redox reaction of hydrogen sulphide and sulphides
DE4220865A1 (en) * 1991-08-15 1993-02-18 Asea Brown Boveri Hydrogenation of carbon di:oxide esp. to methane or methanol in plasma - which can operate at low temp. and low pressure, using hydrogen@ or water vapour

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2010189350A (en) * 2009-02-20 2010-09-02 Tokyo Electric Power Co Inc:The Apparatus for converting carbon dioxide to methanol

Also Published As

Publication number Publication date
AU7162494A (en) 1995-04-06
DE4332790A1 (en) 1995-03-30
AU686189B2 (en) 1998-02-05

Similar Documents

Publication Publication Date Title
Dalena et al. Methanol production and applications: an overview
Basile et al. Methanol: science and engineering
US20190337876A1 (en) Integrated system and method for producing methanol product
US20090069452A1 (en) Methods and apparatus for producing ethanol from syngas with high carbon efficiency
Budzianowski Negative net CO2 emissions from oxy-decarbonization of biogas to H2
US20120071697A1 (en) Method for Producing Ethanol
US20080287555A1 (en) Novel process and catalyst for carbon dioxide conversion to energy generating products
EP2086913A1 (en) Process for producing carbon dioxide and methane by catalytic gas reaction
US8318112B2 (en) System and process of light chain hydrocarbon synthesis
WO2011021944A1 (en) Combined processes for utilizing synthesis gas at low co2 emission and high energy output
JPH07173088A (en) Manufacture of methanol from carbon dioxide and hydrogen
Rakhmatov et al. Technology for the production of ethylene by catalytic oxycondensation of methane
Busca et al. Hydrogen from alcohols: IR and flow reactor studies
Centi et al. Advances in catalysts and processes for methanol synthesis from CO 2
WO2017108629A2 (en) A method for synthesizing nitrogenous compounds from organic waste and a system for synthesizing nitrogenous compounds from organic waste
KR102287865B1 (en) Method for preparing methanol from carbon dioxide-containing gas resources comprising dry-reforming of methane by plasma
EP3526335A1 (en) Method and device for producing organic compounds from biogas
Tamasi et al. Thermodynamic analysis of ethanol reforming for hydrogen production
Xue et al. Catalytic Transformation of Oxygenated Organic Compounds into Pure Hydrogen
EP4332200A1 (en) Synthetic fuel production method
US20240198317A1 (en) Dispersed carbonate catalysts for the reverse water-gas shift reaction
Barz et al. Catalytic conversion of biogas to biomethane
RU2651195C1 (en) Synthetic gas production method
Kechagiopoulos et al. Hydrogen production from renewable energy sources: reforming of biogas and bio-oil
US20210380417A1 (en) Process and Device for Producing Hydrogen, Carbon Monoxide and a Carbon-Containing Product

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040303