JP2008224257A - Catalytic activity evaluation device and evaluation method - Google Patents

Catalytic activity evaluation device and evaluation method Download PDF

Info

Publication number
JP2008224257A
JP2008224257A JP2007059322A JP2007059322A JP2008224257A JP 2008224257 A JP2008224257 A JP 2008224257A JP 2007059322 A JP2007059322 A JP 2007059322A JP 2007059322 A JP2007059322 A JP 2007059322A JP 2008224257 A JP2008224257 A JP 2008224257A
Authority
JP
Japan
Prior art keywords
gas
catalyst
raw material
catalysts
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059322A
Other languages
Japanese (ja)
Inventor
Koichi Ito
鉱一 伊藤
Masayuki Yui
雅之 油井
Kazuo Manome
一生 馬目
Hiroko Tezuka
裕子 手塚
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007059322A priority Critical patent/JP2008224257A/en
Publication of JP2008224257A publication Critical patent/JP2008224257A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic activity evaluation device and evaluation method, capable of evaluating easily a plurality of catalyst samples simultaneously under the same condition. <P>SOLUTION: This catalytic activity evaluation device is provided with a control means for controlling a flow rate of raw material gas introduced into a reactor, the reactor built in with a storage part for storing the plurality of catalysts, and a gas detecting means for detecting a catalytic reaction product, the reactor comprises a reactor main body having a raw material gas buffer part and a plurality of catalyst installation parts in its inside, and a heating part for heating uniformly a temperature of the catalyst, and has a single raw material gas introduction part and a plurality of reaction gas drawing-out parts, the raw material gas is introduced into the respective catalyst installation parts via the buffer part, to be drawn out from the reactor after catalytic reaction in each catalyst installation part, respective catalytic reaction product gases drawn out from the different drawing-out parts are respectively communicated with the gas detecting means via a catalytic reaction product gas control means, in the catalyst activity evaluation device. The present invention discloses also the catalyst activity evaluation method using the same. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の触媒の反応活性を同一条件で、迅速かつ簡便に評価することが可能な触媒活性評価装置及び評価方法に関する。   The present invention relates to a catalyst activity evaluation apparatus and an evaluation method capable of quickly and easily evaluating reaction activities of a plurality of catalysts under the same conditions.

各種の化学反応において触媒が使用されている。しかし、最適触媒を見つけることは容易な事ではない。従来の触媒探索は試行錯誤に頼るところが大きく、一回の活性試験で評価できる項目が限られているため、多大な時間と労力を要してきた。また、複数の触媒を完全に同一な条件にて評価することができなかった。   Catalysts are used in various chemical reactions. However, finding the optimal catalyst is not easy. Conventional catalyst search relies heavily on trial and error, and the items that can be evaluated in a single activity test are limited, and thus a great deal of time and labor has been required. Further, it was not possible to evaluate a plurality of catalysts under completely the same conditions.

そのため、実際のプロセスで使用されるのと同じ条件(温度、圧力、ガス流速)で複数の触媒の反応活性を同時に評価し、触媒活性を効率よく測定することを可能にする触媒活性評価装置(特許文献1)、特定の気相反応に好適な触媒を、迅速かつ簡易に低コストで開発する方法(特許文献2)、複数のガスセンサを使用し種類及び濃度が既知のガス出力値パターンとのマッチングにより生成ガスの種類を識別し、濃度を計算する方法(特許文献3)などが提案されている。   For this reason, a catalytic activity evaluation apparatus (equivalent to the simultaneous evaluation of the reaction activity of multiple catalysts under the same conditions (temperature, pressure, gas flow rate) used in the actual process and efficient measurement of the catalytic activity ( Patent Document 1), a method for quickly and easily developing a catalyst suitable for a specific gas phase reaction at low cost (Patent Document 2), and a gas output value pattern of a known type and concentration using a plurality of gas sensors A method of identifying the type of product gas by matching and calculating the concentration (Patent Document 3) has been proposed.

特許文献1では、反応生成ガス導出ラインに切替部を設け、各触媒サンプルから導出される反応生成ガスのうち、一つのラインだけを順次生成物検出部へ導通させ、GCで検出する方式を採用する。特許文献2では、触媒を充填した石英製カップを入れたセラミック製ボートを石英反応管に入れ、これを管状電気炉で加熱し、触媒上に生成した析出炭素量を測定することにより、触媒活性を評価している。特許文献3では、プレート材に複数の触媒をマトリックス状に配置し、それをホットプレートで加熱し、触媒反応生成ガスを吸引装置により強制的に吸引し、半導体の電気伝導度が変化することを利用した半導体式ガスセンサで濃度を計測している。しかし、いずれの方法も簡便とは言い難い。
特開2002−5918号公報 特開2003−164767号公報 特開2000−193622号公報
In Patent Document 1, a switching unit is provided in the reaction product gas deriving line, and among the reaction product gases derived from each catalyst sample, only one line is sequentially conducted to the product detection unit and detected by GC. To do. In Patent Document 2, a ceramic boat containing a quartz cup filled with a catalyst is placed in a quartz reaction tube, heated in a tubular electric furnace, and the amount of precipitated carbon produced on the catalyst is measured, whereby the catalytic activity is measured. Is evaluated. In Patent Document 3, a plurality of catalysts are arranged in a matrix on a plate material, heated by a hot plate, and the catalytic reaction product gas is forcibly sucked by a suction device, and the electrical conductivity of the semiconductor changes. The concentration is measured with a semiconductor gas sensor. However, neither method is easy to say.
JP 2002-5918 A JP 2003-164767 A JP 2000-193622 A

本発明は、触媒探索の効率化を図ることを目的として、複数サンプルを簡易に、しかも同一条件にて複数同時に評価することが可能な触媒活性評価装置および評価方法を提供することを課題とする。   It is an object of the present invention to provide a catalyst activity evaluation apparatus and an evaluation method capable of easily evaluating a plurality of samples simultaneously and under the same conditions for the purpose of improving the efficiency of catalyst search. .

前記課題を解決するため、本発明者らは鋭意検討した結果、下記の構成により目的を達成し得ることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, found that the object can be achieved by the following constitution, and have reached the present invention.

すなわち、本発明は以下の通りである。
(1)反応容器に導入する原料ガスの流量を制御する原料ガス制御手段と、複数の触媒を収容する収容部を内蔵した反応容器と、触媒反応生成物を検出するガス検知手段を備えた触媒活性評価装置であって、
該反応容器は、原料ガスバッファー部と複数の触媒設置部を内部に有する容器本体と、触媒の温度を均一に加熱する加熱部からなり、かつ単一の原料ガス導入部と複数の触媒反応生成ガス導出部を有し、
原料ガスは、前記バッファー部を介して各触媒設置部内に導入され、各触媒設置部において触媒反応を受けた後、反応容器から導出され、
相異なる導出部から導出された触媒反応生成ガスは、それぞれ触媒反応生成ガス制御手段を介し、それぞれガス検知手段へ導通されることを特徴とする触媒活性評価装置。
(2)さらに、原料ガスの導入ラインと触媒反応生成ガスの導出ラインに、触媒前処理用のガスを導通させるための切替手段を備えている、前記(1)に記載の触媒活性評価装置。
(3)ガス検知手段がガス検知管である、前記(1)又は(2)に記載の触媒活性評価装置。
(4)同一条件下に設置された複数の収納部にそれぞれ同種、又は相異なる複数の触媒を充填し、それら収容部内に原料ガスを導入して該原料ガスと前記複数の触媒とを加熱条件下に接触させて反応を行わせ、それぞれ相異なる導出部から導出された触媒反応生成ガスに含まれる生成ガス濃度を、後流に設置した複数のガス検知管を用いてそれぞれ測定することを特徴とする複数の触媒を同一条件で相対評価する触媒活性評価方法。
(5)前記収容部に触媒前処理用のガスを導入して前記複数の触媒を前処理した後、それら収容部内に原料ガスを導入して該原料ガスと前記複数の触媒とを加熱条件下に接触させる、前記(4)に記載の複数の触媒を同一条件で相対評価する触媒活性評価方法。
(6)ガス検知管が汎用のガス検知管である、前記(4)又は(5)に記載の複数の触媒を同一条件で相対評価する触媒活性評価方法。
That is, the present invention is as follows.
(1) A catalyst comprising source gas control means for controlling the flow rate of the source gas introduced into the reaction vessel, a reaction vessel containing a housing for accommodating a plurality of catalysts, and a gas detection means for detecting catalytic reaction products An activity evaluation device,
The reaction vessel comprises a vessel main body having a source gas buffer unit and a plurality of catalyst installation units therein, and a heating unit for uniformly heating the temperature of the catalyst, and a single source gas introduction unit and a plurality of catalyst reaction generations A gas outlet,
The raw material gas is introduced into each catalyst installation section through the buffer section, and after being subjected to a catalytic reaction in each catalyst installation section, is led out from the reaction vessel,
A catalytic activity evaluation apparatus characterized in that catalyst reaction product gases derived from different deriving units are respectively conducted to gas detection means via catalyst reaction product gas control means.
(2) The catalyst activity evaluation apparatus according to (1), further including switching means for connecting the catalyst pretreatment gas to the raw material gas introduction line and the catalytic reaction product gas lead-out line.
(3) The catalyst activity evaluation apparatus according to (1) or (2), wherein the gas detection means is a gas detection tube.
(4) A plurality of storage units installed under the same conditions are filled with a plurality of catalysts of the same type or different from each other, a raw material gas is introduced into the storage units, and the raw material gas and the plurality of catalysts are heated. The reaction is carried out by contacting the bottom, and the concentration of the product gas contained in the catalytic reaction product gas derived from different outlets is measured using a plurality of gas detector tubes installed downstream. The catalyst activity evaluation method which carries out relative evaluation on the same conditions as a plurality of catalysts.
(5) After introducing a catalyst pretreatment gas into the housing portion and pretreating the plurality of catalysts, a raw material gas is introduced into the housing portion and the raw material gas and the plurality of catalysts are heated under heating conditions. The catalyst activity evaluation method which carries out relative evaluation on the same conditions of the some catalyst as described in said (4) which is made to contact.
(6) A catalytic activity evaluation method for relatively evaluating a plurality of catalysts according to (4) or (5) above under the same conditions, wherein the gas detection tube is a general-purpose gas detection tube.

本発明によれば、一度に複数の触媒についてガス流量・反応圧力・反応温度などの諸条件が均一になるため、触媒活性を同一条件で正確、迅速かつ簡便に評価することが可能になる。触媒はごく少量で評価可能であり、多くの触媒を試作し評価する場合でも、触媒の試作量は少なく済むため、労力、コスト面でのメリットが大きい。   According to the present invention, conditions such as gas flow rate, reaction pressure, and reaction temperature are uniform for a plurality of catalysts at a time, so that the catalyst activity can be accurately, quickly, and easily evaluated under the same conditions. The catalyst can be evaluated in a very small amount, and even when many catalysts are made and evaluated, the amount of the prototype of the catalyst is small.

また、市販のガス検知管を利用して反応生成物の発生量を評価できるので、安価かつ簡易に評価を行うことができる。このガス検知管での評価結果は、ガスクロマトグラフィーによる成分分析結果とほぼ同様の傾向を示すことが確認されたので、本発明によればガス反応による触媒の相対的な比較評価が可能になる。よって、触媒探索が容易になる。   Moreover, since the generation amount of the reaction product can be evaluated using a commercially available gas detector tube, the evaluation can be performed inexpensively and easily. Since it was confirmed that the evaluation result in this gas detector tube shows almost the same tendency as the component analysis result by gas chromatography, according to the present invention, the relative comparative evaluation of the catalyst by the gas reaction becomes possible. . Therefore, the catalyst search becomes easy.

以下、本発明の触媒活性評価装置の一実施形態を、図面を参照しつつ詳細に説明する。 図1は、本発明に係る触媒活性評価装置の一実施形態を表す系統図である。触媒活性評価装置は、反応容器に導入する原料ガスの流量を制御する原料ガス制御手段1、複数(図1では3個)の触媒を収容する収容部を配置した反応容器3、触媒反応生成物を検出するガス検知手段4を備え、パージガス制御手段2を有している。該反応容器3は、複数(図1では3個)の触媒設置部31を内部に有する容器本体と、触媒の温度を均一に加熱する加熱部32からなり、かつ単一の原料ガス導入部33と、触媒設置部の数と同数の複数の触媒反応生成ガス導出部34を有し、原料ガスは各触媒設置部において触媒反応を受けた後、触媒設置部から導出される。相異なる複数の導出部34から導出された触媒反応生成ガスはそれぞれ、それの流量を一定に制御する触媒反応生成ガス制御手段5を介してそれぞれ、ガス検知手段4へ導通される。   Hereinafter, an embodiment of a catalyst activity evaluation apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of a catalyst activity evaluation apparatus according to the present invention. The catalytic activity evaluation apparatus includes a raw material gas control means 1 for controlling a flow rate of a raw material gas introduced into a reaction vessel, a reaction vessel 3 in which a plurality of (three in FIG. 1) catalysts are accommodated, a catalytic reaction product. Is provided with a gas detection means 4 and a purge gas control means 2. The reaction vessel 3 includes a container main body having a plurality of (three in FIG. 1) catalyst installation portions 31 and a heating portion 32 for uniformly heating the temperature of the catalyst, and a single source gas introduction portion 33. And a plurality of catalyst reaction product gas deriving units 34 equal to the number of catalyst installation units, and the raw material gas is led out from the catalyst installation unit after undergoing a catalytic reaction in each catalyst installation unit. The catalytic reaction product gases derived from a plurality of different deriving units 34 are respectively conducted to the gas detection means 4 via the catalytic reaction product gas control means 5 that controls the flow rate thereof to be constant.

図1に示す本発明の触媒活性評価装置は、原料ガスの導入ラインと触媒反応生成ガスの導出ラインに、触媒前処理用のバッファーガス(水素還元用の水素と窒素の混合ガスなど)14を導通させるための切替手段(三方弁)6,7,8を備えている。かかる切替手段を有していることは好ましい態様であるが、有していなくてもよい。切替手段を有することにより、触媒設置部に充填した触媒を前処理することができるので、例えば、極めて酸化されやすい触媒等を評価する場合は、前処理用のガスを用いて予め還元処理を施した後に評価用の原料ガスを導入することが可能になる。これにより、評価の正確性を高めることができる。   In the catalytic activity evaluation apparatus of the present invention shown in FIG. 1, a buffer gas for catalyst pretreatment (such as a mixed gas of hydrogen and nitrogen for hydrogen reduction) 14 is provided in the introduction line of the raw material gas and the outlet line of the catalytic reaction product gas. Switching means (three-way valves) 6, 7 and 8 for conducting are provided. Having such a switching means is a preferred embodiment, but it may not be provided. By having the switching means, it is possible to pretreat the catalyst filled in the catalyst installation section.For example, when evaluating a catalyst that is very easily oxidized, a reduction treatment is performed in advance using a pretreatment gas. After that, it becomes possible to introduce a raw material gas for evaluation. Thereby, the accuracy of evaluation can be improved.

また、触媒調整後は、パージガス制御手段2を介して、不活性ガス(例えば窒素ガス)を用いて反応容器内をパージすることができるため、評価の正確性をより一層高めることができる。   Further, after the catalyst is adjusted, the inside of the reaction vessel can be purged using an inert gas (for example, nitrogen gas) via the purge gas control means 2, so that the evaluation accuracy can be further improved.

反応容器3の前流には、原料ガス制御手段(圧力調整弁)1が設けられているので、原料ガスの流量を制御することが可能になる。これにより、触媒設置部に導入される原料ガス濃度を調整することができるため、原料ガスの過小によって発生する評価不良を防止することができる。原料ガスの流量制御は圧力調整弁1にて行い、途中に、水素還元用ガス切替用の三方弁6、流量計9を設置する。   Since the material gas control means (pressure regulating valve) 1 is provided in the upstream of the reaction vessel 3, the flow rate of the material gas can be controlled. Thereby, since the concentration of the raw material gas introduced into the catalyst installation portion can be adjusted, it is possible to prevent poor evaluation caused by the shortage of the raw material gas. The flow rate control of the raw material gas is performed by the pressure regulating valve 1, and a three-way valve 6 for switching the hydrogen reduction gas and a flow meter 9 are installed on the way.

触媒設置部を流通させる原料ガス流通量は0.1〜0.3L/minとし、空間速度は2〜6cm/secとすることが好ましい。   It is preferable that the flow rate of the raw material gas flowing through the catalyst installation part is 0.1 to 0.3 L / min and the space velocity is 2 to 6 cm / sec.

反応容器3は、生成ガスが外部に漏れ、空気が侵入して、分析精度が低下するのを防止するため、密封構造とされている。反応容器3の上壁には、単一の原料ガス導入部33が設置され、そこから原料ガスが反応容器内に導入される。導入された原料ガスは、触媒設置部の上部に設けられた原料ガスバッファー部35を介して、触媒設置部31に導入される。複数の触媒に均一に原料ガスが接触するよう、触媒設置部31は反応容器3内に均一に配置されており、さらに、前記バッファー部35が設けられているため、複数の収納部は同一条件下に設置されていることになる。これにより、それぞれ相異なる複数の触媒を同一条件で評価することが可能になる。   The reaction vessel 3 has a sealed structure in order to prevent the product gas from leaking to the outside and air from entering to reduce the analysis accuracy. A single source gas introduction part 33 is installed on the upper wall of the reaction vessel 3, from which the source gas is introduced into the reaction vessel. The introduced source gas is introduced into the catalyst installation unit 31 via the source gas buffer unit 35 provided in the upper part of the catalyst installation unit. The catalyst installation unit 31 is arranged uniformly in the reaction vessel 3 so that the raw material gases are uniformly in contact with the plurality of catalysts, and the buffer unit 35 is provided. It will be installed below. This makes it possible to evaluate a plurality of different catalysts under the same conditions.

反応容器3としては、例えば、耐圧式の円筒型ステンレス製容器を使用することができる。触媒設置部31は、少量の触媒でも評価ができるよう細長形状に設計されている。その中に少量(約0.5g)の評価触媒を充填して、触媒設置層を形成する。反応容器3の周囲には、触媒の温度を均一に加熱する加熱部32が設けられており、例えばマントルヒーターなどにて覆い、加熱温度を一定に制御するため、温度コントローラを用いて加熱温度を制御する。原料ガスは、触媒設置部において触媒反応を受けた後、反応容器から導出される。   As the reaction vessel 3, for example, a pressure resistant cylindrical stainless steel vessel can be used. The catalyst installation part 31 is designed in an elongated shape so that even a small amount of catalyst can be evaluated. A small amount (about 0.5 g) of the evaluation catalyst is filled therein to form a catalyst installation layer. A heating unit 32 that uniformly heats the temperature of the catalyst is provided around the reaction vessel 3. The heating unit 32 is covered with, for example, a mantle heater and the heating temperature is controlled using a temperature controller in order to control the heating temperature constant. Control. The raw material gas is led out from the reaction vessel after undergoing a catalytic reaction at the catalyst installation portion.

複数の触媒設置部31の低壁には、複数の触媒反応生成ガス導出部34が設けられているので、触媒反応生成ガスはこれらの導出部から導出され、導出されたガスはそれぞれ相異なるラインを介してガス検知手段4へ導通される。   Since the plurality of catalyst reaction product gas deriving units 34 are provided on the lower walls of the plurality of catalyst installation units 31, the catalyst reaction product gas is derived from these deriving units, and the derived gases have different lines. Is conducted to the gas detection means 4 via the.

反応容器3の加熱温度は、使用する触媒の種類によっても異なるが、150〜350℃の範囲で適宜設定することができる。反応容器内の圧力は、0.05〜0.4MPaの範囲で適宜設定することができる。   The heating temperature of the reaction vessel 3 varies depending on the type of catalyst used, but can be appropriately set within the range of 150 to 350 ° C. The pressure in the reaction vessel can be appropriately set in the range of 0.05 to 0.4 MPa.

反応容器3の後流には、反応容器から導出されたガスの流量を調整するため、触媒反応生成ガス制御手段(流量調整弁)5が設けられている。流量計10を用いて、ガス検知手段4に導入されるガスの空間速度をできるだけ統一するようにする。これにより、ガス検知手段における測定誤差を少なくすることができる。この場合、ガス流通量は、触媒設置部を流通するガスの流量と同じく0.1〜0.3L/minとし、空間速度は2〜6cm/secとすることが好ましい。   A catalytic reaction product gas control means (flow rate adjusting valve) 5 is provided in the downstream of the reaction vessel 3 in order to adjust the flow rate of the gas derived from the reaction vessel. Using the flow meter 10, the space velocity of the gas introduced into the gas detection means 4 is made as uniform as possible. Thereby, the measurement error in a gas detection means can be decreased. In this case, the gas flow rate is preferably 0.1 to 0.3 L / min, and the space velocity is preferably 2 to 6 cm / sec, similarly to the flow rate of the gas flowing through the catalyst installation portion.

最後に、触媒ごとに導出された生成ガスに含まれる生成ガス濃度を、ガス検知手段4にて測定する。ガス検知手段を通過したガスは排気される。ガス検知手段4としては、市販されている汎用のガス検知管を使用すると、安価かつ簡易に測定することが可能になる。前記の市販されているガス検知管としては、例えば、メタノール、エタノール等のアルコールガス検知管、ジメチルエーテル等のエーテルガス検知管、メタン、エタン等の炭化水素ガス検知管、一酸化炭素ガス検知管等が挙げられるが、これらに限定されない。   Finally, the gas detection means 4 measures the concentration of the product gas contained in the product gas derived for each catalyst. The gas that has passed through the gas detection means is exhausted. If a commercially available general-purpose gas detection tube is used as the gas detection means 4, it becomes possible to perform measurement inexpensively and easily. Examples of commercially available gas detector tubes include alcohol gas detector tubes such as methanol and ethanol, ether gas detector tubes such as dimethyl ether, hydrocarbon gas detector tubes such as methane and ethane, carbon monoxide gas detector tubes, and the like. However, it is not limited to these.

上述した水素還元用バッファーガス14は、評価触媒の前処理用として使用するので、テドラーパック等に収容した混合ガスを用いることが好ましいが、ガスボンベから適宜導入して用いてもよい。そのガスを、循環ポンプ15にて循環させる。触媒の前処理時は、水素還元用ガス切替用の三方弁6,7,8及びパージ用仕切弁16を操作し、評価触媒にのみ水素還元用ガスを循環させ、途中に触媒調整時に発生する水のトラップ13を設ける。   Since the hydrogen reduction buffer gas 14 described above is used for pretreatment of the evaluation catalyst, it is preferable to use a mixed gas accommodated in a Tedlar pack or the like, but it may be appropriately introduced from a gas cylinder. The gas is circulated by the circulation pump 15. During catalyst pretreatment, the three-way valves 6, 7, and 8 for switching the hydrogen reducing gas and the purge gate valve 16 are operated to circulate the hydrogen reducing gas only through the evaluation catalyst, and this occurs during catalyst adjustment in the middle. A water trap 13 is provided.

原料ガス収容容器、反応容器3及びガス検出手段5など、装置内の各部材は、ステンレス製、ガラス製或いはテフロン(登録商標)など樹脂製のチューブを用いて接続する。   Each member in the apparatus such as the raw material gas storage container, the reaction container 3 and the gas detection means 5 is connected using a resin tube such as stainless steel, glass or Teflon (registered trademark).

本発明において、使用可能な原料ガスは特に限定されるものではなく、例えば、一酸化炭素、二酸化炭素、水素、メタノール等のガス或いはそれらの混合ガス、又は各種合成ガス等が挙げられる。原料ガスの種類は、評価対象となる触媒に合わせて決定される。なお、図1では、二酸化炭素と水素を混合した混合ガスを用いた例を示している。   In the present invention, usable raw material gases are not particularly limited, and examples thereof include gases such as carbon monoxide, carbon dioxide, hydrogen, and methanol, mixed gases thereof, and various synthesis gases. The kind of source gas is determined according to the catalyst to be evaluated. In addition, in FIG. 1, the example using the mixed gas which mixed the carbon dioxide and hydrogen is shown.

また、触媒設置部に充填する触媒は、球状、円柱状、ペレット状、ハニカム状、プレート状など種々の形状のものであってよい。   Further, the catalyst filled in the catalyst installation portion may have various shapes such as a spherical shape, a cylindrical shape, a pellet shape, a honeycomb shape, and a plate shape.

本発明に係る触媒活性評価方法は、上述した触媒活性評価装置を用いるので、複数の触媒を同一条件で相対評価する方法となり得る。すなわち、同一条件下に設置された複数の収納部にそれぞれ同種、又は相異なる複数の触媒を充填して触媒設置層を形成した後、該収納部に原料ガスを導入して触媒反応を行わせ、それぞれ相異なる導出部から導出された触媒反応生成ガス中の生成ガス濃度を、後流に設置した複数のガス検知管を用いてそれぞれ測定するだけでよい。そのため、加熱反応容器に原料ガスをワンパスさせるだけで済むので、複数の触媒の活性を、迅速かつ簡便に評価することができる。   Since the catalyst activity evaluation apparatus according to the present invention uses the above-described catalyst activity evaluation apparatus, it can be a method for relatively evaluating a plurality of catalysts under the same conditions. In other words, after a plurality of storage units installed under the same conditions are filled with a plurality of catalysts of the same type or different from each other to form a catalyst installation layer, a raw material gas is introduced into the storage unit to cause a catalytic reaction. The product gas concentration in the catalytic reaction product gas derived from the different derivation units may be measured by using a plurality of gas detector tubes installed in the downstream. Therefore, since only one pass of the raw material gas is required in the heating reaction vessel, the activities of a plurality of catalysts can be evaluated quickly and easily.

次に、本発明を実施例により図面を参照しつつ詳細に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in detail, referring drawings, this invention is not limited only to a following example.

[評価装置]
固定床流通式の触媒活性評価装置を用いて試験した。図1に系統図を示す。反応は外径75mmΦ、高さ120mmの円筒型ステンレス(SUS)製反応容器3を使用し、図2に示すように、反応容器3内には、高さ50mmの原料ガスバッファー部35を設け、ステンレスのクラッドを3ヶ所削り、内径10mmΦ、高さ約50mm、内容量約4cmの触媒設置部31を均等に3個配置した。触媒設置部31の中に、5mmΦ×6mmのペレット型触媒1〜数個(約0.5g)を充填した。反応容器の周囲をマントルヒーター32にて覆い、温度コントローラを用いて加熱温度を制御した。
[Evaluation equipment]
The test was performed using a fixed bed flow type catalyst activity evaluation apparatus. A system diagram is shown in FIG. The reaction uses a cylindrical stainless steel (SUS) reaction vessel 3 having an outer diameter of 75 mmΦ and a height of 120 mm. As shown in FIG. 2, a raw material gas buffer unit 35 having a height of 50 mm is provided in the reaction vessel 3. Three stainless steel clads were shaved, and three catalyst installation portions 31 having an inner diameter of 10 mmΦ, a height of about 50 mm, and an internal volume of about 4 cm 3 were arranged uniformly. One to several pieces (about 0.5 g) of 5 mmΦ × 6 mm pellet type catalyst were filled in the catalyst installation part 31. The periphery of the reaction vessel was covered with a mantle heater 32, and the heating temperature was controlled using a temperature controller.

反応容器3は、概略を図3に示すように密閉式であり、底面に温度測定座を設けた。   As shown in FIG. 3, the reaction vessel 3 is of a sealed type and has a temperature measurement seat on the bottom surface.

また、原料ガス又はパージ用ガスを収容したボンベ、反応容器3及びガス検知管4は、内径6mmのステンレス(SUS)製チューブを用いて接続した。なお、テフロン(登録商標)またはガラス製のチューブを用いて接続することも可能である。   The cylinder containing the raw material gas or the purge gas, the reaction vessel 3 and the gas detection tube 4 were connected using a stainless steel (SUS) tube having an inner diameter of 6 mm. It is also possible to connect using a Teflon (registered trademark) or glass tube.

原料ガス及びパージ用ガスの流量制御は圧力調整弁1にて行い、途中に、パージガス用仕切弁2と、水素還元用ガス切替用の三方弁3を設置した。反応容器の後流には、反応容器から導出されたガスの流量調整弁5、流量計10を設け、評価時に触媒設置部における原料ガスの空間速度を統一するようにした。触媒ごとに導出された生成ガスに含まれるメタノール濃度を、市販のガス検知管4で測定した。検知管を通過したガスは排気した。   The flow rate control of the source gas and the purge gas was performed by the pressure regulating valve 1, and a purge gas gate valve 2 and a hydrogen reduction gas switching three-way valve 3 were installed on the way. The flow rate adjusting valve 5 and the flow meter 10 for the gas led out from the reaction vessel are provided in the downstream of the reaction vessel, and the space velocity of the raw material gas in the catalyst installation portion is unified during the evaluation. The methanol concentration contained in the product gas derived for each catalyst was measured with a commercially available gas detector tube 4. The gas that passed through the detector tube was exhausted.

水素還元用ガスは、評価触媒の前処理用として使用できるように収容パック14に収容し、そのガスを循環ポンプ15にて循環させた。触媒の前処理時は、水素還元用ガス切替用の三方弁6、7、8及びパージ用仕切弁16を操作し、評価触媒にのみ水素還元用ガスを循環させ、途中に触媒調整時に発生する水のトラップ13を設けた。   The hydrogen reduction gas was stored in the storage pack 14 so that it could be used for pretreatment of the evaluation catalyst, and the gas was circulated by the circulation pump 15. During catalyst pretreatment, the three-way valves 6, 7, 8 for switching the hydrogen reducing gas and the purge gate valve 16 are operated to circulate the hydrogen reducing gas only to the evaluation catalyst, and this occurs during catalyst adjustment in the middle. A water trap 13 was provided.

[評価方法]
(1)触媒活性試験準備
装置より反応容器を取り外し、使用触媒の重量を測定して反応容器内にセットし、反応容器を装置にセットした。メタノールガス検知管の上下を専用工具を用いて折り、検知管を所定の位置に設置した。
[Evaluation methods]
(1) Preparation of catalyst activity test The reaction container was removed from the apparatus, the weight of the catalyst used was measured and set in the reaction container, and the reaction container was set in the apparatus. The upper and lower sides of the methanol gas detector tube were folded using a dedicated tool, and the detector tube was installed at a predetermined position.

(2)水素還元用ガスの製造
10Lテドラーパック14に、水素還元用ガス(H+N)を封入し、装置にセットした。三方弁(水素還元切替)6及び7を水素還元ラインに切り替え、ガス循環ポンプ15をONにした。各ラインの流量調整弁5にて流量計10を所定流量に調整した。温度制御装置を水素還元温度にセットし、加熱を開始した。設定還元温度となってから、所定時間保持した。
(2) Production of Hydrogen Reduction Gas Hydrogen reduction gas (H 2 + N 2 ) was sealed in a 10 L tedlar pack 14 and set in an apparatus. The three-way valves (hydrogen reduction switching) 6 and 7 were switched to the hydrogen reduction line, and the gas circulation pump 15 was turned on. The flow meter 10 was adjusted to a predetermined flow rate by the flow rate adjustment valve 5 of each line. The temperature controller was set to the hydrogen reduction temperature and heating was started. After reaching the set reduction temperature, it was held for a predetermined time.

(3)ガス置換
温度制御装置スイッチをOFFにした。ある程度温度が下がったところで、三方弁(パージ切替)8をガス排気ラインに切り替え、パージ用仕切弁16を開けて(H+N)混合ガスを排気した。全量排気が終了したら、ガス循環ポンプ15を停止した。三方弁(水素還元切替)6を活性試験ラインに切り替えた。パージガス用仕切弁2を開けて、窒素ボンベからガスを反応系内に導入し、約10min、窒素で反応系内をパージした。
(3) Gas replacement The temperature control device switch was turned off. When the temperature dropped to some extent, the three-way valve (purge switching) 8 was switched to the gas exhaust line, the purge gate valve 16 was opened (H 2 + N 2 ), and the mixed gas was exhausted. When exhausting the entire amount, the gas circulation pump 15 was stopped. The three-way valve (hydrogen reduction switching) 6 was switched to the activity test line. The purge gas gate valve 2 was opened, gas was introduced into the reaction system from a nitrogen cylinder, and the reaction system was purged with nitrogen for about 10 minutes.

(4)触媒活性試験
パージガス用仕切弁2を閉じ、窒素ボンベの元栓を閉めた。CO+H混合ガスのボンベを開放し、原料ガスを導入した。圧力調整弁1で反応圧力条件に合わせた。温度制御装置を活性試験温度にセットし、加熱を開始した。原料ガスをサンプリング口(反応前)11よりマイクロシリンジで採取し、ガスクロマトグラフィーにて反応前のガス組成を確認した。設定温度到達後、120min経過したら三方弁(水素還元切替)7を反応管側に切り替え、パージ用仕切弁16を閉じた。反応管に反応ガスを流し、所定時間(5min程度)経過したら、パージ用仕切弁16を開け、三方弁(水素還元切替)7を水素還元ラインに切り替え、反応を終了した。反応管を取り外し、生成物による反応管の呈色具合を確認した。
(4) Catalyst activity test The purge gas gate valve 2 was closed, and the main stopper of the nitrogen cylinder was closed. The cylinder of the CO 2 + H 2 mixed gas was opened and the raw material gas was introduced. The pressure adjusting valve 1 was adjusted to the reaction pressure condition. The temperature controller was set to the activity test temperature and heating was started. The raw material gas was collected from the sampling port (before the reaction) 11 with a microsyringe, and the gas composition before the reaction was confirmed by gas chromatography. When 120 minutes passed after reaching the set temperature, the three-way valve (hydrogen reduction switching) 7 was switched to the reaction tube side, and the purge gate valve 16 was closed. The reaction gas was allowed to flow through the reaction tube. When a predetermined time (about 5 minutes) had elapsed, the purge gate valve 16 was opened, the three-way valve (hydrogen reduction switching) 7 was switched to the hydrogen reduction line, and the reaction was completed. The reaction tube was removed, and the color of the reaction tube due to the product was confirmed.

温度制御装置のスイッチをOFFにした。CO+H混合ガスボンベの元栓を閉じた。窒素ボンベの元栓を開けて、反応系内を窒素でパージした。温度が下がったら、窒素ボンベの元栓、パージ用仕切弁16を閉じた。 The switch of the temperature control device was turned off. The main stopper of the CO 2 + H 2 mixed gas cylinder was closed. The main stopper of the nitrogen cylinder was opened, and the inside of the reaction system was purged with nitrogen. When the temperature dropped, the main stopper of the nitrogen cylinder and the purge gate valve 16 were closed.

図4、図5に各反応ラインでの温度の測定結果、及びCOガス濃度(vol%)の測定結果を示した。これらの結果から、誤差1%以下であることがわかった。 FIG. 4 and FIG. 5 show the measurement results of the temperature in each reaction line and the measurement results of the CO 2 gas concentration (vol%). From these results, it was found that the error was 1% or less.

(5)実験結果
3種類の触媒について各2回試験を行い、ガス検知管で求めたメタノール生成量の再現性と正確性を確認した。ガス検知管の検知状況を図6に示し(図中の矢印は、ガス検知管の色がピンク色に変色した境目を示している)、試験結果を表1に記載した。これらの結果から、ガス反応管によるメタノール生成量の繰り返し精度は概ね良好であった。また、メタノール転化率はガスクロマトグラフィー分析値(図7参照)と同一の傾向を示すことがわかった。
(5) Experimental results Each of the three types of catalysts was tested twice to confirm the reproducibility and accuracy of the amount of methanol produced by the gas detector tube. The detection status of the gas detector tube is shown in FIG. 6 (the arrow in the figure indicates the boundary where the color of the gas detector tube is changed to pink), and the test results are shown in Table 1. From these results, the repeatability of the amount of methanol produced by the gas reaction tube was generally good. Moreover, it turned out that methanol conversion shows the same tendency as a gas chromatography analysis value (refer FIG. 7).

図8は、本発明の触媒活性評価装置において、複数の触媒を反応温度を替えて評価した結果を示した図である。この結果から、触媒Aと触媒Cは活性が高く、触媒Bは活性が中程度、触媒Dと触媒Eは活性が低いことが分かる。   FIG. 8 is a diagram showing the results of evaluating a plurality of catalysts by changing the reaction temperature in the catalyst activity evaluation apparatus of the present invention. From this result, it can be seen that catalyst A and catalyst C have high activity, catalyst B has moderate activity, and catalyst D and catalyst E have low activity.

一方、図9はマイクロ波反応装置において、複数の触媒を反応温度を替えて評価した結果を示した図である。この結果から、触媒Aと触媒Cは活性が高く、触媒Bは活性が中程度、触媒Dと触媒Eは活性が低いことが分かる。   On the other hand, FIG. 9 is a diagram showing the results of evaluating a plurality of catalysts at different reaction temperatures in a microwave reactor. From this result, it can be seen that catalyst A and catalyst C have high activity, catalyst B has moderate activity, and catalyst D and catalyst E have low activity.

図8及び図9の結果から、触媒活性の相対的傾向は類似し、本発明の触媒活性評価装置による評価は、実際の反応に使用する触媒の探索に有効であることが分かった。   From the results of FIG. 8 and FIG. 9, it was found that the relative tendency of the catalyst activity is similar, and the evaluation by the catalyst activity evaluation apparatus of the present invention is effective for searching for the catalyst used in the actual reaction.

本発明の触媒活性評価装置及び触媒活性評価方法は、非常に簡易な操作で比較的短時間で触媒の活性を評価することができるため、各種のガス反応用触媒の探索に有効である。   Since the catalyst activity evaluation apparatus and the catalyst activity evaluation method of the present invention can evaluate the activity of the catalyst in a relatively short time with a very simple operation, they are effective in searching for various gas reaction catalysts.

本発明の実施例で用いた触媒活性評価装置の系統図である。It is a systematic diagram of the catalyst activity evaluation apparatus used in the Example of this invention. 触媒設置部の概略を説明する図である。It is a figure explaining the outline of a catalyst installation part. 反応容器の概略を説明する図である。It is a figure explaining the outline of a reaction container. 本発明の触媒活性評価装置の各反応ラインでの温度測定結果を示す図である。It is a figure which shows the temperature measurement result in each reaction line of the catalyst activity evaluation apparatus of this invention. 本発明の触媒活性評価装置の各反応ラインでのガス組成測定結果を示す図である。It is a figure which shows the gas composition measurement result in each reaction line of the catalyst activity evaluation apparatus of this invention. ガス検知管のメタノール生成量を示す写真である。It is a photograph which shows the methanol production amount of a gas detection tube. GCによるメタノール転化率分析結果を示す図である。It is a figure which shows the methanol conversion rate analysis result by GC. 本発明の触媒活性評価装置における触媒活性評価結果を示す図である。It is a figure which shows the catalyst activity evaluation result in the catalyst activity evaluation apparatus of this invention. マイクロ波反応装置における試験結果を示す図である。It is a figure which shows the test result in a microwave reactor.

符号の説明Explanation of symbols

1 圧力調整弁
2 パージガス用仕切弁
3 反応容器
31 触媒設置部
32 ヒーター
33 原料ガス導入部
34 反応ガス導出部
35 バッファー部
4 ガス検知管
5 流量調整弁
6 三方弁(水素還元切替)
7 三方弁(水素還元切替)
8 三方弁(パージ切替)
9 圧力計
10 流量計
11 サンプリング口(反応前)
12 サンプリング口(反応後)
13 水トラップ
14 水素還元用バッファーガス
15 ガス循環ポンプ
16 パージ用仕切弁
DESCRIPTION OF SYMBOLS 1 Pressure control valve 2 Purge gas gate valve 3 Reaction container 31 Catalyst installation part 32 Heater 33 Raw material gas introduction part 34 Reaction gas outlet part 35 Buffer part 4 Gas detection pipe 5 Flow rate adjustment valve 6 Three-way valve (hydrogen reduction switching)
7 Three-way valve (hydrogen reduction switching)
8 Three-way valve (purge switching)
9 Pressure gauge 10 Flow meter 11 Sampling port (before reaction)
12 Sampling port (after reaction)
13 Water trap 14 Hydrogen reduction buffer gas 15 Gas circulation pump 16 Purge gate valve

Claims (6)

反応容器に導入する原料ガスの流量を制御する原料ガス制御手段と、複数の触媒を収容する収容部を内蔵した反応容器と、触媒反応生成物を検出するガス検知手段を備えた触媒活性評価装置であって、
該反応容器は、原料ガスバッファー部と複数の触媒設置部を内部に有する容器本体と、触媒の温度を均一に加熱する加熱部からなり、かつ単一の原料ガス導入部と複数の触媒反応生成ガス導出部を有し、
原料ガスは、前記バッファー部を介して各触媒設置部内に導入され、各触媒設置部において触媒反応を受けた後、反応容器から導出され、
相異なる導出部から導出された触媒反応生成ガスは、それぞれ触媒反応生成ガス制御手段を介し、それぞれガス検知手段へ導通されることを特徴とする触媒活性評価装置。
A catalytic activity evaluation apparatus comprising a raw material gas control means for controlling the flow rate of the raw material gas introduced into the reaction container, a reaction container having a housing portion for accommodating a plurality of catalysts, and a gas detection means for detecting a catalytic reaction product Because
The reaction vessel comprises a vessel main body having a raw material gas buffer portion and a plurality of catalyst installation portions therein, a heating portion for uniformly heating the temperature of the catalyst, and a single raw material gas introduction portion and a plurality of catalytic reaction generations. A gas outlet,
The raw material gas is introduced into each catalyst installation section through the buffer section, and after being subjected to a catalytic reaction in each catalyst installation section, is led out from the reaction vessel,
A catalytic activity evaluation apparatus characterized in that catalyst reaction product gases derived from different deriving units are respectively conducted to gas detection means via catalyst reaction product gas control means.
さらに、原料ガスの導入ラインと触媒反応生成ガスの導出ラインに、触媒前処理用のガスを導通させるための切替手段を備えている、請求項1に記載の触媒活性評価装置。   The catalyst activity evaluation apparatus according to claim 1, further comprising switching means for conducting a catalyst pretreatment gas in the raw material gas introduction line and the catalytic reaction product gas outlet line. ガス検知手段がガス検知管である、請求項1又は2に記載の触媒活性評価装置。   The catalyst activity evaluation apparatus according to claim 1 or 2, wherein the gas detection means is a gas detection tube. 同一条件下に設置された複数の収納部にそれぞれ同種、又は相異なる複数の触媒を充填し、それら収容部内に原料ガスを導入して該原料ガスと前記複数の触媒とを加熱条件下に接触させて反応を行わせ、それぞれ相異なる導出部から導出された触媒反応生成ガスに含まれる生成ガス濃度を、後流に設置した複数のガス検知管を用いてそれぞれ測定することを特徴とする複数の触媒を同一条件で相対評価する触媒活性評価方法。   A plurality of storage units installed under the same conditions are filled with a plurality of catalysts of the same type or different from each other, a raw material gas is introduced into the storage units, and the raw material gases and the plurality of catalysts are brought into contact under heating conditions. A plurality of gas detector tubes, each of which measures a concentration of a product gas contained in a catalytic reaction product gas derived from a different derivation unit using a plurality of gas detector tubes installed in the downstream. The catalyst activity evaluation method which carries out relative evaluation of the catalyst of 1 on the same conditions. 前記収容部に触媒前処理用のガスを導入して前記複数の触媒を前処理した後、それら収容部内に原料ガスを導入して該原料ガスと前記複数の触媒とを加熱条件下に接触させる、請求項4に記載の複数の触媒を同一条件で相対評価する触媒活性評価方法。   After introducing the catalyst pretreatment gas into the housing portion and pretreating the plurality of catalysts, the raw material gas is introduced into the housing portion and the raw material gas and the plurality of catalysts are brought into contact under heating conditions. 5. A method for evaluating catalytic activity, wherein the plurality of catalysts according to claim 4 are relatively evaluated under the same conditions. ガス検知管が汎用のガス検知管である、請求項4又は5に記載の複数の触媒を同一条件で相対評価する触媒活性評価方法。   6. The catalytic activity evaluation method for relatively evaluating a plurality of catalysts according to claim 4 or 5 under the same conditions, wherein the gas detection tube is a general-purpose gas detection tube.
JP2007059322A 2007-03-09 2007-03-09 Catalytic activity evaluation device and evaluation method Pending JP2008224257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059322A JP2008224257A (en) 2007-03-09 2007-03-09 Catalytic activity evaluation device and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059322A JP2008224257A (en) 2007-03-09 2007-03-09 Catalytic activity evaluation device and evaluation method

Publications (1)

Publication Number Publication Date
JP2008224257A true JP2008224257A (en) 2008-09-25

Family

ID=39843078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059322A Pending JP2008224257A (en) 2007-03-09 2007-03-09 Catalytic activity evaluation device and evaluation method

Country Status (1)

Country Link
JP (1) JP2008224257A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212580A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Method of deciding degree in activation of catalyst
CN104142380A (en) * 2014-08-22 2014-11-12 上海化工研究院 Pressure balance type ultra-small catalytic reaction efficiency comparison evaluating device
CN105699604A (en) * 2016-03-30 2016-06-22 大唐环境产业集团股份有限公司 Smoke measuring device
CN107478764A (en) * 2016-06-07 2017-12-15 中国石油化工股份有限公司 Hydrocarbon steam conversion catalyst activity rating device and its test method and application
KR101936234B1 (en) * 2017-03-23 2019-01-08 한국과학기술연구원 Method and apparatus for high-throughput screening of catalyst
KR20210066176A (en) * 2019-11-28 2021-06-07 한국화학연구원 Reactor for Evaluation of Catalytic Performance
WO2023015888A1 (en) * 2021-08-13 2023-02-16 交通运输部天津水运工程科学研究所 Scr catalyst performance evaluation system for marine engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193622A (en) * 1998-12-25 2000-07-14 Agency Of Ind Science & Technol Catalyst performance evaluation device
JP2001506743A (en) * 1996-08-15 2001-05-22 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Method and apparatus for studying chemical reactions in miniaturized reactors connected in parallel
JP2002168738A (en) * 2000-12-01 2002-06-14 Asahi Kasei Corp Catalyst performance evaluation device
JP2007501109A (en) * 2003-08-06 2007-01-25 ビーエーエスエフ アクチェンゲゼルシャフト Catalytic test equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506743A (en) * 1996-08-15 2001-05-22 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Method and apparatus for studying chemical reactions in miniaturized reactors connected in parallel
JP2000193622A (en) * 1998-12-25 2000-07-14 Agency Of Ind Science & Technol Catalyst performance evaluation device
JP2002168738A (en) * 2000-12-01 2002-06-14 Asahi Kasei Corp Catalyst performance evaluation device
JP2007501109A (en) * 2003-08-06 2007-01-25 ビーエーエスエフ アクチェンゲゼルシャフト Catalytic test equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212580A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Method of deciding degree in activation of catalyst
CN104142380A (en) * 2014-08-22 2014-11-12 上海化工研究院 Pressure balance type ultra-small catalytic reaction efficiency comparison evaluating device
CN105699604A (en) * 2016-03-30 2016-06-22 大唐环境产业集团股份有限公司 Smoke measuring device
CN107478764A (en) * 2016-06-07 2017-12-15 中国石油化工股份有限公司 Hydrocarbon steam conversion catalyst activity rating device and its test method and application
CN107478764B (en) * 2016-06-07 2020-09-08 中国石油化工股份有限公司 Hydrocarbon steam conversion catalyst activity evaluation device and test method and application thereof
KR101936234B1 (en) * 2017-03-23 2019-01-08 한국과학기술연구원 Method and apparatus for high-throughput screening of catalyst
KR20210066176A (en) * 2019-11-28 2021-06-07 한국화학연구원 Reactor for Evaluation of Catalytic Performance
KR102283181B1 (en) * 2019-11-28 2021-07-29 한국화학연구원 Reactor for Evaluation of Catalytic Performance
WO2023015888A1 (en) * 2021-08-13 2023-02-16 交通运输部天津水运工程科学研究所 Scr catalyst performance evaluation system for marine engine

Similar Documents

Publication Publication Date Title
JP2008224257A (en) Catalytic activity evaluation device and evaluation method
JP4773025B2 (en) Catalyst testing apparatus and use of the apparatus in material testing
Patel et al. Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol
US5055260A (en) Reactor analysis system
Couble et al. Experimental microkinetic approach of the CO/H2 reaction on Pt/Al2O3 using the Temkin formalism. 1. Competitive chemisorption between adsorbed CO and hydrogen species in the absence of reaction
Patil et al. Design, modelling, and application of a low void-volume in situ diffuse reflectance spectroscopic reaction cell for transient catalytic studies
US7435598B2 (en) Catalyst testing apparatus and process
CN102141550B (en) Micro-inverse device capable of switching evaluation of catalyst and carbon determination of catalyst
CN108645955B (en) Device and method for evaluating cycle reforming-analytic performance of composite catalyst
CN101923034B (en) Catalyst treatment device and method
JP2010189350A (en) Apparatus for converting carbon dioxide to methanol
JP2003227819A (en) Method and system for high-throughput analysis
CA1324068C (en) Microreactor for analyzing thin solid samples
CN113984922B (en) Quasi-in-situ X-ray photoelectron spectrum testing device and testing method thereof
Mills et al. A novel reactor for high-throughput screening of gas–solid catalyzed reactions
CN103558301B (en) Micro-size catalyst in-situ pulse evaluation and analysis device
CN109541084B (en) Device for dynamically analyzing and detecting gas-phase product
CN108802342A (en) Oil product detects and application
CN201993346U (en) Micro-reactor for switching catalyst evaluation and catalyst carbon determining
JP2022505414A (en) Equipment and methods for investigating reactions
CN201776131U (en) Catalyst treatment device
JP3837489B2 (en) Rapid search method for hydrogen production catalysts
Pantu et al. A multiple microreactor system for parallel catalyst preparation and testing
CN108889248A (en) A kind of method of n-hexane catalytic cracking reaction device and its n-hexane catalytic cracking reaction
CN216594969U (en) Detection apparatus for catalytic performance of catalyst for gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Effective date: 20120612

Free format text: JAPANESE INTERMEDIATE CODE: A02