JP2011212580A - Method of deciding degree in activation of catalyst - Google Patents

Method of deciding degree in activation of catalyst Download PDF

Info

Publication number
JP2011212580A
JP2011212580A JP2010082983A JP2010082983A JP2011212580A JP 2011212580 A JP2011212580 A JP 2011212580A JP 2010082983 A JP2010082983 A JP 2010082983A JP 2010082983 A JP2010082983 A JP 2010082983A JP 2011212580 A JP2011212580 A JP 2011212580A
Authority
JP
Japan
Prior art keywords
catalyst
activation
gas
degree
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082983A
Other languages
Japanese (ja)
Other versions
JP5662044B2 (en
Inventor
Kei Itakura
啓 板倉
Kenichi Yamazaki
健一 山▲崎▼
Nobuyuki Matsumoto
信行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010082983A priority Critical patent/JP5662044B2/en
Publication of JP2011212580A publication Critical patent/JP2011212580A/en
Application granted granted Critical
Publication of JP5662044B2 publication Critical patent/JP5662044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of deciding properly the degree in activation of a hydrothermal gasification catalyst before using for hydrothermal gasification treatment.SOLUTION: The method of deciding the degree in activation of a catalyst material supported by a carbon carrier includes a reduction process of flowing a reducing gas containing hydrogen into a reaction vessel 4 filled with the carbon carrier supporting the catalyst material, and a deciding process of deciding the degree in activation of the catalyst material based on the amount of one or more gases among a carbon compound gas and the reducing gas which are a specific monitoring target gas in gases flowing out from the reaction vessel 4 during the reduction process.

Description

本発明は、炭素担体に担持された触媒物質の触媒の活性化の程度を判定する方法に関する。   The present invention relates to a method for determining the degree of catalyst activation of a catalyst material supported on a carbon support.

アルコールやフェノールなどの有機化合物を含む工場廃水を処理する方法として、水熱ガス化処理が用いられている。この水熱ガス化処理では、触媒を用いて工場廃水に含まれているアルコールやフェノールなどの有機物がメタン等のガスに分解される。特許文献1には、水熱ガス化処理において、炭素担体に触媒物質が担持された水熱ガス化触媒を用いる例が記載されている。触媒物質としては、Co、Ni、Cu、Mn、Fe、Mo、Ru、Rh、Pd、Pt、Au、Ca、Mg、Na、K等が記載されている。   Hydrothermal gasification is used as a method for treating factory wastewater containing organic compounds such as alcohol and phenol. In this hydrothermal gasification treatment, organic substances such as alcohol and phenol contained in factory wastewater are decomposed into gas such as methane using a catalyst. Patent Document 1 describes an example of using a hydrothermal gasification catalyst in which a catalyst material is supported on a carbon support in hydrothermal gasification treatment. As the catalyst material, Co, Ni, Cu, Mn, Fe, Mo, Ru, Rh, Pd, Pt, Au, Ca, Mg, Na, K, and the like are described.

一般的に、触媒に還元処理を施すことで、触媒を活性化することは行われている。従って、水熱ガス化触媒を水熱ガス化処理に用いるにあたり、触媒に還元処理を施すことで触媒を活性化することも考えられる。水熱ガス化触媒の活性化の程度は、触媒を工場廃水などの水熱ガス化処理に実際に用いて、そのときのTOC(Total Organic Carbon)分解率を調べることで判定できる。   Generally, the catalyst is activated by subjecting the catalyst to a reduction treatment. Therefore, when the hydrothermal gasification catalyst is used for the hydrothermal gasification treatment, it may be considered that the catalyst is activated by subjecting the catalyst to a reduction treatment. The degree of activation of the hydrothermal gasification catalyst can be determined by actually using the catalyst for hydrothermal gasification treatment such as factory wastewater and examining the TOC (Total Organic Carbon) decomposition rate at that time.

特開2006−255685号公報Japanese Patent Laid-Open No. 2006-255585

しかし、TOC分解率を調べることで触媒の活性化の程度を判定する方法では、実際に触媒を水熱ガス化処理に使用した後、即ち、事後的に触媒の活性化の程度を判定できるだけである。つまり、触媒を水熱ガス化処理に使用する前にその活性化の程度を判定できない。   However, in the method of determining the degree of activation of the catalyst by examining the TOC decomposition rate, it is only possible to determine the degree of activation of the catalyst after actually using the catalyst for hydrothermal gasification treatment, that is, after the fact. is there. That is, the degree of activation cannot be determined before the catalyst is used for hydrothermal gasification.

本願発明者らは、水熱ガス化処理に使用する前に触媒の活性化の程度を判定することを目的として、先ず、炭素担体に触媒物質が担持された水熱ガス化触媒を、還元処理等を行う前にX線回折によって分析した。その結果、炭素担体に触媒物質が担持された水熱ガス化触媒の表面に炭素(又は炭素化合物)及び硫黄(又は硫黄化合物)の構造を検知した。このため、水熱ガス化触媒の製造工程中に、その表面に炭素(又は炭素化合物)及び硫黄(又は硫黄化合物)が付着し、その付着した炭素及び硫黄の存在によって触媒の活性が低下しているという可能性が考えられた。   In order to determine the degree of activation of the catalyst prior to use in the hydrothermal gasification treatment, the inventors of the present application first reduced the hydrothermal gasification catalyst in which the catalyst material is supported on the carbon support. Before performing etc., it analyzed by X-ray diffraction. As a result, the structures of carbon (or carbon compound) and sulfur (or sulfur compound) were detected on the surface of the hydrothermal gasification catalyst in which the catalyst substance was supported on the carbon support. For this reason, during the manufacturing process of the hydrothermal gasification catalyst, carbon (or carbon compound) and sulfur (or sulfur compound) adhere to the surface, and the activity of the catalyst decreases due to the presence of the adhering carbon and sulfur. The possibility of being there was considered.

例えば、水熱ガス化触媒は以下のような工程を経て製造される。
先ず、水にNiSO4・6H2Oを溶解させてNiSO4水溶液を調整した後、そのNiSO4水溶液にNH3水溶液を加える。その後、得られた溶液に陽イオン交換樹脂(ポリメタクリル酸)を加える。その結果、ポリメタクリル酸のカルボキシル基の水素とのイオン交換により、樹脂に高密度でNiイオンが結合する。このようなイオン交換を行った後、溶液と樹脂とを分離し、樹脂の表面に付着した溶液を純水にて洗浄する洗浄工程を実施する。そして、十分な洗浄を行った後、樹脂の予備乾燥を行い、乾燥させた樹脂を炉で焼成する焼成工程を実施する。焼成工程では、N2雰囲気中で樹脂を高温状態に保持し、樹脂の部分を炭化することにより、炭素(アモルファスカーボン)を担体としたNi担持触媒(水熱ガス化触媒)を得る。
For example, the hydrothermal gasification catalyst is manufactured through the following steps.
First, NiSO 4 .6H 2 O is dissolved in water to prepare an NiSO 4 aqueous solution, and then an NH 3 aqueous solution is added to the NiSO 4 aqueous solution. Thereafter, a cation exchange resin (polymethacrylic acid) is added to the obtained solution. As a result, Ni ions bind to the resin at a high density by ion exchange with the hydrogen of the carboxyl group of polymethacrylic acid. After such ion exchange, the solution and the resin are separated, and a cleaning process is performed in which the solution adhering to the surface of the resin is cleaned with pure water. And after performing sufficient washing | cleaning, preliminary baking of resin is performed and the baking process which bakes the dried resin in a furnace is implemented. In the firing step, the Ni-supported catalyst (hydrothermal gasification catalyst) using carbon (amorphous carbon) as a carrier is obtained by maintaining the resin in a high temperature state in an N 2 atmosphere and carbonizing the resin portion.

上述のような工程を経て水熱ガス化触媒を製造するとき、洗浄工程での樹脂の洗浄が不十分であると、樹脂の表面或いは内部にSO4 2-(硫酸イオン)が残る。そのため、その状態で乾燥及び焼成すると、触媒の硫黄被毒が発生する。これが、製造された水熱ガス化触媒の表面に硫黄が存在し、その結果、触媒の活性が低下することを説明する一つのメカニズムであると考えられる。 When the hydrothermal gasification catalyst is produced through the steps as described above, if the resin is not sufficiently washed in the washing step, SO 4 2− (sulfate ion) remains on the surface or inside of the resin. Therefore, if it is dried and fired in that state, sulfur poisoning of the catalyst occurs. This is considered to be one mechanism for explaining that sulfur is present on the surface of the produced hydrothermal gasification catalyst, and as a result, the activity of the catalyst is lowered.

また、焼成工程では、樹脂が分解することにより多量のタール分が煙状に発生するが、N2を炉の中に流通させることにより排出している。しかし、このタール分が触媒に凝縮した場合、或いは、十分な焼成が行われなかった場合等に、触媒の金属粒子がカーボンに被覆された状態になる可能性も考えられる。これが、製造された水熱ガス化触媒の表面に炭素が存在し、その結果、触媒の活性が低下することを説明する一つのメカニズムであると考えられる。 In the baking step, a large amount of tar is generated in the form of smoke due to decomposition of the resin, but N 2 is discharged by circulating it in the furnace. However, there is a possibility that the metal particles of the catalyst may be covered with carbon when the tar content is condensed in the catalyst or when the firing is not sufficiently performed. This is considered to be one mechanism for explaining that carbon is present on the surface of the produced hydrothermal gasification catalyst, and as a result, the activity of the catalyst is lowered.

尚、現状では、炭素担体に触媒物質が担持された水熱ガス化触媒の表面の組成を分析したとしても、検出された炭素が、触媒の活性に影響を及ぼさない担体を構成する炭素を示しているのか、或いは、触媒の活性に悪影響を及ぼす原因となり得る炭素(即ち、触媒物質の表面を汚染している炭素)を示しているのかの判断ができない。つまり、担体と触媒表面の汚染物質とが同一の元素を含むため、その元素の存在を検出できても、それが触媒の活性を低下させるように作用するのか否かを判定できない。即ち、水熱ガス化処理に使用する前の水熱ガス化触媒の表面状態を分析しても、触媒の活性を正確に判断することはできなかった。   Currently, even if the composition of the surface of the hydrothermal gasification catalyst in which the catalyst material is supported on the carbon support is analyzed, the detected carbon indicates the carbon constituting the support that does not affect the activity of the catalyst. It is not possible to determine whether or not it indicates carbon that can adversely affect the activity of the catalyst (ie, carbon that is contaminating the surface of the catalyst material). That is, since the support and the contaminant on the catalyst surface contain the same element, even if the presence of the element can be detected, it cannot be determined whether or not it acts to reduce the activity of the catalyst. That is, even when the surface state of the hydrothermal gasification catalyst before use in the hydrothermal gasification treatment is analyzed, the activity of the catalyst cannot be accurately determined.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、水熱ガス化処理に使用する前の水熱ガス化触媒の活性化の程度を適切に判定する方法を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for appropriately determining the degree of activation of a hydrothermal gasification catalyst before being used for hydrothermal gasification treatment. It is in.

上記目的を達成するための本発明に係る炭素担体に担持された触媒物質の活性化の程度を判定する方法の特徴構成は、
触媒物質を担持する炭素担体が充填された反応容器に、水素を含有する還元性ガスを流す還元工程と、
前記還元工程中に前記反応容器から流出するガス中の特定の監視対象ガスの量に基づいて前記触媒物質の活性化の程度を判定する判定工程と、を含む点にある。前記監視対象ガスはメタンであってもよい。前記監視対象ガスは水素であってもよい。
In order to achieve the above object, the characteristic configuration of the method for determining the degree of activation of the catalytic material supported on the carbon support according to the present invention is as follows:
A reduction step of flowing a reducing gas containing hydrogen into a reaction vessel filled with a carbon carrier supporting a catalyst substance;
And a determination step of determining the degree of activation of the catalyst substance based on the amount of the specific monitoring target gas in the gas flowing out of the reaction vessel during the reduction step. The monitoring target gas may be methane. The monitoring target gas may be hydrogen.

上記特徴構成によれば、還元工程中に反応容器から流出するガスには、触媒物質においてどのような化学反応があったのかが現れるため、還元工程中に反応容器から流出するガス中の特定の監視対象ガスの量に基づいて触媒物質の活性化の程度を判定することが可能となる。例えば、監視対象ガスが炭素由来の化合物ガスとしてのメタン(炭化水素ガス)である場合、還元工程中に反応容器から流出するメタンの量が多ければ、多量の水素(還元性ガス)がメタンの生成を伴う化学反応(ここでは触媒物質の還元反応)に有効に用いられていること、即ち、触媒物質の活性化の程度が高い状態になっていると判定できる。或いは、監視対象ガスが還元性ガスとしての水素である場合、還元工程中に反応容器から流出する水素の量が多ければ、多量の水素(還元性ガス)が触媒物質の還元に用いられずにそのまま排出されていること、即ち、触媒物質の活性化の程度が低い状態であると判定できる。
従って、水熱ガス化処理に使用する前の水熱ガス化触媒の活性化の程度を適切に判定する方法を提供できる。
According to the above characteristic configuration, the gas flowing out from the reaction vessel during the reduction process shows what kind of chemical reaction has occurred in the catalyst material, and therefore, a specific gas in the gas flowing out from the reaction vessel during the reduction step is displayed. The degree of activation of the catalyst substance can be determined based on the amount of the monitoring target gas. For example, when the monitoring target gas is methane (hydrocarbon gas) as a carbon-derived compound gas, if the amount of methane flowing out of the reaction vessel during the reduction process is large, a large amount of hydrogen (reducing gas) It can be determined that it is effectively used for a chemical reaction accompanied by the generation (here, the reduction reaction of the catalyst substance), that is, the degree of activation of the catalyst substance is high. Alternatively, when the monitoring target gas is hydrogen as a reducing gas, if the amount of hydrogen flowing out of the reaction vessel during the reduction process is large, a large amount of hydrogen (reducing gas) is not used for reducing the catalytic material. It can be determined that the catalyst is discharged as it is, that is, the degree of activation of the catalyst material is low.
Therefore, it is possible to provide a method for appropriately determining the degree of activation of the hydrothermal gasification catalyst before being used for the hydrothermal gasification treatment.

本発明に係る炭素担体に担持された触媒物質の活性化の程度を判定する方法の別の特徴構成は、前記判定工程において、前記還元工程の開始後の所定タイミングにおける前記監視対象ガスの量に基づいて前記触媒物質の活性化の程度を判定する点にある。   Another characteristic configuration of the method for determining the degree of activation of the catalyst material supported on the carbon support according to the present invention is that in the determination step, the amount of the monitoring target gas at a predetermined timing after the start of the reduction step is determined. Based on this, the degree of activation of the catalyst substance is determined.

上記特徴構成によれば、触媒物質の還元反応が活発に発生していれば、還元工程の開始後の所定タイミングにおいて、例えば、監視対象ガスとしてのメタンは多く検出され、水素は少なく検出される。つまり、還元工程の開始後の所定タイミングにおける監視対象ガスの量に基づいて、触媒物質の活性化の程度を判定できる。   According to the above characteristic configuration, if the reduction reaction of the catalytic substance is actively occurring, for example, a large amount of methane as a monitoring target gas is detected and a small amount of hydrogen is detected at a predetermined timing after the start of the reduction process. . That is, the degree of activation of the catalyst substance can be determined based on the amount of the monitoring target gas at a predetermined timing after the start of the reduction process.

本発明に係る炭素担体に担持された触媒物質の活性化の程度を判定する方法の更に別の特徴構成は、前記判定工程において、前記還元工程中に前記反応容器から流出する前記監視対象ガスの量の推移に基づいて前記触媒物質の活性化の程度を判定する点にある。   Still another characteristic configuration of the method for determining the degree of activation of the catalyst substance supported on the carbon support according to the present invention is that in the determination step, the monitoring target gas flowing out of the reaction vessel during the reduction step is The degree of activation of the catalyst material is determined based on the transition of the amount.

上記特徴構成によれば、触媒物質の還元反応が活発に発生していれば、還元工程の開始後、例えば、監視対象ガスとしてのメタンの量は大きな傾きで増加し、水素の量は小さな傾きで増加する。つまり、還元工程中に反応容器から流出する監視対象ガスの量の推移に基づいて触媒物質の活性化の程度を判定できる。   According to the above characteristic configuration, if the reduction reaction of the catalytic substance is actively occurring, for example, the amount of methane as the monitoring target gas increases with a large slope and the amount of hydrogen decreases with a small slope after the start of the reduction process. Increase with. That is, the degree of activation of the catalyst substance can be determined based on the transition of the amount of the monitoring target gas flowing out from the reaction vessel during the reduction process.

触媒の活性評価試験システムの構成を示す図である。It is a figure which shows the structure of the activity evaluation test system of a catalyst. 還元工程中の出口ガス量(メタン:CH4)の推移を示すグラフである。Outlet gas amount during the reduction process: is a graph showing a change in the (methane CH 4). 還元工程中の出口ガス量(水素:H2)の推移を示すグラフである。Outlet gas amount during the reduction step (hydrogen: H 2) is a graph showing a change in the.

以下に図面を参照して本発明に係る触媒の活性化の程度を判定する方法について説明する。
図1は、触媒の活性評価試験システムの構成を示す図である。この活性評価試験システムSは、水熱ガス化触媒の活性化の程度を判定する方法を実施するために利用でき、及び、水熱ガス化触媒を用いて水熱ガス化処理を実施するためにも利用できる。本発明において用いる水熱ガス化触媒は、炭素担体に触媒物質を担持させたものである。
A method for determining the degree of activation of the catalyst according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a catalyst activity evaluation test system. This activity evaluation test system S can be used to implement a method for determining the degree of activation of a hydrothermal gasification catalyst, and to carry out a hydrothermal gasification process using the hydrothermal gasification catalyst. Can also be used. The hydrothermal gasification catalyst used in the present invention is a catalyst in which a catalyst material is supported on a carbon support.

以下に、触媒物質としてNiを用いた場合の水熱ガス化触媒の製造工程を説明する。
先ず、水にNiSO4・6H2Oを溶解させてNiSO4水溶液を調整した後、そのNiSO4水溶液にNH3水溶液を加える。その後、得られた溶液に陽イオン交換樹脂(ポリメタクリル酸)を加える。その結果、ポリメタクリル酸のカルボキシル基の水素とのイオン交換により、樹脂に高密度でNiイオンが結合する。このようなイオン交換を行った後、溶液と樹脂とを分離し、樹脂の表面に付着した溶液を純水にて洗浄する洗浄工程を実施する。そして、十分な洗浄を行った後、樹脂の予備乾燥を行い、乾燥させた樹脂を炉で焼成する焼成工程を実施する。焼成工程では、N2雰囲気中で樹脂を高温状態に保持し、樹脂の部分を炭化することにより、炭素(アモルファスカーボン)を担体としたNi担持触媒(水熱ガス化触媒)を得る。
Below, the manufacturing process of the hydrothermal gasification catalyst at the time of using Ni as a catalyst substance is demonstrated.
First, NiSO 4 .6H 2 O is dissolved in water to prepare an NiSO 4 aqueous solution, and then an NH 3 aqueous solution is added to the NiSO 4 aqueous solution. Thereafter, a cation exchange resin (polymethacrylic acid) is added to the obtained solution. As a result, Ni ions bind to the resin at a high density by ion exchange with the hydrogen of the carboxyl group of polymethacrylic acid. After such ion exchange, the solution and the resin are separated, and a cleaning process is performed in which the solution adhering to the surface of the resin is cleaned with pure water. And after performing sufficient washing | cleaning, preliminary baking of resin is performed and the baking process which bakes the dried resin in a furnace is implemented. In the firing step, the Ni-supported catalyst (hydrothermal gasification catalyst) using carbon (amorphous carbon) as a carrier is obtained by maintaining the resin in a high temperature state in an N 2 atmosphere and carbonizing the resin portion.

活性評価試験システムSは、触媒物質を担持する炭素担体が充填された反応容器4と、反応容器4の内部に流体を流入させることのできる流入路10と、反応容器4の内部から流体を流出させることのできる流出路11と、を備える。本実施形態では、反応容器4に対して、原料タンク1に貯留された原料液(工場からの廃液等)が流入路10aを介して供給される場合と、水素及び窒素が流入路10bを介して供給される場合とがある。   The activity evaluation test system S includes a reaction vessel 4 filled with a carbon support carrying a catalyst substance, an inflow path 10 through which a fluid can flow into the reaction vessel 4, and a fluid flowing out of the reaction vessel 4. And an outflow passage 11 that can be made to flow. In the present embodiment, when the raw material liquid (such as waste liquid from the factory) stored in the raw material tank 1 is supplied to the reaction vessel 4 via the inflow passage 10a, hydrogen and nitrogen are supplied through the inflow passage 10b. May be supplied.

反応容器4の温度は、加熱装置3によって調節可能である。具体的には、加熱装置3は、ヒータ3aと、そのヒータ3aによって加熱される流動砂浴3bとを備える。反応容器4は加熱装置3の流動砂浴3bに囲まれて配置され、その結果、加熱装置3による反応容器4の加熱が行われる。   The temperature of the reaction vessel 4 can be adjusted by the heating device 3. Specifically, the heating device 3 includes a heater 3a and a fluidized sand bath 3b heated by the heater 3a. The reaction vessel 4 is disposed so as to be surrounded by the fluidized sand bath 3 b of the heating device 3, and as a result, the reaction vessel 4 is heated by the heating device 3.

反応容器4よりも下流側の流出路11には、冷却器5、タンク6、気液分離器7が順に設けられている。タンク6は保圧弁4の上流側に設けられている。タンク6は保圧弁4の上流側の流出路11の圧力を緩和するように作用し、その圧力は圧力センサP2で計測可能である。冷却器5を作動させると、反応容器4から流出した流体の冷却が行われ、冷却器5の下流側では気液二相流となる。そして、冷却器5の下流側に気液二相流が流れている場合、気液分離器7で気体と液体とに分離される。ガスは、流出路11aから取り出すことができ、液は、流出路11bから取り出すことができる。ガスの流量はメータMで計測可能である。   A cooler 5, a tank 6, and a gas-liquid separator 7 are sequentially provided in the outflow passage 11 on the downstream side of the reaction vessel 4. The tank 6 is provided on the upstream side of the pressure holding valve 4. The tank 6 acts so as to relieve the pressure in the outflow passage 11 on the upstream side of the pressure-holding valve 4, and the pressure can be measured by the pressure sensor P2. When the cooler 5 is operated, the fluid flowing out of the reaction vessel 4 is cooled, and a gas-liquid two-phase flow is formed on the downstream side of the cooler 5. When a gas-liquid two-phase flow is flowing downstream of the cooler 5, the gas-liquid separator 7 separates the gas and liquid. The gas can be taken out from the outflow passage 11a, and the liquid can be taken out from the outflow passage 11b. The gas flow rate can be measured by the meter M.

〔水熱ガス化触媒の活性化の程度を判定する方法〕
図1の活性評価試験システムSは、水熱ガス化触媒の活性化の程度を判定する方法を実施するために利用できる。具体的には、活性評価試験システムSを用いて、触媒物質を担持する炭素担体が充填された反応容器4に、水素を含有する還元性ガスを流す還元工程と、還元工程中に反応容器4から流出するガス中の特定の監視対象ガスである還元性ガス及び炭素由来の化合物ガスの内の一種以上のガスの量に基づいて触媒物質の活性化の程度を判定する判定工程と、が行われる。
以下に、上記還元工程及び上記判定工程の詳細について説明する。尚、上記判定工程の詳細を説明する前に、還元工程を施す前後の水熱ガス化触媒を実際に水熱ガス化処理に用いた場合の例を参考として説明する。
[Method for determining the degree of activation of the hydrothermal gasification catalyst]
The activity evaluation test system S of FIG. 1 can be used to implement a method for determining the degree of activation of the hydrothermal gasification catalyst. Specifically, using the activity evaluation test system S, a reduction step of flowing a reducing gas containing hydrogen into a reaction vessel 4 filled with a carbon support carrying a catalyst substance, and a reaction vessel 4 during the reduction step. A determination step of determining the degree of activation of the catalyst substance based on the amount of one or more of a reducing gas and a carbon-derived compound gas that are specific monitoring target gases in the gas flowing out from Is called.
Below, the detail of the said reduction | restoration process and the said determination process is demonstrated. Before explaining the details of the determination step, an example in which the hydrothermal gasification catalyst before and after the reduction step is actually used for the hydrothermal gasification treatment will be described as a reference.

[還元工程]
還元工程では、先ず、弁V3が開弁されて窒素が流入路10(10b)を通って反応容器4に導入される。このときの窒素の流量は2NL/hである。反応容器4の容積は13mLであり、反応容器4の内部に上述した水熱ガス化触媒(触媒物質(Ni)を担持する炭素担体)が充填されている。このとき、弁V2は閉弁され、および、弁V1は閉弁され、および、昇圧ポンプ2は停止されている。そして、反応容器4に窒素を導入しながら加熱装置3を加熱作動させ、約30分の間で反応容器4の温度を約450℃に上昇させる。反応容器4の温度は、反応容器44の上流側に設けられた温度センサT1及び反応容器44の下流側に設けられた温度センサT2によって検出できる。そして、30分間、反応容器4の温度を約450℃に維持する。
次に、弁V3を閉弁し、弁V2を開弁して、水素を流入路10(10b)を通して反応容器4に導入する。このときの水素の流量は2NL/hである。そして、120分間、反応容器4の温度を約450℃に維持する。この水素導入期間に水熱ガス化触媒の還元が行われる。
その後、弁V2を閉弁し、弁V3を開弁して、窒素を流入路10(10b)を通して反応容器4に導入すると共に、加熱装置4の動作を制御して反応容器4の温度を降下させる。
[Reduction process]
In the reduction step, first, the valve V3 is opened, and nitrogen is introduced into the reaction vessel 4 through the inflow path 10 (10b). The flow rate of nitrogen at this time is 2 NL / h. The volume of the reaction vessel 4 is 13 mL, and the inside of the reaction vessel 4 is filled with the above-described hydrothermal gasification catalyst (carbon support carrying the catalyst material (Ni)). At this time, the valve V2 is closed, the valve V1 is closed, and the booster pump 2 is stopped. Then, the heating device 3 is heated while introducing nitrogen into the reaction vessel 4, and the temperature of the reaction vessel 4 is raised to about 450 ° C. in about 30 minutes. The temperature of the reaction vessel 4 can be detected by a temperature sensor T1 provided on the upstream side of the reaction vessel 44 and a temperature sensor T2 provided on the downstream side of the reaction vessel 44. Then, the temperature of the reaction vessel 4 is maintained at about 450 ° C. for 30 minutes.
Next, the valve V3 is closed, the valve V2 is opened, and hydrogen is introduced into the reaction vessel 4 through the inflow path 10 (10b). The flow rate of hydrogen at this time is 2 NL / h. Then, the temperature of the reaction vessel 4 is maintained at about 450 ° C. for 120 minutes. The hydrothermal gasification catalyst is reduced during this hydrogen introduction period.
Thereafter, the valve V2 is closed, the valve V3 is opened, nitrogen is introduced into the reaction vessel 4 through the inflow passage 10 (10b), and the operation of the heating device 4 is controlled to lower the temperature of the reaction vessel 4. Let

上記還元工程の実施中、冷却器5は作動されておらず、弁V4は開弁され、弁V5は閉弁されており、反応容器4の下流側の流出路11aからはガスが流出する。そして、流出路11aから流出するガスをサンプリングして、上述した判定工程が行われる。判定工程の詳細については後述する。   During the reduction process, the cooler 5 is not operated, the valve V4 is opened, the valve V5 is closed, and gas flows out from the outflow passage 11a on the downstream side of the reaction vessel 4. And the gas which flows out from the outflow path 11a is sampled, and the determination process mentioned above is performed. Details of the determination step will be described later.

〔水熱ガス化処理の実施〕
図1の活性評価試験システムSは、水熱ガス化触媒を用いて水熱ガス化処理を実施するために利用できる。
水熱ガス化処理では、温度が270℃に維持された反応容器4に対して、弁V1を開弁して原料タンク1に貯留されている原料液が昇圧ポンプ2によって昇圧されて流入される。このとき、圧力センサP1での検出圧力は8.8MPaGとなるように、昇圧ポンプ2の動作が制御される。また、この圧力は、反応容器4の下流側の流出路11に設けられる保圧弁V4によって保たれる。上述したように反応容器4の容積は13mLである。また、原料液の液量は130ml/hであり、通液空間速度SVは10h-1である。原料タンク1に貯留されている原料液のTOCは15000mg−C/Lである。具体的には、原料液は、フェノール(12090mg/L)、イソプロピルアルコール(5570mg/L)、メチルエチルケトン(3890mg/L)、NaOH(20830mg/L)を含む。
[Implementation of hydrothermal gasification]
The activity evaluation test system S in FIG. 1 can be used to perform a hydrothermal gasification process using a hydrothermal gasification catalyst.
In the hydrothermal gasification treatment, the raw material liquid stored in the raw material tank 1 by opening the valve V1 is introduced into the reaction vessel 4 whose temperature is maintained at 270 ° C. by being pressurized by the booster pump 2. . At this time, the operation of the booster pump 2 is controlled so that the pressure detected by the pressure sensor P1 is 8.8 MPaG. Further, this pressure is maintained by a pressure holding valve V 4 provided in the outflow passage 11 on the downstream side of the reaction vessel 4. As described above, the volume of the reaction vessel 4 is 13 mL. The liquid amount of the raw material liquid is 130 ml / h, and the liquid passing space velocity SV is 10 h −1 . The TOC of the raw material liquid stored in the raw material tank 1 is 15000 mg-C / L. Specifically, the raw material liquid contains phenol (12090 mg / L), isopropyl alcohol (5570 mg / L), methyl ethyl ketone (3890 mg / L), and NaOH (20830 mg / L).

表1は、還元工程を施す前後の水熱ガス化触媒を実際に水熱ガス化処理に用いた場合のTOC分解率を示す表である。触媒A〜触媒Hの何れも、上述した製造方法によって製造した、炭素(アモルファスカーボン)を担体としたNi担持触媒(水熱ガス化触媒)である。   Table 1 is a table | surface which shows the TOC decomposition rate at the time of actually using the hydrothermal gasification catalyst before and behind performing a reduction | restoration process for a hydrothermal gasification process. Any of Catalyst A to Catalyst H is a Ni-supported catalyst (hydrothermal gasification catalyst) using carbon (amorphous carbon) as a support, manufactured by the above-described manufacturing method.

Figure 2011212580
Figure 2011212580

還元工程を実施することにより、触媒A〜触媒GはTOC分解率が非常に高くなっている。還元工程後の触媒A〜触媒GのTOC分解率は88.2%〜98.9%の範囲に分布しているが、それらの中で最も低い還元工程後の触媒GのTOC分解率(88.2%)でも十分に高いと言える。つまり、還元工程後の触媒A〜触媒Gはほぼ同等レベルにまで活性化されていると判定してよい。
一方で、触媒HのTOC分解率は、還元工程前で2.2%であり、還元工程後では0.7%である。つまり、触媒Hに対しては、還元工程が有効に作用しなかったことが分かる。
By performing the reduction process, the catalyst A to the catalyst G have a very high TOC decomposition rate. The TOC decomposition rate of the catalyst A to the catalyst G after the reduction step is distributed in the range of 88.2% to 98.9%, and among them, the TOC decomposition rate of the catalyst G after the reduction step (88 .2%) is high enough. That is, it may be determined that the catalysts A to G after the reduction step are activated to almost the same level.
On the other hand, the TOC decomposition rate of the catalyst H is 2.2% before the reduction step and 0.7% after the reduction step. That is, it can be seen that the reduction process did not act effectively on the catalyst H.

以上のように、還元工程が触媒の活性化に有効に作用すれば、還元工程後のTOC分解率は非常に高くなる。逆に、還元工程が触媒の活性化に有効に作用しなければ、還元工程後のTOC分解率は非常に低い。つまり、還元工程の実施中又は実施後の段階で、還元工程が触媒に対して有効に作用していることが分かれば、その段階で(即ち、実際に水熱ガス化処理に用いなくても)、水熱ガス化触媒の活性の程度を判定できると言える。   As described above, if the reduction process effectively acts on the activation of the catalyst, the TOC decomposition rate after the reduction process becomes very high. On the contrary, if the reduction process does not effectively act on the activation of the catalyst, the TOC decomposition rate after the reduction process is very low. In other words, if it is found that the reduction process is effectively acting on the catalyst during or after the reduction process, it is not necessary to actually use it in the hydrothermal gasification process. It can be said that the degree of activity of the hydrothermal gasification catalyst can be determined.

[判定工程]
図2は、還元工程中に流出路から流出されるガス中の特定の監視対象ガス(メタン:CH4)の量の推移を示すグラフである。図3は、還元工程中に流出路から流出されるガス中の特定の監視対象ガス(水素:H2)の量の推移を示すグラフである。図2及び図3において、横軸は水素還元時間であり、上記還元工程において水素を流し始めた時刻を零としている。そして、水素を120分間流している間に流出路11aから流出する出口ガス量をガスクロマトグラフなどの分析装置を用いて監視している。
[Judgment process]
FIG. 2 is a graph showing a change in the amount of a specific monitoring target gas (methane: CH 4 ) in the gas flowing out from the outflow path during the reduction process. FIG. 3 is a graph showing a change in the amount of a specific monitoring target gas (hydrogen: H 2 ) in the gas flowing out from the outflow path during the reduction process. 2 and 3, the horizontal axis represents the hydrogen reduction time, and the time when hydrogen starts to flow in the reduction step is set to zero. And while flowing hydrogen for 120 minutes, the amount of the outlet gas flowing out from the outflow passage 11a is monitored using an analyzer such as a gas chromatograph.

図2は、メタンを監視対象ガスとした場合の結果である。触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)、何れも水素還元時間が60分以上になると、メタンの流出量が急激に上昇している。これに対して、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)、水素による還元中、メタンの流出量は非常に少ないままである。   FIG. 2 shows the results when methane is used as the monitoring target gas. In the case of Catalyst A to Catalyst G (when the reduction process effectively acts on the activation of the catalyst), the methane outflow amount increases rapidly when the hydrogen reduction time is 60 minutes or longer. On the other hand, in the case of catalyst H (when the reduction process does not effectively act on the activation of the catalyst), the outflow of methane remains very small during the reduction with hydrogen.

図3は、水素を監視対象ガスとした場合の結果である。触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)、水素還元時間が30分以上となる辺りから、水素の流出量が急激に上昇し、水素による還元の最終時点(水素還元時間が120分の時点)において検出される水素量も非常に多い。これに対して、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)、何れも水素還元時間が60分以上になると、触媒Hの場合に比べると少ないものの、水素の流出量が上昇し始める。   FIG. 3 shows the results when hydrogen is used as the monitoring target gas. In the case of catalyst H (when the reduction step does not effectively act on the activation of the catalyst), the hydrogen outflow amount suddenly increases from the time when the hydrogen reduction time is 30 minutes or more, and the final point of reduction by hydrogen The amount of hydrogen detected at the time when the hydrogen reduction time is 120 minutes is also very large. On the other hand, in the case of catalyst A to catalyst G (when the reduction step effectively acts on the activation of the catalyst), in both cases, when the hydrogen reduction time is 60 minutes or more, it is less than in the case of catalyst H, Hydrogen outflow begins to rise.

図2の結果及び図3の結果を考え合わせると、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)、還元工程中において、水熱ガス化触媒の製造時に触媒物質の表面に付着していた汚染物質(この場合は炭素又は炭素化合物)が水素によってメタン化されて流出路11aから流出していると考えられる。その結果、汚染物質としての炭素又は炭素化合物の除去が効果的に行われ、触媒物質の活性が高まったと考えられる。つまり、還元工程中において、汚染物質の除去に伴う、水素による炭素又は炭素化合物のメタン化が多く発生しているため、メタンの流出量が急激に上昇し、且つ、水素の流出量が比較的少ないという結果に現れていると考えられる。
これに対して、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)、還元工程中において、水素による炭素又は炭素化合物のメタン化がほとんど発生していないため、メタンの流出量が上昇せず、且つ、水素の流出量が非常に多いという結果に現れていると考えられる。つまり、水熱ガス化触媒の製造時に触媒物質の表面に付着していた汚染物質の除去がほとんど行われず、触媒物質の活性が高まることは無かったと考えられる。
Considering the result of FIG. 2 and the result of FIG. 3, in the case of catalyst A to catalyst G (when the reduction process effectively acts on the activation of the catalyst), during the production of the hydrothermal gasification catalyst during the reduction process It is considered that the pollutant (carbon or carbon compound in this case) adhering to the surface of the catalyst substance is methanated by hydrogen and flows out from the outflow passage 11a. As a result, it is considered that carbon or carbon compounds as pollutants are effectively removed and the activity of the catalyst material is increased. In other words, during the reduction process, a large amount of methanation of carbon or carbon compounds by hydrogen accompanying the removal of pollutants has occurred, so the methane effluent amount increases rapidly and the hydrogen effluent amount is relatively low. It seems that it appears in the result that there are few.
On the other hand, in the case of catalyst H (when the reduction process did not effectively act on the activation of the catalyst), there was almost no methanation of carbon or carbon compounds by hydrogen during the reduction process. It is considered that the outflow amount of hydrogen does not increase and that the outflow amount of hydrogen is very large. That is, it is considered that the contaminants adhering to the surface of the catalyst material during the production of the hydrothermal gasification catalyst were hardly removed, and the activity of the catalyst material was not increased.

以上のように、還元工程中に反応容器4から流出するガス中の特定の監視対象ガスである還元性ガス(例えば水素)及び炭素由来の化合物ガス(例えばメタンなどの炭化水素ガス)の内の一種以上のガスの量に基づいて触媒物質の活性化の程度を判定する判定工程を行うことで、還元工程が触媒の活性化に有効に作用しているか否かを判定できる、即ち、水熱ガス化触媒の活性の程度を判定できると言える。   As described above, of the reducing gas (for example, hydrogen) and the carbon-derived compound gas (for example, hydrocarbon gas such as methane) which are specific monitoring target gases in the gas flowing out from the reaction vessel 4 during the reduction process. By performing a determination process for determining the degree of activation of the catalyst substance based on the amount of one or more gases, it is possible to determine whether the reduction process is effectively acting on the activation of the catalyst, that is, hydrothermal It can be said that the degree of activity of the gasification catalyst can be determined.

具体的には、判定工程において、還元工程の開始後の所定タイミングに反応容器4から流出する監視対象ガスの量が、当該監視対象ガスの判定基準値以上のとき触媒物質の活性化の程度が高いと判定し、及び、判定基準値未満のとき触媒物質の活性化の程度が低いと判定できる。例えば、還元工程において水素還元を開始してから90分後、120分後等のタイミングでの監視対象ガスの量が判定基準値以上であるか、又は、判定基準値未満かに応じて、触媒物質の活性化の程度を判定できる。   Specifically, in the determination step, when the amount of the monitoring target gas flowing out from the reaction vessel 4 at a predetermined timing after the start of the reduction step is equal to or higher than the determination reference value of the monitoring target gas, the degree of activation of the catalyst substance is It can be determined that the degree of activation of the catalyst substance is low when it is determined to be high and less than the determination reference value. For example, depending on whether the amount of the monitoring target gas at a timing such as 90 minutes or 120 minutes after the start of hydrogen reduction in the reduction process is greater than or equal to the determination reference value or less than the determination reference value, The degree of activation of the substance can be determined.

図2に示したメタンの結果例において判定基準値を0.1NL/hとした場合、還元工程において水素還元を開始してから90分後において、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)は出口メタンガス量は0.1NL/h以上となっているが、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)は出口メタンガス量は0.1NL/h未満となっている。
図3に示した水素の結果例において判定基準値を0.8NL/hとした場合、還元工程において水素還元を開始してから90分後において、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)は出口水素ガス量は0.8NL/h未満となっているが、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)は出口メタンガス量は0.8NL/h以上となっている。
以上のように、判定基準値を用いた比較によって、触媒物質の活性化の程度を判定できる。
When the determination reference value is 0.1 NL / h in the methane result example shown in FIG. 2, in the case of catalyst A to catalyst G after 90 minutes from the start of hydrogen reduction in the reduction step (the reduction step is the catalyst). The amount of methane gas at the outlet is 0.1 NL / h or more in the case of the catalyst H (when the reduction process does not effectively act on the activation of the catalyst). The amount of methane gas is less than 0.1 NL / h.
When the determination reference value is 0.8 NL / h in the hydrogen result example shown in FIG. 3, in the case of catalyst A to catalyst G after 90 minutes from the start of hydrogen reduction in the reduction step (the reduction step is the catalyst). The amount of hydrogen gas at the outlet is less than 0.8 NL / h, but in the case of catalyst H (when the reduction process does not act effectively on the activation of the catalyst) The outlet methane gas amount is 0.8 NL / h or more.
As described above, the degree of activation of the catalyst material can be determined by comparison using the determination reference value.

或いは、判定工程において、還元工程中に反応容器4から流出する監視対象ガスの量の推移に基づいて触媒物質の活性化の程度を判定できる。例えば、還元工程において水素還元を開始してから30分後から90分後までの間の監視対象ガスの変化量(即ち、推移)が基準変化量以上であるか、又は、基準変化量未満であるかに応じて、触媒物質の活性化の程度を判定できる。   Alternatively, in the determination step, the degree of activation of the catalyst substance can be determined based on the transition of the amount of the monitoring target gas flowing out from the reaction vessel 4 during the reduction step. For example, the change amount (that is, the transition) of the monitored gas from 30 minutes to 90 minutes after the start of hydrogen reduction in the reduction process is greater than or equal to the reference change amount, or less than the reference change amount. Depending on whether it is present, the degree of activation of the catalyst material can be determined.

図2に示したメタンの結果例において、還元工程において水素還元を開始してから30分後から90分後までの間の監視対象ガス(メタン)の基準変化量を0.1NL/hとした場合、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)は変化量が0.1NL/h以上となっているが、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)は変化量が0.1NL/h未満となっている。
図3に示した水素の結果例において、還元工程において水素還元を開始してから30分後から90分後までの間の監視対象ガス(水素)の基準変化量を0.8NL/hとした場合、触媒A〜触媒Gの場合(還元工程が触媒の活性化に有効に作用した場合)は変化量0.8NL/h未満となっているが、触媒Hの場合(還元工程が触媒の活性化に有効に作用しなかった場合)は変化量が0.8NL/h以上となっている。
以上のように、監視対象ガスの量の推移の比較によって、触媒物質の活性化の程度を判定できる。
In the methane result example shown in FIG. 2, the reference change amount of the monitoring target gas (methane) from 30 minutes to 90 minutes after the start of hydrogen reduction in the reduction step is set to 0.1 NL / h. In the case of catalyst A to catalyst G (when the reduction process effectively acts on the activation of the catalyst), the amount of change is 0.1 NL / h or more, but in the case of catalyst H (the reduction process is the catalyst) The amount of change is less than 0.1 NL / h when the activation does not act effectively.
In the hydrogen result example shown in FIG. 3, the reference change amount of the monitored gas (hydrogen) from 30 minutes to 90 minutes after the start of hydrogen reduction in the reduction step is set to 0.8 NL / h. In the case of catalyst A to catalyst G (when the reduction process effectively acts on the activation of the catalyst), the amount of change is less than 0.8 NL / h, but in the case of catalyst H (the reduction process is the activity of the catalyst). The amount of change is 0.8 NL / h or more.
As described above, the degree of activation of the catalyst substance can be determined by comparing the transition of the amount of the monitoring target gas.

<別実施形態>
<1>
上記実施形態では、触媒表面の汚染物質としての炭素又は炭素化合物に着目し、監視対象ガスとしてメタン及び水素を例示したが、他の汚染物質に着目し及び他のガスを監視対象ガスとしてもよい。どのような汚染物質であっても、その汚染物質が還元工程において水素と反応するのであれば、監視対象ガスを適切に選択することで、汚染物質が触媒表面から除去されたか否か(即ち、還元工程が触媒の活性化に有効に作用したか否か)を判定できる。
<Another embodiment>
<1>
In the above embodiment, attention is paid to carbon or carbon compounds as pollutants on the catalyst surface, and methane and hydrogen are exemplified as monitoring target gases. However, focusing on other pollutants and other gases may be used as monitoring targets. . If any pollutant reacts with hydrogen in the reduction process, whether or not the pollutant has been removed from the catalyst surface by properly selecting the monitored gas (ie, It can be determined whether or not the reduction step has effectively acted on the activation of the catalyst.

<2>
上記実施形態では、図1に例示したような活性評価試験システムSを用いて上記還元工程及び上記判定工程を実施したが、他の構成のシステムを用いて上記還元工程及び上記判定工程を実施してもよい。
<2>
In the above embodiment, the reduction step and the determination step are performed using the activity evaluation test system S illustrated in FIG. 1, but the reduction step and the determination step are performed using a system having another configuration. May be.

<3>
上記実施形態では、水熱ガス化触媒として、炭素を担体としたNi担持触媒を例示したが、触媒物質としてはNi以外の金属を利用可能である。例えば、Co、Cu、Mn、Fe、Mo、Ru、Rh、Pd、Pt、Au、Ca、Mg、Na、K等を触媒物質として利用可能である。
<3>
In the above embodiment, the Ni-supported catalyst using carbon as a carrier is exemplified as the hydrothermal gasification catalyst, but a metal other than Ni can be used as the catalyst material. For example, Co, Cu, Mn, Fe, Mo, Ru, Rh, Pd, Pt, Au, Ca, Mg, Na, K, or the like can be used as a catalyst substance.

本発明は、水熱ガス化処理に使用する前に触媒の活性化の程度を判定するために利用できる。   The present invention can be used to determine the degree of catalyst activation prior to use in a hydrothermal gasification process.

1 原料タンク
2 昇圧ポンプ
3 加熱装置
3a ヒータ
3b 流動砂浴
4 反応容器
5 冷却器
6 タンク
7 気液分離器
10(10a、10b) 流入路
11(11a、11b) 流出路
DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Booster pump 3 Heating apparatus 3a Heater 3b Fluid sand bath 4 Reaction vessel 5 Cooler 6 Tank 7 Gas-liquid separator 10 (10a, 10b) Inflow path 11 (11a, 11b) Outflow path

Claims (5)

炭素担体に担持された触媒物質の活性化の程度を判定する方法であって、
触媒物質を担持する炭素担体が充填された反応容器に、水素を含有する還元性ガスを流す還元工程と、
前記還元工程中に前記反応容器から流出するガス中の特定の監視対象ガスである前記還元性ガス及び炭素由来の化合物ガスの内の一種以上のガスの量に基づいて前記触媒物質の活性化の程度を判定する判定工程と、を含む方法。
A method for determining the degree of activation of a catalyst material supported on a carbon support,
A reduction step of flowing a reducing gas containing hydrogen into a reaction vessel filled with a carbon carrier supporting a catalyst substance;
Activation of the catalytic material based on the amount of one or more of the reducing gas and the compound gas derived from carbon, which is a specific monitoring target gas in the gas flowing out of the reaction vessel during the reduction step. A determination step of determining the degree.
前記判定工程において、前記還元工程の開始後の所定タイミングにおける前記監視対象ガスの量に基づいて前記触媒物質の活性化の程度を判定する請求項1記載の方法。   The method according to claim 1, wherein in the determination step, the degree of activation of the catalyst substance is determined based on the amount of the monitoring target gas at a predetermined timing after the start of the reduction step. 前記判定工程において、前記還元工程中に前記反応容器から流出する前記監視対象ガスの量の推移に基づいて前記触媒物質の活性化の程度を判定する請求項1記載の方法。   The method according to claim 1, wherein in the determination step, the degree of activation of the catalyst substance is determined based on a transition of the amount of the monitoring target gas flowing out from the reaction vessel during the reduction step. 前記監視対象ガスはメタンである請求項1〜3の何れか一項に記載の方法。   The method according to claim 1, wherein the monitoring target gas is methane. 前記監視対象ガスは水素である請求項1〜4の何れか一項に記載の方法。   The method according to claim 1, wherein the monitored gas is hydrogen.
JP2010082983A 2010-03-31 2010-03-31 Method for determining the degree of activation of a catalyst Expired - Fee Related JP5662044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082983A JP5662044B2 (en) 2010-03-31 2010-03-31 Method for determining the degree of activation of a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082983A JP5662044B2 (en) 2010-03-31 2010-03-31 Method for determining the degree of activation of a catalyst

Publications (2)

Publication Number Publication Date
JP2011212580A true JP2011212580A (en) 2011-10-27
JP5662044B2 JP5662044B2 (en) 2015-01-28

Family

ID=44942899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082983A Expired - Fee Related JP5662044B2 (en) 2010-03-31 2010-03-31 Method for determining the degree of activation of a catalyst

Country Status (1)

Country Link
JP (1) JP5662044B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224180A (en) * 1975-08-20 1977-02-23 Mitsubishi Chem Ind Ltd Activating method of unsaturated ester synthesis catalyst
JPS5228495A (en) * 1975-08-29 1977-03-03 Mitsubishi Chem Ind Ltd Method of activating catalyst for producing unsaturated ester
JPS5948426A (en) * 1982-08-14 1984-03-19 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−・エル・シ− Methanol catalytic manufacture
JPH02116749A (en) * 1988-10-26 1990-05-01 Tanaka Kikinzoku Kogyo Kk Evaluation of contact hydrogenated catalyst
JP2000061318A (en) * 1998-08-19 2000-02-29 Toyota Central Res & Dev Lab Inc Catalyst reducing apparatus
JP2000193622A (en) * 1998-12-25 2000-07-14 Agency Of Ind Science & Technol Catalyst performance evaluation device
JP2000517242A (en) * 1996-09-06 2000-12-26 マツクス―プランク―ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウ Catalyst and method for producing the same
JP2008528250A (en) * 2005-01-24 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア Catalytically active composition for selective methanation of carbon monoxide and method for producing the composition
JP2008224257A (en) * 2007-03-09 2008-09-25 Tokyo Electric Power Co Inc:The Catalytic activity evaluation device and evaluation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224180A (en) * 1975-08-20 1977-02-23 Mitsubishi Chem Ind Ltd Activating method of unsaturated ester synthesis catalyst
JPS5228495A (en) * 1975-08-29 1977-03-03 Mitsubishi Chem Ind Ltd Method of activating catalyst for producing unsaturated ester
JPS5948426A (en) * 1982-08-14 1984-03-19 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−・エル・シ− Methanol catalytic manufacture
JPH02116749A (en) * 1988-10-26 1990-05-01 Tanaka Kikinzoku Kogyo Kk Evaluation of contact hydrogenated catalyst
JP2000517242A (en) * 1996-09-06 2000-12-26 マツクス―プランク―ゲゼルシヤフト ツール フエルデルング デル ヴイツセンシヤフテン エー フアウ Catalyst and method for producing the same
JP2000061318A (en) * 1998-08-19 2000-02-29 Toyota Central Res & Dev Lab Inc Catalyst reducing apparatus
JP2000193622A (en) * 1998-12-25 2000-07-14 Agency Of Ind Science & Technol Catalyst performance evaluation device
JP2008528250A (en) * 2005-01-24 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア Catalytically active composition for selective methanation of carbon monoxide and method for producing the composition
JP2008224257A (en) * 2007-03-09 2008-09-25 Tokyo Electric Power Co Inc:The Catalytic activity evaluation device and evaluation method

Also Published As

Publication number Publication date
JP5662044B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
TWI504569B (en) And a method for treating water containing organic matter
JP5098334B2 (en) Method and apparatus for removing organic substances in oilfield-associated water
US8163809B2 (en) Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit
US20110044859A1 (en) Synthesis reaction system for hydrocarbon compound, and method of removing powdered catalyst particles
JP2000514351A (en) Method for cleaning and / or regenerating a totally or partially deactivated flue gas denitrification catalyst
WO2008042095A2 (en) Catalytic wet oxidation systems and methods
JPH0796145A (en) Contact conversion of exhaust gas from internal combustion engine
CN104528912B (en) A kind of photocatalysis apparatus based on nano-magnetic titanium deoxide catalyst
KR101923212B1 (en) Method and apparatus for removal of ammonia
US20110039686A1 (en) Fast regeneration of sulfur deactivated Ni-based hot biomass syngas cleaning catalysts
Ye et al. New insights into the morphological effects of MnOx-CeOx binary mixed oxides on Hg0 capture
JP4703227B2 (en) Wastewater treatment method
JP5662044B2 (en) Method for determining the degree of activation of a catalyst
Ying et al. High efficiency regeneration performance of exhausted activated carbon by superheated steam and comparison with conventional chemical regeneration method
CN115515895A (en) Reaction system, method for trapping solid carbon, method for producing hydrogen-containing gas, catalyst set, and catalyst for trapping solid carbon
US20060198780A1 (en) Method and apparatus for removing CO2 in mixed gas such as biogas
WO2010138471A1 (en) Operations of selenium removal sorbent beds
WO2002079084A1 (en) Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
US8168687B2 (en) Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch synthesis reactions in a syngas treatment unit
Maia et al. Purification of biogas for energy use
CN111186872A (en) Method for treating industrial wastewater
Gharibi et al. Hydrogen permeability and sulfur tolerance of a novel dual membrane of PdAg/PdCu layers deposited on porous stainless steel
US8202914B2 (en) Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit
WO2014144855A2 (en) Methods, systems and apparatuses for fischer-tropsch catalyst regeneration
EA012480B1 (en) Method and apparatus for removing metal sulphide particles from a liquid stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5662044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees