JPH02116749A - Evaluation of contact hydrogenated catalyst - Google Patents

Evaluation of contact hydrogenated catalyst

Info

Publication number
JPH02116749A
JPH02116749A JP27056688A JP27056688A JPH02116749A JP H02116749 A JPH02116749 A JP H02116749A JP 27056688 A JP27056688 A JP 27056688A JP 27056688 A JP27056688 A JP 27056688A JP H02116749 A JPH02116749 A JP H02116749A
Authority
JP
Japan
Prior art keywords
compound
evaluation
catalyst
carbon
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27056688A
Other languages
Japanese (ja)
Inventor
Junichi Yanai
淳一 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP27056688A priority Critical patent/JPH02116749A/en
Publication of JPH02116749A publication Critical patent/JPH02116749A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce analysis time with simplification of evaluation of a contact hydrogenation catalyst by using an acetylene based organic compound having a carbon-carbon triple bonding at a terminal, but with no optical anisotropy center as reaction substance for evaluation. CONSTITUTION:An acetylene based organic compound as reaction substance for evaluation uses a compound having a carbon-carbon triple bonding at a terminal, for example, 3-methyl-1-butyne-3-ole. When a catalyst to be evaluated is introduced into a contact hydrogenation reactor and a reaction substance for evaluation is introduced thereinto, the compound is converted into a corresponding ethylene based organic compound, which has a double bonding at a terminal thereof to obtain a compound of signal nature having no cis trans anisotropy. Then, a hydrogenated compound is analyzed by a gas chromatography to evaluate performance of a catalyst by calculating a convert ratio and a selection ratio of the reaction substance. This shortens analysis time with a simplification of the analysis operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パラジウム−カーボン触媒やリンドラ−触媒
等の接触水素化触媒の性能評価を容易に行うための方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for easily evaluating the performance of catalytic hydrogenation catalysts such as palladium-carbon catalysts and Lindlar catalysts.

(従来技術とその問題点) アセチレン化合物をエチレン化合物に水素化する反応は
使用する触媒の性能によるが主としてシス体が生成し、
場合により数パーセントから数十パーセントのトランス
体が副成することがある。
(Prior art and its problems) The reaction of hydrogenating an acetylene compound to an ethylene compound mainly produces a cis form, although it depends on the performance of the catalyst used.
Depending on the case, several percent to several tens of percent of the trans isomer may be produced as a by-product.

従って各接触水素化触媒の性能評価を行う場合前記シス
体とトランス体を分離した後、例えばガスクロマトグラ
フィを使用して前記評価を行う必要が生じ、評価操作が
非常に煩雑なものとなってしまう。
Therefore, when evaluating the performance of each catalytic hydrogenation catalyst, it is necessary to perform the evaluation using, for example, gas chromatography after separating the cis and trans forms, making the evaluation operation extremely complicated. .

(発明の目的) 本発明は、アセチレン系化合物を水素化してエチレン系
化合物を得るための接触水素化触媒による前記エチレン
化合物生成の際の前記触媒性能評価に際し、評価用反応
物質として異性体を有せず又生成する水素化化合物も前
記シス−トランス異性体を有しないような化合物を選択
し使用することにより、前記接触水素化触媒の評価を容
易に行えるようにした方法を提供することを目的とする
(Object of the Invention) The present invention provides for the use of isomers as reactants for evaluation when evaluating the performance of a catalyst in producing an ethylene compound using a catalytic hydrogenation catalyst for hydrogenating an acetylene compound to obtain an ethylene compound. The purpose of the present invention is to provide a method in which the catalytic hydrogenation catalyst can be easily evaluated by selecting and using a compound that does not contain the cis-trans isomer and the generated hydrogenated compound does not have the cis-trans isomer. shall be.

(問題点を解決するための手段) 従って本発明は、評価すべき接触水素化触媒を導入した
接触水素化反応装置に、評価用反応物質として末端に炭
素−炭素三重結合を有しかつ光学異性中心を有しないア
セチレン系有機化合物を導入し、該化合物の水素化によ
り得られる異性体を有しない対応するエチレン系化合物
を分析し、前記接触水素化触媒の評価を行う方法である
(Means for Solving the Problems) Therefore, the present invention provides a catalytic hydrogenation reactor into which a catalytic hydrogenation catalyst to be evaluated is introduced, which has a carbon-carbon triple bond at the end and has optical isomerism as a reactant for evaluation. This is a method in which an acetylenic organic compound without a center is introduced, and a corresponding ethylene compound without isomers obtained by hydrogenation of the compound is analyzed to evaluate the catalytic hydrogenation catalyst.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では、評価用反応物質であるアセチレン系有機化
合物として立体及び光学異性体を有しない有機化合物の
うち末端に炭素−炭素三重結合を有する化合物を使用す
る。このような化合物としては例えば3−メチル−1−
ブチン−3−オールがあり、該化合物は常圧下、室温で
液体であるため操作が容易である。勿論性の液体の有機
化合物例えば3−エチル−1−ペンチン−3−オール等
を使用することも可能である。
In the present invention, a compound having a carbon-carbon triple bond at the terminal among organic compounds having no steric and optical isomers is used as the acetylene organic compound serving as the reactant for evaluation. Examples of such compounds include 3-methyl-1-
There is butyn-3-ol, and this compound is easy to operate because it is a liquid at room temperature and under normal pressure. Of course, it is also possible to use liquid organic compounds such as 3-ethyl-1-pentyn-3-ol.

反応に使用する評価すべき触媒は、前記アセチレン系有
機化合物を対応するエチレン系有機化合物に水素化でき
る触媒であれば特に限定されず、パラジウムを担持した
カーボン触媒、リンドラ−触媒等がある。
The catalyst used in the reaction to be evaluated is not particularly limited as long as it is capable of hydrogenating the acetylene organic compound to the corresponding ethylene organic compound, and examples thereof include a palladium-supported carbon catalyst, a Lindlar catalyst, and the like.

該触媒を通常の接触水素化用反応装置に導入し必要に応
じて加熱あるいは冷却しながら該装置中に前記評価用反
応物質例えば3−メチル−1−ブチン−3−オーmを導
入すると、該化合物が対応するエチレン系有機化合物つ
まり3−メチル−1=ブテン−3−オールに変換され、
該化合物は末端に二重結合を有するためシス−トランス
異性体が存在せず、単一の性質を有する化合物として得
ることができる。なお通常の化学反応であるため勿論未
反応化合物や二重結合が更に水素化された飽和化合物も
少量ではあるが得られる。
The catalyst is introduced into a conventional catalytic hydrogenation reactor, and the reactant for evaluation, such as 3-methyl-1-butyne-3-ohm, is introduced into the reactor while heating or cooling as necessary. The compound is converted to the corresponding ethylenic organic compound, namely 3-methyl-1=buten-3-ol,
Since this compound has a double bond at the terminal, there are no cis-trans isomers, and it can be obtained as a compound having a single property. Since this is a normal chemical reaction, unreacted compounds and saturated compounds whose double bonds are further hydrogenated are of course also obtained, albeit in small amounts.

次いで該水素化化合物をガスクロマトグラフィにより分
析し、前記評価用反応物質の転化率や選択率を算出して
前記接触水素化触媒の性能評価を行う。本発明方法では
シス−トランス異性体が存在しないため、主生成物及び
副生成物の種類が少なく前記性能評価が容易である。
Next, the hydrogenated compound is analyzed by gas chromatography, and the conversion rate and selectivity of the evaluation reactant are calculated to evaluate the performance of the catalytic hydrogenation catalyst. In the method of the present invention, since there is no cis-trans isomer, there are fewer types of main products and by-products, and the performance evaluation described above is easy.

(実施例) 以下本発明方法の実施例を記載するが、該実施例は本発
明を限定するものではない。
(Example) Examples of the method of the present invention will be described below, but the examples do not limit the present invention.

実施例1 (常圧液相反応の例) リンドラ−触媒10mgとエタノール10m1を加えた
容N 100m1の反応フラスコにガスビユレットと水
素導入管を装着し、該フラスコを水浴中で冷却した。
Example 1 (Example of normal pressure liquid phase reaction) A reaction flask with a capacity of 100 ml containing 10 mg of Lindlar catalyst and 10 ml of ethanol was equipped with a gas billet and a hydrogen introduction tube, and the flask was cooled in a water bath.

3−メチ)Ii−1−ブチン−3−オール(0゜3mm
mol/ml)のエタノール溶液10m1を前記フラス
コ中に添加した後、前記反応装置を閉じ、空気を抜き水
素を導入した。空気抜きと水素導入を3回繰り返した。
3-methy)Ii-1-butyn-3-ol (0°3mm
After adding 10 ml of ethanol solution (mol/ml) into the flask, the reactor was closed, air was evacuated and hydrogen was introduced. Air removal and hydrogen introduction were repeated three times.

マグネチックスターラにより撹拌を行い反応を進行させ
ると、その進行に従い水素が消費され、該水素消費量を
前記ガスビユレットで測定した。
As the reaction progressed by stirring with a magnetic stirrer, hydrogen was consumed as the reaction progressed, and the amount of hydrogen consumption was measured using the gas biulet.

水素が3ミリモル消費された時点で反応を停止し、反応
溶液をそのままガスクロマトグラフィに注入して転化率
、選択率を算出し表1の結果を得た。
The reaction was stopped when 3 mmol of hydrogen was consumed, and the reaction solution was directly injected into gas chromatography to calculate the conversion rate and selectivity, and the results shown in Table 1 were obtained.

実施例2 (常圧液相反応の例) 触媒としてパラジウム担持カーボン触媒を、評価用反応
物質として3−エチル−1−ペンテン3−オールをそれ
ぞれ使用し、空気抜きと水素導入操作後に前記評価用反
応物質をフラスコ中に導入した以外は実施例1と同様に
して前記カーボン触媒の評価を行い表1に示す結果を得
た。
Example 2 (Example of normal pressure liquid phase reaction) Using a palladium-supported carbon catalyst as a catalyst and 3-ethyl-1-penten-3-ol as a reactant for evaluation, the reaction for evaluation was performed after air removal and hydrogen introduction operations. The carbon catalyst was evaluated in the same manner as in Example 1 except that the substance was introduced into the flask, and the results shown in Table 1 were obtained.

表    1 (発明の効果) 本発明は、リンドラ−触媒等によるアセチレン系有機化
合物のエチレン系有(幾代合物への水素化反応の際の前
記触媒の性能を評価するにあたり、評価用反応物質とし
て末端に炭素−炭素三重結合を有しかつ光学異性中心を
有しないアセチレン系有機化合物を使用している。従っ
て得られる対応するエチレン性有機化合物もシス−トラ
ンス異性体を含めた立体及び光学異性体を含有すること
がなく、従来のように他の光学もしくは立体異性体を分
離した後、ガスクロマトグラフィ等により触媒の性能評
価を行う必要がなくなり、分1tffi作が不要となる
ため、分析操作が大幅に簡略化されかつ分析時間が大幅
に短縮される。
Table 1 (Effects of the Invention) The present invention provides a method for evaluating the performance of a catalyst in the hydrogenation reaction of an acetylene organic compound to an ethylene-based compound using a Lindlar catalyst or the like as a reactant for evaluation. An acetylenic organic compound having a carbon-carbon triple bond at the end and no optical center is used. Therefore, the corresponding ethylenic organic compound obtained also has stereo and optical isomers including cis-trans isomers. It is no longer necessary to evaluate the performance of the catalyst using gas chromatography, etc. after separating other optical or stereoisomers as in the conventional method. This simplifies the process and greatly reduces analysis time.

Claims (2)

【特許請求の範囲】[Claims] (1)評価すべき接触水素化触媒を導入した接触水素化
反応装置に、評価用反応物質として末端に炭素−炭素三
重結合を有しかつ光学異性中心を有しないアセチレン系
有機化合物を導入し、該化合物の水素化により得られる
異性体を有しない対応するエチレン系化合物を分析し、
前記接触水素化触媒の評価を行う方法。
(1) Introducing an acetylenic organic compound having a carbon-carbon triple bond at the end and having no optical isomerism center as a reactant for evaluation into a catalytic hydrogenation reaction apparatus into which the catalytic hydrogenation catalyst to be evaluated has been introduced, Analyzing the corresponding ethylene-based compound without isomers obtained by hydrogenation of the compound,
A method for evaluating the catalytic hydrogenation catalyst.
(2)評価用反応物質が3−メチル−1−ブチン−3−
オールであり、得られる水素化化合物が3−メチル−1
−ブテン−3−オールであり、水素化反応を常圧液相で
行うようにした請求項1に記載の方法。
(2) The reactant for evaluation is 3-methyl-1-butyne-3-
ol, and the resulting hydrogenated compound is 3-methyl-1
-buten-3-ol, and the hydrogenation reaction is carried out in a liquid phase at atmospheric pressure.
JP27056688A 1988-10-26 1988-10-26 Evaluation of contact hydrogenated catalyst Pending JPH02116749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27056688A JPH02116749A (en) 1988-10-26 1988-10-26 Evaluation of contact hydrogenated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27056688A JPH02116749A (en) 1988-10-26 1988-10-26 Evaluation of contact hydrogenated catalyst

Publications (1)

Publication Number Publication Date
JPH02116749A true JPH02116749A (en) 1990-05-01

Family

ID=17487944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27056688A Pending JPH02116749A (en) 1988-10-26 1988-10-26 Evaluation of contact hydrogenated catalyst

Country Status (1)

Country Link
JP (1) JPH02116749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212580A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Method of deciding degree in activation of catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212580A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Method of deciding degree in activation of catalyst

Similar Documents

Publication Publication Date Title
Wender et al. Nickel-catalyzed intramolecular [4+ 2] dienyne cycloadditions: an efficient new method for the synthesis of polycycles containing cyclohexa-1, 4-dienes
Aizenberg et al. Homogeneous rhodium complex-catalyzed hydrogenolysis of CF bonds.
McLain et al. Selective olefin dimerization via tantallocyclopentane complexes
Blum et al. Catalytically reactive (η4-tetracyclone)(CO) 2 (H) 2Ru and related complexes in dehydrogenation of alcohols to esters
Brown et al. Base-induced reaction of organoboranes with bromine. Convenient procedure for the anti-Markovnikov hydrobromination of terminal olefins via hydroboration-bromination
Takeuchi et al. Ethanol formation mechanism from carbon monoxide+ molecular hydrogen
Augustine et al. Heterogeneous catalysis in organic chemistry. 2. A mechanistic comparison of noble-metal catalysts in olefin hydrogenation
Chung et al. Nickel (0)-catalysed asymmetric cross-coupling reactions of allylic compounds with Grignard reagents using optically active oxazolinylferrocenylphosphines as ligands
WO2012092512A2 (en) Catalytic anti-markovnikov oxidation and hydration of olefins
Brown et al. Reaction of lithium ethynyl-and ethenyltrialkylborates with acid. Valuable route to the Markovnikov alkenyl-and alkylboranes
Jurczak Stereochemistry of Diels-Alder reactions at high pressure. II. Influence of high pressure on asymmetric induction in condensation of (-)-di-(R)-menthyl fumarate with butadiene and isoprene.
Yeon et al. Aluminum chloride catalyzed regioselective allylsilylation of alkenes: convenient route to 5-silyl-1-alkenes
Tedeschi et al. Selective semihydrogenation of tertiary ethynylcarbinols in the presence of base
Matteoli et al. Asymmetric synthesis by chiral ruthenium complexes: X. Enantioface discriminating isomerization of olefins
JPH02116749A (en) Evaluation of contact hydrogenated catalyst
Salvini et al. Isomerization of olefins by phosphine-substituted ruthenium complexes and influence of an ‘additional gas’ on the reaction rate
Murakami et al. Ruthenium-mediated domino sequence forming six-membered ring diene from ene-yne and alkene
US4384146A (en) Process for butanediols
JPS6348855B2 (en)
JPS62265238A (en) Selective production of perhydroacenaphthene cis form
Mitsui et al. Stereochemistry and mechanism of the catalytic hydrogenation of dimethylcyclohexenes
EP3950653A1 (en) Method for producing halogenated cycloalkane compound
US4302435A (en) Hydrogenation of a diarylketone to a diarylmethanol
JPS6260378B2 (en)
CN113058652B (en) Zirconium gallate catalyst and application thereof in selective hydrogenation reaction of crotonaldehyde