JP2010188895A - Rolling bearing unit for supporting wheel - Google Patents

Rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2010188895A
JP2010188895A JP2009036151A JP2009036151A JP2010188895A JP 2010188895 A JP2010188895 A JP 2010188895A JP 2009036151 A JP2009036151 A JP 2009036151A JP 2009036151 A JP2009036151 A JP 2009036151A JP 2010188895 A JP2010188895 A JP 2010188895A
Authority
JP
Japan
Prior art keywords
reinforcing member
outer ring
diameter side
peripheral surface
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009036151A
Other languages
Japanese (ja)
Inventor
Hiroo Ishikawa
寛朗 石川
Kinji Yugawa
謹次 湯川
Toru Takehara
徹 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009036151A priority Critical patent/JP2010188895A/en
Publication of JP2010188895A publication Critical patent/JP2010188895A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure securing sufficient durability, even if a reinforcing member 4A is thinned, by reducing amplitude of stress applied to the reinforcing member 4a, and easily reducing weight of an outer ring member 2A including the reinforcing member 4A. <P>SOLUTION: A small diameter side end edge part of the reinforcing member 4A is locked in a locking groove 11 formed in a portion closer to an axially inward of an outer peripheral surface of the outer ring member 2A. Even if a rotating side flange 7A has a tendency to be inclined by moment applied during turning traveling, force is only applied in a compressing direction in the reinforcing member 4A, and force is not applied in a pulling direction. The amplitude of the stress therefore can be reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動車の懸架装置に対して車輪を回転自在に支持する為の車輪支持用転がり軸受ユニットの改良に関する。具体的には、内輪部材が回転せずに外輪部材が回転する、所謂外輪回転型のうち、この外輪部材の軽量化を意図した構造を改良し、厳しい使用条件の下でも十分な耐久性の確保を図れる構造を実現するものである。   The present invention relates to an improvement of a rolling bearing unit for supporting a wheel for rotatably supporting a wheel with respect to a suspension system of an automobile. Specifically, of the so-called outer ring rotating type in which the outer ring member rotates without rotating the inner ring member, the structure intended to reduce the weight of the outer ring member has been improved, and sufficient durability even under severe use conditions. A structure that can be secured is realized.

外輪回転型の車輪支持用転がり軸受ユニットは、懸架装置への取付部の構造を内輪回転型のものに比べて簡単にできる為、一部の自動車で従動輪(FF車の後輪、FR車及びMR車の前輪)支持用の転がり軸受ユニットとして使用されている。但し、内輪部材に比べて直径が大きな外輪部材を回転させる為、慣性モーメントが大きくなり、加速性能を中心とする走行性能や燃費性能を確保する面から、内輪回転型の車輪支持用転がり軸受ユニットに比べて不利になる。この様な不利を低減乃至解消する為には、上記外輪部材を軽量化する事が効果的である。この様な事情に鑑みて考えられた外輪回転型の車輪支持用転がり軸受ユニットとして従来から、特許文献1〜3に記載された構造が知られている。   The outer ring rotating type wheel bearing unit for supporting the wheel can make the structure of the mounting part to the suspension device easier than the inner ring rotating type, so that some motor vehicles have driven wheels (rear wheels of FF vehicles, FR vehicles). And the front wheel of an MR vehicle) is used as a rolling bearing unit for support. However, because the outer ring member whose diameter is larger than that of the inner ring member is rotated, the moment of inertia is increased, and the inner ring rotation type rolling bearing unit for wheel support is provided from the viewpoint of ensuring the driving performance and fuel efficiency performance centering on the acceleration performance. It is disadvantageous compared to. In order to reduce or eliminate such disadvantages, it is effective to reduce the weight of the outer ring member. Conventionally, structures described in Patent Documents 1 to 3 are known as rolling bearing units for wheel support of an outer ring rotation type that have been considered in view of such circumstances.

図10〜13は、これら特許文献1〜3に記載された従来構造の3例を示している。これら各従来構造は何れも、内輪部材1a、1b、1cと、外輪部材2a、2b、2cと、複数個の転動体3、3と、補強部材4a、4b、4cとを備える。このうちの内輪部材1a、1b、1cは、外周面に複列の内輪軌道5A、5Bを有し、使用状態で懸架装置に支持固定されて回転しない。又、上記外輪部材2a、2b、2cは、内周面に複列の外輪軌道6A、6Bを、外周面の軸方向外寄り部分(軸方向に関して外とは、組み付け状態で車体の幅方向外側となる側を言う。本明細書及び特許請求の範囲全体で同じ。)に回転側フランジ7a、7b、7cを、それぞれ有する。そして、使用状態でこの回転側フランジ7a、7b、7cに結合固定した車輪と共に回転する。又、上記各転動体3、3は、上記両内輪軌道5A、5Bと上記両外輪軌道6A、6Bとの間に、両列毎に複数個ずつ設けられている。   10 to 13 show three examples of conventional structures described in Patent Documents 1 to 3. FIG. Each of these conventional structures includes inner ring members 1a, 1b, 1c, outer ring members 2a, 2b, 2c, a plurality of rolling elements 3, 3, and reinforcing members 4a, 4b, 4c. Of these, the inner ring members 1a, 1b, and 1c have double-row inner ring raceways 5A and 5B on the outer peripheral surface, and are supported and fixed to the suspension device in use so that they do not rotate. The outer ring members 2a, 2b, and 2c have outer ring raceways 6A and 6B in double rows on the inner peripheral surface, and axially outer portions of the outer peripheral surface (the outside in the axial direction is the outside in the width direction of the vehicle body in the assembled state). The same is applied throughout the present specification and claims), and each has a rotation side flange 7a, 7b, 7c. And it rotates with the wheel couple | bonded and fixed to this rotation side flange 7a, 7b, 7c in use condition. A plurality of rolling elements 3, 3 are provided for each row between the inner ring raceways 5A, 5B and the outer ring raceways 6A, 6B.

又、上記補強部材4a、4b、4cは、全体を部分円すい筒状としている。そして、この補強部材4a、4b、4cの大径側端部を上記回転側フランジ7a、7b、7cの外周縁部に、同じく小径側端部を上記外輪部材2a、2b、2cの外周面でこの回転側フランジ7a、7b、7cよりも軸方向内方寄り部分に、それぞれ溶接により接合固定している。更に、上記内輪部材1a、1b、1cを懸架装置に対し固定する為に、この内輪部材1a、1b、1cの周面に静止側フランジ8a、8b、8cを設けている。上記従来構造の3例のうち、図10、13に示した2例の構造の場合、上記内輪部材1a、1cの外周面の軸方向内端部(軸方向に関して内とは、組み付け状態で車体の幅方向中央側となる側を言う。本明細書及び特許請求の範囲全体で同じ。)に外向フランジ状の上記静止側フランジ8a、8cを設けている。これに対して、図11〜12に示した構造の場合には、上記内輪部材1bの内周面の軸方向内寄り部分の円周方向等間隔複数箇所を径方向内方に突出させる事により、内向フランジ状の上記静止側フランジ8bを設けている。   The reinforcing members 4a, 4b, and 4c have a partially conical cylindrical shape as a whole. The large diameter side ends of the reinforcing members 4a, 4b, and 4c are the outer peripheral edge portions of the rotation side flanges 7a, 7b, and 7c, and the small diameter side ends are the outer peripheral surfaces of the outer ring members 2a, 2b, and 2c. The rotary side flanges 7a, 7b, 7c are joined and fixed by welding to the inner portions in the axial direction. Furthermore, in order to fix the inner ring members 1a, 1b and 1c to the suspension device, stationary flanges 8a, 8b and 8c are provided on the peripheral surfaces of the inner ring members 1a, 1b and 1c. Of the three examples of the conventional structure described above, in the case of the two examples shown in FIGS. 10 and 13, the inner ends of the outer peripheral surfaces of the inner ring members 1a and 1c (the inner side in the axial direction refers to the vehicle body in the assembled state. The stationary side flanges 8a and 8c in the form of outward flanges are provided in the same direction throughout the present specification and claims. On the other hand, in the case of the structure shown in FIGS. 11 to 12, by projecting a plurality of circumferentially equidistant portions in the axially inward portion of the inner peripheral surface of the inner ring member 1b inward in the radial direction. The stationary flange 8b having an inward flange shape is provided.

それぞれが上述の様な構成を有する車輪支持用転がり軸受ユニット9a、9b、9cの使用状態では、上記静止側フランジ8a、8b、8cにより、上記内輪部材1a、1b、1cを懸架装置の構成部材(例えばナックル)に対し結合固定する。又、ディスクロータやドラム等の制動用回転体及び車輪を、上記回転側フランジ7a、7b、7cにより、上記外輪部材2a、2b、2cに対し支持固定する。この状態で、上記制動用回転体及び車輪が上記懸架装置に対し回転自在に支持される。旋回走行時等には、この車輪と路面との接触部(接地面)からの入力が上記回転側フランジ7a、7b、7cに対し、この回転側フランジ7a、7b、7cを上記外輪部材2a、2b、2cの本体部分に対し曲げる方向のモーメントとして加わる。上記従来構造の3例は、何れも、上記回転側フランジ7a、7b、7cと上記外輪部材2a、2b、2cの本体部分との間に前記補強部材4a、4b、4cを設けているので、上記モーメントに拘らず、上記回転側フランジ7a、7b、7cが上記外輪部材2a、2b、2cの本体部分に対し曲がる事を抑えられる。この為、この外輪部材2a、2b、2cを薄肉化しても、上記車輪の支持剛性を確保して、走行安定性等の必要とする性能を確保できる。   When the wheel-supporting rolling bearing units 9a, 9b, and 9c each having the above-described configuration are used, the stationary ring flanges 8a, 8b, and 8c allow the inner ring members 1a, 1b, and 1c to be components of the suspension device. (For example, knuckle). Further, a braking rotator such as a disc rotor and a drum and wheels are supported and fixed to the outer ring members 2a, 2b and 2c by the rotation side flanges 7a, 7b and 7c. In this state, the braking rotator and the wheel are rotatably supported with respect to the suspension device. When turning, for example, an input from a contact portion (grounding surface) between the wheel and the road surface is applied to the rotation side flanges 7a, 7b, 7c, and the rotation side flanges 7a, 7b, 7c are connected to the outer ring member 2a, 2b and 2c are applied as moments in the bending direction. In all three examples of the conventional structure, the reinforcing members 4a, 4b, and 4c are provided between the rotation-side flanges 7a, 7b, and 7c and the main body portions of the outer ring members 2a, 2b, and 2c. Regardless of the moment, the rotation-side flanges 7a, 7b, 7c can be prevented from bending with respect to the main body portions of the outer ring members 2a, 2b, 2c. For this reason, even if the outer ring members 2a, 2b, and 2c are thinned, it is possible to ensure the supporting rigidity of the wheels and to ensure the required performance such as running stability.

この様に、上記補強部材4a、4b、4cにより、上記回転側フランジ7a、7b、7cが上記外輪部材2a、2b、2cの本体部分に対し曲がる事を抑える為、これら回転側フランジ7a、7b、7cや本体部分の薄肉化が可能になる。上記従来構造の3例の場合には、図10、11、13に示す様に、上記外輪部材2a、2b、2cの各部に肉盗み部10a、10b、10cを設けて、この外輪部材2a、2b、2cを十分に薄肉化している。この様に薄肉化を図る事により、この外輪部材2a、2b、2cの慣性モーメントを低減して、加速性能を中心とする走行性能や燃費性能の向上を図れる。   In this way, the rotation side flanges 7a, 7b, 7c are suppressed by the reinforcing members 4a, 4b, 4c from bending the rotation side flanges 7a, 7b, 7c with respect to the main body portions of the outer ring members 2a, 2b, 2c. 7c and the body portion can be made thinner. In the case of the three examples of the conventional structure, as shown in FIGS. 10, 11 and 13, the outer ring members 2a, 2b and 2c are provided with meat stealing portions 10a, 10b and 10c, respectively. 2b and 2c are sufficiently thinned. By reducing the thickness in this way, the moment of inertia of the outer ring members 2a, 2b and 2c can be reduced, and the running performance and fuel efficiency performance centering on the acceleration performance can be improved.

上述の様な従来構造の利点を更に向上させる為には、上記補強部材4a、4b、4cを薄肉化し、この補強部材4a、4b、4cを含めた上記外輪部材2a、2b、2c全体としての重量を、より軽減する事が考えられる。但し、上記従来構造の3例の様に、この補強部材4a、4b、4cの両端部を上記回転側フランジ7a、7b、7cの外周縁部と上記外輪部材2a、2b、2cの外周面とに溶接固定する構造の場合には、上記補強部材4a、4b、4cの薄肉化を十分に図る事が難しい。この理由に就いて、上記図10、11、13に、図3の(A)〜(C)を加えて説明する。   In order to further improve the advantages of the conventional structure as described above, the reinforcing members 4a, 4b, and 4c are thinned, and the outer ring members 2a, 2b, and 2c including the reinforcing members 4a, 4b, and 4c are formed as a whole. It may be possible to further reduce the weight. However, as in the three examples of the conventional structure, both ends of the reinforcing members 4a, 4b, and 4c are connected to the outer peripheral edges of the rotation side flanges 7a, 7b, and 7c and the outer peripheral surfaces of the outer ring members 2a, 2b, and 2c. In the case of a structure that is welded and fixed, it is difficult to sufficiently reduce the thickness of the reinforcing members 4a, 4b, and 4c. The reason for this will be described by adding (A) to (C) of FIG. 3 to FIGS.

外輪回転型の車輪支持用転がり軸受ユニット9a、9b、9cを組み込んだ自動車が旋回走行する際に上記外輪部材2a、2b、2cには、前記接地面を入力点とするモーメントが、旋回方向に応じた方向に加わる。そして、このモーメントによって上記外輪部材2a、2b、2cが、前後方向の水平軸を中心として捩り方向に変位する傾向になり、この外輪部材2a、2b、2cの内周面に設けた前記両外輪軌道6A、6Bに、前記各転動体3、3からの反力が加わる。例えば、図3の(A)に実線矢印イで示す様に、外輪部材2Aに、水平軸Oを中心として時計方向のモーメントが加わると、実線矢印ロ、ロで示す様に、軸方向内側の外輪軌道6Bの上側部分と、軸方向外側の外輪軌道6Aの下側部分とに、上記反力が加わる。逆に、図3の(A)に破線矢印ハで示す様に反時計方向のモーメントが加わると、破線矢印ニ、ニで示す様に、軸方向内側の外輪軌道6Bの下側部分と、軸方向外側の外輪軌道6Aの上側部分とに、上記反力が加わる。   When an automobile incorporating rolling bearing units 9a, 9b, and 9c for supporting the outer ring rotating is turning, the outer ring members 2a, 2b, and 2c have a moment in the turning direction with the ground contact surface as an input point. Join in the appropriate direction. Due to this moment, the outer ring members 2a, 2b, 2c tend to displace in the torsional direction around the horizontal axis in the front-rear direction, and the both outer rings provided on the inner peripheral surfaces of the outer ring members 2a, 2b, 2c. Reaction forces from the rolling elements 3 and 3 are applied to the tracks 6A and 6B. For example, when a clockwise moment about the horizontal axis O is applied to the outer ring member 2A as indicated by a solid line arrow A in FIG. The reaction force is applied to the upper part of the outer ring raceway 6B and the lower part of the outer ring raceway 6A on the outer side in the axial direction. On the other hand, when a counterclockwise moment is applied as shown by the broken arrow c in FIG. 3A, the lower portion of the outer ring raceway 6B on the inner side in the axial direction and the shaft as shown by the broken arrows d The reaction force is applied to the upper portion of the outer ring raceway 6A on the outer side in the direction.

上記外輪部材2Aの特定位置で見た場合、この様な反力は、この外輪部材2Aの回転に伴って交互に加わり、この外輪部材2Aがこれに伴って弾性変形する。そして、上記補強部材4a、4b、4cの両端部を溶接固定した回転側フランジ7Aの外周縁部と、上記外輪部材2Aの外周面の軸方向内方寄り部分との間隔が変化する。具体的には、上記実線矢印ロ、ロで示す反力が加わる瞬間には、図3の(A)の上部では、この間隔が狭くなる傾向になり、上記破線矢印ニ、ニで示す反力が加わる瞬間には、この間隔が広くなる傾向になる。この結果、上記外周縁部と上記軸方向内方寄り部分とに両端部を溶接固定した補強部材4Aに、互いに異なる方向の応力が、繰り返し発生する。   When viewed at a specific position of the outer ring member 2A, such a reaction force is alternately applied as the outer ring member 2A rotates, and the outer ring member 2A is elastically deformed accordingly. And the space | interval of the outer peripheral edge part of the rotation side flange 7A which welded and fixed the both ends of the said reinforcement member 4a, 4b, 4c, and the axially inward part of the outer peripheral surface of the said outer ring member 2A changes. Specifically, at the moment when the reaction force indicated by the solid arrows B and B is applied, this interval tends to be narrower in the upper part of FIG. 3A, and the reaction force indicated by the broken arrows D and D above. At the moment when is added, this interval tends to increase. As a result, stresses in different directions are repeatedly generated in the reinforcing member 4A in which both end portions are welded and fixed to the outer peripheral edge portion and the axially inward portion.

即ち、上記図3の(A)の上部に関して言えば、上記補強部材4Aのうちで、図3の(B)に示す様に、上記外輪部材2Aに対し溶接固定した部分には、上記実線矢印ロ、ロで示す方向に反力が加わって上記間隔が狭くなる瞬間に、上記補強部材4Aに圧縮剪断方向の応力が発生する。これに対して、上記破線矢印ニ、ニで示す方向に反力が加わって上記間隔が広くなる瞬間には、同じ部分に、引っ張り剪断方向の応力が発生する。この結果この補強部材4Aの各部には、図3の(C)に示す様に、圧縮剪断方向の応力と引っ張り剪断方向の応力とが交互に発生する。この結果、上記補強部材4Aに発生する応力の振幅Wが大きくなり、この補強部材4Aを薄肉化すると、この補強部材4Aに亀裂等の損傷が発生し易くなる。この為、特許文献1〜3に記載された従来構造では、補強部材4a、4b、4cの薄肉化を図りにくく、この補強部材4a、4b、4cを含めた前記外輪部材2a、2b、2cの重量軽減を図りにくい。   That is, with respect to the upper portion of FIG. 3A, the solid line arrow is formed on the portion of the reinforcing member 4A welded to the outer ring member 2A as shown in FIG. 3B. At the moment when the reaction force is applied in the direction indicated by B and B and the interval is narrowed, stress in the compression shear direction is generated in the reinforcing member 4A. On the other hand, at the moment when the reaction force is applied in the direction indicated by the broken arrows D and D and the interval is widened, stress in the tensile shear direction is generated at the same portion. As a result, as shown in FIG. 3C, stress in the compressive shear direction and stress in the tensile shear direction are alternately generated in each part of the reinforcing member 4A. As a result, the amplitude W of the stress generated in the reinforcing member 4A is increased, and when the reinforcing member 4A is thinned, the reinforcing member 4A is likely to be damaged such as a crack. For this reason, in the conventional structures described in Patent Documents 1 to 3, it is difficult to reduce the thickness of the reinforcing members 4a, 4b, and 4c, and the outer ring members 2a, 2b, and 2c including the reinforcing members 4a, 4b, and 4c are difficult to achieve. It is difficult to reduce weight.

独国特許出願公開第10 2007 023 661号明細書German Patent Application Publication No. 10 2007 023 661 独国特許出願公開第10 2007 060 627号明細書German Patent Application Publication No. 10 2007 060 627 独国特許出願公開第10 2008 023 588号明細書German Patent Application Publication No. 10 2008 023 588

本発明は、上述の様な事情に鑑み、補強部材に加わる応力の振幅を小さくして、この補強部材を薄肉化しても十分な耐久性を確保でき、この補強部材を含めた外輪部材の重量軽減を図り易い構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can reduce the amplitude of stress applied to the reinforcing member and ensure sufficient durability even if the reinforcing member is thinned. The weight of the outer ring member including the reinforcing member It was invented to realize a structure that can be easily reduced.

本発明の車輪支持用転がり軸受ユニットは、前述した特許文献1〜3に記載された車輪支持用転がり軸受ユニットと同様に、内輪部材と、外輪部材と、複数個の転動体と、補強部材とを備える。
このうちの内輪部材は、外周面に複列の内輪軌道を有し、使用状態で懸架装置に支持固定されて回転しない。
又、上記外輪部材は、内周面に複列の外輪軌道を、外周面の軸方向外寄り部分に回転側フランジを、それぞれ有し、使用状態でこの回転側フランジに結合固定した車輪と共に回転する。
又、上記各転動体は、上記両内輪軌道と上記両外輪軌道との間に、両列毎に複数個ずつ設けられている。
更に、上記補強部材は、部分円すい筒状で、大径側端部を上記回転側フランジの径方向外寄り部分に、同じく小径側端部を、上記外輪部材の外周面でこの回転側フランジよりも軸方向内方寄り部分に、それぞれ係止して、これら両部分同士の間で突っ張る。
The wheel support rolling bearing unit of the present invention includes an inner ring member, an outer ring member, a plurality of rolling elements, a reinforcement member, and the wheel support rolling bearing unit described in Patent Documents 1 to 3 described above. Is provided.
Of these, the inner ring member has a double-row inner ring raceway on the outer peripheral surface, and is supported and fixed to the suspension device in a used state so as not to rotate.
The outer ring member has a double-row outer ring raceway on the inner peripheral surface and a rotating flange on the outer peripheral surface in the axial direction. The outer ring member rotates together with the wheel fixedly connected to the rotating flange in use. To do.
A plurality of rolling elements are provided for each row between the inner ring raceways and the outer ring raceways.
Further, the reinforcing member has a partially conical cylindrical shape, with the large-diameter end on the radially outer side of the rotating flange and the small-diameter end on the outer peripheral surface of the outer ring member from the rotating flange. Are also locked to the axially inward portions and stretched between the two portions.

特に、本発明の車輪支持用転がり軸受ユニットに於いては、上記補強部材の小径側端縁部を、上記外輪部材の外周面で上記回転側フランジよりも軸方向内方寄り部分に形成された係止溝又は係止突条に突き当てた状態で係止している。
この様な本発明の車輪支持用転がり軸受ユニットを実施する場合に、例えば請求項2に記載した発明の様に、上記回転側フランジの軸方向内側面に係止段部を設け、上記補強部材の大径側端部をこの係止段部に係止する。
或は、請求項3に記載した発明の様に、上記補強部材の大径側端部に、径方向内方に折れ曲がった係止折れ曲がり部を、回転側フランジの軸方向外側面の外径側端部に凹部を、それぞれ設ける。そして、この係止折れ曲がり部を、この凹部と、上記回転側フランジの軸方向外側面に結合固定した部材の軸方向内側面との間で挟持する。
更に、請求項4に記載した発明の様に、上記補強部材を、それぞれが部分円すい筒状である外筒の内周面と内筒の外周面との間を多数の仕切壁により仕切ったハニカム構造体とする事もできる。
In particular, in the rolling bearing unit for supporting a wheel according to the present invention, the small-diameter side end edge portion of the reinforcing member is formed on the outer peripheral surface of the outer ring member at a portion closer to the inner side in the axial direction than the rotation-side flange. It is locked in a state of abutting against the locking groove or the locking protrusion.
When implementing such a wheel-supporting rolling bearing unit of the present invention, for example, as in the invention described in claim 2, a locking step is provided on the axially inner side surface of the rotating side flange, and the reinforcing member is provided. The large-diameter-side end portion is locked to the locking step portion.
Alternatively, as in the invention described in claim 3, a locking bent portion bent radially inward is provided on the large diameter side end portion of the reinforcing member, and the outer diameter side of the axially outer side surface of the rotation side flange. A recess is provided at each end. And this latching bending part is clamped between this recessed part and the axial direction inner side surface of the member couple | bonded and fixed to the axial direction outer side surface of the said rotation side flange.
Further, as in the invention described in claim 4, the honeycomb member in which the reinforcing member is partitioned by a plurality of partition walls between the inner peripheral surface of the outer cylinder and the outer peripheral surface of the inner cylinder, each of which is a partial conical cylinder shape. It can also be a structure.

上述の様に構成する本発明の車輪支持用転がり軸受ユニットによれば、補強部材に加わる応力の振幅を小さくできる。即ち、少なくともこの補強部材の小径側端縁部と外輪部材の外周面で回転側フランジよりも軸方向内方寄り部分端部との係止部を、圧縮方向の力のみ伝達する様にできる。言い換えれば、この係止部で、引っ張り方向の力が伝達されない様にできる。この為、上記補強部材の両端部を係止した、上記回転側フランジの径方向外寄り部分と上記外輪部材の外周面でこの回転側フランジよりも軸方向内方寄り部分との距離が拡縮される傾向になっても、上記補強部材に引っ張り方向の応力が発生する事はない。この補強部材に発生するのは圧縮方向の応力のみである為、応力の振幅を小さくして、この補強部材の耐久性を確保し易くなる。この為、この補強部材を薄肉化しても十分な耐久性を確保できて、この補強部材を含めた外輪部材の重量軽減を図れる。尚、上記補強部材が、上記回転側フランジの径方向外寄り部分と上記外輪部材の外周面でこの回転側フランジよりも軸方向内方寄り部分との距離が拡がる方向に変位するのを阻止しない分、この回転側フランジの曲げ剛性の確保の面では、前述した従来構造に比べて多少は不利になる。但し、上記補強部材が、上記距離が縮まる方向への変位を阻止するので、上記回転側フランジに制動用回転体及び車輪を結合固定した状態で、この回転側フランジの周方向に関する剛性を確保さえすれば、上記曲げ剛性を、実用上十分な程度確保できる。   According to the rolling bearing unit for supporting a wheel of the present invention configured as described above, the amplitude of stress applied to the reinforcing member can be reduced. That is, it is possible to transmit only the force in the compression direction to at least the engaging portion between the small-diameter side end edge portion of the reinforcing member and the outer peripheral surface of the outer ring member and the axially inward portion end portion of the rotating side flange. In other words, it is possible to prevent the force in the pulling direction from being transmitted by this locking portion. For this reason, the distance between the radially outward portion of the rotating flange and the outer peripheral surface of the outer ring member that engages both ends of the reinforcing member and the axially inward portion of the outer ring member is expanded or reduced. Even in such a tendency, stress in the pulling direction is not generated in the reinforcing member. Since only the stress in the compression direction is generated in the reinforcing member, the amplitude of the stress can be reduced to easily ensure the durability of the reinforcing member. For this reason, even if the reinforcing member is thinned, sufficient durability can be secured, and the weight of the outer ring member including the reinforcing member can be reduced. The reinforcing member does not prevent the distance between the radially outer portion of the rotation side flange and the outer peripheral surface of the outer ring member from extending in the direction in which the distance between the rotation side flange and the axially inward portion increases. In terms of securing the bending rigidity of the rotation side flange, it is somewhat disadvantageous compared to the conventional structure described above. However, since the reinforcing member prevents displacement in the direction in which the distance is reduced, the rigidity in the circumferential direction of the rotating flange can be ensured in a state where the braking rotor and the wheel are coupled and fixed to the rotating flange. If so, the above-mentioned bending rigidity can be secured to a practically sufficient level.

本発明の実施の形態の第1例を示す要部断面図。FIG. 3 is a cross-sectional view of a main part showing a first example of an embodiment of the present invention. 補強部材を組み付ける工程を順番に示す要部断面図。The principal part sectional drawing which shows the process of assembling a reinforcement member in order. 旋回走行時に補強部材に応力が発生する状態を説明する為の図で、(A)は補強部材を備えた外輪部材の断面図、(B)は従来構造に於ける補強部材の小径側端部と外輪部材との結合部を示す断面図、(C)はこの従来構造で補強部材に発生する応力が外輪部材の回転に伴って変化する状態を示す線図、(D)は本発明構造に於ける補強部材の小径側端部と外輪部材との結合部を示す断面図、(E)は回転側フランジの径方向外寄り部分と上記外輪部材の外周面でこの回転側フランジよりも軸方向内方寄り部分との距離が拡がる方向に変位する状態での上記結合部の状態を示す断面図、(F)は本発明構造で補強部材に発生する応力が外輪部材の回転に伴って変化する状態を示す線図。It is a figure for demonstrating the state which stress generate | occur | produces in a reinforcement member at the time of turning, (A) is sectional drawing of the outer ring member provided with the reinforcement member, (B) is a small diameter side edge part of the reinforcement member in a conventional structure (C) is a diagram showing a state in which the stress generated in the reinforcing member in this conventional structure changes as the outer ring member rotates, and (D) shows the structure of the present invention. Sectional drawing which shows the coupling | bond part of the small diameter side edge part and outer ring member of a reinforcement member in this, (E) is a radial direction outer side part of the rotation side flange, and the outer peripheral surface of the said outer ring member, and it is axial direction rather than this rotation side flange Sectional drawing which shows the state of the said coupling | bond part in the state displaced to the direction where the distance with an inward part spreads, (F) is a stress which generate | occur | produces in a reinforcement member with the structure of this invention changes with rotation of an outer ring member. The diagram which shows a state. 本発明の実施の形態の第2例を示す要部断面図。The principal part sectional drawing which shows the 2nd example of embodiment of this invention. 同第3例を示す要部断面図。The principal part sectional view showing the 3rd example. 補強部材の別構造の2例を示す端面図。The end elevations which show two examples of another structure of a reinforcement member. 補強部材の別例を示す部分斜視図。The fragmentary perspective view which shows another example of a reinforcement member. 同じく部分端面図。Similarly a partial end view. この補強部材の使用状態の別例を示す要部断面図。The principal part sectional drawing which shows another example of the use condition of this reinforcement member. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 図11の右方から見た斜視図。The perspective view seen from the right side of FIG. 従来構造の第3例を示す切断斜視図。The cutting perspective view which shows the 3rd example of a conventional structure.

[実施の形態の第1例]
請求項1、2に対応する本発明の実施の形態の第1例に就いて、図1〜3により説明する。尚、本例を含めて本発明の特徴は、外輪部材2Aに対する補強部材4Aの組み付け部の構造を工夫する事により、旋回走行時に、この外輪部材2Aの回転に伴って上記補強部材4Aに加わる応力の振幅を小さくし、この補強部材4Aの厚さ寸法を小さく抑えても、この補強部材4Aの耐久性を十分に確保できる様にする点にある。その他の部分の構成及び作用は、前述の図10〜13に示した従来構造の第1〜3例と同様であるから、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1 and 2 will be described with reference to FIGS. The feature of the present invention including this example is that the structure of the assembly portion of the reinforcing member 4A with respect to the outer ring member 2A is devised to add to the reinforcing member 4A as the outer ring member 2A rotates during turning. Even if the amplitude of the stress is reduced and the thickness of the reinforcing member 4A is kept small, the durability of the reinforcing member 4A can be sufficiently ensured. Since the configuration and operation of other parts are the same as those of the first to third examples of the conventional structure shown in FIGS. The explanation will focus on the part.

上記補強部材4Aの小径側端縁部を係止する為、上記外輪部材2Aの外周面で回転側フランジ7Aよりも軸方向内方寄り部分に、断面形状が略V字形の係止溝11を、全周に亙って形成している。又、上記回転側フランジ7Aの軸方向内側面の外径側端部に、係止段部12を設けている。上記外輪部材2Aの中心軸を含む仮想平面での断面形状に関して、この係止段部12の内径側底面13と、上記係止溝11のアウタ側底面14とは、同一直線上に存在する。又、同じ仮想平面での断面形状に関して、上記係止段部12の奥端面15は上記内径側底面13と、上記係止溝11のインナ側底面16は上記アウタ側底面14と、それぞれ直交する。従って、このインナ側底面16と上記奥端面15とは互いに平行である。又、これらインナ側底面16と奥端面15との距離は、上記補強部材4Aの小径側端面17と大径側端面18との距離に一致させている。尚、これら両端面17、18同士も、互いに平行である。又、上記補強部材4Aの両端部の自由状態での内径は、それぞれ上記内径側底面13及びアウタ側底面14の直径と一致している。従って、上記補強部材4Aの小径側端部の自由状態での内径は、上記係止溝11よりも軸方向内方に存在する、上記外輪部材2Aの軸方向内端部の外径よりも小さい。   In order to lock the small-diameter side edge of the reinforcing member 4A, a locking groove 11 having a substantially V-shaped cross section is formed on the outer peripheral surface of the outer ring member 2A in the axially inward portion of the rotation side flange 7A. It is formed over the entire circumference. Further, a locking step portion 12 is provided at the outer diameter side end portion of the inner side surface in the axial direction of the rotation side flange 7A. Regarding the cross-sectional shape in a virtual plane including the central axis of the outer ring member 2A, the inner diameter side bottom surface 13 of the locking step portion 12 and the outer side bottom surface 14 of the locking groove 11 exist on the same straight line. Further, regarding the cross-sectional shape in the same virtual plane, the rear end surface 15 of the locking step portion 12 is orthogonal to the inner diameter side bottom surface 13, and the inner side bottom surface 16 of the locking groove 11 is orthogonal to the outer side bottom surface 14. . Therefore, the inner side bottom surface 16 and the back end surface 15 are parallel to each other. Further, the distance between the inner side bottom surface 16 and the back end surface 15 is matched with the distance between the small diameter side end surface 17 and the large diameter side end surface 18 of the reinforcing member 4A. In addition, these both end surfaces 17 and 18 are also mutually parallel. Further, the inner diameters of both ends of the reinforcing member 4A in the free state coincide with the diameters of the inner diameter side bottom face 13 and the outer side bottom face 14, respectively. Therefore, the inner diameter in the free state of the small-diameter side end of the reinforcing member 4A is smaller than the outer diameter of the inner end of the outer ring member 2A in the axial direction. .

上述の様な補強部材4Aは、図2に示す様にして、上記外輪部材2Aに対し装着する。即ち、図2の(A)に示す様に、上記補強部材4Aの大径側端部を軸方向外側に位置させた状態で、この補強部材4Aを上記外輪部材2Aよりも軸方向内側に配置する。この状態から、この外輪部材2Aの軸方向内端部を、上記補強部材4Aの内径側に押し込む(或は、この外輪部材2Aの軸方向内端部に、この補強部材4Aを強く外嵌する)。すると、図2の(B)に示す様に、この補強部材4Aの小径側端部が径方向外側に弾性変形しつつ、上記外輪部材2Aの軸方向内端部を乗り越える。そして、上記補強部材4Aの大径側端部が上記係止段部12に外嵌され、この補強部材4Aの大径側端面18が上記奥端面15に突き当たる迄、この補強部材4Aと上記外輪部材2Aとを軸方向に相対変位させると、図2の(C)に示す様に、この補強部材4Aの小径側端部が上記係止溝11に係合する。同時に、この補強部材4Aの小径側端面17と、この係止溝11のインナ側底面16とが突き当たる。   The reinforcing member 4A as described above is attached to the outer ring member 2A as shown in FIG. That is, as shown in FIG. 2A, the reinforcing member 4A is disposed on the axially inner side of the outer ring member 2A in a state where the large-diameter side end of the reinforcing member 4A is positioned on the axially outer side. To do. From this state, the inner end portion in the axial direction of the outer ring member 2A is pushed into the inner diameter side of the reinforcing member 4A (or the reinforcing member 4A is strongly fitted on the inner end portion in the axial direction of the outer ring member 2A. ). Then, as shown in FIG. 2B, the small diameter side end of the reinforcing member 4A is elastically deformed radially outward and gets over the axial inner end of the outer ring member 2A. Then, the reinforcing member 4A and the outer ring are engaged until the large-diameter side end of the reinforcing member 4A is fitted onto the locking step portion 12 and the large-diameter side end surface 18 of the reinforcing member 4A hits the back end surface 15. When the member 2A is relatively displaced in the axial direction, the small diameter side end of the reinforcing member 4A engages with the locking groove 11 as shown in FIG. At the same time, the small diameter side end surface 17 of the reinforcing member 4A and the inner side bottom surface 16 of the locking groove 11 abut against each other.

この様に上記補強部材4Aを上記外輪部材2Aに組み付けた状態で、この補強部材4Aが、前記回転側フランジ7Aの外径側端部と上記外輪部材2Aの軸方向内端寄り部分との間で突っ張る。従って、旋回走行時に上記回転側フランジ7Aに加わるモーメントに拘らず、この回転側フランジ7Aが軸方向内側に倒れる方向に弾性変形する事はない。上記補強部材4Aは、この回転側フランジ7Aが軸方向外側に倒れる方向に弾性変形する事を阻止する事はできない。但し、この回転側フランジ7Aの或る部分が軸方向に関して何れかの方向の変位する傾向になった場合、径方向反対側部分が軸方向に関して他方向の変位する傾向になる。特に、制動用回転体や車輪を結合固定する事に伴い、これら制動用回転体及び車輪により補強された上記回転側フランジ7Aを、高剛性の円板状部材として考えた場合には、上記傾向は著しくなる。従って、上記補強部材4Aが、上記回転側フランジ7Aが軸方向内側に倒れる方向に弾性変形する事を阻止すれば、この回転側フランジ7Aが軸方向外側に倒れる方向に弾性変形する事も阻止する。   In a state where the reinforcing member 4A is assembled to the outer ring member 2A in this way, the reinforcing member 4A is between the outer diameter side end portion of the rotation side flange 7A and the axially inner end portion of the outer ring member 2A. Stretch with. Therefore, regardless of the moment applied to the rotation side flange 7A during turning, the rotation side flange 7A is not elastically deformed in the direction of falling inward in the axial direction. The reinforcing member 4A cannot prevent the rotation-side flange 7A from elastically deforming in a direction in which the rotation-side flange 7A tilts outward in the axial direction. However, when a certain part of the rotation side flange 7A tends to be displaced in any direction with respect to the axial direction, the radially opposite part tends to be displaced in the other direction with respect to the axial direction. In particular, when the rotating flange 7A reinforced by the braking rotator and the wheels is considered to be a highly rigid disc-shaped member as the braking rotator and the wheels are coupled and fixed, the above tendency is observed. Becomes remarkable. Therefore, if the reinforcing member 4A prevents the rotation side flange 7A from elastically deforming in the direction in which the rotation side flange 7A falls inward in the axial direction, the rotation side flange 7A also prevents elastic deformation in the direction in which the rotation side flange 7A falls down in the axial direction. .

上述の様に構成する本例の車輪支持用転がり軸受ユニットによれば、上記補強部材4Aに加わる応力の振幅を小さくできる。即ち、この補強部材4Aの小径側、大径側両端面17、18は前記奥端面15及び前記インナ側底面16に対し、単に突き当てるのみで、溶接や接着等により固着してはいない。従って、上記補強部材4Aと上記外輪部材2Aとは、圧縮方向の力のみ伝達可能に係合しており、これら補強部材4Aと外輪部材2Aとの間で引っ張り方向の力が伝達される事はない。この為、この補強部材4Aの両端部を係止した、上記奥端面15と上記インナ側底面16との距離が拡縮される傾向になっても、上記補強部材4Aに引っ張り剪断方向の応力が発生する事はない。上記距離が拡がる傾向の場合には、図3の(E)に誇張して示す様に、上記補強部材4Aの端面(例えば小径側端面17)と相手面(例えばインナ側底面16)とが離隔する傾向になる為、上記補強部材4Aに引っ張り方向に応力が発生する事はない。この補強部材4Aに応力が発生するのは、上記距離が縮まる傾向になり、図3の(D)に示す様に、上記補強部材4Aの端面(例えば小径側端面17)と相手面(例えばインナ側底面16)とが押し付け合う場合のみで、発生する応力は圧縮応力のみとなる。   According to the rolling bearing unit for supporting a wheel of this example configured as described above, the amplitude of stress applied to the reinforcing member 4A can be reduced. That is, the small-diameter side and large-diameter side end faces 17 and 18 of the reinforcing member 4A are merely abutted against the back end face 15 and the inner side bottom face 16 and are not fixed by welding or adhesion. Therefore, the reinforcing member 4A and the outer ring member 2A are engaged so as to be able to transmit only the force in the compression direction, and the force in the pulling direction is transmitted between the reinforcing member 4A and the outer ring member 2A. Absent. For this reason, even if the distance between the back end surface 15 and the inner side bottom surface 16 that engages both ends of the reinforcing member 4A tends to be expanded or contracted, stress in the tensile shear direction is generated on the reinforcing member 4A. There is nothing to do. When the distance tends to increase, as shown exaggeratedly in FIG. 3E, the end face (for example, the small diameter side end face 17) of the reinforcing member 4A and the mating face (for example, the inner side bottom face 16) are separated from each other. Therefore, no stress is generated in the reinforcing member 4A in the pulling direction. The stress generated in the reinforcing member 4A tends to reduce the distance, and as shown in FIG. 3D, the end surface (for example, the small diameter side end surface 17) of the reinforcing member 4A and the mating surface (for example, the inner surface). Only when the side bottom surface 16) is pressed against each other, the generated stress is only compressive stress.

この様に、本発明の構造の場合に発生する応力は圧縮応力のみである為、前述した従来構造の様に、剪断応力及び圧縮応力が発生する場合に比較して、応力の振幅wを小さく(W>w>W/2)できる。又、応力の発生方向が一定であり、しかも、亀裂等の損傷の原因となりにくい圧縮方向の応力のみとなる為、上記補強部材4Aの耐久性を確保し易くなる。この為、この補強部材4Aを薄肉化しても十分な耐久性を確保できて、この補強部材4Aを含めた、前記外輪部材2A全体としての重量軽減を図れる。   As described above, since the stress generated in the case of the structure of the present invention is only the compressive stress, the amplitude w of the stress is reduced as compared with the case where the shear stress and the compressive stress are generated as in the conventional structure described above. (W> w> W / 2). In addition, since the stress generation direction is constant and only the stress in the compression direction is unlikely to cause damage such as cracks, it is easy to ensure the durability of the reinforcing member 4A. For this reason, even if the reinforcing member 4A is thinned, sufficient durability can be secured, and the weight of the entire outer ring member 2A including the reinforcing member 4A can be reduced.

尚、上記補強部材4Aの小径側、大径側両端面17、18と上記奥端面15及び上記インナ側底面16とは、これら両端面17、18の径方向全幅に亙り当接させる事が好ましい。例えば、図3の(D)に示す様に、小径側端面17の内径側部分のみ、上記インナ側底面16に突き当てると、上記補強部材4Aの小径側端部に、亀裂等の損傷防止の面から有害な、剪断方向の応力が発生する。互いに係合する各面17、16(18、15)を、各端面17、18の全幅で当接させれば上記剪断方向の応力は発生しない。上記奥端面15に関しては、上記大径側端面18の全幅を突き当てる為の加工は容易である。これに対して、上記インナ側底面16の幅寸法を確保すべく、前記係止溝11を深くすると、上記外輪部材2Aの厚さが、この係止溝11部分で不足する可能性が大きくなる。そこで、この様な場合には、上記外輪部材2Aの外周面の軸方向内端部で上記係止溝11の軸方向内側に隣接する部分に係止突条を、全周に亙って形成する。そして、この係止突条の軸方向外側面を、上記インナ側底面として機能させる。この様に構成すれば、上記外輪部材2Aの厚さ寸法を確保し、しかも、上記小径側端面17をその全幅に亙り、上記インナ側底面に突き当てられる。尚、係止突条のみで、係止溝を省略する事もできる。   The small diameter side and large diameter side end faces 17 and 18 of the reinforcing member 4A, the back end face 15 and the inner side bottom face 16 are preferably brought into contact with each other over the entire radial width of both end faces 17 and 18. . For example, as shown in FIG. 3D, when only the inner diameter side portion of the small diameter side end surface 17 abuts against the inner side bottom surface 16, damage to the small diameter side end portion of the reinforcing member 4A is prevented. A stress in the shear direction is generated which is harmful from the surface. If the surfaces 17, 16 (18, 15) that engage with each other are brought into contact with each other over the entire width of the end surfaces 17, 18, the stress in the shearing direction is not generated. With respect to the back end face 15, processing for abutting the entire width of the large-diameter side end face 18 is easy. On the other hand, if the locking groove 11 is deepened to secure the width dimension of the inner side bottom surface 16, the thickness of the outer ring member 2A is likely to be insufficient at the locking groove 11 portion. . Therefore, in such a case, a locking protrusion is formed over the entire circumference at a portion adjacent to the inner side in the axial direction of the locking groove 11 at the axially inner end portion of the outer peripheral surface of the outer ring member 2A. To do. And the axial direction outer side surface of this latching protrusion is made to function as the said inner side bottom face. If comprised in this way, the thickness dimension of the said outer ring member 2A will be ensured, and the said small diameter side end surface 17 will be covered over the full width, and it will be abutted by the said inner side bottom face. The locking groove can be omitted only by the locking protrusion.

[実施の形態の第2例]
図4も、請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、金属板製で部分円すい筒状の補強部材4Bの両端部を曲げ形成する事により、それぞれ内径側が凸曲面となった、小径側、大径側両折り返し部19、20を形成している。そして、このうちの小径側折り返し部19を、外輪部材2Aの外周面軸方向内端寄り部分に形成した係止溝11aに係合させると共に、上記大径側折り返し部20を、回転側フランジ7Aの軸方向内側面外径寄り部分に形成した外径側係止溝21に係合させている。この様な本例の構造の場合も、上述した実施の形態の第1例の場合と同様に、補強部材4Bに加わる応力の振幅を小さくして、この補強部材4Bの薄肉化を図り、この補強部材4Bを含む上記外輪部材2Aの軽量化を図れる。
[Second Example of Embodiment]
FIG. 4 also shows a second example of an embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, both the small-diameter side and large-diameter-side folded portions 19, 20 each having a convex curved surface on the inner diameter side are formed by bending both ends of the reinforcing member 4B made of a metal plate and having a partially conical cylindrical shape. Is forming. Of these, the small-diameter folded portion 19 is engaged with a locking groove 11a formed near the inner end of the outer ring member 2A in the axial direction of the outer ring surface, and the large-diameter folded portion 20 is connected to the rotation-side flange 7A. Is engaged with an outer diameter side locking groove 21 formed in a portion closer to the outer diameter on the inner side surface in the axial direction. In the case of the structure of this example as well, as in the case of the first example of the above-described embodiment, the amplitude of the stress applied to the reinforcing member 4B is reduced to reduce the thickness of the reinforcing member 4B. The weight of the outer ring member 2A including the reinforcing member 4B can be reduced.

[実施の形態の第3例]
図5は、請求項1、3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、補強部材4Cの大径側端部に、径方向内方に折れ曲がった係止折れ曲がり部22を、回転側フランジ7Aの軸方向外側面の外径側端部に凹部23を、それぞれ全周に亙って設けている。そして、上記係止折れ曲がり部22を、この凹部23と、上記回転側フランジ7Aの軸方向外側面に結合固定したディスクロータ24の軸方向内側面との間で挟持している。この構成により、上記補強部材4Cの大径側端部を、上記回転側フランジ4Cの外周縁部に結合固定している。その他の構成及び作用は、前述した実施の形態の第1例の場合と同様であるから、重複する説明を省略する。
[Third example of embodiment]
FIG. 5 shows a third example of an embodiment of the present invention corresponding to claims 1 and 3. In the case of this example, a locking bent portion 22 bent radially inward is formed at the large diameter side end of the reinforcing member 4C, and a concave portion 23 is formed at the outer diameter side end of the axially outer side surface of the rotation side flange 7A. Are provided over the entire circumference. And the said latching bending part 22 is clamped between this recessed part 23 and the axial direction inner side surface of the disk rotor 24 couple | bonded and fixed to the axial direction outer side surface of the said rotation side flange 7A. With this configuration, the large-diameter side end of the reinforcing member 4C is coupled and fixed to the outer peripheral edge of the rotation-side flange 4C. Other configurations and operations are the same as in the case of the first example of the above-described embodiment, and thus redundant description is omitted.

本発明を実施する場合には、部分円すい筒状の補強部材の小径側端部を、外輪部材の外周面軸方向内端部に設けた係止溝に係止する必要がある。この係止作業を、前述の図2に示す様に、補強部材4Aの弾性変形により行うには、相当に大きな力が必要になる。そこで、図6の(A)に示す様に、円周方向1箇所に切れ目25を有する補強部材4Dを使用すれば、上記係止作業を容易に行える。この切れ目25は、この係止作業を完了した後に溶接して、上記補強部材4Dの直径が不用意に拡がらない様にする。或は、図6の(B)に示す様に円周方向に2分割された補強部材4Eを使用し、この補強部材4Eを組み立てつつ、その小径側端部を外輪部材の外周面軸方向内端部に設けた係止溝に係止した後、突き合わせ部を溶接する事もできる。   When carrying out the present invention, it is necessary to engage the small diameter side end portion of the partially conical cylindrical reinforcing member with the engaging groove provided at the inner end portion in the axial direction of the outer peripheral surface of the outer ring member. In order to perform this locking operation by elastic deformation of the reinforcing member 4A as shown in FIG. 2, a considerably large force is required. Therefore, as shown in FIG. 6A, if a reinforcing member 4D having a cut 25 in one circumferential direction is used, the locking operation can be easily performed. The cut 25 is welded after the locking operation is completed so that the diameter of the reinforcing member 4D does not expand unintentionally. Alternatively, as shown in FIG. 6B, a reinforcing member 4E divided into two in the circumferential direction is used, and while the reinforcing member 4E is assembled, the small-diameter side end thereof is positioned in the outer peripheral surface axial direction of the outer ring member. After engaging the locking groove provided at the end, the butted portion can be welded.

又、補強部材の強度及び剛性を確保しつつ、この補強部材をより軽量化する為、図7〜8に示す様な、ハニカム構造の補強部材4Fを使用する事もできる。この補強部材4Fは、それぞれが部分円すい筒状である外筒26の内周面と内筒27の外周面との間を、多数の仕切壁28、28により仕切ったもの、又は、アルミニウム系合金やアラミド繊維等で造られた、筒状の部材を隙間なく並べたものである。この様なハニカム構造の補強部材4Fを、例えば前述の実施の形態の第1例の場合と同様に、外輪部材2Aに設けた係止溝11と係止段部12との間に掛け渡せば、この外輪部材2Aの外周面に設けた回転側フランジ7Aのモーメント剛性を確保しつつ、上記補強部材4Fを含む上記外輪部材2Aの重量をより軽減できる。尚、仕切壁28、28の断面形状は、六角形が最も好ましいが、三角形、四角形とする事もできる。   In addition, in order to reduce the weight of the reinforcing member while ensuring the strength and rigidity of the reinforcing member, a reinforcing member 4F having a honeycomb structure as shown in FIGS. 7 to 8 can be used. The reinforcing member 4F is formed by dividing the inner peripheral surface of the outer tube 26 and the outer peripheral surface of the inner tube 27, each of which is a partial conical cylinder shape, by a number of partition walls 28, 28, or an aluminum alloy. A cylindrical member made of aramid fibers or the like is arranged without gaps. If the reinforcing member 4F having such a honeycomb structure is spanned between the locking groove 11 and the locking step portion 12 provided in the outer ring member 2A, for example, as in the case of the first example of the above-described embodiment. The weight of the outer ring member 2A including the reinforcing member 4F can be further reduced while securing the moment rigidity of the rotation side flange 7A provided on the outer peripheral surface of the outer ring member 2A. The sectional shape of the partition walls 28, 28 is most preferably a hexagon, but it can also be a triangle or a quadrangle.

又、上述の様なハニカム構造の補強部材4Fは、本発明の構造に適用する他、図9に示す様に、単に外輪部材2Aの回転側フランジ7Aと軸方向内端寄り部分との間に掛け渡す事もできる。この場合に上記補強部材4Fの内周面の軸方向に離隔した2箇所位置と、上記外輪部材2Aの外周面の軸方向に離隔した2箇所位置とは、接着等により接合固定する。この様な構造でも、上記補強部材4Fの軽量化による効果を或る程度得られる。   Further, the reinforcing member 4F having the honeycomb structure as described above is applied to the structure of the present invention, and as shown in FIG. 9, simply between the rotation side flange 7A of the outer ring member 2A and the portion near the inner end in the axial direction. Can be handed over. In this case, the two positions separated in the axial direction of the inner peripheral surface of the reinforcing member 4F and the two positions separated in the axial direction of the outer peripheral surface of the outer ring member 2A are joined and fixed by adhesion or the like. Even in such a structure, the effect of reducing the weight of the reinforcing member 4F can be obtained to some extent.

1a、1b、1c 内輪部材
2a、2b、2c、2A 外輪部材
3 転動体
4a、4b、4c、4A、4B、4C、4D、4E、4F 補強部材
5A、5B 内輪軌道
6A、6B 外輪軌道
7a、7b、7c、7A 回転側フランジ
8a、8b、8c 静止側フランジ
9a、9b、9c 車輪支持用転がり軸受ユニット
10a、10b、10c 肉盗み部
11、11a 係止溝
12 係止段部
13 内径側底面
14 アウタ側底面
15 奥端面
16 インナ側底面
17 小径側端面
18 大径側端面
19 小径側折り返し部
20 大径側折り返し部
21 外径側係止溝
22 係止折れ曲がり部
23 凹部
24 ディスクロータ
25 切れ目
26 外筒
27 内筒
28 仕切壁
1a, 1b, 1c Inner ring member 2a, 2b, 2c, 2A Outer ring member 3 Rolling element 4a, 4b, 4c, 4A, 4B, 4C, 4D, 4E, 4F Reinforcing member 5A, 5B Inner ring raceway 6A, 6B Outer ring raceway 7a, 7b, 7c, 7A Rotating side flanges 8a, 8b, 8c Stationary side flanges 9a, 9b, 9c Rolling bearing units for wheel support 10a, 10b, 10c Meat stealing part 11, 11a Locking groove 12 Locking step part 13 Inner diameter side bottom face 14 Outer side bottom surface 15 Back end surface 16 Inner side bottom surface 17 Small diameter side end surface 18 Large diameter side end surface 19 Small diameter side folded portion 20 Large diameter side folded portion 21 Outer diameter side locking groove 22 Locked bent portion 23 Recessed portion 24 Disc rotor 25 Cut 26 Outer cylinder 27 Inner cylinder 28 Partition wall

Claims (4)

外周面に複列の内輪軌道を有し、使用状態で懸架装置に支持固定されて回転しない内輪部材と、内周面に複列の外輪軌道を、外周面の軸方向外寄り部分に回転側フランジを、それぞれ有し、使用状態でこの回転側フランジに結合固定した車輪と共に回転する外輪部材と、上記両内輪軌道と上記両外輪軌道との間に、両列毎に複数個ずつ設けられた転動体と、部分円すい筒状の補強部材とを備え、この補強部材の大径側端部は、上記回転側フランジの径方向外寄り部分に、同じく小径側端部は、上記外輪部材の外周面でこの回転側フランジよりも軸方向内方寄り部分に、それぞれ係止して、これら両部分同士の間で突っ張るものである車輪支持用転がり軸受ユニットに於いて、上記補強部材の小径側端縁部を、上記外輪部材の外周面で上記回転側フランジよりも軸方向内方寄り部分に形成された係止溝又は係止突条に突き当てた状態で係止した事を特徴とする車輪支持用転がり軸受ユニット。   Inner ring member with double row inner ring raceway on the outer peripheral surface, which is supported and fixed to the suspension device in use and does not rotate, double row outer ring raceway on the inner peripheral surface, and rotation side on the outer side in the axial direction of the outer peripheral surface A plurality of flanges are provided for each row between the outer ring member that rotates with a wheel that is coupled and fixed to the rotation side flange in use, and both the inner ring raceway and the both outer ring raceways. A rolling element and a partially conical cylindrical reinforcing member, the large-diameter side end of the reinforcing member is located on the radially outer side of the rotating side flange, and the small-diameter side end is the outer periphery of the outer ring member. In the rolling bearing unit for supporting a wheel, which is respectively locked to the axially inward portion of the rotating side flange from the surface and is stretched between the two portions, the small diameter side end of the reinforcing member The edge is rotated on the outer peripheral surface of the outer ring member. Wheel supporting rolling bearing unit, characterized in that locked in a state of abutting axially inwardly toward the locking groove or locking projection formed in a portion of the flange. 回転側フランジの軸方向内側面に係止段部を設け、補強部材の大径側端部をこの係止段部に係止している、請求項1に記載した車輪支持用転がり軸受ユニット。   The rolling bearing unit for wheel support according to claim 1, wherein a locking step portion is provided on an inner side surface in the axial direction of the rotation side flange, and a large-diameter side end portion of the reinforcing member is locked to the locking step portion. 補強部材の大径側端部に、径方向内方に折れ曲がった係止折れ曲がり部を、回転側フランジの軸方向外側面の外径側端部に凹部を、それぞれ設け、この係止折れ曲がり部を、この凹部と、上記回転側フランジの軸方向外側面に結合固定した部材の軸方向内側面との間で挟持している、請求項1に記載した車輪支持用転がり軸受ユニット。   A locking bent part bent inward in the radial direction is provided at the large diameter side end of the reinforcing member, and a concave part is provided at the outer diameter side end of the axially outer side surface of the rotation side flange, and this locking bent part is provided. The wheel bearing rolling bearing unit according to claim 1, wherein the rolling bearing unit is sandwiched between the recess and an axially inner surface of a member coupled and fixed to an axially outer surface of the rotation side flange. 補強部材が、それぞれが部分円すい筒状である外筒の内周面と内筒の外周面との間を多数の仕切壁により仕切ったハニカム構造体である、請求項1〜3のうちの何れか1項に記載した車輪支持用転がり軸受ユニット。   4. The honeycomb structure according to claim 1, wherein the reinforcing member is a honeycomb structure in which a partition wall is partitioned between an inner peripheral surface of an outer cylinder and a peripheral surface of the inner cylinder, each of which is a partially conical cylinder. A rolling bearing unit for supporting a wheel according to claim 1.
JP2009036151A 2009-02-19 2009-02-19 Rolling bearing unit for supporting wheel Withdrawn JP2010188895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036151A JP2010188895A (en) 2009-02-19 2009-02-19 Rolling bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036151A JP2010188895A (en) 2009-02-19 2009-02-19 Rolling bearing unit for supporting wheel

Publications (1)

Publication Number Publication Date
JP2010188895A true JP2010188895A (en) 2010-09-02

Family

ID=42815435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036151A Withdrawn JP2010188895A (en) 2009-02-19 2009-02-19 Rolling bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2010188895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204699A (en) * 2017-06-05 2018-12-27 日本精工株式会社 Hub unit bearing
CN110822717A (en) * 2019-11-13 2020-02-21 江苏浴普太阳能有限公司 Fixed sheet metal part and mounting rack of air energy water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204699A (en) * 2017-06-05 2018-12-27 日本精工株式会社 Hub unit bearing
CN110822717A (en) * 2019-11-13 2020-02-21 江苏浴普太阳能有限公司 Fixed sheet metal part and mounting rack of air energy water heater

Similar Documents

Publication Publication Date Title
US9518631B2 (en) Vibration damping device
JP6538729B2 (en) Spring holding plate with cut and bent stopper
KR20170004769A (en) Wheel hub
JP2010188895A (en) Rolling bearing unit for supporting wheel
JP4647683B2 (en) Flexible coupling structure and marine thruster apparatus including the same
JP4905953B2 (en) Flanged hub
JP2009520642A (en) Wheel boss with axial notch between wheel bolt holes
US20100064828A1 (en) Rotor assembly including strain relief feature
CN111550435A (en) Multistage rotor disk connection structure
JP2012051393A (en) Rolling bearing unit for supporting wheel
KR101935417B1 (en) Wheel hub and wheel bearing comprising same
KR20170133384A (en) Torsional Vibration Attenuator Spoke Design
JP5978647B2 (en) Cross shaft type universal joint
JP5834968B2 (en) Cross shaft type universal joint
US10995841B2 (en) Member joining structure for differential device
JP7390872B2 (en) Dynamic damper and its manufacturing method
JP5169503B2 (en) Drive wheel bearing device
JP2010185511A (en) Rolling bearing unit for supporting wheel
JP6689827B2 (en) Sealing system and turbo pump equipped with such a system
JP5884629B2 (en) Coupling method of rotating shaft and universal joint yoke
JP2010188892A (en) Method of manufacturing rolling bearing unit for supporting wheel
JP2012040947A (en) Wheel for vehicle
KR101073093B1 (en) Coupling structure of propeller shaft in vehicle
JP3893933B2 (en) Rotating support device for wheel and assembling method thereof
JP6765757B2 (en) Connection structure of rotating body in propeller shaft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501