JP2010188668A - スタンパの製造方法及びスタンパ - Google Patents

スタンパの製造方法及びスタンパ Download PDF

Info

Publication number
JP2010188668A
JP2010188668A JP2009037113A JP2009037113A JP2010188668A JP 2010188668 A JP2010188668 A JP 2010188668A JP 2009037113 A JP2009037113 A JP 2009037113A JP 2009037113 A JP2009037113 A JP 2009037113A JP 2010188668 A JP2010188668 A JP 2010188668A
Authority
JP
Japan
Prior art keywords
pattern
stamper
bis
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009037113A
Other languages
English (en)
Inventor
Norito Ikui
準人 生井
Yoshitomo Yasuda
慶友 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009037113A priority Critical patent/JP2010188668A/ja
Publication of JP2010188668A publication Critical patent/JP2010188668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】簡略化した製造工程で、3次元構造パターンを有するスタンパを製造する方法を提供する。
【解決手段】基板上にネガ型感放射線性組成物を塗布し、前記ネガ型感放射線性組成物由来の第1被膜を形成する工程と、前記第1被膜を露光し、露光された前記第1被膜を現像し、第1パターンを形成する工程と、前記第1パターン上に、前記ネガ型感放射線性組成物を塗布し、第2被膜を形成する工程と、前記第2被膜を露光し、露光された前記第2被膜を現像し、第2パターンを形成する工程と、前記第1パターン及び前記第2パターンに、加熱及びエネルギー線照射から選ばれる少なくとも1種の硬化処理を施す工程と、を備える。
【選択図】図10

Description

本発明は、スタンパの製造方法及びスタンパに関する。更に詳しくは、ナノインプリントリソグラフィーなどに用いられる、3次元構造パターンを有するスタンパの製造方法、及びその製造方法により得られるスタンパに関する。
半導体素子等の回路の集積度や記録密度を向上させるためには、より微細な加工技術が必要である。微細な加工技術として、露光プロセスを用いたフォトリソグラフィ技術は、一度に大面積の微細加工が可能であるが、光の波長以下の分解能しか持たない。従って、フォトリソグラフィ技術では、近年、193nm(ArF)、157nm(F)、13.5nm(EUV)の短波長光を用いたフォトリソグラフィ技術が開発されている。しかしながら、光の波長が短くなると、それに伴い、その波長で透過できる物質が限られるため、微細構造の作製に限界がある。
一方、電子線リソグラフィや集束イオンビームリソグラフィ等の方法では、分解能が光の波長に依存せず、微細構造の作製が可能であるものの、スループットの悪さが問題となっている。
これに対して、光の波長以下の微細構造を高スループットで作製する手法としては、あらかじめ電子線リソグラフィ等により所定の微細凹凸パターンを作製したスタンパを、レジストを塗布した基板に押し付け、スタンパの凹凸を基板のレジスト膜に転写するナノインプリント法が知られている(例えば、非特許文献1及び2、並びに特許文献1及び2参照)。
また、半導体分野において、デュアルダマシンプロセスは古くから知られているプロセスであるが、ナノインプリント法において、デュアルダマシン構造の形成に対して、3次元構造パターンを有するスタンパを用いたナノインプリント方法が知られている(特許文献3参照)。
このような、3次元構造パターンを有するスタンパの製造方法としては、リソグラフィ技術とドライエッチング技術を用いて、複数回エッチングすることにより作製する方法が提案されている(特許文献4参照)。
米国特許第5,772,905号公報 米国特許第5,956,216号公報 WO2004/097518号公報 特開2008−298827号公報
エス.ワイ.チョウ(S.Y.Chou),「ナノインプリントリソグラフィー技術( Nano Imprint Lithography technology)」 アプライド・フィジックス・レターズ(Applied Physics Letters)第76巻,1995年,p.3114
しかしながら、特許文献4に記載の3次元構造パターンを有するスタンパの製造方法では、レジストの塗布、電子線の照射、エッチングを複数回繰り返さなければ形成することができないため、製造が非常に煩雑である。
本発明は、前記課題を解決するためになされたものであり、簡略化した製造工程で、3次元構造パターンを有するスタンパを製造する方法を提供することを目的とする。
本発明は以下の通りである。
1.(1)基板上にネガ型感放射線性組成物を塗布し、前記ネガ型感放射線性組成物由来の第1被膜を形成する工程と、
(2)前記第1被膜を露光し、露光された前記第1被膜を現像し、第1パターンを形成する工程と、
(3)前記第1パターン上に、前記ネガ型感放射線性組成物を塗布し、第2被膜を形成する工程と、
(4)前記第2被膜を露光し、露光された前記第2被膜を現像し、第2パターンを形成する工程と、
(5)前記第1パターン及び前記第2パターンに、加熱及びエネルギー線照射から選ばれる少なくとも1種の硬化処理を施す工程と、
を備えることを特徴とするスタンパの製造方法。
2.前記ネガ型感放射線性組成物が、金属アルコキシドを加水分解縮合して得られる重合体を含有する上記1.に記載のスタンパの製造方法。
3.前記金属アルコキシドが、アルコキシシランである上記2.に記載のスタンパの製造方法。
4.前記ネガ型感放射性組成物が、下記(A)〜(C)成分を含有する上記1.乃至3.のいずれかに記載のスタンパの製造方法。
(A)重合体:下記一般式(1)で表される加水分解性シラン化合物(a1)、及び下記一般式(2)で表される加水分解性シラン化合物(a2)から選ばれる少なくとも一種の加水分解性シラン化合物を加水分解縮合させて得られる重合体。
(前記重合体に含まれる全ての構成単位の合計を100モル%とする場合、前記化合物(a1)由来の構成単位の含有割合が、80〜100モル%であり、
前記重合体のゲルパーミエーションクロマトグラフィーによるポリスチレン換算の重量平均分子量が、4000〜12000である。)
(B)感放射線性酸発生剤。
(C)溶剤。
Si(OR4−a (1)
〔一般式(1)中、Rは水素原子、フッ素原子、炭素数1〜5の直鎖状若しくは分岐状のアルキル基、シアノ基、シアノアルキル基、又はアルキルカルボニルオキシ基を表し、Rは1価の有機基を表し、aは1〜3の整数を示す。〕
Si(OR (2)
〔一般式(2)中、Rは1価の有機基を示す。〕
5.前記硬化処理が、加熱温度180℃〜450℃の加熱処理である上記1.乃至4.のいずれかに記載のスタンパの製造方法。
6.上記1.乃至5.のいずれかに記載のスタンパの製造方法によって得られたことを特徴とするスタンパ。
本発明のスタンパの製造方法によれば、簡略化した製造工程で、微細な凹凸の3次元構造パターンを有するスタンパを効率よく得ることができ、3次元構造パターンを有するスタンパの製造工程を簡略化することができる。即ち、ドライエッチング等の工程が不要であるため、効率的にスタンパを製造することができる。
また、前記ネガ型感放射線性組成物が、金属アルコキシドを加水分解縮合して得られる重合体を含有する場合には、合成工程が簡便であり制御しやすい。
また、前記金属アルコキシドが、アルコキシシランである場合には、形成される膜において、金属アルコキシドを加水分解縮合して得られる重合体の均一性を、良好な状態で保持することができる。
また、前記ネガ型感放射性組成物が、前記(A)〜(C)成分を含有する場合には、露光時の感度に優れ、且つパターン形状及び耐久性に優れるスタンパとすることができる。
また、硬化処理が、加熱温度180℃〜450℃の加熱処理である場合には、製造工程をより簡略化することができる。
更に、本発明のスタンパの製造方法により得られたスタンパは、パターン形状及び耐久性に優れる。
本発明におけるインプリントの製造方法において、第1被膜を形成する工程(1)により、基板上に第1被膜が形成された状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、第1パターンを形成する工程(2)で、露光された第1被膜の状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、第1パターンを形成する工程(2)により、露光された第1被膜が現像され、第1パターンが形成された状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、第2被膜を形成する工程(3)により、第1パターン上に第2被膜が形成された状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、第2パターンを形成する工程(4)で、露光された第2被膜の状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、第2パターンを形成する工程(4)により、露光された第2被膜が現像され、第2パターンが形成された状態を示す模式的な説明図である。 本発明におけるインプリントの製造方法において、硬化処理を施す工程(5)により、第1パターン及び第2パターンが硬化処理を施された状態を示す模式的な説明図である。 三次元構造(凹凸パターン)を説明する模式的な斜視説明図である。 三次元構造(凹凸パターン)を説明する模式的な説明図である。 実施例1における多層パターン(スタンパ)の断面を走査型電子顕微鏡により観察した画像を印刷したものによる説明図である。
以下、本発明の実施の形態について詳細に説明する。また、本明細書における「(メタ)アクリル」は、「アクリル」又は「メタクリル」を意味し、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」を意味する。
[1]スタンパの製造方法
本発明のスタンパの製造方法は、
(1)基板上にネガ型感放射線性組成物を塗布し、前記ネガ型感放射線性組成物由来の第1被膜を形成する工程[以下、「工程(1)」という。]と、
(2)前記第1被膜を露光し、露光された前記第1被膜を現像し、第1パターンを形成する工程[以下、「工程(2)」という。]と、
(3)前記第1パターン上に、前記ネガ型感放射線性組成物を塗布し、第2被膜を形成する工程、[以下、「工程(3)」という。]と、
(4)前記第2被膜を露光し、露光された前記第2被膜を現像し、第2パターンを形成する工程[以下、「工程(4)」という。]と、
(5)前記第1パターン及び前記第2パターンに、加熱及びエネルギー線照射から選ばれる少なくとも1種の硬化処理を施す工程[以下、「工程(5)」という。]と、
を備えることを特徴とする。また、図1〜7により製造工程をフローにして示す。尚、ネガ型感放射線性組成物についての詳細は後述する。
前記工程(1)は、基板上にネガ型感放射線性組成物が塗布され、第1被膜が形成される工程である。この工程(1)により、基板上に第1被膜が形成された状態を図1に示す。
ネガ型感放射線性組成物を塗布する方法としては、例えば、回転塗布、流延塗布、ロール塗布等が挙げられる。この際、得られる被膜が所定の膜厚(10〜0.03μmが好ましく、5〜0.03μmがより好ましく、1〜0.03μmが更に好ましい。)となるように塗布される。
前記基板としては、Si、SiO、SiN、SiC、SiCN等のSi含有層で被覆されたウェハ等が挙げられる。尚、ネガ型感放射線性組成物の潜在能力を最大限に引き出すため、例えば、特開昭59−93448号公報(特公平6−12452号公報)等に開示されているように、使用される基板上に有機系或いは無機系の反射防止膜を形成しておくこともできる。
また、本発明においては、前記工程(1)の後、形成された第1被膜にベーク処理を行なうことが好ましい。このベーク処理により、被膜中の溶剤が揮発される。尚、被膜中の溶剤を揮発させる熱処理(ベーク処理)を本明細書では「PB」という。
このPBの加熱条件は、組成物の配合組成によって適宜選定されるが、通常、60〜150℃であり、好ましくは70〜120℃である。
前記工程(2)は、所定の第1パターン(ネガ型パターン)が得られるように、前記第1被膜を露光し、露光された前記第1被膜を現像し、第1パターンを形成する工程である。この工程(2)において、露光された第1被膜の状態を図2に、その露光された第1被膜が現像され第1パターンが形成された状態を図3に示す。
この露光は、所定の第1パターンが得られるように選択的に行われ、第1パターンを形成する第1被膜の所定領域が露光される。この露光により露光された所定領域(露光部)は、下記現像液に難溶性となり、現像されることにより第1パターンとなる。この選択的に行われる露光方法としては、例えば、所定のパターンが形成されたマスクパターンを介して露光することにより行うことができる。
この露光に使用される放射線としては、使用される酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線等の荷電粒子線等を適宜選定して使用されるが、ArFエキシマレーザー(波長193nm)或いはKrFエキシマレーザー(波長248nm)で代表される遠紫外線、電子線が好ましい。
また、露光量等の露光条件は、感放射線性組成物の配合組成や添加剤の種類等に応じて適宜選定される。
前記工程(2)では、更に、露光された被膜が現像されることにより、所定の第1パターンが形成される。
この現像に使用される現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液が好ましい。これらのなかでも、テトラメチルアンモニウムヒドロキシドが特に好ましい。
前記アルカリ性水溶液からなる現像液には、例えば有機溶媒を添加することもできる。この有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルi−ブチルケトン、シクロペンタノン、シクロヘキサノン、3−メチルシクロペンタノン、2,6−ジメチルシクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、シクロペンタノール、シクロヘキサノール、1,4−ヘキサンジオール、1,4−ヘキサンジメチロール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸n−ブチル、酢酸i−アミル等のエステル類;トルエン、キシレン等の芳香族炭化水素類や、フェノール、アセトニルアセトン、ジメチルホルムアミド等を挙げることができる。尚、これらの有機溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、有機溶媒の使用量は、アルカリ性水溶液100容量%に対して、100容量%以下が好ましい。この有機溶媒の使用量が100容量%を超える場合、現像性が低下して、露光部の現像残りが多くなるおそれがある。
また、前記アルカリ性水溶液からなる現像液には、界面活性剤等を適量添加することもできる。
尚、アルカリ性水溶液からなる現像液で現像したのちは、一般に、水で洗浄した後に、乾燥する。
前記工程(3)は、前記工程(2)で得られた、前記第1パターン上に、前記ネガ型感放射線性組成物を塗布し、第2被膜を形成する工程である。この工程(3)により、第1パターン上に第2被膜が形成された状態を図4に示す。
ネガ型感放射線性組成物を塗布する方法としては、前記工程(1)と同様である。また、前記工程(3)の後、形成された第2被膜にPBを行なうことが好ましい。このPBにより、被膜中の溶剤が揮発される。この工程(3)のあとにPBを行う場合の加熱条件は、前記工程(2)の後のPBの加熱条件と同様である。
前記工程(4)は、所定の第2パターン(ネガ型パターン)が得られるように、前記第2被膜を露光し、露光された前記第2被膜を現像し、第2パターンを形成する工程である。この工程(4)により、露光された第2被膜の状態を図5に、露光された第2被膜が現像され第2パターンが形成された状態を図6に示す。
この工程(4)における露光方法、露光条件、及び現像方法(現像液)は、前記工程(2)と同様である。
前記工程(5)は、前記工程(1)〜(4)により得られた、前記第1パターン及び前記第2パターンに、加熱及びエネルギー線照射から選ばれる少なくとも1種の硬化処理を施すことにより、第1パターン及び第2パターンを硬化させ、スタンパを得る工程である。この工程(5)により、第1パターン及び第2パターンが硬化処理を施された状態を図7に示す。
加熱により硬化処理(加熱処理)を行なう場合は、第1パターン及び第2パターン(ネガ型パターン)を、窒素ガス雰囲気及びアルゴンガス雰囲気等の不活性ガス雰囲気などの不活性雰囲気下又は減圧下(0.01〜100Paが好ましく、10Pa以下がより好ましく、1Pa以下が更に好ましい。)で180℃〜450℃で加熱することが好ましく、より好ましくは250℃〜450℃であり、更に好ましくは300℃〜450℃である。この際の加熱方法としては、ホットプレート、オーブン、ファーネス等を使用することができる。
また、ネガ型パターンの硬化速度を制御するため、必要に応じて、段階的に加熱したり、或いは窒素、空気、酸素、減圧等の雰囲気を選択したりすることができる。このような工程により、得られるスタンパの硬化収縮率を制御することができる。
上記硬化処理を行うことにより、スタンパに生じるクラックを防止することができる。
エネルギー線照射により硬化処理(エネルギー線照射処理)を行なう場合、エネルギー線としては、電子線や紫外線等が挙げられる。この電子線や紫外線としては、例えば、高圧水銀灯、低圧水銀灯、及び発行ダイオード等が挙げられる。
前記硬化処理方法は、加熱処理及びエネルギー線照射処理を併用することができる。また、これらの処理のうち、製造工程を簡略化することができることから、加熱処理が好ましい。
[2]ネガ型感放射線性組成物
前記ネガ型感放射線性組成物は、放射線に感応し、露光によりパターニングが可能である組成物であれば特に限定されない。
このネガ型感放射線性組成物としては、金属アルコキシドを加水分解縮合して得られる重合体(樹脂)を含有するネガ型感放射線性組成物を用いることができる。ネガ型感放射線性組成物が、金属アルコキシドを加水分解縮合して得られる重合体を含有することにより、露光によるパターニングが良好に行われる。
ネガ型感放射線性組成物における、金属アルコキシドを加水分解縮合して得られる重合体の含有量は、ネガ型感放射線性組成物全体を100質量%とした場合、1〜40質量%が好ましく、1〜30質量%がより好ましく、1〜20質量%が更に好ましい。金属アルコキシドを加水分解縮合して得られる重合体の含有量が上記範囲内にある場合、形成される膜において、金属アルコキシドを加水分解縮合して得られる重合体の均一性を、良好な状態で保持することができる。
前記金属アルコキシドとしては、アルコキシシラン、アルコキシチタン、アルコキシアルミニウム、アルコキシジルコニウム、アルコキシホウ素、アルコキシゲルマニウム等が挙げられる。これらのうち、アルコキシシランが好ましい。アルコキシシランを加水分解して得られる重合体を用いることにより、形成される膜において、金属アルコキシドを加水分解縮合して得られる重合体の均一性を、良好な状態で保持することができる。
また、前記ネガ型感放射線性組成物は、下記(A)〜(C)成分を含有することが好ましい。
(A)重合体:下記一般式(1)で表される加水分解性シラン化合物(a1)、及び下記一般式(2)で表される加水分解性シラン化合物(a2)から選ばれる少なくとも一種の加水分解性シラン化合物を加水分解縮合させて得られる重合体(樹脂)。
(前記重合体に含まれる全ての構成単位の合計を100モル%とする場合、前記化合物(a1)由来の構成単位の含有割合が、80〜100モル%であり、
前記重合体のゲルパーミエーションクロマトグラフィーによるポリスチレン換算の重量平均分子量が、4000〜12000である。)
(B)感放射線性酸発生剤。
(C)溶剤。
ネガ型感放射線性組成物が、上記(A)〜(C)成分を含有することにより、パターン形状に優れ、インプリントを行う際の圧力(インプリント圧)に対してもパターン割れや欠損等が生じ難く、耐久性に優れるスタンパを得ることができる。
[3]重合体(A)
前記重合体(A)は、下記一般式(1)で表される加水分解性シラン化合物(以下、「化合物(1)」ともいう。)、及び下記一般式(2)で表される加水分解性シラン化合物(以下、「化合物(2)」ともいう。)から選ばれる少なくとも一種の加水分解性シラン化合物を加水分解縮合させて得られるものである。
Si(OR4−a (1)
〔一般式(1)中、Rは水素原子、フッ素原子、炭素数1〜5の直鎖状若しくは分岐状のアルキル基、シアノ基、シアノアルキル基、又はアルキルカルボニルオキシ基を表し、Rは1価の有機基を表し、aは1〜3の整数を示す。〕
Si(OR (2)
〔一般式(2)中、Rは1価の有機基を示す。〕
[3−1]化合物(1)
前記一般式(1)のRにおける炭素数1〜5の直鎖状若しくは分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、プロペニル基、3−ブテニル基、3−ペンテニル基、3−ヘキセニル基等が挙げられる。尚、これらのアルキル基における1又は2以上の水素原子は、フッ素原子等に置換されていてもよい。
また、前記Rにおけるシアノアルキル基としては、例えば、シアノエチル基、シアノプロピル基等が挙げられる。
更に、前記Rにおけるアルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基、ビニルカルボニルオキシ基、アリルカルボニルオキシ基等が挙げられる。
尚、前記Rが複数存在する場合(即ち、前記aが2又は3である場合)、各Rは全て同一であってもよいし、全て又は一部が異なっていてもよい。
また、前記Rにおける1価の有機基としては、例えば、アルキル基、アルケニル基、アリール基、アリル基、グリシジル基等が挙げられる。これらのなかでも、アルキル基、アリール基であることが好ましい。
前記アルキル基としては、例えば、炭素数1〜5の直鎖状若しくは分岐状のアルキル基が挙げられる。具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。尚、これらのアルキル基における1又は2以上の水素原子は、フッ素原子等に置換されていてもよい。
前記アリール基としては、例えば、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基等が挙げられる。これらのなかでも、フェニル基が好ましい。
前記アルケニル基としては、例えば、ビニル基、プロペニル基、3−ブテニル基、3−ペンテニル基、3−ヘキセニル基等が挙げられる。
前記一般式(1)で表される化合物(1)の具体例としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリイソプロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリフェノキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロポキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリ−n−ブトキシシラン、n−プロピルトリ−sec−ブトキシシラン、n−プロピルトリ−tert−ブトキシシラン、n−プロピルトリフェノキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリ−n−プロポキシシラン、イソプロピルトリイソプロポキシシラン、イソプロピルトリ−n−ブトキシシラン、イソプロピルトリ−sec−ブトキシシラン、イソプロピルトリ−tert−ブトキシシラン、イソプロピルトリフェノキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ブチルトリ−n−プロポキシシラン、n−ブチルトリイソプロポキシシラン、n−ブチルトリ−n−ブトキシシラン、n−ブチルトリ−sec−ブトキシシラン、n−ブチルトリ−tert−ブトキシシラン、n−ブチルトリフェノキシシラン、
sec−ブチルトリメトキシシラン、sec−ブチルイソトリエトキシシラン、sec−ブチルトリ−n−プロポキシシラン、sec−ブチルトリイソプロポキシシラン、sec−ブチルトリ−n−ブトキシシラン、sec−ブチルトリ−sec−ブトキシシラン、sec−ブチルトリ−tert−ブトキシシラン、sec−ブチルトリフェノキシシラン、tert−ブチルトリメトキシシラン、tert−ブチルトリエトキシシラン、tert−ブチルト−n−プロポキシシラン、tert−ブチルトリイソプロポキシシラン、tert−ブチルトリ−n−ブトキシシラン、tert−ブチルトリ−sec−ブトキシシラン、tert−ブチルトリ−tert−ブトキシシラン、tert−ブチルトリフェノキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジイソプロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、ジメチルジ−tert−ブトキシシラン、ジメチルジフェノキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジ−n−プロポキシシラン、ジエチルジイソプロポキシシラン、ジエチルジ−n−ブトキシシラン、ジエチルジ−sec−ブトキシシラン、ジエチルジ−tert−ブトキシシラン、ジエチルジフェノキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−n−プロピルジ−n−プロポキシシラン、ジ−n−プロピルジイソプロポキシシラン、ジ−n−プロピルジ−n−ブトキシシラン、ジ−n−プロピルジ−sec−ブトキシシラン、ジ−n−プロピルジ−tert−ブトキシシラン、ジ−n−プロピルジ−フェノキシシラン、
ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジ−n−プロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジイソプロピルジ−n−ブトキシシラン、ジイソプロピルジ−sec−ブトキシシラン、ジイソプロピルジ−tert−ブトキシシラン、ジイソプロピルジフェノキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ブチルジ−n−プロポキシシラン、ジ−n−ブチルジイソプロポキシシラン、ジ−n−ブチルジ−n−ブトキシシラン、ジ−n−ブチルジ−sec−ブトキシシラン、ジ−n−ブチルジ−tert−ブトキシシラン、ジ−n−ブチルジ−フェノキシシラン、ジ−sec−ブチルジメトキシシラン、ジ−sec−ブチルジエトキシシラン、ジ−sec−ブチルジ−n−プロポキシシラン、ジ−sec−ブチルジイソプロポキシシラン、ジ−sec−ブチルジ−n−ブトキシシラン、ジ−sec−ブチルジ−sec−ブトキシシラン、ジ−sec−ブチルジ−tert−ブトキシシラン、ジ−sec−ブチルジ−フェノキシシラン、ジ−tert−ブチルジメトキシシラン、ジ−tert−ブチルジエトキシシラン、ジ−tert−ブチルジ−n−プロポキシシラン、ジ−tert−ブチルジイソプロポキシシラン、ジ−tert−ブチルジ−n−ブトキシシラン、ジ−tert−ブチルジ−sec−ブトキシシラン、ジ−tert−ブチルジ−tert−ブトキシシラン、ジ−tert−ブチルジ−フェノキシシラン等が挙げられる。
これらの化合物(1)のなかでも、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等が好ましい。
尚、これらの化合物(1)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[3−2]化合物(2)
前記一般式(2)のRにおける1価の有機基としては、前記一般式(1)のRにおける1価の有機基の説明をそのまま適用することができる。
前記一般式(2)で表される化合物(2)の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−ブトキシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラフェノキシシラン等が挙げられる。
これらのなかでも、テトラメトキシシラン、テトラエトキシシランが好ましい。
尚、これらの化合物(2)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[3−3]他の化合物
前記重合体(A)を得るための加水分解性シラン化合物としては、前記化合物(1)及び(2)から選ばれる加水分解性シラン化合物のみを用いることが好ましいが、必要に応じて、化合物(1)及び(2)以外にも、下記一般式(3)で表わされる加水分解性シラン化合物(以下、「他の化合物(3)」ともいう。)を併用してもよい。
(RO)3−xSi−(R−Si(OR3−y (3)
〔一般式(3)中、R〜Rは同一又は異なり、それぞれ1価の有機基を表し、x及びyは同一又は異なり、0〜2の数を示し、Rは酸素原子、フェニレン基、又は−(CH−で表される基(ここで、nは1〜6の整数である)を表し、zは0又は1を示す。〕
前記一般式(3)のR〜Rにおける1価の有機基としては、それぞれ、前記一般式(1)のRにおける1価の有機基の説明をそのまま適用することができる。
また、前記一般式(3)で表され、且つz=0である場合の化合物の具体例としては、例えば、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサフェノキシジシラン、1,1,1,2,2−ペンタメトキシ−2−メチルジシラン、1,1,1,2,2−ペンタエトキシ−2−メチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−メチルジシラン、1,1,1,2,2−ペンタメトキシ−2−エチルジシラン、1,1,1,2,2−ペンタエトキシ−2−エチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−エチルジシラン、1,1,1,2,2−ペンタメトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタエトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタフェノキシ−2−フェニルジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジエチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラエトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジフェニルジシラン、
1,1,2−トリメトキシ−1,2,2−トリメチルジシラン、1,1,2−トリエトキシ−1,2,2−トリメチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリメチルジシラン、1,1,2−トリメトキシ−1,2,2−トリエチルジシラン、1,1,2−トリエトキシ−1,2,2−トリエチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリエチルジシラン、1,1,2−トリメトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリエトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリフェノキシ−1,2,2−トリフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラエチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルジシラン等を挙げることができる。
これらのなかでも、ヘキサメトキシジシラン、ヘキサエトキシジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン等が好ましい。
更に、前記一般式(3)で表され、且つz=1である場合の化合物の具体例としては、例えば、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ−n−プロポキシシリル)メタン、ビス(トリ−iso−プロポキシシリル)メタン、ビス(トリ−n−ブトキシシリル)メタン、ビス(トリ−sec−ブトキシシリル)メタン、ビス(トリ−tert−ブトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1,2−ビス(トリ−n−プロポキシシリル)エタン、1,2−ビス(トリ−iso−プロポキシシリル)エタン、1,2−ビス(トリ−n−ブトキシシリル)エタン、1,2−ビス(トリ−sec−ブトキシシリル)エタン、1,2−ビス(トリ−tert−ブトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジ−n−プロポキシメチルシリル)−1−(トリ−n−プロポキシシリル)メタン、1−(ジ−iso−プロポキシメチルシリル)−1−(トリ−iso−プロポキシシリル)メタン、1−(ジ−n−ブトキシメチルシリル)−1−(トリ−n−ブトキシシリル)メタン、1−(ジ−sec−ブトキシメチルシリル)−1−(トリ−sec−ブトキシシリル)メタン、1−(ジ−tert−ブトキシメチルシリル)−1−(トリ−tert−ブトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、1−(ジ−n−プロポキシメチルシリル)−2−(トリ−n−プロポキシシリル)エタン、1−(ジ−iso−プロポキシメチルシリル)−2−(トリ−iso−プロポキシシリル)エタン、1−(ジ−n−ブトキシメチルシリル)−2−(トリ−n−ブトキシシリル)エタン、1−(ジ−sec−ブトキシメチルシリル)−2−(トリ−sec−ブトキシシリル)エタン、1−(ジ−tert−ブトキシメチルシリル)−2−(トリ−tert−ブトキシシリル)エタン、
ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、ビス(ジ−n−プロポキシメチルシリル)メタン、ビス(ジ−iso−プロポキシメチルシリル)メタン、ビス(ジ−n−ブトキシメチルシリル)メタン、ビス(ジ−sec−ブトキシメチルシリル)メタン、ビス(ジ−tert−ブトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(ジ−n−プロポキシメチルシリル)エタン、1,2−ビス(ジ−iso−プロポキシメチルシリル)エタン、1,2−ビス(ジ−n−ブトキシメチルシリル)エタン、1,2−ビス(ジ−sec−ブトキシメチルシリル)エタン、1,2−ビス(ジ−tert−ブトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,2−ビス(トリ−n−プロポキシシリル)ベンゼン、1,2−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,2−ビス(トリ−n−ブトキシシリル)ベンゼン、1,2−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,2−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリ−n−プロポキシシリル)ベンゼン、1,3−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,3−ビス(トリ−n−ブトキシシリル)ベンゼン、1,3−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,3−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリ−n−プロポキシシリル)ベンゼン、1,4−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,4−ビス(トリ−n−ブトキシシリル)ベンゼン、1,4−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,4−ビス(トリ−tert−ブトキシシリル)ベンゼン等を挙げることができる。
これらのなかでも、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン等が好ましい。
尚、前記一般式(3)で表されるこれらの化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[3−4]化合物(1)及び(2)の配合比
また、重合体(A)を製造する際における前記化合物(1)の合計と、前記化合物(2)の合計との配合比(化合物1:化合物2)は、モル比で3:7〜10:0であり、好ましくは5:5〜9:1である。この配合比が、3:7〜10:0である場合には、アルカリ現像液に対する溶解性が良好で、適度な基板密着性を有する重合体(A)が得られるため好ましい。
[3−5]加水分解性シラン化合物由来の構成単位の含有割合
前記重合体(A)における、前記化合物(1)由来の構成単位の含有割合は、重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、30〜100モル%であることが好ましく、より好ましくは60〜100モル%、更に好ましくは70〜100モル%である。この含有割合が30〜100である場合には、硬化処理時のプロセスマージンと硬化後のスタンパが有する物性とのバランスが良好であるため好ましい。
また、前記化合物(2)由来の構成単位の含有割合は、重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、0〜70モル%であることが好ましく、より好ましくは0〜40モル%、更に好ましくは0〜30モル%である。この含有割合が0〜70である場合には、硬化処理時のプロセスマージンと硬化後のスタンパが有する物性とのバランスが良好であるため好ましい。
更に、前記化合物(1)由来の構成単位、及び化合物(2)由来の構成単位の合計は、重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、100モル%以下であることが好ましく、より好ましくは30〜100モル%、更に好ましくは60〜100モル%である。この含有割合の合計が30〜100である場合には、パターン形成に対する重合体(A)中の前記化合物(1)や化合物(2)に由来する構成単位の効果を得られるため好ましい。
また、前記化合物(3)由来の構成単位の含有割合は、重合体(A)に含まれる全ての構成単位の合計を100モル%とした場合に、50モル%以下であることが好ましく、より好ましくは0〜40モル%、更に好ましくは0〜30モル%である。この含有量が50モル%以下である場合には、パターン形成に対する重合体(A)中の前記化合物(1)や化合物(2)に由来する構成単位の効果を甚大に阻害せず、パターン形成に対する化合物(3)由来の構成単位の効果を得られるため好ましい。
[3−6]炭素原子の含有率
前記重合体(A)における炭素原子の含有率は、8〜40原子%であることが好ましく、より好ましくは8〜20原子%である。上記範囲にある場合、パターン形状及び耐久性に優れるスタンパとすることができる。
尚、重合体(A)の炭素原子の含有率(原子%)は、重合体(A)の合成に用いた成分(加水分解性シラン化合物)の加水分解性基が完全に加水分解されてシラノール基となり、この生成したシラノール基が完全に縮合しシロキサン結合を形成した際の元素組成から求められ、具体的には以下の式から求められる。
炭素原子の含有率(原子%)=(有機シリカゾルの炭素原子数)/(有機シリカゾルの総原子数)×100
[3−7]重合体(A)の分子量
前記重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)は、1000〜200000であることが好ましく、より好ましくは5000〜150000である。このMwが200000を超える場合、ゲル化が生じやすい。一方、1000未満の場合、塗布性や保存安定性に問題が生じやすい。
[3−8]重合体(A)の調製方法
前記重合体(A)は、加水分解性シラン化合物[前記化合物(1)〜(3)]を出発原料として、この出発原料を有機溶媒中に溶解し、この溶液中に水を断続的に或いは連続的に添加して、加水分解縮合反応させることにより調製することができる。このとき、触媒は、予め有機溶媒中に溶解又は分散させておいてもよく、添加される水中に溶解又は分散させておいてもよい。また、加水分解縮合反応を行うための温度は、通常、0〜100℃である。
前記加水分解縮合反応を行うための水としては、特に限定されないが、イオン交換水を用いることが好ましい。また、前記水は、用いられる加水分解性シラン化合物のアルコキシル基1モル当たり0.25〜3モル、好ましくは0.3〜2.5モルとなる量で用いられる。上述の範囲の量で水を用いることにより、形成される塗膜の均一性が低下するおそれがなく、且つ、組成物の保存安定性が低下するおそれが少ない。
前記有機溶媒としては、この種の用途に使用される有機溶媒であれば特に限定されず、例えば、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等が挙げられる。
前記触媒としては、例えば、金属キレート化合物、有機酸、無機酸、有機塩基、無機塩基等が挙げられる。
前記金属キレート化合物としては、例えば、チタンキレート化合物、ジルコニウムキレート化合物、アルミニウムキレート化合物等が挙げられる。具体的には、特許文献1(特開2000−356854号公報)等に記載されている化合物等を用いることができる。即ち、金属キレート化合物としては、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ−n−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−i−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−n−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−sec−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−t−ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−sec−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−t−ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ−n−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−i−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−n−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−sec−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−t−ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ−n−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−i−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−n−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−t−ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ−n−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−i−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−n−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−t−ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ−n−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−i−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−n−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−t−ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン、等のチタンキレート化合物;トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−i−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−sec−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−t−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−i−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−sec−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−t−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−i−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−sec−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−t−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−i−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−t−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−i−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−t−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−i−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−t−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム、等のジルコニウムキレート化合物;トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物;等が挙げられる。
前記有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等が挙げられる。
前記無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸等が挙げられる。
前記有機塩基としては、例えば、ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド等が挙げられる。
前記無機塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等が挙げられる。
これらの触媒のなかでも、金属キレート化合物、有機酸及び無機酸が好ましい。前記触媒は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記触媒は、前記加水分解性シラン化合物100質量部に対して、通常、0.001〜10質量部、好ましくは0.01〜10質量部の範囲で用いられる。
また、加水分解縮合反応を行った後には、例えば、メタノール、エタノール等の低級アルコール類等の反応副生成物の除去処理を行うことが好ましい。これにより、前記有機溶媒の純度が高くなるため、優れた塗布性を有し、しかも、良好な保存安定性を有する組成物を得ることができる。
反応副生成物の除去処理の方法としては、加水分解物及び/又はその縮合物の反応が進行しない方法であれば特に限定されず、例えば、反応副生成物の沸点が前記有機溶媒の沸点より低いものである場合には、減圧によって留去することができる。
[4]酸発生剤(B)
前記酸発生剤(B)は、露光により酸を発生するものであり、露光により発生した酸の作用によって、樹脂成分が架橋し、その結果、第1被膜及び第2被膜の露光部がアルカリ現像液に難溶性となり、スタンパの凹凸パターン(第1パターン及び第2パターン)を形成する作用を有するものである。
この酸発生剤(B)としては、例えば、スルホニウム塩やヨードニウム塩等のオニウム塩、有機ハロゲン化合物、ジスルホン類やジアゾメタンスルホン類等のスルホン化合物等が挙げられる。
前記酸発生剤(B)の好ましい具体例としては、例えば、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、トリフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、トリフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、トリフェニルスルホニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、トリフェニルスルホニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、トリフェニルスルホニウムカンファースルホネート等のトリフェニルスルホニウム塩化合物;
4−シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、4−シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート等の4−シクロヘキシルフェニルジフェニルスルホニウム塩化合物;
4−t−ブチルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−t−ブチルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−t−ブチルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−t−ブチルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−t−ブチルフェニルジフェニルスルホニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、4−t−ブチルフェニルジフェニルスルホニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、4−t−ブチルフェニルジフェニルスルホニウムカンファースルホネート等の4−t−ブチルフェニルジフェニルスルホニウム塩化合物;
トリ(4−t−ブチルフェニル)スルホニウムトリフルオロメタンスルホネート、トリ(4−t−ブチルフェニル)スルホニウムノナフルオロ−n−ブタンスルホネート、トリ(4−t−ブチルフェニル)スルホニウムパーフルオロ−n−オクタンスルホネート、トリ(4−t−ブチルフェニル)スルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、トリ(4−t−ブチルフェニル)スルホニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、トリ(4−t−ブチルフェニル)スルホニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、トリ(4−t−ブチルフェニル)スルホニウムカンファースルホネート等のトリ(4−t−ブチルフェニル)スルホニウム塩化合物;
ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ジフェニルヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ジフェニルヨードニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、ジフェニルヨードニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、ジフェニルヨードニウムカンファースルホネート等のジフェニルヨードニウム塩化合物;
ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、ビス(4−t−ブチルフェニル)ヨードニウムカンファースルホネート等のビス(4−t−ブチルフェニル)ヨードニウム塩化合物;
1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムカンファースルホネート等の1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム塩化合物;
1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムN,N’−ビス(ノナフルオロ−n−ブタンスルホニル)イミデート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート等の1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム塩化合物;
N−(トリフルオロメタンスルホニルオキシ)スクシンイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)スクシンイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)スクシンイミド、N−(2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)スクシンイミド、N−(2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホニルオキシ)スクシンイミド、N−(カンファースルホニルオキシ)スクシンイミド等のスクシンイミド類化合物;
N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド等のビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド類化合物等が挙げられる。
尚、これらの酸発生剤(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記酸発生剤(B)の使用量は、スタンパの凹凸パターン(第1パターン及び第2パターン)を形成させる観点から、前記重合体(A)100質量部に対して、通常、0.1〜30質量部であり、好ましくは0.1〜20質量部、更に好ましくは0.1〜15質量部である。この酸発生剤の使用量が0.1質量部未満の場合、感度及び解像性が低下する傾向がある。一方、30質量部を超える場合、放射線に対する透明性が低下して、矩形のパターンを得られ難くなる傾向がある。
[5]溶剤(C)
前記溶剤(C)としては、有機溶剤を用いることが好ましく、通常は前記各成分が有機溶剤に溶解又は分散される。
前記有機溶剤としては、アルコール系溶剤、ケトン系溶剤、アミド系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族炭化水素系溶剤、芳香族系溶剤及び含ハロゲン溶剤からなる群から選ばれる少なくとも1種が挙げられる。
前記アルコール系溶剤としては、例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、3−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチル−4−ヘプタノール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶剤;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶剤;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶剤等を挙げることができる。
これらのアルコール系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等が挙げられる。これらのケトン系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記アミド系溶剤としては、例えば、N,N−ジメチルイミダゾリジノン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドン等の含窒素系溶剤が挙げられる。これらのアミド系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記エーテル系溶剤としては、例えば、エチルエーテル、i−プロピルエーテル、n−ブチルエーテル、n−ヘキシルエーテル、2−エチルヘキシルエーテル、エチレンオキシド、1,2−プロピレンオキシド、ジオキソラン、4−メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールモノ−n−ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジフェニルエーテル、アニソール等が挙げられる。これらのエーテル系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記エステル系溶剤としては、例えば、ジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。これらのエステル系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記脂肪族炭化水素系溶剤としては、例えば、n−ペンタン、i−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、i−ヘプタン、2,2,4−トリメチルペンタン、n−オクタン、i−オクタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。これらの脂肪族炭化水素系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n−プロピルベンセン、i−プロピルベンセン、ジエチルベンゼン、i−ブチルベンゼン、トリエチルベンゼン、ジ−i−プロピルベンセン、n−アミルナフタレン、トリメチルベンゼン等が挙げられる。これらの芳香族炭化水素系溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
前記含ハロゲン溶剤としては、例えば、ジクロロメタン、クロロホルム、フロン、クロロベンゼン、ジクロロベンゼン等が挙げられる。これらの含ハロゲン溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
これらの溶剤(C)のなかでも、沸点が150℃未満の有機溶剤を使用することが好ましい。特に、アルコール系溶剤、ケトン系溶剤及びエステル系溶剤のうちの1種又は2種以上を使用することが好ましい。
尚、これらの溶剤は、重合体(A)の合成に用いたものと同じものであってもよいし、重合体(A)の合成が終了した後に、溶剤を所望の有機溶剤に置換することもできる。
[6]添加剤
本発明のネガ型感放射線性組成物には、有機ポリマー、酸拡散制御剤、界面活性剤等の添加剤成分が配合されていてもよい。
[6−1]有機ポリマー
前記有機ポリマーとしては、例えば、糖鎖構造を有する重合体、ビニルアミド系重合体、(メタ)アクリル系重合体、芳香族ビニル化合物系重合体、デンドリマー、ポリイミド,ポリアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジアゾール、フッ素系重合体、ポリアルキレンオキサイド構造を有する重合体等が挙げられる。
前記ポリアルキレンオキサイド構造を有する重合体としては、ポリメチレンオキサイド構造、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンオキサイド構造、ポリブチレンオキシド構造等が挙げられる。具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエテチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル等のエーテル型化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸アルカノールアミド硫酸塩等のエーテルエステル型化合物、ポリエチレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル等のエーテルエステル型化合物等が挙げられる。
また、前記ポリオキシエチレンポリオキシプロピレンブロックコポリマーとしては、下記のブロック構造を有する化合物が挙げられる。
−(X’)l−(Y’)m−
−(X’)l−(Y’)m−(X’)n−
(式中、X’は−CHCHO−で表される基を、Y’は−CHCH(CH)O−で表される基を示し、lは1〜90、mは10〜99、nは0〜90の数を示す。)
これらの有機ポリマーのなかでも、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル等のエーテル型化合物が好ましい。
尚、これらの有機ポリマーは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[6−2]酸拡散制御剤
前記酸拡散制御剤は、照射により酸発生剤から生じる酸の、第1被膜及び第2被膜中における拡散現象を制御し、非照射領域における好ましくない化学反応を抑制する作用を有する成分である。
このような酸拡散制御剤を配合することにより、スタンパの三次元構造としてのパターン形状が更に向上するとともに、照射から現像処理までの引き置き時間(PED)の変動によるネガパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
前記酸拡散制御剤としては、スタンパのパターン形成工程中の照射や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。
前記含窒素有機化合物としては、例えば、3級アミン化合物、アミド基含有化合物、4級アンモニウムヒドロキシド化合物、含窒素複素環化合物等が挙げられる。
前記3級アミン化合物としては、例えば、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;アニリン、N−メチルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、4−ニトロアニリン、2,6−ジメチルアニリン、2,6−ジイソプロピルアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン等の芳香族アミン類;トリエタノールアミン、ジエタノールアニリン等のアルカノールアミン類;N,N,N',N'−テトラメチルエチレンジアミン、N,N,N',N'−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、1,3−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼンテトラメチレンジアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン、1,3−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル等が挙げられる。
前記アミド基含有化合物としては、例えば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロヘキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N,N’−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N’,N’−テトラ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N−ジ−t−ブトキシカルボニル−1,7−ジアミノヘプタン、N,N’−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N’−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N’−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N’−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、N,N’−ジ−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール、N−t−ブトキシカルボニル−ピロリジン、N−t−ブトキシカルボニル−ピペリジン、N−t−ブトキシカルボニル−4−ヒドロキシ−ピペリジン、N−t−ブトキシカルボニル−モルフォリン等のN−t−ブトキシカルボニル基含有アミノ化合物のほか、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン等が挙げられる。
前記4級アンモニウムヒドロキシド化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ−n−プロピルアンモニウムヒドロキシド、テトラ−n−ブチルアンモニウムヒドロキシド等が挙げられる。
前記含窒素複素環化合物としては、例えば、イミダゾール、4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、4−メチル−2−フェニルイミダゾール、ベンズイミダゾール、2−フェニルベンズイミダゾール等のイミダゾール類;ピリジン、2−メチルピリジン、4−メチルピリジン、2−エチルピリジン、4−エチルピリジン、2−フェニルピリジン、4−フェニルピリジン、2−メチル−4−フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4−ヒドロキシキノリン、8−オキシキノリン、アクリジン等のピリジン類;ピペラジン、1−(2−ヒドロキシエチル)ピペラジン等のピペラジン類のほか、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
これらの酸拡散制御剤のなかでも、3級アミン化合物、アミド基含有化合物、含窒素複素環化合物が好ましい。また、アミド基含有化合物のなかでは、N−t−ブトキシカルボニル基含有アミノ化合物が好ましく、含窒素複素環化合物のなかでは、イミダゾール類が好ましい。
尚、これらの酸拡散制御剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、酸拡散制御剤の配合量は、重合体(A)100質量部に対して、通常、15質量部以下、好ましくは10質量部以下、更に好ましくは5質量部以下である。この配合量が15質量部を超える場合には、ネガパターンを形成する感度及び露光部の現像性が低下する傾向がある。尚、この配合量が0.001質量部未満である場合、プロセス条件によっては、スタンパとしてのパターン形状や寸法忠実度が低下するおそれがある。
[6−3]界面活性剤
前記界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分であり、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、フッ素系界面活性剤、ポリ(メタ)アクリレート系界面活性剤等が挙げられる。具体的には、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名で、SH8400 FLUID(Toray Dow Corning Silicone Co.製)、KP341(信越化学工業(株)製)、ポリフローNo.75,同No.95(以上、共栄社化学(株)製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ(株)製)、メガファックスF171、同F173(以上、大日本インキ化学工業(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガードAG710,サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(以上、旭硝子(株)製)等を挙げることができる。これらのなかでも、フッ素系界面活性剤、シリコーン系界面活性剤が好ましい。尚、これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記界面活性剤は、前記重合体(A)100質量部に対して、通常、0.00001〜1質量部の範囲で用いられる。
[7]重合体(A)と酸発生剤(B)と溶剤(C)とを含有するネガ型感放射線性組成物の調製
本発明における、重合体(A)と酸発生剤(B)と溶剤(C)とを含有するネガ型放射線性組成物は、前記重合体(A)と、前記酸発生剤(B)と、前記溶剤(C)と、必要に応じて前記他の添加剤と、を混合することにより得られる。尚、重合体(A)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、ネガ型放射線性組成物の固形分濃度は使用目的に応じて適宜調整されるが、例えば、1〜50質量%、特に10〜40質量%とすることができる。この固形分濃度が1〜50質量%である場合には、塗膜の膜厚が適当な範囲となる。
[8]スタンパ
本発明のスタンパは、本発明のスタンパの製造方法によって得られたことを特徴とする。このスタンパは、基板及びネガ型感放射線性組成物からなると共に、ネガ型感放射線性組成物から形成された三次元構造の凹凸パターンを有する。この凹凸パターンは、インプリント方法において、被形状転写物へ微細パターンを転写するためのものである。
前記「凹凸パターン」は、スタンパの表面に形成された凹凸を有するパターンであり、被形状転写層に転写されて微細パターンとなる。従って、凹凸パターンは微細パターンに対応した反転したパターン形状からなる。また、この凹凸パターンの形状は特に限定されず、どのようなパターン形状であってもよい。即ち、例えば、凸条(図8の符合51)、2段以上の階段部を有する凸条(図8の符合52)、凸島状部(図8の符合53)、突起(図8の符合54)等の凸部や、凹条(図8の符合55)、2段以上の階段部を有する凹条(図8の符合56)、凹島状部(図8の符合57)、有底孔(図8の符合58)等の凹部などが挙げられる。更に、図9に示されるように、本発明のスタンパ5は、段付き構造体であるスタンパ本体(多段構造体)41を備えた三次元構造のスタンパ5が挙げられる。
この凹凸パターンの大きさ(幅及び深さなど)は特に限定されないが、通常、パターンの幅は10μm以下であり、特に10〜1000nmとすることができ、更には、10〜500nmとすることができ、とりわけ10〜100nmとすることができる。
また、スタンパの大きさ、形状及び形態などは特に限定されない。例えば、図9に例示されるように、本発明のスタンパ5は、スタンパ本体41と基板2を備え、この基板2にスタンパ本体41が固定されている。また、スタンパ本体41は、通常、凹凸パターンを備える先端側からの厚さが1mm以下とすることができる。
以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。ここで、「部」及び「%」は、特記しない限り質量基準である。
更に、下記合成例で得られるケイ素含有樹脂の重量平均分子量(Mw)(以下、単に「Mw」ともいう。)の測定は、下記の方法により行った。
<重量平均分子量(Mw)の測定>
サイズ排除クロマトグラフィー(SEC)法により測定した。
試料:濃度10mmol/LのLiBr−HPOの2−メトキシエタノール溶液を溶媒として使用し、加水分解縮合物0.1gを100ccの10mmol/L LiBr−HPOの2−メトキシエタノール溶液に溶解して調製した。
標準試料:WAKO社製、ポリエチレンオキサイドを使用した。
装置:東ソー(株)社製、高速GPC装置(モデル HLC−8120GPC)を使用した。
カラム:東ソー(株)社製、TSK−GEL SUPER AWM−H(長さ15cm)を直列に3本設置して使用した。
測定温度:40℃
流速:0.6ml/min.
検出器:東ソー(株)社製、高速GPC装置(モデル HLC−8120GPC)内臓のRIにより検出した。
(1)重合体A(ケイ素含有樹脂)の製造
窒素置換された石英製三口フラスコ内に、20%マレイン酸水溶液2.14g及び超純水139.6gを加えて65℃に加熱した。次いで、テトラメトキシシラン25.7g(0.169モル)、メチルトリメトキシシラン206.7g(1.52モル)、及び3−エトキシ−2−プロパノール25.9gを混合した溶液を1時間かけて反応容器に滴下し、65℃で4時間撹拌させた。この反応液を室温まで戻し、固形分濃度が25%となるまで減圧下で濃縮し、ケイ素含有樹脂溶液440gを得た。この樹脂溶液中における樹脂をケイ素含有樹脂とする。尚、前記ケイ素含有樹脂の構成モノマー比a:bは10:90(mol%)であり、Mwは8600であった。但し、構成モノマー比a;テトラエトキシシラン由来の構成単位、構成モノマー比b;メチルトリメトキシシラン由来の構成単位である。
(2)ネガ型放射線性樹脂組成物の調製
前記(1)により得られた(A)重合体A(ケイ素含有樹脂)100重量部と、(B)酸発生剤としてのトリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート5重量部と、(C)溶剤としての3−エトキシ−2−プロパノール572重量部と、を混合し、シリコン原子を含有するネガ型放射線性樹脂組成物を調製した。
(3)スタンパ(多層パターン)の作製
基板として、8インチシリコンウェハを用いた。前記基板上に、前記(2)により得られたネガ型放射線性樹脂組成物を、「CLEAN TRACK ACT8」(東京エレクトロン株式会社製)を用いて、スピンコートし、ベーク(90℃、60秒)を行うことにより、膜厚500nmの被膜を形成した。この被膜に、KrFエキシマレーザー露光装置(「NSR S203B」、NIKON製)にてNA=0.68、σ=0.75−1/2輪帯照明の条件で、マスクパターンを介して露光した。その後、PEB(85℃、60秒)を行ったのち、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で60秒間現像し、水洗し、乾燥した後、ポストベーク処理(200℃、180秒)を行うことにより、第1パターンを形成した(250nmコンタクトホールパターン)。得られた第1パターン(レプリカモールド)を走査型電子顕微鏡(「S9380」、日立計測器社製)で観察することにより、所望の微細パターンが形成されていることを確認した。続いて、得られた第1パターン上に前記ネガ型放射線性樹脂組成物を、前記「CLEAN TRACK ACT8」にて、スピンコートし、マスクパターンを変えた以外は上記の第1パターンの形成方法と同様の方法にて、第二のパターンを形成した(250nmライン・アンド・スペースパターン)。得られたスタンパのパターン断面を走査型電子顕微鏡(「S−4800」、日立ハイテクノロジーズ社製)で観測により、二層パターンの形成を確認した。得られた画像を図10に示す。
以上より、本発明のスタンパの製造方法によれば、簡略化されたプロセスで、3次元構造パターンを有するスタンパを製造することができる。そして、図10から明らかなように、本発明のスタンパの製造方法により得られたスタンパは、第1パターンに対する第2パターンの埋め込み性及び抜け性が、良好であることが確認された。
1;第1被膜、11;第1被膜の露光部(第1パターン)、2;基板、3;第2被膜、31;第2被膜の露光部(第2パターン)、4;硬化処理が施された第1及び第2パターン(スタンパ本体)、41;スタンパ本体(多段構造体)、5;スタンパ、51;凸条、52;2段以上の階段部を有する凸条、53;凸島状部、54;突起、55;凹条、56;2段以上の階段部を有する凹条、57;凹島状部、58;有底孔。

Claims (6)

  1. (1)基板上にネガ型感放射線性組成物を塗布し、前記ネガ型感放射線性組成物由来の第1被膜を形成する工程と、
    (2)前記第1被膜を露光し、露光された前記第1被膜を現像し、第1パターンを形成する工程と、
    (3)前記第1パターン上に、前記ネガ型感放射線性組成物を塗布し、第2被膜を形成する工程と、
    (4)前記第2被膜を露光し、露光された前記第2被膜を現像し、第2パターンを形成する工程と、
    (5)前記第1パターン及び前記第2パターンに、加熱及びエネルギー線照射から選ばれる少なくとも1種の硬化処理を施す工程と、
    を備えることを特徴とするスタンパの製造方法。
  2. 前記ネガ型感放射線性組成物が、金属アルコキシドを加水分解縮合して得られる重合体を含有する請求項1に記載のスタンパの製造方法。
  3. 前記金属アルコキシドが、アルコキシシランである請求項2に記載のスタンパの製造方法。
  4. 前記ネガ型感放射性組成物が、下記(A)〜(C)成分を含有する請求項1乃至3のいずれかに記載のスタンパの製造方法。
    (A)重合体:下記一般式(1)で表される加水分解性シラン化合物(a1)、及び下記一般式(2)で表される加水分解性シラン化合物(a2)から選ばれる少なくとも一種の加水分解性シラン化合物を加水分解縮合させて得られる重合体。
    (前記重合体に含まれる全ての構成単位の合計を100モル%とする場合、前記化合物(a1)由来の構成単位の含有割合が、80〜100モル%であり、
    前記重合体のゲルパーミエーションクロマトグラフィーによるポリスチレン換算の重量平均分子量が、4000〜12000である。)
    (B)感放射線性酸発生剤。
    (C)溶剤。
    Si(OR4−a (1)
    〔一般式(1)中、Rは水素原子、フッ素原子、炭素数1〜5の直鎖状若しくは分岐状のアルキル基、シアノ基、シアノアルキル基、又はアルキルカルボニルオキシ基を表し、Rは1価の有機基を表し、aは1〜3の整数を示す。〕
    Si(OR (2)
    〔一般式(2)中、Rは1価の有機基を示す。〕
  5. 前記硬化処理が、加熱温度180℃〜450℃の加熱処理である請求項1乃至4のいずれかに記載のスタンパの製造方法。
  6. 請求項1乃至5のいずれかに記載のスタンパの製造方法によって得られたことを特徴とするスタンパ。
JP2009037113A 2009-02-19 2009-02-19 スタンパの製造方法及びスタンパ Pending JP2010188668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037113A JP2010188668A (ja) 2009-02-19 2009-02-19 スタンパの製造方法及びスタンパ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037113A JP2010188668A (ja) 2009-02-19 2009-02-19 スタンパの製造方法及びスタンパ

Publications (1)

Publication Number Publication Date
JP2010188668A true JP2010188668A (ja) 2010-09-02

Family

ID=42815251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037113A Pending JP2010188668A (ja) 2009-02-19 2009-02-19 スタンパの製造方法及びスタンパ

Country Status (1)

Country Link
JP (1) JP2010188668A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206449A (ja) * 2015-04-23 2016-12-08 株式会社東芝 パターン形成方法
JP7438904B2 (ja) 2020-09-17 2024-02-27 キオクシア株式会社 テンプレート、テンプレートの製造方法、及び半導体装置の製造方法
JP7458948B2 (ja) 2020-09-17 2024-04-01 キオクシア株式会社 テンプレート、テンプレートの製造方法、及び半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206449A (ja) * 2015-04-23 2016-12-08 株式会社東芝 パターン形成方法
JP7438904B2 (ja) 2020-09-17 2024-02-27 キオクシア株式会社 テンプレート、テンプレートの製造方法、及び半導体装置の製造方法
JP7458948B2 (ja) 2020-09-17 2024-04-01 キオクシア株式会社 テンプレート、テンプレートの製造方法、及び半導体装置の製造方法

Similar Documents

Publication Publication Date Title
US9170492B2 (en) Silicon-containing film-forming composition, silicon-containing film, and pattern forming method
JP5999215B2 (ja) ポリシロキサン組成物
US9329478B2 (en) Polysiloxane composition and pattern-forming method
JP5392269B2 (ja) シリコン含有膜、樹脂組成物およびパターン形成方法
US20100167024A1 (en) Negative-tone radiation-sensitive composition, cured pattern forming method, and cured pattern
JP5776301B2 (ja) ポリシロキサン組成物及びパターン形成方法
JP5540509B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5568892B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP5533147B2 (ja) 感放射線性組成物
JP5771905B2 (ja) 液浸露光用感放射線性樹脂組成物、硬化パターン形成方法及び硬化パターン
JP5560564B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP2010171281A (ja) インプリント方法
JP5136439B2 (ja) 多層レジストプロセス用シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5353407B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP5625301B2 (ja) シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP5413185B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法および硬化パターン
JP2010188668A (ja) スタンパの製造方法及びスタンパ
JP2010117439A (ja) ポジ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2011154214A (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP5487728B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP2011213921A (ja) シリコン含有膜形成用組成物及びシリコン含有膜並びにパターン形成方法
JP2010122322A (ja) ネガ型感放射線性組成物、パターン形成方法及び硬化パターン
JP5381508B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP5206476B2 (ja) ネガ型感放射線性組成物、硬化パターン形成方法及び硬化パターン
JP5920491B2 (ja) 液浸露光用感放射線性樹脂組成物及び硬化パターン形成方法