JP2010186762A - Solid-state laser apparatus - Google Patents

Solid-state laser apparatus Download PDF

Info

Publication number
JP2010186762A
JP2010186762A JP2009027963A JP2009027963A JP2010186762A JP 2010186762 A JP2010186762 A JP 2010186762A JP 2009027963 A JP2009027963 A JP 2009027963A JP 2009027963 A JP2009027963 A JP 2009027963A JP 2010186762 A JP2010186762 A JP 2010186762A
Authority
JP
Japan
Prior art keywords
solid
state laser
laser
acoustooptic device
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009027963A
Other languages
Japanese (ja)
Other versions
JP5439836B2 (en
Inventor
Shingo Uno
進吾 宇野
Kimitada Tojo
公資 東條
Kazuma Watanabe
一馬 渡辺
Ichiro Fukushi
一郎 福士
Naoya Ishigaki
直也 石垣
Akiyuki Kadoya
章之 門谷
Eiji Irisa
英二 入佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009027963A priority Critical patent/JP5439836B2/en
Publication of JP2010186762A publication Critical patent/JP2010186762A/en
Application granted granted Critical
Publication of JP5439836B2 publication Critical patent/JP5439836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a calorific value of an acoustooptical element driving circuit. <P>SOLUTION: A solid-state laser apparatus 10 initiates the drive of an acoustooptical element 4 at the same time or substantially the same time as that of the drive initiation of a semiconductor laser 1 to enlarge the loss of a resonator 6, and terminates the drive of an acoustooptical element 4 at a timing according to a lifetime T of fluorescence of a solid laser medium 3 to minimize the loss of a resonator 6. Thus, the time for driving an acoustooptical element 4 is short, so that the calorific value of an acoustooptical element driving circuit 8 can be suppressed and it becomes not necessary to attach a large dissipating component to the acoustooptical element driving circuit 8. In addition, the time for feeding an acoustooptical element driving RF signal R is short, so that the ectromagnetic interference EMI can be suppressed. The temperature rise of circuit components such as capacitor and coil can be suppressed and output stability can be enhanced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体レーザ装置に関し、さらに詳しくは、音響光学素子を用いてパルスレーザを出力する固体レーザ装置に関する。   The present invention relates to a solid-state laser device, and more particularly to a solid-state laser device that outputs a pulse laser using an acousto-optic element.

音響光学素子を用いた固体レーザ装置が知られている(特許文献1参照)。
この固体レーザ装置では、音響光学素子を駆動し共振器のロスを大きくしておいて半導体レーザの駆動を開始する。そして、共振器のゲインが十分高くなった時に音響光学素子の駆動を停止して共振器のロスを急激に低くし、固体レーザ媒質に貯めていたエネルギーをパルスレーザ出力として取り出す。このパルスレーザ出力後、半導体レーザの駆動を停止すると共に音響光学素子を再び駆動する。この動作を繰り返す。
A solid-state laser device using an acousto-optic element is known (see Patent Document 1).
In this solid-state laser device, the acousto-optic element is driven to increase the resonator loss, and the semiconductor laser starts to be driven. Then, when the gain of the resonator becomes sufficiently high, the driving of the acoustooptic device is stopped to rapidly reduce the loss of the resonator, and the energy stored in the solid laser medium is taken out as a pulse laser output. After outputting the pulse laser, the driving of the semiconductor laser is stopped and the acoustooptic device is driven again. This operation is repeated.

特開平05−198870号公報([0036])JP 05-198870 A ([0036])

従来の固体レーザ装置では、パルスレーザ出力時の短時間を除いて、音響光学素子がほぼ連続的に駆動されていた。例えばパルス繰り返し周波数を300Hzとし、音響光学素子の駆動停止時間を約0.01msとすると、運転時間中の約99.7%は音響光学素子が駆動されていた。
しかし、音響光学素子をほぼ連続的に駆動していることにより音響光学素子ドライブ回路の発熱量が大きくなるため、音響光学素子ドライブ回路に大きな放熱部品を取り付ける必要があった。
そこで、本発明の目的は、音響光学素子ドライブ回路の発熱量を抑制し、音響光学素子ドライブ回路に大きな放熱部品を取り付ける必要をなくした固体レーザ装置を提供することにある。
In the conventional solid-state laser device, the acoustooptic device is driven almost continuously except for a short time when the pulse laser is output. For example, if the pulse repetition frequency is 300 Hz and the driving stop time of the acoustooptic device is about 0.01 ms, the acoustooptic device is driven for about 99.7% during the operation time.
However, since the amount of heat generated by the acoustooptic device drive circuit is increased by driving the acoustooptic device substantially continuously, it is necessary to attach a large heat dissipation component to the acoustooptic device drive circuit.
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid-state laser device that suppresses the amount of heat generated by an acoustooptic device drive circuit and eliminates the need to attach a large heat dissipation component to the acoustooptic device drive circuit.

第1の観点では、本発明は、パルス駆動され励起レーザ光を発生する半導体レーザ(1)と、前記励起レーザ光によって励起される固体レーザ媒質(3)と、前記固体レーザ媒質(3)を含んで形成される共振器(6)内に設置され前記共振器(6)のロスを制御する音響光学素子(4)と、前記半導体レーザ(1)が駆動されていない期間の全部または一部において前記音響光学素子(4)を駆動しない音響光学素子駆動制御手段(8,9)を具備したことを特徴とする固体レーザ装置(10)を提供する。
上記第1の観点による固体レーザ装置(10)では、半導体レーザ(1)が駆動されていない期間の全部または一部において音響光学素子(4)を駆動しないため、音響光学素子ドライブ回路の発熱量が抑制され、音響光学素子ドライブ回路に大きな放熱部品を取り付ける必要がなくなる。
第2の観点では、本発明は、前記半導体レーザ(1)が駆動されている期間内において、前記音響光学素子駆動制御手段(8,9)は、前記半導体レーザ(1)が駆動されていない期間の全部または一部において前記音響光学素子(4)を前記固体レーザ媒質(3)の蛍光寿命(T)に相当する期間だけ駆動することを特徴とする請求項1記載の固体レーザ装置(10)を提供する。
上記構成において、蛍光寿命(T)とは、蛍光強度が1/eに低下するのに要する時間である。
上記第2の観点による固体レーザ装置(10)では、半導体レーザ(1)の駆動開始と同じか又はほぼ同じタイミングで前記音響光学素子(4)の駆動を開始し、固体レーザ媒質(3)の蛍光寿命(T)に合わせたタイミングで前記音響光学素子(4)の駆動を停止する。これによれば、例えばパルス繰り返し周波数を300Hzとし、固体レーザ媒質(3)の蛍光寿命(T)を約0.2msとすると、運転時間中の約6%だけ音響光学素子が駆動されることになる。このため、音響光学素子ドライブ回路の発熱量が抑制され、音響光学素子ドライブ回路に大きな放熱部品を取り付ける必要がなくなる。
なお、パルスレーザ出力後、半導体レーザの駆動を停止するため、共振器のゲインは0になり、音響光学素子を駆動しなくてもレーザ発振が起こることはない。
In a first aspect, the present invention provides a semiconductor laser (1) that generates pulsed laser light that is pulse-driven, a solid-state laser medium (3) that is excited by the excitation laser light, and the solid-state laser medium (3). An acoustooptic device (4) installed in a resonator (6) formed to control the loss of the resonator (6), and all or part of a period in which the semiconductor laser (1) is not driven The solid-state laser device (10) is provided with acoustooptic device drive control means (8, 9) that does not drive the acoustooptic device (4).
In the solid-state laser device (10) according to the first aspect, since the acoustooptic device (4) is not driven during all or part of the period during which the semiconductor laser (1) is not driven, the amount of heat generated by the acoustooptic device drive circuit. Is suppressed, and there is no need to attach a large heat dissipation component to the acoustooptic device drive circuit.
In a second aspect, the present invention provides that the acoustooptic device drive control means (8, 9) does not drive the semiconductor laser (1) within a period during which the semiconductor laser (1) is driven. The solid-state laser device (10) according to claim 1, wherein the acoustooptic device (4) is driven for a period corresponding to the fluorescence lifetime (T) of the solid-state laser medium (3) in all or part of the period. )I will provide a.
In the above configuration, the fluorescence lifetime (T) is the time required for the fluorescence intensity to decrease to 1 / e.
In the solid-state laser device (10) according to the second aspect, the acousto-optic element (4) starts to be driven at the same timing or almost the same timing as the driving of the semiconductor laser (1), and the solid-state laser medium (3) The driving of the acousto-optic device (4) is stopped at a timing that matches the fluorescence lifetime (T). According to this, for example, when the pulse repetition frequency is 300 Hz and the fluorescence lifetime (T) of the solid-state laser medium (3) is about 0.2 ms, the acoustooptic device is driven by about 6% during the operation time. Become. For this reason, the heat generation amount of the acoustooptic device drive circuit is suppressed, and it is not necessary to attach a large heat dissipation component to the acoustooptic device drive circuit.
Since the semiconductor laser drive is stopped after the pulse laser is output, the gain of the resonator becomes 0, and laser oscillation does not occur even if the acoustooptic device is not driven.

本発明の固体レーザ装置によれば、音響光学素子ドライブ回路の発熱量を抑制できる。従って、音響光学素子ドライブ回路に大きな放熱部品を取り付ける必要がなくなる。   According to the solid-state laser device of the present invention, the heat generation amount of the acoustooptic device drive circuit can be suppressed. Therefore, it is not necessary to attach a large heat radiating component to the acoustooptic device drive circuit.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

−実施例1−
図1は、実施例1に係る固体レーザ装置10を示す説明図である。
この固体レーザ装置10は、励起レーザ光を発生する半導体レーザ1と、励起レーザ光を集光するレンズ2と、励起レーザ光によって励起される固体レーザ媒質3と、固体レーザ媒質3を含んで形成される共振器6のロスを制御する音響光学素子4と、固体レーザ媒質3との間に共振器6を形成するミラー5と、半導体レーザ1にLD駆動電流Iを供給する半導体レーザドライブ回路7と、音響光学素子4に音響光学素子駆動RF信号Rを供給する音響光学素子ドライブ回路8と、駆動電流Iの供給タイミングや音響光学素子駆動RF信号Rの供給タイミングなどを制御する制御部9とを具備している。
Example 1
FIG. 1 is an explanatory diagram illustrating a solid-state laser device 10 according to the first embodiment.
The solid-state laser device 10 includes a semiconductor laser 1 that generates excitation laser light, a lens 2 that collects the excitation laser light, a solid-state laser medium 3 that is excited by the excitation laser light, and a solid-state laser medium 3. An acoustooptic device 4 that controls the loss of the resonator 6, a mirror 5 that forms the resonator 6 between the solid-state laser medium 3, and a semiconductor laser drive circuit 7 that supplies an LD drive current I to the semiconductor laser 1. An acoustooptic device drive circuit 8 that supplies the acoustooptic device driving RF signal R to the acoustooptic device 4, and a control unit 9 that controls the supply timing of the drive current I, the supply timing of the acoustooptic device drive RF signal R, and the like. It has.

図2は、固体レーザ装置10の動作タイミングを示すタイムチャートである。
LD駆動電流Iは、例えばパルス繰り返し周波数f=300Hz、パルス幅τ=約0.22msで供給される。
音響光学素子駆動RF信号Rは、例えばLD駆動電流Iの供給開始時刻t1より余裕時間Δだけ早めに供給開始され、LD駆動電流Iの供給開始時刻t1から固体レーザ媒質3の蛍光寿命Tだけ経過後に供給停止される。例えば余裕時間Δを0.1msとし、固体レーザ媒質3の蛍光寿命Tを約0.2msとすると、音響光学素子駆動RF信号Rのパルス幅T+Δ=約0.3msとなる。
共振器6のロスLは、音響光学素子駆動RF信号Rと同じタイミングで大きくなる。
共振器6のゲインGは、LD駆動電流Iの供給開始時刻t1から高くなり、LD駆動電流Iの供給開始時刻t1から固体レーザ媒質3の蛍光寿命Tだけ経過後に最高になり、音響光学素子駆動RF信号Rの供給停止により低くなり、LD駆動電流Iの供給停止時刻t3以後は0になる。
パルスレーザ出力は、音響光学素子駆動RF信号Rの供給停止直後に出力される。
FIG. 2 is a time chart showing the operation timing of the solid-state laser device 10.
The LD drive current I is supplied, for example, at a pulse repetition frequency f = 300 Hz and a pulse width τ = about 0.22 ms.
The acoustooptic device driving RF signal R is started to be supplied, for example, earlier than the supply start time t1 of the LD drive current I by a margin time Δ, and the fluorescence lifetime T of the solid-state laser medium 3 has elapsed from the supply start time t1 of the LD drive current I. The supply is stopped later. For example, if the margin time Δ is 0.1 ms and the fluorescence lifetime T of the solid-state laser medium 3 is about 0.2 ms, the pulse width T + Δ of the acoustooptic device driving RF signal R is about 0.3 ms.
The loss L of the resonator 6 increases at the same timing as the acoustooptic device driving RF signal R.
The gain G of the resonator 6 increases from the supply start time t1 of the LD drive current I, and becomes the highest after the fluorescence lifetime T of the solid-state laser medium 3 has elapsed from the supply start time t1 of the LD drive current I, and drives the acoustooptic device. It becomes low when the supply of the RF signal R is stopped, and becomes 0 after the supply stop time t3 of the LD drive current I.
The pulse laser output is output immediately after the supply of the acoustooptic device driving RF signal R is stopped.

図3は、固体レーザ装置10の運転時間と音響光学素子ドライブ回路8に取り付けた約1.4K/Wの放熱用フィンの温度変化を示す温度特性図である。
運転条件は、パルス繰り返し周波数f=300Hz、音響光学素子駆動RF信号Rのパルス幅T+Δ=約0.3ms、音響光学素子駆動RF信号Rのパワーを約7Wとしたものである。
ほとんど温度上昇しないことが判った。
FIG. 3 is a temperature characteristic diagram showing the operating time of the solid-state laser device 10 and the temperature change of the heat radiation fin of about 1.4 K / W attached to the acoustooptic device drive circuit 8.
The operating conditions are a pulse repetition frequency f = 300 Hz, a pulse width T + Δ of the acoustooptic device driving RF signal R = about 0.3 ms, and a power of the acoustooptic device driving RF signal R of about 7 W.
It was found that the temperature hardly increased.

図4は、従来の動作タイミングで固体レーザ装置10を制御した場合を示すタイムチャートである。
LD駆動電流Iは、例えばパルス繰り返し周波数f=300Hz、パルス幅τ=約0.22msで供給される。
音響光学素子駆動RF信号Rは、LD駆動電流Iの供給開始時刻t1から固体レーザ媒質3の蛍光寿命Tだけ経過後からパルスレーザ出力直後まで供給停止される以外は、ほぼ連続的に供給される。
共振器6のロスLは、音響光学素子駆動RF信号Rと同じタイミングで大きくなる。
共振器6のゲインGは、LD駆動電流Iの供給開始時刻t1から高くなり、LD駆動電流Iの供給開始時刻t1から固体レーザ媒質3の蛍光寿命Tだけ経過後に最高になり、音響光学素子駆動RF信号Rの供給停止により低くなり、LD駆動電流Iの供給停止時刻t3以後は0になる。
パルスレーザ出力は、音響光学素子駆動RF信号Rの供給停止直後に出力される。
FIG. 4 is a time chart showing a case where the solid-state laser device 10 is controlled at the conventional operation timing.
The LD drive current I is supplied, for example, at a pulse repetition frequency f = 300 Hz and a pulse width τ = about 0.22 ms.
The acousto-optic device driving RF signal R is supplied substantially continuously except that the supply is stopped from the supply start time t1 of the LD drive current I after the lapse of the fluorescence lifetime T of the solid-state laser medium 3 to immediately after the pulse laser output. .
The loss L of the resonator 6 increases at the same timing as the acoustooptic device driving RF signal R.
The gain G of the resonator 6 increases from the supply start time t1 of the LD drive current I, and becomes the highest after the fluorescence lifetime T of the solid-state laser medium 3 has elapsed from the supply start time t1 of the LD drive current I, and drives the acoustooptic device. It becomes low when the supply of the RF signal R is stopped, and becomes 0 after the supply stop time t3 of the LD drive current I.
The pulse laser output is output immediately after the supply of the acoustooptic device driving RF signal R is stopped.

図5は、従来の動作タイミングで固体レーザ装置10を制御した場合の固体レーザ装置10の運転時間と音響光学素子ドライブ回路8に取り付けた約1.4K/Wの放熱用フィンの温度変化を示す温度特性図である。
運転条件は、パルス繰り返し周波数f=300Hz、音響光学素子駆動RF信号Rの供給停止時間約0.01ms、音響光学素子駆動RF信号Rのパワーを約7Wとしたものである。
大きく温度上昇している。
FIG. 5 shows the operating time of the solid-state laser device 10 when the solid-state laser device 10 is controlled at the conventional operation timing and the temperature change of the heat radiation fin of about 1.4 K / W attached to the acoustooptic device drive circuit 8. It is a temperature characteristic figure.
The operating conditions are a pulse repetition frequency f = 300 Hz, an acoustooptic device driving RF signal R supply stop time of about 0.01 ms, and an acoustooptic device driving RF signal R power of about 7 W.
The temperature has risen significantly.

実施例1の固体レーザ装置10によれば次の効果が得られる。
・音響光学素子駆動RF信号Rを供給する時間が短いため、音響光学素子ドライブ回路8の発熱量を抑制できる。従って、音響光学素子ドライブ回路8に大きな放熱部品を取り付ける必要がなくなる。
・音響光学素子駆動RF信号Rを供給する時間が短いため、電磁干渉(EMI)を抑制できる。
・音響光学素子ドライブ回路8の発熱量を抑制できるため、コンデンサやコイルなどの回路部品の温度上昇を抑制できる。従って、出力安定性を向上できる。
According to the solid-state laser device 10 of the first embodiment, the following effects can be obtained.
Since the time for supplying the acoustooptic device driving RF signal R is short, the amount of heat generated by the acoustooptic device drive circuit 8 can be suppressed. Therefore, it is not necessary to attach a large heat radiating component to the acoustooptic device drive circuit 8.
-Since the time for supplying the acoustooptic device driving RF signal R is short, electromagnetic interference (EMI) can be suppressed.
Since the amount of heat generated by the acoustooptic device drive circuit 8 can be suppressed, the temperature rise of circuit components such as capacitors and coils can be suppressed. Therefore, output stability can be improved.

本発明の固体レーザ装置は、バイオエンジニアリング分野や計測分野で利用できる。   The solid-state laser device of the present invention can be used in the bioengineering field and the measurement field.

実施例1にかかる固体レーザ装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram illustrating a solid-state laser device according to a first embodiment; 実施例1にかかる固体レーザ装置の動作タイミングを示すタイムチャートである。3 is a time chart showing the operation timing of the solid-state laser apparatus according to Example 1. 実施例1にかかる固体レーザ装置の温度特性図である。3 is a temperature characteristic diagram of the solid-state laser apparatus according to Example 1. FIG. 従来の動作タイミングを示すタイムチャートである。It is a time chart which shows the conventional operation timing. 従来の動作タイミングにかかる固体レーザ装置の温度特性図である。It is a temperature characteristic figure of the solid-state laser apparatus concerning the conventional operation timing.

1 半導体レーザ
2 レンズ
3 固体レーザ媒質
4 音響光学素子
5 ミラー
6 共振器
7 半導体レーザドライブ回路
8 音響光学素子ドライブ回路
9 制御部
10 固体レーザ装置
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Lens 3 Solid laser medium 4 Acoustooptic device 5 Mirror 6 Resonator 7 Semiconductor laser drive circuit 8 Acoustooptic device drive circuit 9 Control part 10 Solid state laser apparatus

Claims (2)

パルス駆動され励起レーザ光を発生する半導体レーザ(1)と、前記励起レーザ光によって励起される固体レーザ媒質(3)と、前記固体レーザ媒質(3)を含んで形成される共振器(6)内に設置され前記共振器(6)のロスを制御する音響光学素子(4)と、前記半導体レーザ(1)が駆動されていない期間の全部または一部において前記音響光学素子(4)を駆動しない音響光学素子駆動制御手段(8,9)を具備したことを特徴とする固体レーザ装置(10)。 A semiconductor laser (1) that generates pulsed laser light by being driven by a pulse, a solid laser medium (3) that is excited by the pump laser light, and a resonator (6) that includes the solid laser medium (3). The acousto-optic device (4) that is installed inside and controls the loss of the resonator (6), and the acousto-optic device (4) is driven during all or part of the period during which the semiconductor laser (1) is not driven. A solid-state laser device (10) characterized by comprising acoustooptic device drive control means (8, 9). 前記半導体レーザ(1)が駆動されている期間内において、前記音響光学素子駆動制御手段(8,9)は、前記半導体レーザ(1)が駆動されていない期間の全部または一部において前記音響光学素子(4)を前記固体レーザ媒質(3)の蛍光寿命(T)に相当する期間だけ駆動することを特徴とする請求項1記載の固体レーザ装置(10)。 During the period in which the semiconductor laser (1) is being driven, the acoustooptic device drive control means (8, 9) is configured to perform the acoustooptic operation in all or part of the period in which the semiconductor laser (1) is not driven. The solid-state laser device (10) according to claim 1, characterized in that the element (4) is driven for a period corresponding to the fluorescence lifetime (T) of the solid-state laser medium (3).
JP2009027963A 2009-02-10 2009-02-10 Solid state laser equipment Active JP5439836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027963A JP5439836B2 (en) 2009-02-10 2009-02-10 Solid state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027963A JP5439836B2 (en) 2009-02-10 2009-02-10 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2010186762A true JP2010186762A (en) 2010-08-26
JP5439836B2 JP5439836B2 (en) 2014-03-12

Family

ID=42767271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027963A Active JP5439836B2 (en) 2009-02-10 2009-02-10 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP5439836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225542A (en) * 2013-05-16 2014-12-04 株式会社島津製作所 Solid-state pulse laser device
JP2017103490A (en) * 2017-03-06 2017-06-08 株式会社島津製作所 Solid-state pulse laser device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260265U (en) * 1988-10-27 1990-05-02
JPH02260479A (en) * 1989-03-30 1990-10-23 Toshiba Corp Laser oscillator
JP2002359422A (en) * 2001-05-30 2002-12-13 Nec Corp Q-switch laser controller and laser
JP2009130143A (en) * 2007-11-22 2009-06-11 Omron Corp Laser oscillation apparatus and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260265U (en) * 1988-10-27 1990-05-02
JPH02260479A (en) * 1989-03-30 1990-10-23 Toshiba Corp Laser oscillator
JP2002359422A (en) * 2001-05-30 2002-12-13 Nec Corp Q-switch laser controller and laser
JP2009130143A (en) * 2007-11-22 2009-06-11 Omron Corp Laser oscillation apparatus and method of controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225542A (en) * 2013-05-16 2014-12-04 株式会社島津製作所 Solid-state pulse laser device
JP2017103490A (en) * 2017-03-06 2017-06-08 株式会社島津製作所 Solid-state pulse laser device

Also Published As

Publication number Publication date
JP5439836B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5340545B2 (en) Pulse laser apparatus and pulse output control method thereof
EP2736129B1 (en) High-power pulsed light generator
JP5817215B2 (en) Optical amplification apparatus and laser processing apparatus
JP2009130143A (en) Laser oscillation apparatus and method of controlling the same
JP6562464B2 (en) Passive Q-switched laser device
WO2007138884A1 (en) Laser pulse generating device and method, and laser working apparatus and method
JP5439836B2 (en) Solid state laser equipment
JP2010502007A (en) Driving method of pump light source provided with diode laser
JP5988903B2 (en) Laser processing apparatus and laser processing method
KR20070076536A (en) High-power er:yag laser
JP6341308B2 (en) Solid state pulse laser equipment
GB2497108A (en) Laser system with thermal lensing compensation
JP6163861B2 (en) Solid state pulse laser equipment
JP4352871B2 (en) Pulse-driven laser diode-pumped Q-switched solid-state laser oscillator and its oscillation control method
JP5305823B2 (en) Temperature control device
JP2013115147A (en) Pulse fiber laser
JP2003298160A (en) Solid laser device
Lührmann et al. High-average power Nd: YVO4 regenerative amplifier seeded by a gain switched diode laser
WO2020179834A1 (en) Control device and control method for fiber laser
JPH11135870A (en) Solid-state laser device for oscillating semiconductor-laser exciting q switch
JP2007335900A (en) Laser device, method of controlling power feed for the same, power feed control circuit for the same, and method of adjusting power feed control circuit for the same
JP2008135492A (en) Solid-state laser device
JP2003347636A (en) Q-switched laser apparatus and method for controlling q-switching
JP6651718B2 (en) Q switch laser device
JP2013165143A (en) Solid-state laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R151 Written notification of patent or utility model registration

Ref document number: 5439836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151