WO2020179834A1 - Control device and control method for fiber laser - Google Patents

Control device and control method for fiber laser Download PDF

Info

Publication number
WO2020179834A1
WO2020179834A1 PCT/JP2020/009233 JP2020009233W WO2020179834A1 WO 2020179834 A1 WO2020179834 A1 WO 2020179834A1 JP 2020009233 W JP2020009233 W JP 2020009233W WO 2020179834 A1 WO2020179834 A1 WO 2020179834A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse
laser diode
fiber laser
control device
Prior art date
Application number
PCT/JP2020/009233
Other languages
French (fr)
Japanese (ja)
Inventor
喬史 亀山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020179834A1 publication Critical patent/WO2020179834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Definitions

  • the present invention relates to a fiber laser control device and a control method.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-041789 filed in Japan on March 7, 2019, the contents of which are incorporated herein by reference.
  • Highly reflective materials such as copper, silver, and aluminum are mainly used for processed objects such as electronic parts.
  • CW Continuous Wave Oscillation (continuous wave)
  • a portion of the laser light is reflected, so a laser with a large power of several kW class. Light may be required.
  • Patent Documents 1 and 2 disclose a technique in which a high output peak power is obtained by operating a laser beam with a QCW (Quasi Continuous Wave Oscillation).
  • Patent Document 1 a YAG laser is used.
  • the YAG laser becomes difficult to cool, especially when the power is increased.
  • Patent Document 2 describes that a high output peak power can be obtained by operating in the QCW mode.
  • the power source of the pump source since the power source of the pump source is turned on/off to perform the QCW operation, the power source startup time is required, and it is difficult to control the drive timing of the laser device with high accuracy.
  • the capacity of the power supply is increased in order to output excitation light of a large power, the size of the device becomes large.
  • a fiber laser control device is a laser diode that irradiates a fiber laser with excitation light, and a current supplied to the laser diode to control the laser. It includes a current control circuit that controls the diode to excite a pseudo-continuous wave (QCW) operation.
  • QCW pseudo-continuous wave
  • the current control circuit may be configured to independently control continuous pulses to drive the laser diode.
  • the continuous pulse includes a first pulse and a second pulse after the first pulse, and the current control circuit determines a pulse height. It may be configured to control the first pulse so as to change it stepwise.
  • the continuous pulse may be configured to be QCW (Quasi Continuous Wave Oscillation).
  • the fiber laser control device may further include a charging unit that stores energy while the light emission of the laser diode is stopped.
  • a method for controlling a fiber laser is a method for controlling a fiber laser that emits laser light by excitation light from a laser diode, wherein the laser is controlled by controlling a current supplied to the laser diode.
  • the diode is excited for pseudo continuous wave operation.
  • the average energy is suppressed and the peak power is suppressed by operating the laser diode in a pseudo continuous wave (QCW) by controlling the current flowing through the laser diode that irradiates the fiber laser with excitation light.
  • QCW pseudo continuous wave
  • the device can be miniaturized, heat generation can be suppressed, and a highly reflective material can be processed.
  • the laser diode that irradiates the excitation light is driven by current control, the laser diode can be turned on/off at a high speed, and continuous pulses can be independently controlled, The light emission state of the fiber laser can be optimally controlled.
  • FIG. 6 is a waveform diagram for explaining the operation of the first embodiment. It is a graph which compared the temperature of a chip at the time of CW operation and the time of QCW operation. It is explanatory drawing of the pulse waveform in the control apparatus of the fiber laser which concerns on 1st Embodiment. It is a block diagram which shows the outline of the control apparatus of the fiber laser which concerns on 2nd Embodiment. It is a connection diagram which shows the specific circuit structure of the control device of the fiber laser which concerns on 2nd Embodiment.
  • FIG. 1 is an explanatory diagram of an outline of a fiber laser system 1 to which this embodiment can be applied.
  • the core of the optical fiber 11 is doped with a rare earth element such as Yb (ytterbium) as a laser medium. Both ends of the optical fiber 11 are sandwiched between reflectors 12a and 12b to form a resonator.
  • Yb ytterbium
  • reflectors 12a and 12b for example, FBG (Fiber Bragg Grating) is used.
  • the laser diodes 13-1 to 13-n are light sources for irradiating the optical fiber 11 with excitation light.
  • the laser beams from the laser diodes 13-1 to 13-n are combined by the pump combiner 14 and are incident on the optical fiber 11.
  • the laser light from the laser diodes 13-1 to 13-n is incident on the optical fiber 11, the laser medium of the optical fiber 11 is excited, and the reflection is repeatedly amplified between the reflecting mirror 12a and the reflecting mirror 12b, and the laser is used. Light is stimulatedly emitted.
  • the laser light generated by the fiber laser system 1 is used for various purposes such as product processing, cutting, and patterning.
  • the laser light generated by the fiber laser system 1 is used for processing a highly reflective material such as copper, silver and aluminum. Processing of highly reflective materials requires a large amount of power, for example, a power of 1 kW or more in output for CW operation.
  • the fiber laser system 1 of the present embodiment is used to operate the laser beam by QCW (Quasi Continuous Wave Oscillation (pseudo continuous wave)).
  • QCW Quadasi Continuous Wave Oscillation
  • the emission is paused for a predetermined time, and the excitation laser light is emitted again with a predetermined pulse width.
  • the pumping laser light is intermittently driven while optically maintaining a steady state, so that the influence of heat on the pumping laser diode is reduced and the peak power can be increased.
  • the laser diode that generates the excitation light is driven by current control so that the laser diode can be turned on / off at high speed. By turning the laser diode on / off in this way, the laser beam can be operated by QCW.
  • FIG. 2 is a block diagram showing an outline of the fiber laser control device 100 according to the present embodiment.
  • the fiber laser control device 100 according to the first embodiment of the present invention includes a laser diode 13 (13-1 to 13-n) for excitation, a power supply unit 21, and a current control circuit 22. Composed of and.
  • the power supply unit 21 is a power supply for driving the laser diode 13 (13-1 to 13-n).
  • the current control circuit 22 controls the current of the laser diode 13 (13-1 to 13-n).
  • a control signal is supplied to the current control circuit 22 from the control terminal 43. By this control signal, the current flowing through the laser diode 13 (13-1 to 13-n) is controlled to turn on/off the laser diode 13 (13-1 to 13-n), thereby operating the laser light in the QCW mode. be able to.
  • FIG. 3 is a connection diagram showing a specific circuit configuration of the fiber laser control device 100 according to the present embodiment shown in FIG.
  • a MOSFET Metal-Oxide-Semiconductor
  • the source of the Field-Effective Transistor 41 is connected to the negative electrode of the power supply unit 21 via the resistor 42.
  • the control terminal 43 is derived from the gate of the MOSFET 41.
  • a backflow prevention diode 44 is connected between the drain and the source of the MOSFET 41.
  • the MOSFET 41 and the resistor 42 correspond to the current control circuit 22 in FIG.
  • the laser diodes 13-1 to 13-n are connected in series.
  • the anodes of the laser diodes 13-1 to 13-n connected in series are connected to the positive electrode of the power supply unit 21.
  • the cathodes of the laser diodes 13-1 to 13-n connected in series are connected to the drain of the MOSFET 41.
  • the MOSFET 41 becomes a constant current circuit, and a current flows through the MOSFET 41 according to a control signal supplied from the control terminal 43 to the gate of the MOSFET 41. Further, the laser diodes 13-1 to 13-n and the MOSFET 41 are connected in series. Therefore, the current flowing through the laser diodes 13-1 to 13-n can be controlled by the control signal supplied to the control terminal 43.
  • a control pulse is supplied to the control terminal 43 when the laser beam is operated by QCW.
  • the currents flowing through the laser diodes 13-1 to 13-n are turned on/off, and the laser diodes 13-1 to 13-n are driven intermittently.
  • the pulse width when the laser diodes 13-1 to 13-n are turned on is a length that can maintain the optical steady state of the fiber laser, and is, for example, 0.01 ms to 100 ms. This is a wider pulse width as compared with a pulse laser device having a pulse width of several ps to several ns.
  • the QCW is a continuous wave having a pulse width of 0.01 ms to 100 ms as described above.
  • FIG. 4 is a waveform diagram for explaining the operation of the present embodiment. Part (A) of FIG. 4 shows the QCW operation, and part (B) of FIG. 4 shows the CW operation.
  • the operation of suspending the emission of the laser light is repeated after the emission of the laser light is performed for a predetermined time.
  • the QCW operation is performed with the duty ratio of the control pulse set to 10%. That is, assuming that the time of one cycle is 10T, the operation of emitting the laser light for only 1T and then suspending the emission of the laser light for the remaining 9T is repeated.
  • the CW operation is performed, the laser light is continuously emitted as shown in Part (B) of FIG.
  • the average energy can be suppressed and the peak power can be increased compared to the CW operation.
  • the peak power during CW operation is P as shown in the part (B) of FIG. 4
  • the peak power during the QCW operation is raised to 3P as shown in the part (A) of FIG. ing.
  • the average energy in one cycle (10T) is 3P.
  • ⁇ T 3PT(J).
  • the peak power is increased up to 3 times that during the CW operation, while the average energy can be reduced from 10 PT (J) to 3 PT (J).
  • the decrease in average energy brings about an improvement in the thermal environment around the laser diodes 13-1 to 13-n.
  • the thermal environment around the laser diodes 13-1 to 13-n is improved, the life of the chip on which the laser diodes 13-1 to 13-n are arranged is extended, and the chip can be downsized. Can increase the number of laser diodes arranged on the chip.
  • FIG. 5 is a graph comparing the temperature of the chip on which the laser diode for excitation is arranged during the CW operation and the QCW operation.
  • the horizontal axis is the current value of the laser diode for excitation
  • the vertical axis is the temperature of the chip on which the laser diode for excitation is arranged.
  • the temperature rise of the chip is suppressed. Further, in the CW operation, the temperature rise rate increases in the region where the current value exceeds 15 A. This is a phenomenon in which the life of the chip is shortened at an accelerated rate, and is the upper limit of the designed current value of the laser diode in consideration of the life of the entire fiber laser device. However, in the QCW operation, no accelerating temperature rise is observed even in a large current region where the current value exceeds 15A. From this result, since there is still a margin in terms of heat, it can be considered that even if the laser diode is arranged more densely on the chip, the effect on the life is small, and the device can be miniaturized.
  • the laser diodes 13-1 to 13-n are turned on / off by current control to perform the QCW operation.
  • the advantage of controlling the current of the laser diodes 13-1 to 13-n is that the laser diodes 13-1 to 13-n can be turned on / off at high speed. That is, the laser diodes 13-1 to 13-n require a rising time from when the power is turned on until the current reaches the threshold value and the stimulated emission of the laser light starts. In the case of controlling the current of the laser diodes 13-1 to 13-n, the rise time is not required, so that the laser diodes 13-1 to 13-n can be turned on/off at high speed.
  • FIG. 6 is an explanatory diagram of a pulse waveform in the fiber laser control device according to the present embodiment.
  • the horizontal axis represents time and the vertical axis represents pulse height.
  • Part (A) of FIG. 6 is an example in which the first pulse and the second pulse are controlled so that the duty ratios are different.
  • the first pulse is controlled to have a duty ratio of 10%
  • the second pulse is controlled to have a duty ratio of 20%.
  • the pulse width is controlled by the current control circuit 22.
  • the pulse energy is gradually increased by changing the pulse width from T to 2T.
  • the pulse width is changed in two steps, but the pulse width may be changed in three steps or more.
  • the first pulse and the second pulse are controlled so that the peak powers are different.
  • control is performed so that the peak power of the first pulse is 3P and the peak power of the second pulse is 2P.
  • the current control circuit 22 controls the pulse height.
  • the pulse height is changed in two steps is shown, but the change in the pulse height may be in three steps or more.
  • Part (C) of FIG. 6 is an example in which the continuous first pulse and the second pulse are controlled so as to be a unique pulse.
  • reference numeral g11 indicates a first pulse
  • reference numeral g12 indicates a second pulse.
  • the first pulse g11 is a pulse in which the power changes in two stages such that the power is first increased to melt the metal and then the power is decreased after the metal is melted. .. Specifically, during the period from time t1 to t2, the pulse height is controlled to be gradually increased from 0 to 3P. During the period from time t2 to t3, the pulse height is controlled to be kept at 3P.
  • the second pulse g12 is a simple pulse.
  • the current control circuit 22 controls the pulse height.
  • part (C) of FIG. 6 an example in which the height of the first pulse is changed in two steps is shown, but the change in pulse height may be in three steps or more.
  • the pulse shape of part (C) of FIG. 6 is suitable for laser welding where heat needs to be applied continuously. As a result, the welding quality can be improved even in the area of fine processing. That is, according to the pulse shape of the part (C) of FIG. 6, since the pulse rises slowly, it is possible to obtain the effect of suppressing the generation of spatter during welding.
  • the fiber laser control device 100 includes a laser diode 13 (13a to 13-n) for irradiating the fiber laser with excitation light and a laser diode 13 (13a to 13).
  • a power supply unit 21 that supplies power to ⁇ n) and a current control circuit 22 that controls to excite the QCW operation by controlling the current supplied to the laser diodes 13 (13a to 13—n) are provided. ..
  • the laser diode 13 (13a to 13-n) is turned on / off with a pulse width of 0.01 ms to 100 ms, and the laser beam is operated by QCW to suppress the average energy and increase the peak power. Can be raised.
  • the laser diode 13 (13a to 13-n) for irradiating the fiber laser with the excitation light is controlled by the current.
  • the laser diode 13 (13a to 13-n) can be turned on / off at high speed.
  • continuous pulses are independently controlled by controlling the laser diodes 13 (13a to 13-n) that irradiate the fiber laser with excitation light with an electric current.
  • the laser diode 13 (13a to 13-n) can be driven by controlling the laser diode 13.
  • the pulse width and the repetition frequency but also the duty ratio and the peak power of the continuous first pulse and the second pulse are independently controlled, so that the emission state of the fiber laser can be optimally controlled.
  • the pulses independently it is possible to oscillate under various conditions by operating each of the plurality of pulses independently, and to combine a plurality of materials (material/thickness). It is advantageous for processing parts made from For example, in an electric / electronic component made of a combination of copper and aluminum, when copper-copper processing and copper-aluminum processing are mixed, the processing speed can be increased by independently changing the pulse energy.
  • the device can be downsized as compared with the conventional device and the heat generation can be suppressed more than the conventional device.
  • FIG. 7 is a block diagram showing a fiber laser control device 200 according to the present embodiment.
  • the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the fiber laser control device 200 is further configured to include a laser diode 13 (13-1 to 13-n), a power supply unit 21, and a current control circuit 22.
  • the charging unit 50 is added.
  • the laser diode 13 (13-1 to 13-n) is driven intermittently, and occurs while the light emission of the laser diode 13 (13-1 to 13-n) is stopped. Therefore, in this embodiment, the charging unit 50 is provided, and energy from the power supply unit 21 is accumulated in the charging unit 50 while the laser diode 13 (13-1 to 13-n) is not emitting light.
  • the diodes 13 (13-1 to 13-n) emit light, the energy stored in the charging unit 50 is used. As a result, the capacity of the power supply that supplies energy from outside the device can be reduced.
  • FIG. 8 is a connection diagram showing a specific circuit configuration of the fiber laser control device 200 according to the present embodiment.
  • the charging unit 50 includes a switching transistor 51, a coil 52, a diode 53, and a capacitor 54.
  • One end of the coil 52 is connected to the positive electrode of the power supply unit 21.
  • the other end of the coil 52 is connected to the anode of the diode 53 and to the collector of the switching transistor 51.
  • the emitter of the switching transistor 51 is connected to the negative electrode of the power supply unit 21.
  • the cathode of the diode 53 is connected to the anode of the laser diode 13-1, and the capacitor 54 is connected between the cathode of the diode 53 and the negative electrode of the power supply unit 21.
  • the switching transistor 51 When the switching transistor 51 is turned off, the electromagnetic energy stored in the coil 52 is released through the diode 53 and the capacitor 54 is charged. By repeating the on / off of the switching transistor 51, electrostatic energy is accumulated in the capacitor 54.
  • the capacitance of the capacitor 54 for example, a capacitor of about (4700 ⁇ F ⁇ 8) is used.
  • the external power supply can be reduced by preparing a capacitor 54 having a capacitance suitable for the energy to be oscillated by the QCW laser.
  • a capacitor 54 having a capacitance suitable for the energy to be oscillated by the QCW laser.
  • the electro-light conversion efficiency is 50%
  • the capacity of the external power source is about 1500 W, which causes no problem.
  • CW laser oscillation a power supply of 3000 W is required with the light conversion efficiency set to 50%.
  • the second embodiment includes the charging unit 50 that accumulates energy from the power supply unit 21 while the laser diode 13 (13-1 to 13-n) is not emitting light.
  • the capacity of the power supply that supplies energy from the outside of the device can be reduced.
  • the device can be made smaller than before, and heat is generated more than the conventional device. Can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This control device for a fiber laser is provided with a laser diode that irradiates the fiber laser with excitation light, and a current control circuit that controls the laser diode to perform quasi-continuous-wave operation excitation by controlling current supplied to the laser diode.

Description

ファイバレーザーの制御装置及び制御方法Fiber laser control device and control method
 本発明は、ファイバレーザーの制御装置及び制御方法に関する。
 本願は、2019年3月7日に日本に出願された特願2019-041789号について優先権を主張し、その内容をここに援用する。
The present invention relates to a fiber laser control device and a control method.
The present application claims priority with respect to Japanese Patent Application No. 2019-041789 filed in Japan on March 7, 2019, the contents of which are incorporated herein by reference.
 電子部品のような加工対象物には、高反射材料である銅、銀、アルミニウムが主に使用されている。CW(CW:Continuous Wave Oscillation(連続波))動作のレーザー装置を用いてこのような高反射材料を加工する場合、レーザー光の一部が反射されてしまうため、数kW級の大きなパワーのレーザー光が必要となる場合がある。 Highly reflective materials such as copper, silver, and aluminum are mainly used for processed objects such as electronic parts. When processing such a high-reflection material using a CW (CW: Continuous Wave Oscillation (continuous wave)) laser device, a portion of the laser light is reflected, so a laser with a large power of several kW class. Light may be required.
 また、特許文献1及び特許文献2には、レーザー光をQCW(Quasi Continuous Wave Oscillation(疑似連続波))動作させることで、高い出力ピークパワーを得られる技術が開示されている。 Also, Patent Documents 1 and 2 disclose a technique in which a high output peak power is obtained by operating a laser beam with a QCW (Quasi Continuous Wave Oscillation).
日本国特開2001-127366号公報Japanese Patent Laid-Open No. 2001-127366 日本国特表2016-514055号公報Japan Special Table 2016-514055
 従来、数kW級の大きなパワーのレーザー光をCW動作で発生させる場合、熱を処理するため、水冷にする必要がある。また、発熱する部品を疎に配置することで熱的負荷を分散する必要があるとともに、高出力化に伴い必要な電源容量が大きくなる傾向にあるため、装置が大型化するという問題がある。 Conventionally, when generating a large power laser beam of several kW class in CW operation, it is necessary to cool with water in order to process heat. In addition, it is necessary to disperse the thermal load by sparsely arranging heat-generating components, and the power supply capacity required tends to increase as the output power increases.
 特許文献1では、YAGレーザーを用いている。YAGレーザーは、特にパワーを上げると、冷却が難しくなる。 In Patent Document 1, a YAG laser is used. The YAG laser becomes difficult to cool, especially when the power is increased.
 特許文献2には、QCWモードで動作させることで、高い出力ピークパワーを得ることが記載されている。しかしながら、特許文献2では、ポンプ源の電源をオン/オフしてQCW動作を行うため、電源の立ち上げ時間が必要になり、高い精度でレーザー装置の駆動タイミングを制御することは難しい。特に、大きなパワーの励起光を出力するために電源が大容量化すると装置が大型化してしまう。 Patent Document 2 describes that a high output peak power can be obtained by operating in the QCW mode. However, in Patent Document 2, since the power source of the pump source is turned on/off to perform the QCW operation, the power source startup time is required, and it is difficult to control the drive timing of the laser device with high accuracy. In particular, if the capacity of the power supply is increased in order to output excitation light of a large power, the size of the device becomes large.
 上述の課題を鑑み、本発明は、装置を小型化できるとともに、発熱を抑制してピークパワーを上げることができるファイバレーザーの制御装置及び制御方法を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a fiber laser control device and control method capable of reducing the size of the device and suppressing heat generation to increase the peak power.
 上述の課題を解決するために、本発明の一態様に係るファイバレーザーの制御装置は、ファイバレーザーに励起光を照射するレーザーダイオードと、前記レーザーダイオードに供給する電流を制御することによって、前記レーザーダイオードを疑似連続波(QCW)動作の励起を行うように制御する電流制御回路とを備える。 In order to solve the above-described problems, a fiber laser control device according to an aspect of the present invention is a laser diode that irradiates a fiber laser with excitation light, and a current supplied to the laser diode to control the laser. It includes a current control circuit that controls the diode to excite a pseudo-continuous wave (QCW) operation.
 本発明の一態様に係るファイバレーザーの制御装置において、前記電流制御回路は、連続したパルスを独立して制御して前記レーザーダイオードを駆動するように構成されていてもよい。 In the fiber laser control device according to one aspect of the present invention, the current control circuit may be configured to independently control continuous pulses to drive the laser diode.
 本発明の一態様に係るファイバレーザーの制御装置において、前記連続したパルスは、第1パルスと、前記第1パルスの後の第2パルスとを備え、前記電流制御回路は、パルスの高さを段階的に変化させるように前記第1パルスを制御するように構成されていてもよい。 In the fiber laser control device according to one aspect of the present invention, the continuous pulse includes a first pulse and a second pulse after the first pulse, and the current control circuit determines a pulse height. It may be configured to control the first pulse so as to change it stepwise.
 本発明の一態様に係るファイバレーザーの制御装置において、前記連続したパルスは、QCW(Quasi Continuous Wave Oscillation(疑似連続波))であるように構成されていてもよい。 In the fiber laser control device according to the aspect of the present invention, the continuous pulse may be configured to be QCW (Quasi Continuous Wave Oscillation).
 本発明の一態様に係るファイバレーザーの制御装置において、前記レーザーダイオードの発光が休止されている間に、エネルギーを蓄積する充電部を、更に備えていてもよい。 The fiber laser control device according to one aspect of the present invention may further include a charging unit that stores energy while the light emission of the laser diode is stopped.
 本発明の一態様に係るファイバレーザーの制御方法は、レーザーダイオードからの励起光によりレーザー光を発光させるファイバレーザーの制御方法であって、前記レーザーダイオードに供給する電流を制御することによって、前記レーザーダイオードを疑似連続波動作の励起を行う。 A method for controlling a fiber laser according to one aspect of the present invention is a method for controlling a fiber laser that emits laser light by excitation light from a laser diode, wherein the laser is controlled by controlling a current supplied to the laser diode. The diode is excited for pseudo continuous wave operation.
 本発明の上記態様によれば、ファイバレーザーに励起光を照射するレーザーダイオードに流れる電流を制御することによってレーザーダイオードを疑似連続波(QCW)動作させることで、平均エネルギーを抑制して、ピークパワーを上げることができる。これにより、装置を小型化できるとともに、発熱を抑制して、高反射材料を加工できる。また、本発明の上記態様によれば、励起光を照射するレーザーダイオードを電流制御で駆動しているので、レーザーダイオードを高速でオン/オフできるとともに、連続したパルスを独立して制御して、ファイバレーザーの発光状態を最適に制御できる。 According to the above aspect of the present invention, the average energy is suppressed and the peak power is suppressed by operating the laser diode in a pseudo continuous wave (QCW) by controlling the current flowing through the laser diode that irradiates the fiber laser with excitation light. Can be raised. As a result, the device can be miniaturized, heat generation can be suppressed, and a highly reflective material can be processed. Further, according to the above aspect of the present invention, since the laser diode that irradiates the excitation light is driven by current control, the laser diode can be turned on/off at a high speed, and continuous pulses can be independently controlled, The light emission state of the fiber laser can be optimally controlled.
本実施形態が適用できるファイバレーザーシステムの概要の説明図である。It is an explanatory view of the outline of a fiber laser system to which this embodiment can be applied. 第1実施形態に係るファイバレーザーの制御装置の概要を示すブロック図である。It is a block diagram which shows the outline of the control device of the fiber laser which concerns on 1st Embodiment. 第1実施形態に係るファイバレーザーの制御装置の具体的な回路構成を示す接続図である。It is a connection diagram which shows the specific circuit structure of the control device of the fiber laser which concerns on 1st Embodiment. 第1実施形態の動作を説明するための波形図である。FIG. 6 is a waveform diagram for explaining the operation of the first embodiment. CW動作時とQCW動作時とでチップの温度を比較したグラフである。It is a graph which compared the temperature of a chip at the time of CW operation and the time of QCW operation. 第1実施形態に係るファイバレーザーの制御装置におけるパルス波形の説明図である。It is explanatory drawing of the pulse waveform in the control apparatus of the fiber laser which concerns on 1st Embodiment. 第2実施形態に係るファイバレーザーの制御装置の概要を示すブロック図である。It is a block diagram which shows the outline of the control apparatus of the fiber laser which concerns on 2nd Embodiment. 第2実施形態に係るファイバレーザーの制御装置の具体的な回路構成を示す接続図である。It is a connection diagram which shows the specific circuit structure of the control device of the fiber laser which concerns on 2nd Embodiment.
 以下、本発明の実施の形態について図面を参照しながら説明する。
<第1実施形態>
 図1は、本実施形態が適用できるファイバレーザーシステム1の概要の説明図である。
 図1において、光ファイバー11のコアにはYb(イッテルビウム)等の希土類元素がレーザー媒質としてドープされている。光ファイバー11の両端は、反射鏡12a及び12bで挟み込まれており、共振器が形成されている。反射鏡12a及び12bとしては、例えばFBG(Fiber Bragg Grating)が用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is an explanatory diagram of an outline of a fiber laser system 1 to which this embodiment can be applied.
In FIG. 1, the core of the optical fiber 11 is doped with a rare earth element such as Yb (ytterbium) as a laser medium. Both ends of the optical fiber 11 are sandwiched between reflectors 12a and 12b to form a resonator. As the reflectors 12a and 12b, for example, FBG (Fiber Bragg Grating) is used.
 レーザーダイオード13-1~13-n(nは任意の整数)は、光ファイバー11に励起光を照射するための光源である。レーザーダイオード13-1~13-nからのレーザー光は、ポンプコンバイナ14で結合されて、光ファイバー11に入射される。レーザーダイオード13-1~13-nからのレーザー光が光ファイバー11に入射されると、光ファイバー11のレーザー媒質が励起され、反射鏡12aと反射鏡12bとの間で反射を繰り返して増幅され、レーザー光が誘導放出される。 The laser diodes 13-1 to 13-n (n is an arbitrary integer) are light sources for irradiating the optical fiber 11 with excitation light. The laser beams from the laser diodes 13-1 to 13-n are combined by the pump combiner 14 and are incident on the optical fiber 11. When the laser light from the laser diodes 13-1 to 13-n is incident on the optical fiber 11, the laser medium of the optical fiber 11 is excited, and the reflection is repeatedly amplified between the reflecting mirror 12a and the reflecting mirror 12b, and the laser is used. Light is stimulatedly emitted.
 ファイバレーザーシステム1で生成されたレーザー光は、製品の加工や切断、パターニング等、各種の用途に用いられている。本実施形態では、ファイバレーザーシステム1で生成されたレーザー光は、銅、銀、アルミニウム等、高反射材料の加工に用いられる。高反射材料の加工には、大きなパワー、例えばCW動作では出力1kW以上のパワーが必要になる。 The laser light generated by the fiber laser system 1 is used for various purposes such as product processing, cutting, and patterning. In the present embodiment, the laser light generated by the fiber laser system 1 is used for processing a highly reflective material such as copper, silver and aluminum. Processing of highly reflective materials requires a large amount of power, for example, a power of 1 kW or more in output for CW operation.
 本実施形態のファイバレーザーシステム1は、レーザ光をQCW(Quasi Continuous Wave Oscillation(疑似連続波))動作させるのに用いられる。QCW動作は、励起レーザー光を所定のパルス幅で発光させた後、所定の時間出射を休止させ、再び所定のパルス幅で励起レーザー光を発光させる。QCW動作では、光学的には定常状態を保ちつつ、励起レーザー光を間欠的に駆動することから、励起用のレーザーダイオードに対する熱の影響が小さくなり、ピークパワーを上げることができる。そして、本実施形態では、励起光を発生するレーザーダイオードを電流制御で駆動することで、レーザーダイオードを高速でオン/オフできるように構成されている。このように、レーザーダイオードをオン/オフさせることで、レーザ光をQCW動作させることができる。 The fiber laser system 1 of the present embodiment is used to operate the laser beam by QCW (Quasi Continuous Wave Oscillation (pseudo continuous wave)). In the QCW operation, after emitting the excitation laser light with a predetermined pulse width, the emission is paused for a predetermined time, and the excitation laser light is emitted again with a predetermined pulse width. In the QCW operation, the pumping laser light is intermittently driven while optically maintaining a steady state, so that the influence of heat on the pumping laser diode is reduced and the peak power can be increased. Then, in the present embodiment, the laser diode that generates the excitation light is driven by current control so that the laser diode can be turned on / off at high speed. By turning the laser diode on / off in this way, the laser beam can be operated by QCW.
 図2は、本実施形態に係るファイバレーザーの制御装置100の概要を示すブロック図である。図2に示すように、本発明の第1実施形態に係るファイバレーザーの制御装置100は、励起用のレーザーダイオード13(13-1~13-n)と、電源部21と、電流制御回路22とから構成される。 FIG. 2 is a block diagram showing an outline of the fiber laser control device 100 according to the present embodiment. As shown in FIG. 2, the fiber laser control device 100 according to the first embodiment of the present invention includes a laser diode 13 (13-1 to 13-n) for excitation, a power supply unit 21, and a current control circuit 22. Composed of and.
 電源部21は、レーザーダイオード13(13-1~13-n)を駆動させるための電源である。電流制御回路22は、レーザーダイオード13(13-1~13-n)の電流制御を行っている。電流制御回路22には、制御端子43から制御信号が供給される。この制御信号により、レーザーダイオード13(13-1~13-n)を流れる電流を制御してレーザーダイオード13(13-1~13-n)をオン/オフさせることで、レーザ光をQCW動作させることができる。 The power supply unit 21 is a power supply for driving the laser diode 13 (13-1 to 13-n). The current control circuit 22 controls the current of the laser diode 13 (13-1 to 13-n). A control signal is supplied to the current control circuit 22 from the control terminal 43. By this control signal, the current flowing through the laser diode 13 (13-1 to 13-n) is controlled to turn on/off the laser diode 13 (13-1 to 13-n), thereby operating the laser light in the QCW mode. be able to.
 図3は、図2に示した本実施形態に係るファイバレーザーの制御装置100の具体的な回路構成を示す接続図である。 FIG. 3 is a connection diagram showing a specific circuit configuration of the fiber laser control device 100 according to the present embodiment shown in FIG.
 図3において、MOSFET(Metal-Oxide-Semiconductor
 Field-Effect Transistor)41のソースは、抵抗42を介して、電源部21の負極に接続される。MOSFET41のゲートから、制御端子43が導出される。また、MOSFET41のドレインとソースとの間には、逆流防止ダイオード44が接続される。MOSFET41及び抵抗42は、図2における電流制御回路22に対応している。
In FIG. 3, a MOSFET (Metal-Oxide-Semiconductor) is used.
The source of the Field-Effective Transistor) 41 is connected to the negative electrode of the power supply unit 21 via the resistor 42. The control terminal 43 is derived from the gate of the MOSFET 41. Further, a backflow prevention diode 44 is connected between the drain and the source of the MOSFET 41. The MOSFET 41 and the resistor 42 correspond to the current control circuit 22 in FIG.
 レーザーダイオード13-1~13-nは、直列に接続されている。直列接続されたレーザーダイオード13-1~13-nのアノードは、電源部21の正極に接続される。直列接続されたレーザーダイオード13-1~13-nのカソードは、MOSFET41のドレインに接続される。 The laser diodes 13-1 to 13-n are connected in series. The anodes of the laser diodes 13-1 to 13-n connected in series are connected to the positive electrode of the power supply unit 21. The cathodes of the laser diodes 13-1 to 13-n connected in series are connected to the drain of the MOSFET 41.
 このような構成ではMOSFET41は定電流回路となり、制御端子43からMOSFET41のゲートに供給された制御信号に応じて、MOSFET41に電流が流れる。また、レーザーダイオード13-1~13-nと、MOSFET41とは、直列に接続されている。したがって、レーザーダイオード13-1~13-nを流れる電流は、制御端子43に供給する制御信号により制御することができる。 In such a configuration, the MOSFET 41 becomes a constant current circuit, and a current flows through the MOSFET 41 according to a control signal supplied from the control terminal 43 to the gate of the MOSFET 41. Further, the laser diodes 13-1 to 13-n and the MOSFET 41 are connected in series. Therefore, the current flowing through the laser diodes 13-1 to 13-n can be controlled by the control signal supplied to the control terminal 43.
 本実施形態では、レーザ光をQCW動作させる際に、制御端子43に制御パルスが供給される。これにより、レーザーダイオード13-1~13-nを流れる電流がオン/オフされ、レーザーダイオード13-1~13-nが間欠的に駆動される。レーザーダイオード13-1~13-nがオンとなるときのパルス幅は、ファイバレーザーの光学的な定常状態を保てる長さであり、例えば0.01ms~100msのパルス幅である。これは、パルス幅が数ps~数nsのパルスレーザー装置に比べて、広いパルス幅である。例えば1kW以上のパワーで、0.01ms~100msのパルス幅を用いることで、銅、銀、アルミニウムのような高反射材料でも、十分に加工できる。なお、本実施形態において、QCW(疑似連続波)は、上記のように0.01ms~100msのパルス幅の連続波である。 In this embodiment, a control pulse is supplied to the control terminal 43 when the laser beam is operated by QCW. As a result, the currents flowing through the laser diodes 13-1 to 13-n are turned on/off, and the laser diodes 13-1 to 13-n are driven intermittently. The pulse width when the laser diodes 13-1 to 13-n are turned on is a length that can maintain the optical steady state of the fiber laser, and is, for example, 0.01 ms to 100 ms. This is a wider pulse width as compared with a pulse laser device having a pulse width of several ps to several ns. For example, by using a pulse width of 0.01 ms to 100 ms with a power of 1 kW or more, even highly reflective materials such as copper, silver, and aluminum can be sufficiently processed. In this embodiment, the QCW (pseudo continuous wave) is a continuous wave having a pulse width of 0.01 ms to 100 ms as described above.
 図4は、本実施形態の動作を説明するための波形図である。図4のパート(A)はQCW動作をさせているときを示し、図4のパート(B)はCW動作をさせているときを示す。 FIG. 4 is a waveform diagram for explaining the operation of the present embodiment. Part (A) of FIG. 4 shows the QCW operation, and part (B) of FIG. 4 shows the CW operation.
 図4のパート(A)に示すように、レーザ光をQCW動作をさせるときには、レーザー光の出射を所定時間行った後、レーザー光の出射を休止させるような動作を繰り返す。この例では、制御パルスのデューティ比を10%として、QCW動作を行っている。すなわち、1周期の時間を10Tとすると、1Tだけレーザー光を発光させた後、残りの9Tだけレーザー光の出射を休止させるような動作を繰り返している。これに対して、CW動作をさせるときには、図4のパート(B)に示すように、レーザー光の出射が連続的に行われる。 As shown in Part (A) of FIG. 4, when the QCW operation of the laser light is performed, the operation of suspending the emission of the laser light is repeated after the emission of the laser light is performed for a predetermined time. In this example, the QCW operation is performed with the duty ratio of the control pulse set to 10%. That is, assuming that the time of one cycle is 10T, the operation of emitting the laser light for only 1T and then suspending the emission of the laser light for the remaining 9T is repeated. On the other hand, when the CW operation is performed, the laser light is continuously emitted as shown in Part (B) of FIG.
 また、QCW動作では、CW動作時に比べて、平均エネルギーを抑えて、ピークパワーを大きくすることができる。この例では、図4のパート(B)に示すように、CW動作時のピークパワーをPとすると、図4のパート(A)に示すように、QCW動作時のピークパワーは3Pに上げられている。ここで、QCW動作時の平均エネルギーとCW動作時の平均エネルギーとを比較すると、QCW動作では、デューティ比を10%、ピークパワーを3Pとすると、1周期(10T)での平均エネルギーは、3P×T=3PT(J)となる。これに対して、CW動作での同様の時間(10T)での平均エネルギーは、P×10T=10PT(J)となる。 Also, in the QCW operation, the average energy can be suppressed and the peak power can be increased compared to the CW operation. In this example, assuming that the peak power during CW operation is P as shown in the part (B) of FIG. 4, the peak power during the QCW operation is raised to 3P as shown in the part (A) of FIG. ing. Here, comparing the average energy during QCW operation and the average energy during CW operation, in QCW operation, assuming that the duty ratio is 10% and the peak power is 3P, the average energy in one cycle (10T) is 3P. ×T=3PT(J). On the other hand, the average energy at the same time (10T) in the CW operation is P×10T=10PT(J).
 このように、QCW動作を行うと、ピークパワーはCW動作時の3倍まで上げているのに対して、平均エネルギーについては、10PT(J)から3PT(J)に下げることができる。平均エネルギーの低下は、レーザーダイオード13-1~13-nの周辺の熱環境の改善をもたらす。レーザーダイオード13-1~13-nの周辺の熱環境が改善されると、レーザーダイオード13-1~13-nが配設されるチップの寿命が長くなるとともに、チップの小型化が図れ、さらには、チップに配設されるレーザーダイオードの数を増加させることができる。 In this way, when the QCW operation is performed, the peak power is increased up to 3 times that during the CW operation, while the average energy can be reduced from 10 PT (J) to 3 PT (J). The decrease in average energy brings about an improvement in the thermal environment around the laser diodes 13-1 to 13-n. When the thermal environment around the laser diodes 13-1 to 13-n is improved, the life of the chip on which the laser diodes 13-1 to 13-n are arranged is extended, and the chip can be downsized. Can increase the number of laser diodes arranged on the chip.
 図5は、CW動作時とQCW動作時とで励起用のレーザーダイオードが配設されるチップの温度を比較したグラフである。図5において、横軸は励起用のレーザーダイオードの電流値であり、縦軸は励起用のレーザーダイオードが配設されるチップの温度である。 FIG. 5 is a graph comparing the temperature of the chip on which the laser diode for excitation is arranged during the CW operation and the QCW operation. In FIG. 5, the horizontal axis is the current value of the laser diode for excitation, and the vertical axis is the temperature of the chip on which the laser diode for excitation is arranged.
 図5に示すように、レーザ光がQCW動作を行った場合、チップの温度上昇は抑えられている。また、CW動作では、電流値が15Aを超える領域では温度上昇率が増加している。これは、チップの寿命を加速度的に短くする現象であり、ファイバレーザー装置全体の寿命を考慮すると、設計上のレーザーダイオードの電流値の上限である。しかし、QCW動作では、電流値が15Aを超える大電流の領域でも、加速的な温度上昇は見られない。この結果より、熱的にはまだ余裕があるため、更に密にチップにレーザーダイオードを配置しても、寿命には影響が小さいと考えることができ、装置の小型化が可能である。 As shown in FIG. 5, when the laser light performs the QCW operation, the temperature rise of the chip is suppressed. Further, in the CW operation, the temperature rise rate increases in the region where the current value exceeds 15 A. This is a phenomenon in which the life of the chip is shortened at an accelerated rate, and is the upper limit of the designed current value of the laser diode in consideration of the life of the entire fiber laser device. However, in the QCW operation, no accelerating temperature rise is observed even in a large current region where the current value exceeds 15A. From this result, since there is still a margin in terms of heat, it can be considered that even if the laser diode is arranged more densely on the chip, the effect on the life is small, and the device can be miniaturized.
 また、本実施形態では、レーザーダイオード13-1~13-nを電流制御でオン/オフしてQCW動作を行っている。レーザーダイオード13-1~13-nを電流制御する利点は、レーザーダイオード13-1~13-nを高速でオン/オフできることである。
 すなわち、レーザーダイオード13-1~13-nは、電源を投入してから、電流がしきい値に達し、レーザー光の誘導放出が始まるまでに、立ち上がり時間が必要になる。レーザーダイオード13-1~13-nを電流制御する場合には、立ち上がり時間が不要なため、レーザーダイオード13-1~13-nを高速でオン/オフできる。
Further, in the present embodiment, the laser diodes 13-1 to 13-n are turned on / off by current control to perform the QCW operation. The advantage of controlling the current of the laser diodes 13-1 to 13-n is that the laser diodes 13-1 to 13-n can be turned on / off at high speed.
That is, the laser diodes 13-1 to 13-n require a rising time from when the power is turned on until the current reaches the threshold value and the stimulated emission of the laser light starts. In the case of controlling the current of the laser diodes 13-1 to 13-n, the rise time is not required, so that the laser diodes 13-1 to 13-n can be turned on/off at high speed.
 また、本実施形態では、レーザーダイオード13-1~13-nを電流制御しているので、連続したパルスを独立して任意の波形に制御できる。図6は、本実施形態に係るファイバレーザーの制御装置におけるパルス波形の説明図である。図6のパート(A)から図6のパート(C)において、横軸は時刻であり、縦軸はパルスの高さである。図6のパート(A)は、連続する第1パルスと第2パルスとで、デューティ比が異なるように制御した例である。この例では、図6(A)のパートに示すように、第1パルスはデューティ比10%、第2パルスはデューティ比20%となるように制御している。なお、パルスの幅の制御は電流制御回路22が行う。 Further, in the present embodiment, since the laser diodes 13-1 to 13-n are current-controlled, continuous pulses can be independently controlled to an arbitrary waveform. FIG. 6 is an explanatory diagram of a pulse waveform in the fiber laser control device according to the present embodiment. In Part (A) to Part (C) of FIG. 6, the horizontal axis represents time and the vertical axis represents pulse height. Part (A) of FIG. 6 is an example in which the first pulse and the second pulse are controlled so that the duty ratios are different. In this example, as shown in the part of FIG. 6A, the first pulse is controlled to have a duty ratio of 10%, and the second pulse is controlled to have a duty ratio of 20%. The pulse width is controlled by the current control circuit 22.
 一般に溶接の場合は、高出力のレーザー光を照射するとスパッタが発生しやすく、加工不良となりやすい傾向がある。これに対して本実施形態では、図6のパート(A)のように、パルス幅をTから2Tに広げるように変化させることでパルスのエネルギーを徐々に上げていく。この結果、図6のパート(A)のパルスによれば、パルスのエネルギーを徐々に上げていくことで、スパッタ発生を抑制することができる効果を得ることができる。なお、図6のパート(A)では、パルス幅を2段階に変化させる例を示したが、パルス幅の変化は3段階以上であってもよい。 In general, in the case of welding, when high-power laser light is irradiated, spatter easily occurs and processing defects tend to occur. On the other hand, in the present embodiment, as shown in the part (A) of FIG. 6, the pulse energy is gradually increased by changing the pulse width from T to 2T. As a result, according to the pulse of Part (A) of FIG. 6, it is possible to obtain the effect of suppressing spatter generation by gradually increasing the pulse energy. In addition, in Part (A) of FIG. 6, an example in which the pulse width is changed in two steps is shown, but the pulse width may be changed in three steps or more.
 図6のパート(B)は、連続する第1パルスと第2パルスとで、ピークパワーが異なるように制御している。この例では、図6のパート(B)に示すように、第1パルスのピークパワーは3P、第2パルスのピークパワーは2Pとなるように制御した例である。勿論、連続する第1パルスと第2パルスとで、デューティ比とピークパワーとが共に異なるように制御することもできる。なお、パルスの高さの制御は電流制御回路22が行う。また、図6のパート(B)では、パルス高さを2段階に変化させる例を示したが、パルスの高さの変化は3段階以上であってもよい。 In part (B) of FIG. 6, the first pulse and the second pulse are controlled so that the peak powers are different. In this example, as shown in Part (B) of FIG. 6, control is performed so that the peak power of the first pulse is 3P and the peak power of the second pulse is 2P. Of course, it is also possible to perform control such that the duty ratio and the peak power are different between the continuous first pulse and the second pulse. The current control circuit 22 controls the pulse height. Further, in the part (B) of FIG. 6, an example in which the pulse height is changed in two steps is shown, but the change in the pulse height may be in three steps or more.
 図6のパート(C)は、連続する第1パルスと第2パルスとで、特有なパルスとなるように制御した例である。図6のパート(C)において、符号g11は第1パルスを示し、符号g12は第2パルスを示す。この例では、図6のパート(C)に示すように、第1パルスg11では最初に金属を溶かすためにパワーを上げ、溶けた後にパワーを下げるような2段階にパワーが変化するパルスとしている。具体的には、時刻t1~t2の期間は、パルスの高さを0から3Pに徐々にあげるように制御する。時刻t2~t3の期間は、パルスの高さを3Pに保つように制御する。時刻t3のとき、パルスの高さを3Pから2Pに下げように制御する。そして、時刻t3~r4の期間は、パルスの高さを3Pに保つように制御する。時刻t4のとき、パルスの高さを2Pから0になるように制御する。第2パルスg12は、単純なパルスとしている。なお、パルスの高さの制御は電流制御回路22が行う。なお、図6のパート(C)では、第1パルスの高さを2段階に変化させる例を示したが、パルスの高さの変化は3段階以上であってもよい。 Part (C) of FIG. 6 is an example in which the continuous first pulse and the second pulse are controlled so as to be a unique pulse. In part (C) of FIG. 6, reference numeral g11 indicates a first pulse, and reference numeral g12 indicates a second pulse. In this example, as shown in part (C) of FIG. 6, the first pulse g11 is a pulse in which the power changes in two stages such that the power is first increased to melt the metal and then the power is decreased after the metal is melted. .. Specifically, during the period from time t1 to t2, the pulse height is controlled to be gradually increased from 0 to 3P. During the period from time t2 to t3, the pulse height is controlled to be kept at 3P. At time t3, the pulse height is controlled to be lowered from 3P to 2P. Then, during the period from time t3 to r4, the pulse height is controlled to be kept at 3P. At time t4, the pulse height is controlled from 2P to 0. The second pulse g12 is a simple pulse. The current control circuit 22 controls the pulse height. In addition, in part (C) of FIG. 6, an example in which the height of the first pulse is changed in two steps is shown, but the change in pulse height may be in three steps or more.
 一つのパルスの中で段階的にパワーを下げることによって、パルスのパワーが一定の場合と比べて被加工体に必要以上の発熱を抑えることができる。また、パルスパワーが変化しない場合は急激に被加工体の温度が下がることで熱歪が生じるが、図6のパート(C)のパルス形状によれば徐々に被加工体の温度をさげることができるため、被加工体に生じる熱歪みを小さくできる。図6のパート(C)のパルス形状は、連続的に熱を印加する必要があるレーザー溶接に好適である。この結果、微細加工の領域でも溶接品質を向上させることができる。すなわち、図6のパート(C)のパルス形状によれば、パルスがゆっくり立ち上がっているため、溶接時のスパッタ発生を抑制することができる効果を得ることができる。 By gradually reducing the power in one pulse, it is possible to suppress heat generation more than necessary for the workpiece compared to the case where the pulse power is constant. Further, when the pulse power does not change, the temperature of the workpiece suddenly drops, causing thermal distortion. However, according to the pulse shape of part (C) of FIG. 6, the temperature of the workpiece can be gradually lowered. Therefore, it is possible to reduce the thermal strain generated in the workpiece. The pulse shape of part (C) of FIG. 6 is suitable for laser welding where heat needs to be applied continuously. As a result, the welding quality can be improved even in the area of fine processing. That is, according to the pulse shape of the part (C) of FIG. 6, since the pulse rises slowly, it is possible to obtain the effect of suppressing the generation of spatter during welding.
 以上説明したように、本発明の第1実施形態に係るファイバレーザーの制御装置100は、ファイバレーザーに励起光を照射するレーザーダイオード13(13a~13-n)と、レーザーダイオード13(13a~13-n)に電源を供給する電源部21と、レーザーダイオード13(13a~13-n)に供給する電流を制御することによって、QCW動作の励起を行うように制御する電流制御回路22とを備える。本実施形態では、レーザーダイオード13(13a~13-n)を0.01ms~100msのパルス幅でオン/オフして、レーザ光をQCW動作させることで、平均エネルギーを抑制して、ピークパワーを上げることができる。 As described above, the fiber laser control device 100 according to the first embodiment of the present invention includes a laser diode 13 (13a to 13-n) for irradiating the fiber laser with excitation light and a laser diode 13 (13a to 13). A power supply unit 21 that supplies power to −n) and a current control circuit 22 that controls to excite the QCW operation by controlling the current supplied to the laser diodes 13 (13a to 13—n) are provided. .. In the present embodiment, the laser diode 13 (13a to 13-n) is turned on / off with a pulse width of 0.01 ms to 100 ms, and the laser beam is operated by QCW to suppress the average energy and increase the peak power. Can be raised.
 また、本実施形態に係るファイバレーザーの制御装置100では、ファイバレーザーに励起光を照射するレーザーダイオード13(13a~13-n)を電流で制御している。これにより、レーザーダイオード13(13a~13-n)を高速にオン/オフすることができる。また、本発明の第1実施形態に係るファイバレーザーの制御装置100では、ファイバレーザーに励起光を照射するレーザーダイオード13(13a~13-n)を電流で制御することで、連続したパルスを独立して制御してレーザーダイオード13(13a~13-n)を駆動できる。これにより、パルス幅や繰り返し周波数だけでなく、連続する第1パルスと第2パルスとでデューティ比やピークパワーを独立して制御することで、ファイバレーザーの発光状態を最適に制御できる。
 また、本実施形態によれば、パルスを独立して制御することで、複数のパルスそれぞれを独立に操作することで様々な条件でレーザー発振させることができ、複数の材料の組み合わせ(材質・厚さなど)で作られる部品の加工に有利である。例えば、銅とアルミの組み合わせで作られている電気電子部品などにおいて、銅-銅加工と銅-アルミ加工が混在する場合は、パルスのエネルギーを独立に変化させることで加工速度を上げられる。
 これにより、本実施形態によれば、高反射材料を加工するのに十分にピークパワーを上げた場合でも、従来より装置を小型化でき、さらに従来の装置より発熱を抑制することができる。
Further, in the fiber laser control device 100 according to the present embodiment, the laser diode 13 (13a to 13-n) for irradiating the fiber laser with the excitation light is controlled by the current. As a result, the laser diode 13 (13a to 13-n) can be turned on / off at high speed. Further, in the fiber laser control device 100 according to the first embodiment of the present invention, continuous pulses are independently controlled by controlling the laser diodes 13 (13a to 13-n) that irradiate the fiber laser with excitation light with an electric current. The laser diode 13 (13a to 13-n) can be driven by controlling the laser diode 13. With this, not only the pulse width and the repetition frequency but also the duty ratio and the peak power of the continuous first pulse and the second pulse are independently controlled, so that the emission state of the fiber laser can be optimally controlled.
Further, according to the present embodiment, by controlling the pulses independently, it is possible to oscillate under various conditions by operating each of the plurality of pulses independently, and to combine a plurality of materials (material/thickness). It is advantageous for processing parts made from For example, in an electric / electronic component made of a combination of copper and aluminum, when copper-copper processing and copper-aluminum processing are mixed, the processing speed can be increased by independently changing the pulse energy.
As a result, according to the present embodiment, even when the peak power is increased enough to process the highly reflective material, the device can be downsized as compared with the conventional device and the heat generation can be suppressed more than the conventional device.
<第2実施形態>
 次に、第2実施形態について説明する。図7は、本実施形態に係るファイバレーザーの制御装置200を示すブロック図である。なお、第1実施形態と同一部分については、同一符号を付して、その説明を省略する。
<Second Embodiment>
Next, a second embodiment will be described. FIG. 7 is a block diagram showing a fiber laser control device 200 according to the present embodiment. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
 図7に示すように、本実施形態に係るファイバレーザーの制御装置200は、レーザーダイオード13(13-1~13-n)と、電源部21と、電流制御回路22とを備える構成に、更に、充電部50を追加したものである。QCW制御では、レーザーダイオード13(13-1~13-n)は間欠的に駆動されており、レーザーダイオード13(13-1~13-n)の発光が休止されている間が生じる。そこで、この実施形態では、充電部50を設け、レーザーダイオード13(13-1~13-n)の発光が休止されている間に、電源部21からのエネルギーを充電部50に蓄積し、レーザーダイオード13(13-1~13-n)が発光されるときに、充電部50に蓄積されていたエネルギーを使うように構成されている。これにより、装置外部からエネルギーを供給する電源の容量を小さくすることができる。 As shown in FIG. 7, the fiber laser control device 200 according to the present embodiment is further configured to include a laser diode 13 (13-1 to 13-n), a power supply unit 21, and a current control circuit 22. The charging unit 50 is added. In the QCW control, the laser diode 13 (13-1 to 13-n) is driven intermittently, and occurs while the light emission of the laser diode 13 (13-1 to 13-n) is stopped. Therefore, in this embodiment, the charging unit 50 is provided, and energy from the power supply unit 21 is accumulated in the charging unit 50 while the laser diode 13 (13-1 to 13-n) is not emitting light. When the diodes 13 (13-1 to 13-n) emit light, the energy stored in the charging unit 50 is used. As a result, the capacity of the power supply that supplies energy from outside the device can be reduced.
 図8は、本実施形態に係るファイバレーザーの制御装置200の具体的な回路構成を示す接続図である。図8に示すように、充電部50は、スイッチングトランジスタ51、コイル52、ダイオード53、コンデンサ54とから構成されている。コイル52の一端は、電源部21の正極に接続されている。コイル52の他端は、ダイオード53のアノードに接続されるとともに、スイッチングトランジスタ51のコレクタに接続される。スイッチングトランジスタ51のエミッタは、電源部21の負極に接続される。ダイオード53のカソードは、レーザーダイオード13-1のアノードに接続されるとともに、ダイオード53のカソードと電源部21の負極との間に、コンデンサ54が接続される。 FIG. 8 is a connection diagram showing a specific circuit configuration of the fiber laser control device 200 according to the present embodiment. As shown in FIG. 8, the charging unit 50 includes a switching transistor 51, a coil 52, a diode 53, and a capacitor 54. One end of the coil 52 is connected to the positive electrode of the power supply unit 21. The other end of the coil 52 is connected to the anode of the diode 53 and to the collector of the switching transistor 51. The emitter of the switching transistor 51 is connected to the negative electrode of the power supply unit 21. The cathode of the diode 53 is connected to the anode of the laser diode 13-1, and the capacitor 54 is connected between the cathode of the diode 53 and the negative electrode of the power supply unit 21.
 スイッチングトランジスタ51がオンのときには、電源部21の正極から、コイル52、スイッチングトランジスタ51を介して、電源部21の負極に電流が流れる。この電流により、コイル52に電磁エネルギーが蓄えられる。 When the switching transistor 51 is on, a current flows from the positive electrode of the power supply unit 21 to the negative electrode of the power supply unit 21 via the coil 52 and the switching transistor 51. This current causes electromagnetic energy to be stored in the coil 52.
 スイッチングトランジスタ51がオフすると、コイル52に蓄えられた電磁エネルギーがダイオード53を介して放出され、コンデンサ54が充電される。スイッチングトランジスタ51のオン/オフを繰り返すことで、コンデンサ54に静電エネルギーが蓄積されていく。コンデンサ54の静電容量としては、例えば(4700μF×8)程度のものが用いられる。 When the switching transistor 51 is turned off, the electromagnetic energy stored in the coil 52 is released through the diode 53 and the capacitor 54 is charged. By repeating the on / off of the switching transistor 51, electrostatic energy is accumulated in the capacitor 54. As the capacitance of the capacitor 54, for example, a capacitor of about (4700 μF × 8) is used.
 本実施形態では、QCWレーザー発振させたいエネルギーに見合う静電容量のコンデンサ54を用意することによって、外部電源を小さくすることが可能である。例えば、電気光変換効率を50%とした場合、ピークパワー1500W、パルスエネルギー15J、デューティ比10%、繰り返し周波数を1kHzの条件でレーザー発振させるとき、充電部50に30J以上の静電エネルギーを蓄えることにより、外部電源の容量は1500W程度で問題ないことになる。これに対して、CWレーザー発振では、光変換効率を50%として、3000Wの電源が必要になる。 In this embodiment, the external power supply can be reduced by preparing a capacitor 54 having a capacitance suitable for the energy to be oscillated by the QCW laser. For example, when the electro-light conversion efficiency is 50%, when laser oscillation is performed under the conditions of peak power 1500 W, pulse energy 15 J, duty ratio 10%, and repetition frequency 1 kHz, electrostatic energy of 30 J or more is stored in the charging unit 50. As a result, the capacity of the external power source is about 1500 W, which causes no problem. On the other hand, in CW laser oscillation, a power supply of 3000 W is required with the light conversion efficiency set to 50%.
 以上説明したように、第2実施形態では、レーザーダイオード13(13-1~13-n)の発光が休止されている間に、電源部21からのエネルギーを蓄積する充電部50を備える。これにより、装置外部からエネルギーを供給する電源の容量を小さくすることができる。
 これにより、本実施形態によれば第1実施形態と同様に、高反射材料を加工するのに十分にピークパワーを上げた場合でも、従来より装置を小型化でき、さらに従来の装置より発熱を抑制することができる。
As described above, the second embodiment includes the charging unit 50 that accumulates energy from the power supply unit 21 while the laser diode 13 (13-1 to 13-n) is not emitting light. As a result, the capacity of the power supply that supplies energy from the outside of the device can be reduced.
As a result, according to the present embodiment, as in the first embodiment, even when the peak power is sufficiently increased to process the highly reflective material, the device can be made smaller than before, and heat is generated more than the conventional device. Can be suppressed.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲
で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。また、実施形態に用いられた構成要素を適宜組み合わせることも可能である。
Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and various modifications can be made without departing from the gist of the present invention. .. Modifications include addition, replacement, omission, and other changes of components in each embodiment. It is also possible to appropriately combine the components used in the embodiments.
11…光ファイバー、12a,12b…反射鏡、13-1~13-n…レーザーダイオード、14…ポンプコンバイナ、21…電源部、22…電流制御回路、50…充電部 11... Optical fiber, 12a, 12b... Reflecting mirror, 13-1 to 13-n... Laser diode, 14... Pump combiner, 21... Power supply section, 22... Current control circuit, 50... Charging section

Claims (6)

  1.  ファイバレーザーに励起光を照射するレーザーダイオードと、
     前記レーザーダイオードに供給する電流を制御することによって、前記レーザーダイオードを疑似連続波動作の励起を行うように制御する電流制御回路と、
     を備えるファイバレーザーの制御装置。
    A laser diode that irradiates a fiber laser with excitation light,
    A current control circuit that controls the laser diode to excite the pseudo continuous wave operation by controlling the current supplied to the laser diode.
    A fiber laser controller.
  2.  前記電流制御回路は、連続したパルスを独立して制御して前記レーザーダイオードを駆動する、請求項1に記載のファイバレーザーの制御装置。 The fiber laser control device according to claim 1, wherein the current control circuit independently controls a continuous pulse to drive the laser diode.
  3.  前記連続したパルスは、第1パルスと、前記第1パルスの後の第2パルスとを備え、
     前記電流制御回路は、パルスの高さを段階的に変化させるように前記第1パルスを制御する、請求項2に記載のファイバレーザーの制御装置。
    The continuous pulse comprises a first pulse and a second pulse after the first pulse.
    The fiber laser control device according to claim 2, wherein the current control circuit controls the first pulse so as to change the height of the pulse stepwise.
  4.  前記連続したパルスは、QCW(Quasi Continuous Wave Oscillation(疑似連続波))である、請求項2または請求項3に記載のファイバレーザーの制御装置。 The fiber laser control device according to claim 2 or claim 3, wherein the continuous pulse is QCW (Quasi Continuous Wave Oscillation).
  5.  前記レーザーダイオードの発光が休止されている間に、エネルギーを蓄積する充電部を、更に備える、請求項2から請求項4のいずれか1項に記載のファイバレーザーの制御装置。 The fiber laser control device according to any one of claims 2 to 4, further comprising a charging unit that stores energy while the laser diode stops emitting light.
  6.  レーザーダイオードからの励起光によりレーザー光を発光させるファイバレーザーの制御方法であって、
     前記レーザーダイオードに供給する電流を制御することによって、前記レーザーダイオードを疑似連続波動作の励起を行う
     ファイバレーザーの制御方法。
    It is a control method of a fiber laser that emits laser light by excitation light from a laser diode.
    A method for controlling a fiber laser that excites the laser diode in a pseudo continuous wave operation by controlling the current supplied to the laser diode.
PCT/JP2020/009233 2019-03-07 2020-03-04 Control device and control method for fiber laser WO2020179834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041789 2019-03-07
JP2019041789A JP2020145345A (en) 2019-03-07 2019-03-07 Fiber laser control device and control method

Publications (1)

Publication Number Publication Date
WO2020179834A1 true WO2020179834A1 (en) 2020-09-10

Family

ID=72338355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009233 WO2020179834A1 (en) 2019-03-07 2020-03-04 Control device and control method for fiber laser

Country Status (2)

Country Link
JP (1) JP2020145345A (en)
WO (1) WO2020179834A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360084A (en) * 1986-08-29 1988-03-16 Mitsubishi Electric Corp Laser beam machine
JP2002076479A (en) * 2000-08-22 2002-03-15 Keyence Corp Solid-state laser oscillator and oscillation method for solid-state laser
JP2014514754A (en) * 2011-03-31 2014-06-19 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and system for laser machining a workpiece using multiple adjusted laser pulse shapes
US20140333995A1 (en) * 2013-03-01 2014-11-13 Princeton Optronics Inc. VCSEL Pumped Fiber Optic Gain Systems
JP2015530251A (en) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag Workpiece processing apparatus using laser beam
JP2015199114A (en) * 2014-04-10 2015-11-12 三菱電機株式会社 Laser processing device and laser processing method
JP2016514055A (en) * 2013-02-28 2016-05-19 アイピージー フォトニクス コーポレーション Laser system for processing sapphire and method using the same
US20160308330A1 (en) * 2013-04-10 2016-10-20 Florent Liffran Device for controlling at least one diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360084A (en) * 1986-08-29 1988-03-16 Mitsubishi Electric Corp Laser beam machine
JP2002076479A (en) * 2000-08-22 2002-03-15 Keyence Corp Solid-state laser oscillator and oscillation method for solid-state laser
JP2014514754A (en) * 2011-03-31 2014-06-19 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and system for laser machining a workpiece using multiple adjusted laser pulse shapes
JP2015530251A (en) * 2012-08-09 2015-10-15 ロフィン−ラザーク アクチエンゲゼルシャフトRofin−Lasagag Workpiece processing apparatus using laser beam
JP2016514055A (en) * 2013-02-28 2016-05-19 アイピージー フォトニクス コーポレーション Laser system for processing sapphire and method using the same
US20140333995A1 (en) * 2013-03-01 2014-11-13 Princeton Optronics Inc. VCSEL Pumped Fiber Optic Gain Systems
US20160308330A1 (en) * 2013-04-10 2016-10-20 Florent Liffran Device for controlling at least one diode
JP2015199114A (en) * 2014-04-10 2015-11-12 三菱電機株式会社 Laser processing device and laser processing method

Also Published As

Publication number Publication date
JP2020145345A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5338334B2 (en) Laser light source device and laser processing device
JP5340545B2 (en) Pulse laser apparatus and pulse output control method thereof
JP4175544B2 (en) Q-switch method for pulse train generation
JP5082798B2 (en) LASER OSCILLATION DEVICE AND ITS CONTROL METHOD
WO2020166420A1 (en) Laser processing machine, processing method, and laser light source
CA2522800C (en) Laser apparatus for material processing
JP6562464B2 (en) Passive Q-switched laser device
JP2003198019A (en) Laser light source
WO2020179834A1 (en) Control device and control method for fiber laser
US20230219167A1 (en) Laser processing method and laser processing apparatus
KR20070076536A (en) High-power er:yag laser
JP5734158B2 (en) Power supply device for laser processing machine
JP4352871B2 (en) Pulse-driven laser diode-pumped Q-switched solid-state laser oscillator and its oscillation control method
JP5439836B2 (en) Solid state laser equipment
JPH10321933A (en) Semiconductor pumping solid-state laser
JP2002359422A (en) Q-switch laser controller and laser
JP2000223765A (en) Semiconductor exciting solid state laser oscillating equipment
JPH0145225B2 (en)
JP2002076479A (en) Solid-state laser oscillator and oscillation method for solid-state laser
JPH0422182A (en) Output device of q-switched pulse laser
JP2003347636A (en) Q-switched laser apparatus and method for controlling q-switching
JP2008147335A (en) Composite laser light output device
JP2017017196A (en) Q switch laser device
JPH11307857A (en) Laser oscillator
Washio Quasi-cw and Modulated Beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766397

Country of ref document: EP

Kind code of ref document: A1