JP2010186653A - Lighting device and display device - Google Patents

Lighting device and display device Download PDF

Info

Publication number
JP2010186653A
JP2010186653A JP2009030382A JP2009030382A JP2010186653A JP 2010186653 A JP2010186653 A JP 2010186653A JP 2009030382 A JP2009030382 A JP 2009030382A JP 2009030382 A JP2009030382 A JP 2009030382A JP 2010186653 A JP2010186653 A JP 2010186653A
Authority
JP
Japan
Prior art keywords
light
grating
color
light source
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030382A
Other languages
Japanese (ja)
Other versions
JP4399678B1 (en
Inventor
Yuichi Suzuki
鈴木優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009030382A priority Critical patent/JP4399678B1/en
Priority to TW99101215A priority patent/TWI375774B/en
Priority to KR1020100004790A priority patent/KR101208142B1/en
Application granted granted Critical
Publication of JP4399678B1 publication Critical patent/JP4399678B1/en
Publication of JP2010186653A publication Critical patent/JP2010186653A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device and a display device which control an emission angle to achieve a highly efficient color mixture to solve the problem that emission angle control is difficult in color mixture due to scattering, resulting in inefficient color mixture accompanying absorption. <P>SOLUTION: On the upper side of a horizontal plane on the bottom of a light guide plate, strip-shaped convex reflective surfaces are symmetrically combined with respect to a ridge and are arranged at a pixel pitch X to form convex reflective surfaces 5A and 5B. On the lower side of the horizontal plane on the bottom of the light guide plate, strip-shaped convex reflective surfaces are arranged at the pixel pitch X to form a triangular-wave reflection lattice. Parallel light sources of two colors are set symmetrically on the upper side of the horizontal plane at an elevation angle equal to a tangent to the apex of the strip-shaped convex reflective surfaces forming the ridge, and a parallel light source of a third color is disposed on the lower side of the horizontal plane. The convex reflective surfaces 5A and 5B facing the light sources in two directions are exposed to incoming parallel light from both light sources to project expanded light flux onto subpixels 27A and 27B. Parallel light from the light source on the lower side of the horizontal plane is reflected on a convex reflective surface 5C, which causes the reflected light to pass through the pitch between the convex reflective surfaces 5A and 5B to fall onto a third subpixel 27C. Hence, three colors are mixed at the same pixel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は複数の発光素子からの光を格子状に構成した反射素子または屈折素子で出射方向を制御して混色特性を改善した照明装置および表示装置に関するものである。   The present invention relates to an illuminating device and a display device in which light emission from a plurality of light-emitting elements is controlled by a reflecting element or a refracting element configured in a lattice shape to improve color mixing characteristics.

半導体発光素子は小型、高効率、長寿命、低電圧動作、高速応答などの優れた特徴のため各種表示装置・交通信号機などに広く使用されている。
赤、緑、青の3原色発光素子の加法混色による白色光は単体の発光スペクトル幅が狭いために不連続なスペクトル特性を持つが、液晶表示装置は赤、緑、青の3色の発光素子による不連続なスペクトルでも3色の制御信号によりその中間色を表示するため3色の発光素子を用いた3原色白色光を利用可能である。3色の発光素子を円錐内面に設けて後方散乱によって混色する距離を長くしている提案(図27、特許文献1)は多重反射に伴って吸収が増えて効率が低下する。3色の発光素子を同一パッケージに収め、発光素子に近い部分の反射鏡の傾斜を急にして各発光素子と反射鏡の距離と角度の差異を緩和する提案があるが(図28、特許文献2)、局部的条件でしか均等な混色が得られない。3色の発光素子を同一パッケージ内で十分に混色するのが難しく、素子の電源電圧が異なるなどの理由で下記の蛍光白色発光ダイオードが多く使用されている。
Semiconductor light emitting devices are widely used in various display devices and traffic signals because of their excellent features such as small size, high efficiency, long life, low voltage operation, and high speed response.
White light resulting from additive color mixing of red, green, and blue primary light emitting elements has discontinuous spectral characteristics due to the narrow emission spectrum width of a single substance, but the liquid crystal display device has three colors of red, green, and blue light emitting elements. Even in the discontinuous spectrum due to the three primary color white light using the three color light emitting elements can be used to display the intermediate color by the control signal of the three colors. In the proposal (FIG. 27, Patent Document 1) in which light emitting elements of three colors are provided on the inner surface of the cone to increase the distance for color mixing by backscattering, absorption increases with multiple reflection and efficiency decreases. There is a proposal to reduce the difference in distance and angle between each light emitting element and the reflecting mirror by placing three color light emitting elements in the same package and steepening the inclination of the reflecting mirror near the light emitting element (FIG. 28, Patent Document). 2) Uniform color mixing can be obtained only under local conditions. The following fluorescent white light-emitting diodes are often used because it is difficult to sufficiently mix the three-color light-emitting elements in the same package and the power supply voltages of the elements are different.

青色発光ダイオードの青色光を黄色蛍光体に照射し、補色による蛍光白色発光ダイオードのスペクトルは先鋭な青色となだらかな黄色域の2つのピークから成っている(特許文献3)。赤色域が非常に少なく、緑にも大きなディップを持つ青みの強いスペクトル特性である。しかし、蛍光白色発光ダイオードは3原色の混色に比べて容易なため携帯電話などの液晶表示装置のバックライトなどとして利用されている。 The blue phosphor of the blue light emitting diode is irradiated on the yellow phosphor, and the spectrum of the fluorescent white light emitting diode by complementary color consists of two peaks in a sharp yellow color and a gentle yellow region (Patent Document 3). It has a strong bluish spectral characteristic with very little red color and a large dip in green. However, fluorescent white light-emitting diodes are used as backlights for liquid crystal display devices such as mobile phones because they are easier than the mixing of the three primary colors.

半導体発光素子の発光効率の向上に伴って蛍光ランプに比べて小型化が可能な発光ダイオードによる照明への応用が進められ、半導体発光素子が点光源に近い特長を生かして放射角の狭いプロジェクターなどに使用され始めている。発光ダイオードは許容温度上昇が他の光源に比べて小さいため、大きな光束を得るのは多数のチップが必要になり高価である。普及には低価格化する必要があり、効率を重視されて青みの強いスペクトルになっている。
最も比視感度の高い黄緑色付近の蛍光体を青色発光ダイオードで励起して補色による蛍光白色光を一般照明に使用した場合、赤色域やディップ波長域の被照射体は連続スペクトルの白色光に比べて暗くなる。赤色蛍光体などを混合する方法やイットリウムの一部をガドリニウムに置換して長波長側にシフトし、演色性を改善しつつ効率向上する提案がある(特許文献3)。
With the improvement of the luminous efficiency of semiconductor light emitting devices, the application to lighting with light emitting diodes that can be reduced in size compared to fluorescent lamps has been promoted, projectors with a narrow emission angle by taking advantage of the features of semiconductor light emitting devices close to point light sources, etc. Has begun to be used. Since the allowable temperature rise of the light emitting diode is smaller than that of other light sources, it is expensive to obtain a large luminous flux because a large number of chips are required. In order to spread, it is necessary to reduce the price, and the spectrum is strongly bluish with emphasis on efficiency.
When the fluorescent light near yellowish green with the highest relative visibility is excited with a blue light-emitting diode and fluorescent white light by complementary color is used for general illumination, the irradiated object in the red or dip wavelength range becomes white light in the continuous spectrum. It becomes darker than that. There are proposals for mixing red phosphors and the like, and for replacing yttrium with gadolinium and shifting to the longer wavelength side to improve efficiency while improving color rendering (Patent Document 3).

白色光バックライト光源からカラーフィルタで3色に分解する際に2/3の光量がカラーフィルタで吸収されて効率が低下するため、カラーフィルタを使用せずに3原色発光素子を用いて加法混色する方法として、導光板に45°の溝を画素数設け、溝の界面で液晶パネル方向に全反射する導光板を3層重ねた提案がある(図29、特許文献4)。複数の棒状導光体の界面に遮光層を設け、複数色発光ダイオードの色別光を遮光して棒状導光体内を伝播し、カラーフィルタを用いずに3色光を液晶ストライプに供給する方法が提案されている(図30、特許文献5)。液晶パネルの3辺に3色の光源を設置し、導光板に四角錐をマトリックス状に設けて四角錐の傾斜面によって液晶パネルの所定の画素に照射する液晶表示装置が提案されている(図31、特許文献6)。棚田状に凸反射面を配置した導光板に3原色の平行光を伝播させて画素方向に光束を拡大して反射し、各色の反射光を反射・透過素子でストライプに分配する提案がある(図32、特許文献7)。   When a white light backlight source is separated into three colors by a color filter, 2/3 of the light is absorbed by the color filter and the efficiency is reduced. Therefore, additive color mixing is performed using three primary color light emitting elements without using a color filter. As a method for this, there is a proposal in which a 45 ° groove is provided in the light guide plate in the number of pixels and three layers of the light guide plate that totally reflects in the direction of the liquid crystal panel at the groove interface are stacked (FIG. 29, Patent Document 4). There is a method in which a light shielding layer is provided at the interface of a plurality of rod-shaped light guides, light of each color of light emitting diodes is shielded and propagated through the rod-shaped light guide, and three-color light is supplied to the liquid crystal stripe without using a color filter. It has been proposed (FIG. 30, Patent Document 5). There has been proposed a liquid crystal display device in which light sources of three colors are installed on three sides of a liquid crystal panel, square pyramids are provided in a matrix on a light guide plate, and predetermined pixels of the liquid crystal panel are irradiated by inclined surfaces of the quadrangular pyramids (see FIG. 31, Patent Document 6). There is a proposal to propagate parallel light of the three primary colors to a light guide plate having a convex reflection surface arranged in a terraced shape, expand the light beam in the pixel direction and reflect it, and distribute the reflected light of each color into stripes by the reflective / transmissive elements ( FIG. 32, Patent Document 7).

撮像用光源として線光源に近い3波長冷陰極管が多く使用されているが各色の蛍光材料が線スペクトルのため波長特性の凹凸が大きく、正確な色再現が出来ない。発光ダイオードの光度がピークの約半値になる半値幅は20nm〜60nmのため6色〜9色を用いて可視光域をカバーする提案がある(特許文献7)。7種類の発光素子を基板中央付近に並べ、焦点面より浅い位置のレンズ内に封入し、焦点面の散乱材層で混色することにより各色の半値波長で繋げて白色光を形成し、線光源変換素子で変換してスキャナー光源としての応用が示されている。 A three-wavelength cold cathode tube close to a line light source is often used as an imaging light source. However, since the fluorescent material of each color has a line spectrum, the wavelength characteristics are uneven and accurate color reproduction cannot be achieved. Since the half-value width at which the luminous intensity of the light-emitting diode is about half the peak is 20 nm to 60 nm, there is a proposal to cover the visible light region using 6 to 9 colors (Patent Document 7). Seven types of light-emitting elements are arranged near the center of the substrate, enclosed in a lens shallower than the focal plane, and mixed with the scattering material layer on the focal plane to form white light by connecting at half-value wavelengths of each color. An application as a scanner light source after conversion by a conversion element is shown.

特開2005−353506号公報JP 2005-353506 A 特開2004−87935号公報JP 2004-87935 A 特許3246386号公報Japanese Patent No. 3246386 特開平6−59252号公報JP-A-6-59252 特開平2−111922号公報Japanese Patent Laid-Open No. 2-111922 特開2006−323221号公報JP 2006-323221 A 特許4114173Patent 4114173

3色の発光素子を同一パッケージに配置し、発光素子近傍の反射鏡の傾斜を急にするなどの構造によって混色する提案は各発光素子から反射鏡への距離と角度が異なるのでチップの並びに従った色斑を生じる。正反射による混色が難しいために散乱層を利用して円錐内面で後方散乱させて散乱距離を長く取るなどの混色のため、反射光が光源側に戻り多重反射の際に吸収されて効率が低下する。 The proposal for mixing three colors of light emitting elements in the same package and mixing colors by a structure such as steep inclination of the reflecting mirror in the vicinity of the light emitting elements is different in distance and angle from each light emitting element to the reflecting mirror. Cause color spots. Since it is difficult to mix colors by regular reflection, the reflected light returns to the light source side and is absorbed during multiple reflections due to color mixing, such as using a scattering layer to backscatter on the inner surface of the cone to increase the scattering distance. To do.

青色発光ダイオードの青色光を黄色蛍光体に照射した補色による白色発光ダイオードは尖鋭なスペクトルの青色光となだらかな黄色光のスペクトルを持ち、赤色域と青緑色域が不足している。蛍光体の配合比率を増大するに従って青色光のピークが低下して蛍光のピークが増大するが、蛍光が進行方向の蛍光体に当たらずに透過すると黄色光を呈し、別の黄色蛍光体に当たると蛍光体が有色不透明で蛍光波長に対しては蛍光変換率が低いために吸収される。吸収を補って蛍光体配合比率を上げると更に効率が低下するため、蛍光白色発光ダイオードは効率を優先されて青色光スペクトルが大きい青白い光になっている。   A white light emitting diode with a complementary color obtained by irradiating a yellow phosphor with blue light from a blue light emitting diode has a sharp blue light and a gentle yellow light spectrum, and lacks a red region and a blue green region. As the blending ratio of the phosphor increases, the peak of blue light decreases and the peak of fluorescence increases.However, when the fluorescence passes through the phosphor in the direction of travel, it exhibits yellow light and hits another yellow phosphor. The phosphor is colored and opaque and is absorbed because the fluorescence conversion rate is low with respect to the fluorescence wavelength. When the phosphor blending ratio is increased by supplementing the absorption, the efficiency further decreases. Therefore, the fluorescent white light emitting diode is given priority to efficiency, and becomes blue light with a large blue light spectrum.

演色性を改善するために広い波長帯域にわたって蛍光体を混合するとき、変換効率と比視感度に応じた蛍光体の配合比率で混合する必要がある。比視感度・変換効率の低い赤色などでは長波長蛍光体の量が増え、長波長蛍光体から発せられた光は短波長蛍光体では吸収だけで蛍光変換されないので更に蛍光体を増やす必要が生じる。黄色蛍光が黄色蛍光体に当たる確率と赤色蛍光が赤色蛍光体に当たる確率も増大して効率が低下する。このため、複数種の蛍光体を混合分散して連続スペクトルの白色光を実現するのは効率が低下する問題がある。 When mixing phosphors over a wide wavelength band in order to improve color rendering, it is necessary to mix with a phosphor blending ratio corresponding to the conversion efficiency and specific luminous efficiency. The amount of long-wavelength phosphors increases in red with low specific visibility and conversion efficiency, and the light emitted from the long-wavelength phosphors is absorbed only by the short-wavelength phosphors and is not converted to fluorescence. . The probability that the yellow fluorescent light hits the yellow fluorescent material and the probability that the red fluorescent light hits the red fluorescent material also increase, and the efficiency decreases. For this reason, there is a problem that the efficiency is lowered when a plurality of kinds of phosphors are mixed and dispersed to realize white light having a continuous spectrum.

カラーフィルタを使用せずに3原色発光素子を用いて加法混色する方法として、導光板に45°の溝を画素数設け、溝の界面で液晶パネル方向に全反射する導光板を3層重ねた提案は、45°の傾斜をサブ画素数設けるため画面幅の1/3の厚さが必要になり、画面幅300mmでは導光板1層あたり100mm厚が必要で、ストライプ数の溝を加工する工数により高価になる。   As a method of additive color mixing using light emitting elements of three primary colors without using a color filter, a 45 ° groove is provided in the light guide plate in the number of pixels, and three light guide plates that totally reflect in the liquid crystal panel direction at the groove interface are stacked. The proposal requires a thickness of 1/3 of the screen width to provide a 45 ° inclination and the number of sub-pixels. When the screen width is 300 mm, the thickness of 100 mm per light guide plate is required, and the number of man-hours for processing grooves with the number of stripes Becomes more expensive.

複数の棒状導光体の界面に遮光層を設け、色別光を遮光して棒状導光体内を伝播し、カラーフィルタを用いずに3色光を液晶ストライプに供給する提案は、遮光処理されたサブ画素幅の糸状導光部材を束ねて製造するのが難しく、遮光層を設けた透光シートを積層するとシート厚の公差が積算して液晶の画素寸法に一致しなくなる。各遮光層で仕切られた透光材内を拡散光が伝播するので、金属遮光膜の場合は反射する毎に吸収されて遠方ほど暗くなる。 The proposal of providing a light-shielding layer at the interface of a plurality of bar-shaped light guides, blocking the color-specific light, propagating through the bar-shaped light guide, and supplying three-color light to the liquid crystal stripe without using a color filter was light-shielded It is difficult to bundle and manufacture a filamentous light guide member having a sub-pixel width. When a light-transmitting sheet provided with a light shielding layer is laminated, tolerances of the sheet thickness are integrated and do not match the pixel dimensions of the liquid crystal. Since diffused light propagates through the light-transmitting material partitioned by the respective light shielding layers, in the case of a metal light shielding film, it is absorbed every time it is reflected and becomes darker in the distance.

導光板に四角錐による反射体を多数設け、3方向からの3原色光を画素に反射して混色する提案は、手前の四角錐に遮られて逆V型の反射光しか得られず、四角錐に斜めの平行光を照射すると側面にも当たるので散乱光になり他の画素に入射して不鮮明になる。 In the proposal of providing a large number of reflectors with a quadrangular pyramid on the light guide plate and reflecting the three primary colors from three directions to the pixels and mixing the colors, only the inverse V-shaped reflected light is obtained by blocking the front quadrangular pyramid. When the pyramid is irradiated with oblique parallel light, it also hits the side surface, so that it becomes scattered light and enters other pixels and becomes unclear.

棚田状に凸反射面を配置した導光板と反射・透過素子でストライプに分配する提案は構造が異なる2種類の導光素子を用いるため正確な位置合わせが必要である。   The proposal for distributing the stripes by the light guide plate having a convex reflection surface arranged in a terraced shape and the reflection / transmission elements requires two types of light guide elements having different structures, and therefore requires accurate alignment.

交通信号機の発光ダイオードはレンズの指向性が広いため上空にも無駄に放射されるなど消費電流が多く、交差する道路側の信号が見えるため三差路など遮光板が必要な状況が多くある。太陽光を受けて非点灯の2灯も明るくなる擬似点灯現象があるため太陽光を遮蔽する遮光板が設けられている。 Light-emitting diodes for traffic lights have a large directivity of the lens, so they consume a lot of current, such as being radiated unnecessarily into the sky. Since there is a pseudo-lighting phenomenon in which two lights that are not lit are brightened by receiving sunlight, a light-shielding plate that shields sunlight is provided.

水平面上に短冊状反射面の長軸方向を光源からの平行光の進行方向に直交するように配置し、短冊状反射面の短軸方向を交互に±30°の傾斜を持たせて三角波状に並べると、三角波状反射格子4が形成される。三角波状反射格子と短冊状反射面の短軸方向で斜め上方30°の方向に平行光光源を対称位置に設けた構造を図1に示す。
夫々の平行光光源と三角波状格子の対をなす反射面が平行になっているので対をなす平行光光源側に配置された反射面には入射出来ず、水平面から30°上方の平行光光源双方からの平行光は三角波状反射鏡の光源方向反射面に沿って入射する。対向する光源の平行光に沿った反射面に入射すると、双方から入射した光はいずれも鉛直上方に反射する。
三角波状格子の傾斜および傾斜光の傾斜角度をα、傾斜面の法線と鉛直方向のなす角度をβとすると、数1のように傾斜αは30°である。

図2の平面図のように、左右平行光光源からの反射光はいずれも光源側の反射面に従った櫛形になり、左右からの平行光が櫛形に交互に並んだ反射光である。格子ピッチを肉眼では認識出来ない寸法のストライプにして左右の平行光光源を別色の2色にすると併置加法混色される。
The long axis direction of the strip-shaped reflecting surface is arranged on the horizontal plane so as to be orthogonal to the traveling direction of the parallel light from the light source, and the short axis direction of the strip-shaped reflecting surface is alternately inclined by ± 30 ° to form a triangular wave shape. Are arranged, the triangular wave reflection grating 4 is formed. FIG. 1 shows a structure in which a parallel light source is provided at a symmetrical position in the direction of 30 ° obliquely upward in the minor axis direction of the triangular wave reflection grating and the strip-like reflection surface.
Since the reflecting surfaces forming the pair of each parallel light source and the triangular wave lattice are parallel, they cannot enter the reflecting surface arranged on the side of the parallel light source forming the pair, and the parallel light source 30 ° above the horizontal plane. Parallel light from both sides is incident along the light source direction reflecting surface of the triangular wave reflector. When the light is incident on the reflecting surface along the parallel light of the opposing light source, the light incident from both is reflected vertically upward.
Assuming that the inclination of the triangular wave grating and the inclination angle of the inclined light is α, and the angle between the normal of the inclined surface and the vertical direction is β, the inclination α is 30 ° as shown in Equation 1.

As shown in the plan view of FIG. 2, the reflected lights from the left and right parallel light sources are all reflected in a comb shape according to the reflection surface on the light source side, and the parallel lights from the left and right are alternately arranged in a comb shape. If the lattice pitch is a stripe having a size that cannot be recognized by the naked eye, and the left and right parallel light sources are two different colors, the additive color mixing is performed.

散乱面あるいは拡散材を分散した拡散板などで混色すると無指向性の非常に広い放射角度で散乱するが、反射格子により櫛形に交互に並んだ反射光にして加法混色すると平行光として出射するのでその後の処理が容易になる。
放物面鏡6の焦点に発光素子1を設置すると平行光を得ることが出来るが、発光ダイオードのチップ寸法は各辺約250μmのため放物面鏡の焦点に設けた発光素子の寸法により中心部と周辺部から発光された光に光路差が生じて図3に示す平行光からの誤差を持っている。外周部から発光された平行光からの誤差角度θは、発光素子の中心から外周部までの長さr、放物面鏡の座標m(x,y)、焦点距離pにより数2で示され、誤差角度θを小さくするには焦点距離を大きくする必要がある。

p=2.5mmの放物面鏡の反射位置y依存性を図4に示す。
When colors are mixed with a scattering surface or a diffuser with dispersed diffusing materials, they are scattered at a very wide radiation angle with no directivity. However, when reflected light is alternately arranged in a comb shape by a reflection grating, additive colors are emitted as parallel light. Subsequent processing becomes easy.
Parallel light can be obtained by installing the light emitting element 1 at the focal point of the parabolic mirror 6, but since the chip size of the light emitting diode is about 250 μm on each side, the center depends on the size of the light emitting element provided at the focal point of the parabolic mirror. An optical path difference occurs in the light emitted from the peripheral part and the peripheral part, and there is an error from the parallel light shown in FIG. The error angle θ from the parallel light emitted from the outer peripheral portion is expressed by the following equation (2) based on the length r from the center of the light emitting element to the outer peripheral portion, the coordinates m (x, y) of the parabolic mirror, and the focal length p. In order to reduce the error angle θ, it is necessary to increase the focal length.

FIG. 4 shows the reflection position y dependency of a parabolic mirror with p = 2.5 mm.

出射光を平行光でなく拡散光あるいは収束光にするにはレンズ、反射鏡などを併用して放射角を制御出来るが、レンズに拠らなくとも格子反射面を曲面にすることにより放射角を制御することが出来る。反射格子を凸反射面5で形成して光束を拡大する状態の側面図を図5に示す。対を成す曲面の放射角方向が等しくなければ見る方向によっては片方だけの成分になって色斑を生じる。図5では格子の谷部における左側光源光の反射光と格子の頂部における右側光源光の反射光が平行になり、格子の頂部における左側光源光の反射光と格子の谷部における右側光源光の反射光も平行になっている。拡散光であってもこの範囲内で左右の光が対をなして平行に出射することにより均等に混合される。鉛直方向からの放射角γを決定するための入射光の傾斜α、頂部傾斜α、谷部傾斜βの関係を数3と図6に示す。

放射角γ=6°ではα=28°、β=34°、
放射角γ=30°ではα=20°、β=50°である。照明装置としてはこの放射角γの他に発光素子寸法による誤差角度θも加算する必要がある。
短冊状の反射面を長軸方向にも曲面を形成することにより長軸方向の放射角δを制御することが出来る。短冊状反射面の長軸方向の曲率半径Rは、短冊状反射面の長軸方向の長さをLとして数4で示される。
In order to change the emitted light to diffuse light or convergent light instead of parallel light, the emission angle can be controlled by using a lens, a reflecting mirror, etc. Can be controlled. FIG. 5 shows a side view of a state in which the reflection grating is formed by the convex reflection surface 5 to expand the light flux. If the radiation angle directions of the curved surfaces forming a pair are not equal, depending on the viewing direction, only one of the components will be formed, resulting in color spots. In FIG. 5, the reflected light of the left light source light at the trough of the grating and the reflected light of the right light source light at the top of the grating are parallel, and the reflected light of the left light source light at the top of the grating and the right light source light at the trough of the grating. The reflected light is also parallel. Even in the case of diffused light, left and right light are paired and emitted in parallel within this range to be evenly mixed. The relationship between the incident light inclination α, the top inclination α, and the valley inclination β for determining the radiation angle γ from the vertical direction is shown in Equation 3 and FIG.

For a radiation angle γ = 6 °, α = 28 °, β = 34 °,
At the radiation angle γ = 30 °, α = 20 ° and β = 50 °. In addition to the radiation angle γ, the illumination device needs to add an error angle θ due to the light emitting element size.
By forming a curved reflection surface in the major axis direction, the radiation angle δ in the major axis direction can be controlled. The radius of curvature R in the major axis direction of the strip-shaped reflecting surface is expressed by the following equation 4 where L is the length of the strip-shaped reflecting surface in the major axis direction.

放物線に接する曲率円は光軸方向の焦点付近までの狭い範囲であれば放物線に近似するため、放物面鏡に限らず研磨が容易な放物線近似球面鏡で近似することも出来る。発光素子は湿気などからの保護のために樹脂モールドされるため、モールドの外面に鏡面を設けると反射鏡と焦点が一体化しているので焦点位置調整が不要になる。
楕円鏡、双曲線鏡の場合は格子の稜線が曲線になり、楕円鏡8と双曲線鏡9を組み合わせることにより曲線反射格子を形成することが出来る。楕円鏡と双曲線鏡を対にしたユニットを多数用いた円環状反射格子を図7に示す。顕微鏡照明、医療用照明、ダウンライトなど径の小さな環状照明装置に適している。円環の径が大きい場合は図1または図3の反射格子で近似させることも出来る。
The curvature circle in contact with the parabola is approximated to a parabola as long as it is in a narrow range to the vicinity of the focal point in the optical axis direction. Therefore, it can be approximated not only by a parabolic mirror but also by a parabolic approximate spherical mirror that is easy to polish. Since the light emitting element is resin-molded for protection from moisture or the like, if a mirror surface is provided on the outer surface of the mold, the reflecting mirror and the focal point are integrated, so that the focal position adjustment is not necessary.
In the case of an elliptical mirror or a hyperbolic mirror, the ridge line of the grating becomes a curve, and a curved reflection grating can be formed by combining the elliptical mirror 8 and the hyperbolic mirror 9. FIG. 7 shows an annular reflection grating using a large number of pairs of elliptical mirrors and hyperbolic mirrors. Suitable for small-diameter annular illumination devices such as microscope illumination, medical illumination, and downlight. When the diameter of the ring is large, it can be approximated by the reflection grating of FIG. 1 or FIG.

三角波状格子を用いて3色を混合するために、傾斜反射面の底部に透光性の開口部を設けた構造を図8に示す。傾斜光を開口部に当たらないようにするには反射面の傾斜θsを数5により35.3°にする必要がある。

入射光の傾斜θrが19.5°あるので平行光に変換する光源部の厚さ方向の寸法が大きくなるが、前方の光源部の寸法が影響しないプロジェクターなどに適している。
FIG. 8 shows a structure in which a translucent opening is provided at the bottom of the inclined reflecting surface in order to mix the three colors using a triangular wave lattice. In order to prevent the inclined light from hitting the opening, the inclination θs of the reflecting surface needs to be 35.3 ° according to Equation 5.

Since the inclination θr of incident light is 19.5 °, the dimension in the thickness direction of the light source part to be converted into parallel light becomes large, but it is suitable for a projector or the like in which the dimension of the light source part in front is not affected.

液晶表示装置のように画素数が多い場合は上記の構成では光源部が非常に厚くなる。格子反射面を凸反射面5で形成して光束を画素幅に拡大すると、凸反射面の曲面長さサブ画素幅を光束拡大率で割ったもので済む。平行光が凸反射面で光束を拡大して被照射面におけるサブ画素の透過部の幅Wに拡大する様子を図9に示す。被照射面までの距離tは導光板厚と液晶透明基板厚の和になり、サブ画素の透過部の幅をW、導光板凸面傾斜部の円周に沿った曲面長さをdとすると、凸反射面の曲率半径rは数6で示される。

入射光の傾斜θi は段差sと画素幅Xより数7で求められる。

段差を10μm、画素幅400μmのときθi は1.43°になり、上記の19.5°の1/13に緩くすることが出来るため光源部の薄型化が可能になる。薄型化により導光板が可能になり、凸反射面による全反射を利用することが出来るので鏡面形成が不要である。2方向の光源に対向する凸反射面を画素幅毎に設けた構造を図10に示す。要部を拡大しているのでθiは1.43°より大きく表示されている。図10は2枚の導光板で構成されているが、各導光板とも2方向の光源に対向する凸反射面で構成されている。凸反射面ピッチ間の水平面に別色光を透過させることで3色以上の混色が可能になり、図10は同一導光板をずらして配置することにより4色を混色する状態を示している。導光板出射面に凸屈折面を設けて平行光に戻す場合で表示している。
When the number of pixels is large as in a liquid crystal display device, the light source section becomes very thick with the above configuration. When the grating reflecting surface is formed by the convex reflecting surface 5 and the luminous flux is enlarged to the pixel width, the curved surface length sub-pixel width of the convex reflecting surface is divided by the luminous flux enlargement ratio. FIG. 9 shows a state in which the parallel light expands the light flux on the convex reflection surface and expands to the width W of the transmission portion of the sub-pixel on the irradiated surface. The distance t to the irradiated surface is the sum of the light guide plate thickness and the liquid crystal transparent substrate thickness, where the width of the transmissive part of the subpixel is W, and the curved surface length along the circumference of the light guide plate convex inclined part is d. The radius of curvature r of the convex reflecting surface is expressed by Equation 6.

The inclination θi of the incident light can be obtained from Equation 7 from the step s and the pixel width X.

When the step is 10 μm and the pixel width is 400 μm, θi is 1.43 °, which can be relaxed to 1/13 of the above 19.5 °, so that the light source portion can be made thinner. Thinning enables a light guide plate and makes it possible to use total reflection by a convex reflection surface, so that mirror formation is unnecessary. FIG. 10 shows a structure in which a convex reflection surface facing a light source in two directions is provided for each pixel width. Since the main part is enlarged, θi is displayed larger than 1.43 °. Although FIG. 10 is composed of two light guide plates, each light guide plate is composed of a convex reflecting surface facing a light source in two directions. Three or more colors can be mixed by transmitting different color light to the horizontal plane between the pitches of the convex reflecting surfaces, and FIG. 10 shows a state in which the four colors are mixed by disposing the same light guide plate. This is shown when a convex refracting surface is provided on the light guide plate exit surface to return to parallel light.

図11は液晶表示装置のサブ画素に3色を供給して混色する状態を示したものである。図10と図11では2枚の導光板を使用しているが、これらの要素を統合すると図12のように1枚の導光板で3色ストライプを実現することが出来る。1枚構成の導光板のため画素の位置合わせが不要になり生産性が向上し、材料費を半減することが出来る。図12の要部を図13に拡大して説明する。
画素を3つのサブ画素で構成する1番目のサブ画素27Aに入射する細線の光は右端の凸反射面5の上端を越えて中央の凸反射面5Aに入射している。凸反射面で全反射し、光束を拡大してサブ画素幅に照射する。破線の光は左側の凸反射面に入射して光束を拡大して2番目のサブ画素に入射し、3色目の光は導光板の下部から入射している。導光板の下部に突き出した入射部は入射光線に垂直な面を構成し、突起部の後面を凸反射面5Cにして3番目の画素に光束を拡大して照射している。5C面に対称な反射面を形成すれば4色表示も可能である。
FIG. 11 shows a state in which three colors are supplied to the sub-pixels of the liquid crystal display device and mixed. 10 and FIG. 11, two light guide plates are used. If these elements are integrated, a three-color stripe can be realized with one light guide plate as shown in FIG. A single light guide plate eliminates the need for pixel alignment, improves productivity, and halves material costs. The main part of FIG. 12 is expanded and demonstrated in FIG.
The light of the thin line incident on the first sub-pixel 27A that constitutes a pixel by three sub-pixels is incident on the central convex reflection surface 5A beyond the upper end of the right-side convex reflection surface 5. The light is totally reflected by the convex reflection surface, and the luminous flux is enlarged and irradiated to the sub-pixel width. The broken line light enters the left convex reflection surface, expands the light beam, and enters the second subpixel, and the third color light enters from the lower part of the light guide plate. The incident part protruding to the lower part of the light guide plate constitutes a surface perpendicular to the incident light beam, and the rear surface of the projection part is the convex reflection surface 5C to irradiate the third pixel with a luminous flux. If a reflective surface symmetrical to the 5C surface is formed, four-color display is also possible.

3色の発光ダイオードを混色する提案はいずれも非対称性のために混色が不十分だが、傾斜が30°の三角錐反射面で3方向の平行光を鉛直方向に反射すると正三角形配置のデルタ配列で混合して出射することが出来る。傾斜30°の正三角形三角錐を凸型と凹型で構成し、凸型三角錐の頂部を○で、凹型三角錐の谷部を●で表すと、3方向を向いた傾斜面の形状は図14のように菱形を組み合わせたものである。三角錐反射面に照射する光源は図14のように3方向に配置し、水平面に30°下向きに照射する配置のため、各反射面は対向する光源以外からの入射はなく、手前の三角錐に遮られることのない構造である。三角波状格子と同一の傾斜面のため紙面の垂直方向に3色の混色光を平行光として出射するため3原色表示装置の光源などとして利用することが出来る。   All the proposals for mixing three colors of light emitting diodes are insufficient due to asymmetry, but when reflecting parallel light in three directions on a triangular pyramid reflecting surface with an inclination of 30 ° in the vertical direction, a delta arrangement with an equilateral triangle arrangement Can be mixed and emitted. The regular triangular triangular pyramid with an inclination of 30 ° is composed of a convex shape and a concave shape, the top of the convex triangular pyramid is indicated by ○, and the valley portion of the concave triangular pyramid is indicated by ●, the shape of the inclined surface facing three directions is shown in the figure 14 is a combination of diamonds. The light sources that irradiate the triangular pyramid reflection surface are arranged in three directions as shown in FIG. 14 and are arranged to irradiate 30 ° downward on the horizontal plane. It is a structure that is not obstructed by. Since the same inclined surface as that of the triangular wave lattice, the mixed color light of the three colors is emitted as parallel light in the direction perpendicular to the paper surface, so that it can be used as a light source of a three primary color display device.

三角波状格子は反射面にして混色するのに限らず、屈折面で構成することも出来る。2つの方向から入射して三角波状に構成された面で屈折して平行光として出射する状態を図15に示す。
屈折格子構成物質の屈折率n2、周囲媒体の屈折率n1とし、右側光源からV字状の右側傾斜面に角度αで入射した光は数8により角度βで屈折する。V字溝の傾斜面角度は中心線に対してγとして対向する屈折面に平行に入射するので右側光源光は右側傾斜面にしか入射せず、傾斜面と入射光は対称なので左側光源光も同様である。V字溝の傾斜面角度γを数8のようにβとαの差で設定することにより双方の屈折光は中心線に平行に出射する。屈折格子の水平面に角度δで左右から対称に入射すると屈折面に角度αで入射するので混色して平行光として出射する。


代表的な透光高分子であるポリメチルメタクリレートとポリカーボネートにおけるα、β、γ、δを示す。

屈折による混色は屈折率の制約から図16のように進行方向に長い形状になるが、光源部が格子面の裏側になるので図23の実施例のように全面を均一に表示可能である。屈折格子は進行方向に積み重ねることが出来るので反射形と組み合わせることによって4方向あるいは6方向の混合が可能である。4方向の混合装置を図17、図18に示し、8方向の混合装置を図19、図20に示す。
The triangular wave grating is not limited to color mixing as a reflective surface, but can also be composed of a refractive surface. FIG. 15 shows a state in which light is incident from two directions and is refracted by a surface configured in a triangular wave shape and emitted as parallel light.
With the refractive index n2 of the refractive grating constituent material and the refractive index n1 of the surrounding medium, the light incident on the V-shaped right inclined surface from the right light source at an angle α is refracted at an angle β by Equation 8. Since the angle of the inclined surface of the V-shaped groove is γ with respect to the center line and is incident in parallel to the opposing refracting surface, the right-side light source light is incident only on the right-side inclined surface. It is the same. By setting the inclined surface angle γ of the V-shaped groove by the difference between β and α as shown in Equation 8, both refracted lights are emitted parallel to the center line. When entering the horizontal surface of the refractive grating symmetrically from the left and right at an angle δ, the light enters the refracting surface at an angle α and is mixed to be emitted as parallel light.


Α, β, γ, and δ in polymethyl methacrylate and polycarbonate, which are typical light-transmitting polymers, are shown.

The color mixture due to refraction has a shape that is long in the traveling direction as shown in FIG. 16 due to the restriction of the refractive index. However, since the light source part is on the back side of the grating surface, the entire surface can be displayed uniformly as in the embodiment of FIG. Refractive gratings can be stacked in the direction of travel, so they can be mixed in four or six directions by combining with a reflective type. A four-way mixing device is shown in FIGS. 17 and 18, and an eight-way mixing device is shown in FIGS.

個別発光素子で連続スペクトルを得るには、発光ダイオードの光度がピークの約半値になる波長幅は20nm〜60nmのため、各色の半値波長で繋げて6色〜9色を用いると可視光域をカバーして連続スペクトルの白色光を実現可能である。
反射形と屈折形を併用して図19、図20のような構造により8色を混合することが出来、散乱による混色でないので放射角の狭い白色光を照射することが出来る。図10に示した導光板によっても多色混合可能だが、図20では4対の反射格子を載せる基板を放熱器に利用出来るので放熱が容易である。8色を混合すると図21のように連続スペクトルの白色光を合成することが出来る。
In order to obtain a continuous spectrum with an individual light emitting element, the wavelength width at which the luminous intensity of the light emitting diode reaches about half the peak is 20 nm to 60 nm. Covering can achieve continuous spectrum white light.
By combining the reflection type and the refraction type, eight colors can be mixed by the structure as shown in FIGS. 19 and 20, and since it is not a color mixture due to scattering, it is possible to irradiate white light with a narrow emission angle. Although multi-color mixing is also possible with the light guide plate shown in FIG. 10, in FIG. 20, since a substrate on which four pairs of reflection gratings are mounted can be used as a radiator, heat dissipation is easy. When eight colors are mixed, white light having a continuous spectrum can be synthesized as shown in FIG.

複数の蛍光体を混合して蛍光白色発光ダイオードを広帯域化するとき、蛍光体を多量に混合することにより蛍光を他の蛍光体で吸収されて効率が更に低下する。単一発光素子で全帯域を蛍光変換すると変換効率が掛かる。このため、蛍光体を混合するのでなく、反射格子によって混色する方法を以下に示す。
第1の発光素子を青色発光ダイオードとし、黄色蛍光体による波高値が青色光波高値の約半分の2山特性となるように蛍光体を分散すると、青緑色にディップを持ち、赤色域の低下した特性である。
第2の発光素子は第1の発光素子のディップ波長で発光する青緑色発光ダイオードとし、橙色蛍光体による波高値が青緑色光波高値の約半分の2山特性となるように蛍光体を分散すると、緑色にディップを持つ特性である。
図1または図3に示す反射格子を用いて第1の発光ダイオード光と第2の発光ダイオード光を加法混色すると、第1発光ダイオードの青緑色ディップは第2発光ダイオードの青緑光で補完される。
第1の発光ダイオードの蛍光と第2発光ダイオードの蛍光スペクトルはブロードなため、加法混色によりそれらの中間波長である黄色は概略均等に加算されて波高値が高くなり、緑色光は第1発光ダイオード光を主体にして第2発光ダイオード光で補われる。赤色光は第2発光ダイオード光を主体にして第1発光ダイオード光で補われ、緑色から赤色域にかけて波高値が励起光に概略等しく、なだらかな連続スペクトルの蛍光を得ることが出来る。合成前と合成後のスペクトル特性を図22に示す。連続スペクトルの白色光を格子状混色素子と2種類の蛍光変換発光素子で実現することが出来る。蛍光体で広帯域特性を得る方法は効率が低下するが、2山特性の不足領域を発光波長とする発光ダイオードで補うと蛍光変換効率が掛からないため、高効率に連続波長を実現出来る。
When a fluorescent white light emitting diode is broadened by mixing a plurality of phosphors, the fluorescence is absorbed by other phosphors by mixing a large amount of phosphors, and the efficiency further decreases. If all the bands are converted to fluorescence with a single light emitting element, conversion efficiency is increased. For this reason, a method of mixing colors using a reflection grating instead of mixing phosphors is shown below.
When the first light-emitting element is a blue light-emitting diode and the phosphor is dispersed so that the peak value of the yellow phosphor is about half of the peak value of the blue light, the blue-green has a dip and the red region is lowered. It is a characteristic.
The second light-emitting element is a blue-green light-emitting diode that emits light at the dip wavelength of the first light-emitting element, and when the phosphor is dispersed so that the peak value by the orange phosphor has a double peak characteristic that is about half of the blue-green light peak value. This is a characteristic with a dip in green.
When the first light-emitting diode light and the second light-emitting diode light are additively mixed using the reflection grating shown in FIG. 1 or FIG. 3, the blue-green dip of the first light-emitting diode is complemented with the blue-green light of the second light-emitting diode. .
Since the fluorescence spectrum of the first light-emitting diode and the fluorescence spectrum of the second light-emitting diode are broad, yellow, which is an intermediate wavelength between them, is added approximately evenly by additive color mixing, resulting in a high peak value, and green light is the first light-emitting diode. The light is mainly supplemented by the second light emitting diode light. The red light is mainly supplemented by the first light emitting diode light, mainly the second light emitting diode light, and the peak value is approximately equal to that of the excitation light from the green to the red range, so that a gentle continuous spectrum of fluorescence can be obtained. The spectral characteristics before and after synthesis are shown in FIG. Continuous spectrum white light can be realized by a lattice-shaped color mixing element and two types of fluorescence conversion light emitting elements. The method of obtaining a broadband characteristic with a phosphor decreases in efficiency, but if a light emitting diode having a light emission wavelength in a region where the two-peak characteristic is insufficient is not compensated for fluorescence conversion efficiency, a continuous wavelength can be realized with high efficiency.

複数の発光素子と反射鏡の距離と角度の非対称性による色斑を生じていたが、別の光源光が混入することを防止する反射格子または屈折格子を用いて混合し、同一放射角で出射することにより色斑を防止することが出来る。
反射格子を凸反射面にすることにより入射光の傾斜を小さくして光源部を薄型化することが出来る。薄型化により導光板を使用した全反射を利用することが出来るため鏡面形成が不要になって生産性が向上する。
凸反射面格子を3方向に向けた構造により3色ストライプを1枚の導光板で実現することが出来るため、位置合わせが不要になり生産性が向上し、材料費を削減することが出来る。
蛍光白色発光ダイオードのスペクトルは先鋭な青色となだらかな黄色域の2つのピークから成っているが、色斑を生じない混色装置を用いることにより複数の励起光を利用することが出来、高効率に連続スペクトルを実現することが出来る。
反射格子あるいは屈折格子で混色することにより、蛍光体を多成分系で混合してスペクトルを広帯域化する方法よりも高効率に連続スペクトルの白色光を得ることが出来る。
Color spots were caused by the asymmetry of the distance and angle between multiple light emitting elements and reflectors, but they were mixed using a reflective or refractive grating to prevent mixing of different light sources and emitted at the same radiation angle. By doing so, color spots can be prevented.
By making the reflection grating a convex reflection surface, the inclination of incident light can be reduced and the light source portion can be made thinner. Since the total reflection using the light guide plate can be utilized by reducing the thickness, it is not necessary to form a mirror surface and the productivity is improved.
Since the three-color stripe can be realized with one light guide plate by the structure in which the convex reflection surface grating is directed in three directions, alignment is not required, productivity is improved, and material cost can be reduced.
The spectrum of fluorescent white light-emitting diodes consists of two peaks of sharp blue and a gentle yellow range. By using a color mixing device that does not cause color spots, multiple excitation lights can be used, resulting in high efficiency. A continuous spectrum can be realized.
By mixing colors with a reflection grating or a refraction grating, white light with a continuous spectrum can be obtained with higher efficiency than a method in which phosphors are mixed in a multi-component system to broaden the spectrum.

説明の都合上、要部を拡大して表示するため、必ずしも相似関係にはなっていない。
三角波状反射格子の側面図 三角波状反射格子の平面図 光源寸法による放射角誤差 放射角誤差の反射鏡y位置依存性 三角波状凸面反射格子の側面図 頂部傾斜・谷部傾斜と放射角 楕円鏡・双曲線鏡光源部を使用した円環状照明装置 反射格子と透過部を併用した3色ストライプ表示装置 凸反射面による光束拡大 凸反射面格子と透過部を併用した多色ストライプの導光板 凸反射面格子と透過部を併用した2層構造の3色ストライプの導光板 凸反射面格子を導光板底面側に配置した1枚構成の3色ストライプの導光板 1枚構成の3色ストライプ導光板の要部 三角錐ドット配列格子の凸部と凹部 三角波状屈折面格子による混色 三角波状屈折面格子による混色装置 反射屈折格子による4色混合装置の平面図 反射屈折格子による4色混合装置の側面図 反射屈折格子による8色混合装置の側面図 反射屈折格子による8色混合装置の斜視図 反射屈折格子による8色混合白色光源のスペクトル 2種類の蛍光白色発光素子の混色による合成スペクトル 屈折格子による交通信号機の表示面 反射格子による交通信号機の表示面 凸面格子ユニットの断面図 車両用前照灯の正面図 円錐型散乱面による従来の混色装置における前方散乱光のみを示した模式図 チップ近傍の反射鏡を急傾斜にして色斑を緩和して混色する従来のパッケージ 45°の溝の界面で液晶パネル方向に全反射する3層を重ねた導光板 ストライプ幅の積層導光体により3色光を液晶ストライプに供給する従来例 導光板に設けた四角錐の傾斜面によって3色光を所定の画素に照射する従来例 棚田状凸反射面導光板とストライプ分配素子による3色液晶表示装置
For the convenience of explanation, the main part is enlarged and displayed, so the relationship is not necessarily similar.
Side view of triangular wave reflection grating Plan view of triangular wave reflection grating Radiation angle error due to light source dimensions Dependence of radiation angle error on reflector y position Side view of triangular wave convex reflection grating Top slope / valley slope and radiation angle Annular illuminator using elliptic mirror / hyperbolic mirror light source Three-color stripe display device using both reflection grating and transmission part Beam expansion by convex reflecting surface Multi-color striped light guide plate using convex reflective surface grating and transmissive part Two-layered three-color striped light guide plate using a convex reflecting surface grating and a transmission part One-color three-color striped light guide plate in which a convex reflecting surface grating is arranged on the bottom side of the light guide plate The main part of a single-color three-color striped light guide plate Convex and concave portions of triangular pyramid dot array grid Color mixing by triangular wave refracting surface grating Color mixing device with triangular wave refractive surface grating Plan view of a four-color mixing device using a catadioptric grating Side view of a four-color mixing device using a catadioptric grating Side view of 8-color mixing device with catadioptric grating Perspective view of 8-color mixing device with catadioptric grating Spectrum of 8-color mixed white light source with catadioptric grating Synthetic spectrum by color mixture of two kinds of fluorescent white light emitting elements Traffic signal display surface with refractive grating Traffic signal display surface with reflection grid Cross section of convex grid unit Front view of vehicle headlamp Schematic diagram showing only forward scattered light in a conventional color mixing device with a conical scattering surface A conventional package that mixes colors by relieving color spots by tilting the reflector near the chip A light guide plate with three layers that totally reflect in the direction of the liquid crystal panel at the 45 ° groove interface Conventional example in which three-color light is supplied to a liquid crystal stripe by a laminated light guide having a stripe width Conventional example of irradiating a predetermined pixel with three-color light by an inclined surface of a quadrangular pyramid provided on a light guide plate Three-color liquid crystal display device with terraced convex light guide plate and stripe distribution element

実施例1
反射面を格子状に配置した3色ストライプに混合する液晶表示装置の照明装置を図12に、要部を図13に示す。対角510mm(20.1型)、XGA(1024×768)のとき、画面寸法は横408mm、縦306mm、画素ピッチ399μm、サブ画素ピッチ133μmである。
3方向を向く3種類の凸反射面は1024段を画素ピッチで均等に配置した構造のものである。導光板の凸反射面段差が画素寸法より小さいために画素寸法に拡大するが、導光板厚が一定のため凸反射面の曲率半径は一定である。導光板厚tを10mm、凸反射面の段差sを10μmとすると曲率半径rは159μmである。光源からの平行光線をほぼ鉛直方向にある液晶のサブ画素に向けて反射するもので、全反射臨界角以上に傾斜することにより反射層を形成する必要がなく製造費用削減が可能である。
発光ダイオードを光源部の放物面鏡の焦点に放物面鏡の反射光を遮らない位置にオフセットして配置する。光度250mcdの発光ダイオード各色128個を配置することにより、光透過率40%のとき輝度307cd/m2が得られる。
透明材料としてポリメチルメタクリレート、脂環式アクリル樹脂、環状オレフィン樹脂、ポリカーボネート、光硬化アクリル樹脂などが可能で、射出圧縮成型などにより成型出来る。光硬化アクリル樹脂は低粘度のモノマー、オリゴマーを出発原料に重合するため精密な成型が可能である。
Example 1
FIG. 12 shows an illuminating device for a liquid crystal display device that mixes three-color stripes with reflecting surfaces arranged in a lattice pattern, and FIG. When the diagonal size is 510 mm (20.1 type) and XGA (1024 × 768), the screen dimensions are 408 mm wide, 306 mm long, pixel pitch 399 μm, and subpixel pitch 133 μm.
The three types of convex reflecting surfaces facing three directions have a structure in which 1024 steps are evenly arranged at a pixel pitch. Since the step of the convex reflection surface of the light guide plate is smaller than the pixel size, it is enlarged to the pixel size. However, since the thickness of the light guide plate is constant, the radius of curvature of the convex reflection surface is constant. When the light guide plate thickness t is 10 mm and the step s of the convex reflection surface is 10 μm, the radius of curvature r is 159 μm. Reflecting parallel light rays from the light source toward the sub-pixels of the liquid crystal in the substantially vertical direction. By tilting beyond the total reflection critical angle, it is not necessary to form a reflective layer, and manufacturing costs can be reduced.
The light emitting diode is offset from the focal point of the parabolic mirror of the light source unit at a position where the reflected light of the parabolic mirror is not blocked. By arranging 128 light emitting diodes each having a luminous intensity of 250 mcd, a luminance of 307 cd / m 2 can be obtained when the light transmittance is 40%.
As the transparent material, polymethyl methacrylate, alicyclic acrylic resin, cyclic olefin resin, polycarbonate, photocured acrylic resin, and the like can be used, which can be molded by injection compression molding or the like. Since the photo-curing acrylic resin is polymerized from a low-viscosity monomer or oligomer as a starting material, it can be precisely molded.

実施例2
2色の平行光を格子反射面または格子屈折面に入射して混色する実施例として赤色発光ダイオードと緑色発光ダイオードを用いて黄色を合成する信号機について、屈折格子による例を実施例2、反射格子による例を実施例3で説明する。青信号と呼称されるが正しくは緑色である。色覚障害対策として青みを帯びた緑色で表示されている。黄色信号は橙色を帯びた橙黄色で表示されている。
赤色発光素子620nm±10nmと緑色発光素子515nm±10nmを図16の放物面鏡の焦点に設け、色度座標上の色度と輝度に2色の駆動電流を設定して屈折面格子に照射し、混色による黄色570nm±10nmを表示することが出来る。500nm以下の青緑色発光ダイオオードを用いて赤色発光ダイオードと混色すると色度座標上の直線が白色域に近づいて淡黄色になるので515nm±10nmの緑色発光ダイオードを用いている。これにより混色直線が馬蹄形をした色度座標の右側縁面に沿うために濃い黄色を混色することが出来る。
従来の信号機は指向性が広いため交差する道路側の信号が見えるばかりでなく、上空にも放射しているので消費電流が多くなっているが、必要な指向性範囲にすると消費電流を低減し、素子数の低減により製造コストも削減することが出来る。上空や交差する道路まで照射する指向性は消費電流が無駄になるが、上下方向の放射範囲を水平面以下、左右方向の放射角を±45°の範囲にすると消費電流を約1/4に削減することが出来る。このため、1つの表示面に赤と緑の素子を半々で設けても必要な光量得ることが出来る。近年発光効率の向上が著しいが、従来の表示面は発光素子のドットが目立つため素子数を削減すると更に荒い表示になるので素子数の削減は困難である。しかし、屈折格子は櫛型を認識出来ない幅で表示し、光源部が表示面の裏側にあるので全体が均一に表示される。このため、指向性の制御と発光効率に応じて発光素子数を削減することが出来る。
図16に示すユニットの直径25mmにすると図23に示す直径300mmの表示面に約120ユニット並べることが出来る。屈折格子を8対設けると片側面で1.5mm幅の櫛形になり、赤または緑表示のときは格子の片側面から櫛形に出射する。赤色光と緑色光が幅1.5mmの屈折格子から出射したとき、信号機表示面までの距離により格子を認識出来ず、放射方向の一致により色斑の発生も起こらない。必要な指向性範囲に拡散光を出射する手段は図16に示す凹レンズアレイである。凹レンズアレイは防塵・防水を兼ねたフードとしての機能も持っている。
従来の3灯信号機では太陽光を受けて非点灯の2灯も明るくなり輝度差が低下する擬似点灯現象があるが、屈折格子による混色では表示面が1灯なので擬似点灯現象は発生せず、黄色の発光素子を削減し、更に指向性の制御による素子数の低減で信号機をコスト削減することが出来る。
Example 2
As an example in which two colors of parallel light are incident on a grating reflecting surface or a grating refracting surface to mix colors, a signal device that synthesizes yellow using a red light emitting diode and a green light emitting diode is used. Example 3 will be described in Example 3. Although it is called a green light, it is green. It is displayed in bluish green as a measure against color blindness. The yellow signal is displayed in orange-yellow with an orange color.
A red light-emitting element 620 nm ± 10 nm and a green light-emitting element 515 nm ± 10 nm are provided at the focal point of the parabolic mirror in FIG. 16, and two colors of driving current are set for chromaticity and luminance on the chromaticity coordinates to irradiate the refractive surface grating. In addition, a yellow color of 570 nm ± 10 nm can be displayed. When a blue-green light-emitting diode of 500 nm or less is used and mixed with a red light-emitting diode, a straight line on the chromaticity coordinate approaches a white region and becomes pale yellow, so a green light-emitting diode of 515 nm ± 10 nm is used. As a result, since the color mixture line is along the right edge surface of the chromaticity coordinates having a horseshoe shape, a deep yellow color can be mixed.
Conventional traffic lights have wide directivity, so not only can you see the signals on the intersecting road side, but they also radiate to the sky, so the current consumption has increased, but if you set the required directivity range, the current consumption will be reduced. Further, the manufacturing cost can be reduced by reducing the number of elements. Directivity to irradiate up to the sky or intersecting roads consumes current consumption, but if the vertical radiation range is below the horizontal plane and the horizontal radiation angle is within ± 45 °, the current consumption is reduced to about 1/4. I can do it. For this reason, even if the red and green elements are provided in half on one display surface, the necessary light quantity can be obtained. In recent years, the luminous efficiency has been remarkably improved. However, since the dots of the light emitting elements are conspicuous on the conventional display surface, if the number of elements is reduced, the display becomes more rough, so it is difficult to reduce the number of elements. However, the refraction grating is displayed in such a width that the comb shape cannot be recognized, and since the light source part is on the back side of the display surface, the whole is displayed uniformly. For this reason, the number of light emitting elements can be reduced according to directivity control and light emission efficiency.
If the diameter of the unit shown in FIG. 16 is 25 mm, about 120 units can be arranged on the 300 mm diameter display surface shown in FIG. When eight pairs of refraction gratings are provided, one side has a comb shape with a width of 1.5 mm, and when red or green is displayed, the light is emitted from one side of the grating in a comb shape. When red light and green light are emitted from a refractive grating having a width of 1.5 mm, the grating cannot be recognized due to the distance to the traffic signal display surface, and color spots do not occur due to coincidence of the radiation directions. The means for emitting diffused light within the required directivity range is a concave lens array shown in FIG. The concave lens array also functions as a hood that is both dustproof and waterproof.
In the conventional three-lamp traffic light, there is a pseudo-lighting phenomenon in which two non-lighted lights are brightened due to sunlight and the brightness difference decreases, but the mixed lighting by the refractive grating does not cause the pseudo-lighting phenomenon because the display surface is one light, The number of yellow light emitting elements can be reduced, and the number of elements can be reduced by controlling the directivity.

実施例3
赤色発光ダイオードと青緑色発光ダイオードを反射格子により黄色を合成する信号機を実施例2との相違点について説明する。図5に示すユニットの反射格子面を19mm角にすると図24に示す直径300mmの表示面に約120ユニット並べることが出来る。反射格子を8対設けると片側面で1.5mm幅の凸反射面になり、赤または緑表示のときは格子の片側面から櫛形に出射する。赤色光と緑色光が幅1.5mmの反射格子から出射したとき、信号機表示面までの距離により格子を認識出来ず、放射方向の一致により色斑の発生も起こらない。
反射格子は湾曲反射面により指向性を拡げ、発光素子寸法に由来する放射角を加えた指向性を持つが、反射格子の設置面を湾曲して指向性を設定可能である。このため反射格子の湾曲設置面により道路状況に応じた指向性に設定出来る。指向性の制御は屈折型よりも自由度が広い特徴がある。反射格子形は光源部が並ぶ構造のため反射面の占積率は60%である。砲弾型発光ダイオードを使用した従来の信号機の表示面で発光素子のドットが目立つのはレンズ形状から先端付近だけが輝くためで、光輝部分が占める面積率は約50%である。このため、従来と同等以上の光輝部の占積率である。
Example 3
A signal device that combines a red light emitting diode and a blue-green light emitting diode with yellow using a reflection grating will be described with respect to differences from the second embodiment. If the reflection grating surface of the unit shown in FIG. 5 is 19 mm square, about 120 units can be arranged on the display surface having a diameter of 300 mm shown in FIG. When eight pairs of reflection gratings are provided, a convex reflection surface having a width of 1.5 mm is formed on one side surface, and in a red or green display, light is emitted in a comb shape from one side surface of the grating. When red light and green light are emitted from a reflection grating having a width of 1.5 mm, the grating cannot be recognized due to the distance to the traffic signal display surface, and color spots do not occur due to the coincidence of the radiation directions.
The reflection grating expands the directivity by the curved reflection surface and has the directivity to which the radiation angle derived from the light emitting element size is added, but the directivity can be set by bending the installation surface of the reflection grating. Therefore, the directivity according to the road condition can be set by the curved installation surface of the reflection grating. The directivity control is characterized by a greater degree of freedom than the refraction type. Since the reflection grating type has a structure in which the light source parts are arranged, the space factor of the reflection surface is 60%. The dot of the light emitting element is conspicuous on the display surface of a conventional traffic light using a bullet-type light emitting diode because only the vicinity of the tip shines from the lens shape, and the area ratio occupied by the bright portion is about 50%. For this reason, it is the space factor of the brightness | luminance part more than equivalent to the past.

実施例4
凸反射面による反射格子を用い、放射角を格子の直交方向で差を持たせた実施例として車両用前照灯について説明する。光源は青色発光ダイオードに黄色蛍光体を用いた蛍光白色発光ダイオードと、青緑色発光ダイオードに橙色蛍光体を用いた蛍光白色発光ダイオードを混色して可視光域をカバーする白色光源である。放射角などを変更すればスポットライトなどにも応用することが出来る。
車両用前照灯の上下方向の放射角を10°として光源寸法による誤差角度約4°を差し引くと反射格子に直行方向の放射角γは6°である。数3より傾斜光と頂部の傾斜αは28°、谷部の傾斜βは34°である。反射格子に平行方向の放射角を20°とし、反射格子短冊の長さを14mmとすると、数4より曲率半径は40mmである。4対の凸反射面格子構成の断面図を図25、車両用前照灯の正面図を図26に示す。
左右の光源部の一方は青色発光ダイオードに黄色蛍光体を用いた蛍光白色発光ダイオード、他方は青緑色発光ダイオードに橙色蛍光体を用いた蛍光白色発光ダイオードである。
楕円鏡の一方の焦点に発光素子、他方の焦点に蛍光体を設けている。励起光を受けた蛍光体から後方と前方の放物面鏡に蛍光を発し、後方の放物面鏡からの平行光は平面鏡で方向変換して平行光を反射格子方向に照射している。
発光素子に40mAの順電流を流すと2光源から成る1ユニットで0.28Wになり、このユニットを横に11列、縦に8列の計88ユニット使用して変換効率60lm/W で1480lmの光束を得られる。寸法は横160mm、縦170mmである。混色したスペクトルは図22に示したものである。
すれ違いビームのときは下5列を点灯すると920lmになり、図28のようにユニットの配置にカットオフラインを設けると対向車への防眩効果を増すことが出来る。カットオフラインの斜めの反射格子は楕円鏡と双曲線鏡を組み合わせて台形状の反射格子にしたものである。図28は左側走行車両の場合を正面視したもので、上3段を消灯してすれ違いビームの状態を示したものである。
反射格子はアルミニウムなどの金属鏡面を利用すると放熱板を兼用することが出来る。上記構成による走行ビームのときの全損失は24.6Wになる。反射格子アレイの周囲に30mm幅の取り付けスペースを設けたときの放熱板寸法は横220mm、縦230mmである。
この放熱板の後方にダクトを設け、風速u=10m/s(36km/h)以上の走行風または強制対流で冷却すると、数9により温度上昇は約25℃である。放熱板からダクトの壁面全体に熱伝導して放熱に利用出来るので温度上昇を約28℃よりも低下させることが出来る。数9は放熱板温度における空気の物性値を用いるので繰り返し計算が必要だが、収束条件付近の50℃における物性値
プラントル数Pr:0.71
熱伝導率λ:0.0241[W/m℃]
動粘性係数ν:1.86×10−5[m2/s]
を用いてレイノルズ数Re、ヌセルト数Nu、平均熱伝達率α、温度上昇Tは数9より求められる。放熱板の縦寸法L、横寸法Wとし、外気温度は20℃とする。
Example 4
A vehicle headlamp will be described as an embodiment in which a reflection grating using a convex reflection surface is used and a radiation angle is varied in the orthogonal direction of the grating. The light source is a white light source that covers a visible light range by mixing a fluorescent white light emitting diode using a yellow phosphor as a blue light emitting diode and a fluorescent white light emitting diode using an orange phosphor as a blue green light emitting diode. It can be applied to spotlights by changing the radiation angle.
If the emission angle in the vertical direction of the vehicle headlamp is 10 ° and an error angle of about 4 ° due to the light source size is subtracted, the emission angle γ in the direction perpendicular to the reflection grating is 6 °. From Equation 3, the tilted light and the top slope α are 28 °, and the valley slope β is 34 °. Assuming that the radiation angle parallel to the reflection grating is 20 ° and the length of the reflection grating strip is 14 mm, the radius of curvature is 40 mm from Equation 4. FIG. 25 shows a cross-sectional view of the four pairs of convex reflecting surface lattice configurations, and FIG. 26 shows a front view of the vehicle headlamp.
One of the left and right light source units is a fluorescent white light emitting diode using a yellow phosphor as a blue light emitting diode, and the other is a fluorescent white light emitting diode using an orange phosphor as a blue green light emitting diode.
A light emitting element is provided at one focal point of the elliptical mirror, and a phosphor is provided at the other focal point. Fluorescence is emitted from the phosphor receiving the excitation light to the rear and front paraboloid mirrors, and the parallel light from the rear paraboloid mirrors is redirected by the plane mirror to irradiate the parallel light in the direction of the reflection grating.
When a forward current of 40 mA is applied to the light emitting element, one unit consisting of two light sources gives 0.28 W, and this unit uses 11 units horizontally and 8 columns vertically, using a total of 88 units, with a conversion efficiency of 60 lm / W and 1480 lm. A luminous flux can be obtained. The dimensions are 160 mm in width and 170 mm in length. The mixed spectrum is shown in FIG.
In the case of a passing beam, if the lower five rows are turned on, the light intensity becomes 920 lm. If a cut-off line is provided in the unit arrangement as shown in FIG. 28, the antiglare effect on the oncoming vehicle can be increased. The oblique reflection grating in the cut-off line is a trapezoidal reflection grating that combines an elliptical mirror and a hyperbolic mirror. FIG. 28 is a front view of the case of a left-side traveling vehicle, and shows the state of the passing beam with the upper three steps turned off.
The reflection grating can also be used as a heat sink when a metal mirror surface such as aluminum is used. The total loss of the traveling beam with the above configuration is 24.6W. When a mounting space having a width of 30 mm is provided around the reflection grating array, the dimensions of the heat sink are 220 mm wide and 230 mm long.
When a duct is provided behind the heat radiating plate and cooled by traveling wind or forced convection at wind speed u = 10 m / s (36 km / h) or more, the temperature rise is about 25 ° C. according to Equation 9. Since the heat conduction from the heat radiating plate to the entire wall surface of the duct can be used for heat radiation, the temperature rise can be lowered below about 28 ° C. Since Equation 9 uses the physical property value of air at the heat sink temperature, it must be repeatedly calculated, but the physical property value Prandtl number at 50 ° C. near the convergence condition Pr: 0.71
Thermal conductivity λ: 0.0241 [W / m ° C.]
Kinematic viscosity coefficient ν: 1.86 × 10 −5 [m 2 / s]
Are used to obtain the Reynolds number Re, the Nusselt number Nu, the average heat transfer coefficient α, and the temperature rise T. The vertical dimension L and horizontal dimension W of the heat sink are set, and the outside air temperature is 20 ° C.

実施例5
楕円鏡と双曲線鏡の組み合わせを多数用いて図7に示す円環状反射格子を形成し、環状のダウンライトの実施例を説明する。
ダウンライトは放射角が約±30°のため反射格子は凸面鏡による構成である。直径120mmの外形に楕円鏡と双曲線鏡を32対用い、発光素子に40mAの順電流を流すと32対の光源で9Wになり、変換効率60lm/W で540lmの光束を得られる。発光素子からの直接光が円環状反射格子に入射すると混色特性を低下するので発光素子を軸外楕円鏡と軸外双曲線鏡の焦点に設ける構造である。
対を成す光源部の一方は青色発光ダイオードに黄色蛍光体を用いた蛍光白色発光ダイオード、他方は青緑色発光ダイオードに橙色蛍光体を用いた蛍光白色発光ダイオードで、混色したスペクトルは図22に示したものである。
Example 5
An embodiment of an annular downlight will be described by forming an annular reflecting grating shown in FIG. 7 using a number of combinations of elliptical mirrors and hyperbolic mirrors.
Since the downlight has an emission angle of about ± 30 °, the reflection grating has a convex mirror configuration. If 32 pairs of elliptical mirrors and hyperbolic mirrors are used for the outer shape with a diameter of 120 mm and a forward current of 40 mA is passed through the light emitting element, the light intensity becomes 32 W with 32 pairs of light sources. When direct light from the light emitting element is incident on the annular reflection grating, the color mixing characteristics are deteriorated. Therefore, the light emitting element is provided at the focal point of the off-axis elliptical mirror and the off-axis hyperbolic mirror.
One of the paired light source units is a fluorescent white light emitting diode using a yellow phosphor as a blue light emitting diode, and the other is a fluorescent white light emitting diode using an orange phosphor as a blue green light emitting diode. The mixed spectrum is shown in FIG. It is a thing.

実施例6
反射形と屈折形を併用して図17、図19、図20に示す構造により8色を混合した白色光源の実施例について説明する。
三角波状反射格子は幅10mm、長さ10mmの反射面に10対の格子を設けたものである。8色の発光素子を反射格子ユニット4個に使用し、ポリメチルメタクリレートによる頂角53.2°の屈折型格子を2回通して混色すると図25のように連続スペクトルの白色光を合成することが出来る。可視光域の抱絡線が5500Kの白色光に近似するので高い色再現性を求める用途に適し、赤外線を含まないので温度上昇を避け、紫外線による損傷を避けることが出来る。
Example 6
An embodiment of a white light source in which eight colors are mixed by the structure shown in FIGS. 17, 19, and 20 using the reflection type and the refraction type will be described.
The triangular wave-like reflection grating is provided with 10 pairs of gratings on a reflection surface having a width of 10 mm and a length of 10 mm. When eight color light emitting elements are used for four reflection grating units and mixed through a refractive grating with an apex angle of 53.2 ° made of polymethylmethacrylate twice, white light having a continuous spectrum is synthesized as shown in FIG. I can do it. Since the visible light region has a hindrance close to white light of 5500K, it is suitable for applications requiring high color reproducibility, and since it does not contain infrared rays, temperature rise can be avoided and damage due to ultraviolet rays can be avoided.

1:発光素子 2:発光素子周囲凹面鏡
3:蛍光反射凹面鏡 4:三角波状反射格子
5:凸面反射格子 6:放物面鏡
7:蛍光体膜 8:楕円鏡
9:双曲線鏡 10:凸屈折面
11:凹屈折面 12:蛍光粒子
15:屈折格子 16:励起光
17:蛍光 18:透光物質
19:平行光 20:拡散光
21:凹面鏡 22:凸面鏡
23:開口部 24:導光板
25:平面鏡 26:遮光体
27:サブ画素 28:液晶挟持基板
29:基板 30:回路基板
31:谷部 32:頂部
33:楕円 34:空気層
37:入射面 38:支持部材
39:散乱面 40:焦点
41:ストライプ分配素子 42:溝
43:四角錐 44:カットオフライン
1: light emitting element 2: concave mirror around light emitting element 3: fluorescent reflecting concave mirror 4: triangular wave reflecting grating 5: convex reflecting grating 6: parabolic mirror 7: phosphor film 8: elliptical mirror 9: hyperbolic mirror 10: convex refractive surface 11: concave refracting surface 12: fluorescent particle 15: refractive grating 16: excitation light 17: fluorescent 18: translucent material 19: parallel light 20: diffused light 21: concave mirror 22: convex mirror 23: opening 24: light guide plate 25: plane mirror 26: Shading body 27: Subpixel 28: Liquid crystal sandwich substrate 29: Substrate 30: Circuit board 31: Valley portion 32: Top portion 33: Ellipse 34: Air layer 37: Incident surface 38: Support member 39: Scattering surface 40: Focal point 41 : Stripe distribution element 42: Groove 43: Square pyramid 44: Cut-off line

Claims (9)

反射面あるいは屈折面を他の光源からの光が入射しない傾斜角を持たせた波状構造で並べて格子を形成し、複数光源からの光を反射面あるいは屈折面の形状により出射方向と放射角を一致させて混合することを特徴とする照明装置。   A reflection surface or a refracting surface is arranged in a wavy structure with an inclination angle at which light from other light sources does not enter to form a grating, and the light from multiple light sources has an emission direction and a radiation angle depending on the shape of the reflecting surface or the refracting surface. A lighting device characterized by mixing and mixing. 平面の反射面を30°の傾斜で三角波状に並べて格子反射面を構成し、
三角波状反射面の一方の光源側から入射した反射光と、三角波状反射面の他方の光源側から入射した反射光を同一方向に出射して混合することを特徴とする請求項1に記載の照明装置。
A plane reflecting surface is arranged in a triangular wave shape with an inclination of 30 ° to constitute a grating reflecting surface,
The reflected light incident from one light source side of the triangular wave reflecting surface and the reflected light incident from the other light source side of the triangular wave reflecting surface are emitted in the same direction and mixed. Lighting device.
湾曲した反射面を三角波状に並べて格子反射面を構成し、
三角波状反射面の一方の光源側から入射した反射光と、三角波状反射面の他方の光源側から入射した反射光を同一方向に混合して拡散光あるいは収束光を放射することを特徴とする請求項1に記載の照明装置。
A curved reflection surface is arranged in a triangular wave to form a lattice reflection surface,
The reflected light incident from one light source side of the triangular wave reflecting surface and the reflected light incident from the other light source side of the triangular wave reflecting surface are mixed in the same direction to emit diffused light or convergent light. The lighting device according to claim 1.
湾曲した反射面の光束拡大機能により、反射面の段差をサブ画素幅よりも縮小することにより、入射光の傾斜を縮小して光源部を薄型化することを特徴とする請求項1に記載の照明装置。   2. The light source unit according to claim 1, wherein the light source portion is thinned by reducing the inclination of incident light by reducing the step of the reflection surface to be smaller than the sub-pixel width by the light beam expanding function of the curved reflection surface. Lighting device. 導光板に複数の凸反射面を画素ピッチで格子状反射面を構成し、
上記凸反射面のピッチ間に別色光を透過させることにより3色光以上の混色を行なうことを特徴とする請求項1に記載の照明装置。
A plurality of convex reflective surfaces are formed on the light guide plate at a pixel pitch to form a grid-like reflective surface,
The lighting device according to claim 1, wherein color mixing of three or more color lights is performed by transmitting different color light between the pitches of the convex reflection surfaces.
入射角と出射角差の傾斜を持たせて三角波状に並べて高屈折率側から低屈折率側に出射する格子屈折面を構成し、
三角波状屈折面に一方の光源側からの入射光と、他方の光源側からの入射光を同一方向に屈折して出射し、混合することを特徴とする請求項1に記載の照明装置。
Constructing a grating refracting surface that emits from the high refractive index side to the low refractive index side by arranging in a triangular wave with an inclination of the incident angle and the outgoing angle difference,
2. The illumination device according to claim 1, wherein incident light from one light source side and incident light from the other light source side are refracted and emitted in the same direction on a triangular wave refracting surface and mixed.
交通信号機において、赤色発光素子620nm±10nmと緑色発光素子515nm±10nmを屈折面格子または反射面格子の対を成す光源部の焦点に設け、屈折面格子または反射面格子に照射して混色により570nm±10nmの黄色混色光を出射することを特徴とする請求項1に記載の照明装置。   In a traffic signal device, a red light emitting element 620 nm ± 10 nm and a green light emitting element 515 nm ± 10 nm are provided at the focal point of a light source unit forming a pair of a refractive surface grating or a reflecting surface grating, and irradiated to the refractive surface grating or the reflecting surface grating to 570 nm by color mixing. The illumination device according to claim 1, which emits yellow mixed light of ± 10 nm. 異なる励起波長を持つ複数の発光素子を用いて励起波長と蛍光波長の中間域を補完し、蛍光域の波高値を加算することにより励起光と蛍光の波高値を均等に混色することを特徴とする請求項1に記載の照明装置。   Complementing the intermediate range between the excitation wavelength and the fluorescence wavelength using a plurality of light emitting elements having different excitation wavelengths, and adding the peak values in the fluorescence range, the excitation light and the fluorescence peak values are evenly mixed. The lighting device according to claim 1. 車両用前照灯において、楕円鏡と双曲線鏡を組み合わせて台形状の反射格子を形成し、矩形の反射格子と組み合わせて斜めのカットオフラインを構成することを特徴とする請求項1に記載の照明装置。    2. The illumination according to claim 1, wherein in the vehicle headlamp, an elliptical mirror and a hyperbolic mirror are combined to form a trapezoidal reflection grating, and an oblique cut-off line is combined with the rectangular reflection grating. apparatus.
JP2009030382A 2009-02-12 2009-02-12 Illumination device and display device Expired - Fee Related JP4399678B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009030382A JP4399678B1 (en) 2009-02-12 2009-02-12 Illumination device and display device
TW99101215A TWI375774B (en) 2009-02-12 2010-01-18 Lighting apparatus and display apparatus
KR1020100004790A KR101208142B1 (en) 2009-02-12 2010-01-19 Lighting device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030382A JP4399678B1 (en) 2009-02-12 2009-02-12 Illumination device and display device

Publications (2)

Publication Number Publication Date
JP4399678B1 JP4399678B1 (en) 2010-01-20
JP2010186653A true JP2010186653A (en) 2010-08-26

Family

ID=41706549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030382A Expired - Fee Related JP4399678B1 (en) 2009-02-12 2009-02-12 Illumination device and display device

Country Status (1)

Country Link
JP (1) JP4399678B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046306A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Lighting apparatus
WO2013046305A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Light-emitting device and lighting apparatus
WO2013046307A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Light-emitting device and lighting apparatus
JP2015222706A (en) * 2014-04-30 2015-12-10 大日本印刷株式会社 Lighting system and reflective sheet
CN111532111A (en) * 2020-05-13 2020-08-14 吉利汽车研究院(宁波)有限公司 Sunshading board vanity mirror lamp

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378322B1 (en) 2010-04-10 2014-01-08 LG Innotek Co., Ltd. Light source device
WO2013010582A1 (en) * 2011-07-19 2013-01-24 Osram Ag Optical element for colour mixing and optical arrangement for colour mixing
JP7240312B2 (en) * 2017-04-28 2023-03-15 株式会社小糸製作所 Vehicle lighting fixture and vehicle headlamp
CN110161613B (en) * 2018-03-30 2020-12-08 京东方科技集团股份有限公司 Backlight module, manufacturing method thereof and liquid crystal display device
CN108916815B (en) * 2018-08-10 2024-05-28 华域视觉科技(上海)有限公司 Automobile signal lamp and automobile
CN112433643A (en) * 2019-08-24 2021-03-02 深圳市凯健奥达科技有限公司 Surface acoustic wave curve reflection stripe and touch screen using same
CN110486688B (en) * 2019-09-11 2024-05-03 华域视觉科技(上海)有限公司 Car light module, car light and vehicle
WO2022025768A1 (en) * 2020-07-31 2022-02-03 Oculomotorius As A display screen adapted to correct for presbyopia
CN114604187B (en) * 2020-12-29 2024-05-10 深圳市合瑞软件有限公司 Automobile decoration plate assembly and automobile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035904A (en) * 2001-05-10 2003-02-07 Lumileds Lighting Us Llc Backlight for color liquid crystal display
JP2004128434A (en) * 2002-03-20 2004-04-22 Toyoda Gosei Co Ltd Light emitter and lighting fixture
JP2004158495A (en) * 2002-11-01 2004-06-03 Toshiba Lighting & Technology Corp Light emitting diode and lighting device
JP2005158310A (en) * 2003-11-20 2005-06-16 Omron Corp Surface light source device and equipment using the device
JP2006179319A (en) * 2004-12-22 2006-07-06 Sharp Corp Light source device and liquid crystal display device
JP2006323221A (en) * 2005-05-19 2006-11-30 Sharp Corp Liquid crystal display apparatus
JP2008140729A (en) * 2006-12-05 2008-06-19 Stanley Electric Co Ltd Light source device and vehicular headlight
JP4114173B1 (en) * 2007-05-15 2008-07-09 鈴木 優一 Display device and lighting device
JP2008218154A (en) * 2007-03-02 2008-09-18 Citizen Electronics Co Ltd Light source device, and display device equipped with it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035904A (en) * 2001-05-10 2003-02-07 Lumileds Lighting Us Llc Backlight for color liquid crystal display
JP2004128434A (en) * 2002-03-20 2004-04-22 Toyoda Gosei Co Ltd Light emitter and lighting fixture
JP2004158495A (en) * 2002-11-01 2004-06-03 Toshiba Lighting & Technology Corp Light emitting diode and lighting device
JP2005158310A (en) * 2003-11-20 2005-06-16 Omron Corp Surface light source device and equipment using the device
JP2006179319A (en) * 2004-12-22 2006-07-06 Sharp Corp Light source device and liquid crystal display device
JP2006323221A (en) * 2005-05-19 2006-11-30 Sharp Corp Liquid crystal display apparatus
JP2008140729A (en) * 2006-12-05 2008-06-19 Stanley Electric Co Ltd Light source device and vehicular headlight
JP2008218154A (en) * 2007-03-02 2008-09-18 Citizen Electronics Co Ltd Light source device, and display device equipped with it
JP4114173B1 (en) * 2007-05-15 2008-07-09 鈴木 優一 Display device and lighting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046306A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Lighting apparatus
WO2013046305A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Light-emitting device and lighting apparatus
WO2013046307A1 (en) * 2011-09-26 2013-04-04 東芝ライテック株式会社 Light-emitting device and lighting apparatus
JPWO2013046305A1 (en) * 2011-09-26 2015-03-26 東芝ライテック株式会社 lighting equipment
JP2015222706A (en) * 2014-04-30 2015-12-10 大日本印刷株式会社 Lighting system and reflective sheet
CN111532111A (en) * 2020-05-13 2020-08-14 吉利汽车研究院(宁波)有限公司 Sunshading board vanity mirror lamp

Also Published As

Publication number Publication date
JP4399678B1 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4399678B1 (en) Illumination device and display device
US7229198B2 (en) Planar light source device and display device using the same
US7210839B2 (en) Backlight system and liquid crystal display employing the same
US8998474B2 (en) Surface light source device and liquid crystal display apparatus
TWI249257B (en) Illumination apparatus
JP4114173B1 (en) Display device and lighting device
JP4681059B2 (en) Fluorescent light-emitting diode
JP2010040296A (en) Arrayed light source optical element and light emitting device using the same
US8684584B2 (en) Ultra-thin backlight
JP2003215349A (en) Light guide plate, and light source device and display device provided with the same
JP2011509500A (en) Lighting system, lighting fixture and backlight unit
JP2006278251A (en) Light guide plate and surface illumination device
JP2010092956A (en) Led light source and luminary using it
JP5323274B2 (en) Surface light source device and liquid crystal display device
KR20120127077A (en) Color converting device and method for manufacturing the same
KR101208142B1 (en) Lighting device and display device
JP5538479B2 (en) LED light source and light emitter using the same
JP4939446B2 (en) Surface light source and display device
JP4356095B1 (en) Liquid crystal display device and lighting device
JP4681075B1 (en) Illumination device and display device
JP2007059146A (en) Backlight device and liquid crystal display
JP4789026B1 (en) Mixed color lighting device
CN209784698U (en) Narrow-frame side-entering type liquid crystal display laser backlight source
JP4789027B1 (en) Mixed color lighting device
CN214278578U (en) Laser liquid crystal display backlight source structure with high light extraction efficiency

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees