JP2010185408A - 吸気ポート構造 - Google Patents

吸気ポート構造 Download PDF

Info

Publication number
JP2010185408A
JP2010185408A JP2009030940A JP2009030940A JP2010185408A JP 2010185408 A JP2010185408 A JP 2010185408A JP 2009030940 A JP2009030940 A JP 2009030940A JP 2009030940 A JP2009030940 A JP 2009030940A JP 2010185408 A JP2010185408 A JP 2010185408A
Authority
JP
Japan
Prior art keywords
branch
port
intake
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030940A
Other languages
English (en)
Inventor
Kazuyoshi Abe
和佳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009030940A priority Critical patent/JP2010185408A/ja
Publication of JP2010185408A publication Critical patent/JP2010185408A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

【課題】吸気の流速を向上するとともに、吸気流量を多くする。
【解決手段】シリンダヘッド12に形成された吸気が流通する共通ポート16と、共通ポートの吸気の流通方向の下流側において分岐し、1つの気筒に開口する第1分岐ポート18a及び第2分岐ポート18bと、を備え、第1分岐ポートと第2分岐ポートとの分岐部分20の稜線を、第1、第2分岐ポートが並ぶ方向と、吸気の流通方向のそれぞれに対して略垂直な方向に延ばし、各分岐ポートの他方の分岐ポートと対向する部分を、分岐部分から流通方向下流側にかけて、他方の分岐ポートから離れる方向に第1の曲率半径で曲がった第1曲部22a(23a)と、第1の曲率半径よりも大きい第2の曲率半径で曲がった第2曲部22b(23b)とする。
【選択図】図2

Description

本発明は、吸気ポート構造に関し、更に詳しくは内燃機関の燃焼室に吸入空気を導入する吸気ポート構造に関する。
従来より、エンジンにおいては、1つの気筒に対して2つの吸気ポートを開口させて、各吸気ポートを別個の吸気弁によって個々独立して開閉するものが存在している。また、このような2つの吸気ポートを有するエンジンでは、気筒内に供給された吸気が、互いに略平行なタンブル流となるようにすることで、気体の流速を向上する工夫も各種なされている(例えば、特許文献1〜3参照)。
上記特許文献1には、最狭断面積部を長くとることによる整流作用により、吸気流速を早める技術が開示されている。また、上記特許文献2には、吸気ポートに弁体を設け、当該弁体の切欠部を通る吸気が吸気バルブ内側に向かうようにする技術が開示されている。また、上記特許文献3には、吸気ポートの横断面の形状を略三角形状にするとともに、シャッター弁を設けて、吸気量を一部に集中させる技術が開示されている。
特開平9−303199号公報 特開平6−2489559号公報 特開2003−301723号公報
上記のように、気体の流速を向上するための工夫は各種なされているが、最近では、より簡易な構成で流速を向上させることが可能な方法についての検討が進められている。
本発明は、かかる事情の下になされたものであり、気体の流速を向上し、気体の流量を多くすることが可能な吸気ポート構造を提供することを目的とする。
本発明の吸気ポート構造は、シリンダヘッドに形成された気体が流通する共通ポートと、前記共通ポートの気体流通方向の下流側において分岐して形成された、1つの燃焼室に開口する第1分岐ポート及び第2分岐ポートと、を備え、前記第1分岐ポートと前記第2分岐ポートとの分岐部分の稜線は、前記第1、第2分岐ポートが並ぶ方向と、前記気体流通方向のそれぞれに対して略垂直な方向に延び、前記各分岐ポートの他方の分岐ポートと対向する部分は、前記分岐部分から気体流通方向下流側にかけて、前記他方の分岐ポートから離れる方向に第1の曲率半径で曲がった第1曲部と、前記第1の曲率半径よりも大きい第2の曲率半径で曲がった第2曲部とを有する吸気ポート構造である。
これによれば、第1分岐ポートと第2分岐ポートとの分岐部分の稜線が、第1、第2分岐ポートが並ぶ方向と、気体流通方向のそれぞれに対して略垂直な方向に延びるので、分岐部分で分岐した後に気体の流れが各分岐ポート内の中央付近に集まることが無く、気体の流速分布をポート内位置にかかわらず(中央位置か、壁面近傍かにかかわらず)略均一にすることができる。また、各分岐ポートの他方の分岐ポートと対向する部分(内側部分)は、分岐部分から気体流通方向下流側にかけて、他方の分岐ポートから離れる方向に第1の曲率半径で曲がった第1曲部と、前記第1の曲率半径よりも大きい第2の曲率半径で曲がった第2曲部とを有するので、分岐部分で分岐した気体を当該内側部分に沿って円滑に下流側に流すことができる。これにより、特に各分岐ポートの内側部分における気体の流速を高く維持することができるので、タンブル流を強くして、気体の流速を向上することができるとともに、気体の流量を多くすることが可能である。
本発明の吸気ポート構造は、シリンダヘッドに形成された気体が流通する共通ポートと、前記共通ポートの気体流通方向の下流側において分岐して形成された、吸気バルブにより開閉される第1分岐ポート及び第2分岐ポートと、を備え、前記第1分岐ポートと前記第2分岐ポートとの分岐部分の稜線は、前記第1、第2分岐ポートが並ぶ方向と、前記気体流通方向のそれぞれに対して略垂直な方向に延び、前記各分岐ポートの断面形状は略矩形状であり、他方の分岐ポートに近い側の2つの角部は、前記他方の分岐ポートから遠い側の2つの角部のうち前記吸気バルブの軸部から遠い側の角部よりも、曲率半径が小さく設定されている吸気ポート構造である。
これによれば、第1分岐ポートと第2分岐ポートとの分岐部分の稜線が、第1、第2分岐ポートが並ぶ方向と、気体流通方向のそれぞれに対して略垂直な方向に延びるので、分岐部分で分岐した後の気体の流速分布を、各分岐ポート内の壁面近傍や中央部などにかかわらず略均一にすることができる。また、各分岐ポートの断面形状は略矩形状であり、他方の分岐ポートに近い側(内側)の2つの角部が、他方の分岐ポートから遠い側(外側)の2つの角部のうち吸気バルブの軸部から遠い側の角部よりも曲率半径が小さく設定されているので、分岐ポートで分岐された気体を、各分岐ポートの内側壁面に沿って多く流通させることができる。これにより、各分岐ポートの内側部分における気体の流速を高く維持することができるので、タンブル流を強くして、気体の流速を向上することができるとともに、気体の流量を多くすることが可能である。
本発明の吸気ポート構造は、気体の流速を向上することができるとともに、気体の流量を多くすることができるという効果を奏する。
第1の実施形態に係るエンジンの構成を概略的に示す断面図である。 吸気ポート及び吸気ポート内における吸気の流れを模式的に示す図である。 吸気ポートにおける吸気の流れを示す図である。 第1の実施形態の比較例に係る吸気ポートを示す図である。 比較例に係る吸気ポートの図3に対応する図である。 第1の実施形態の効果を説明するためのグラフである。 第2の実施形態に係る吸気ポートの構成及び吸気の流れを模式的に示す図である。 第2の実施形態の比較例に係る吸気ポートの構成及び吸気の流れを示す図である。 第2の実施形態の別の比較例に係る吸気ポートの構成を示す図である。
≪第1の実施形態≫
以下、本発明の吸気ポート構造を具備する第1の実施形態に係るエンジン100について、図1〜図6に基づいて説明する。
図1には、エンジン100の一部断面図が模式的に示されている。この図1に示すように、エンジン100は、シリンダブロック11と、シリンダブロック11に接続されたシリンダヘッド12と、シリンダブロック11内に設けられたピストン13と、を備えている。また、エンジン100では、これらシリンダブロック11、シリンダヘッド12及びピストン13により燃焼室21が形成されている。
シリンダヘッド12には、吸気ポート14と、排気ポート15と、が形成されている。吸気ポート14には、外部から吸気マニホールドが接続され、排気ポート15には、外部から排気マニホールドが接続される。
図2(a)には、吸気ポート14を上側から見た状態が模式的に示され、図2(b)には、吸気ポート14内の気体の流れが模式的に示されている。図2(a)に示すように、吸気ポート14は、シリンダヘッド12外部に開口した共通ポート16と、共通ポート16から分岐し、燃焼室21に開口した第1分岐ポート18a及び第2分岐ポート18bとを有する。
第1分岐ポート18aと第2分岐ポート18bとが分岐している部分(分岐部分)20は、その稜線部分が、図2(b)に示すように、気体(吸気)の流通方向及び第1、第2分岐ポート18a,18bが並ぶ方向のそれぞれに対して略垂直となっている。
また、第1分岐ポート18aの第2分岐ポート18bと対向する面(以下、内側面と呼ぶ)は、図2(a)に示すように、分岐部分20から気体の流通方向下流側にかけて、第2分岐ポート18bから離れる方向に小さい曲率半径(第1の曲率半径r)で曲がった第1曲部22aと、大きい曲率半径(第2の曲率半径R(>r))で曲がった第2曲部22bとを有する。同様に、第2分岐ポート18bの第1分岐ポート18aと対向する面(内側面)は、分岐部分20から気体の流通方向下流側にかけて、第1分岐ポート18aから離れる方向に小さい曲率半径(第1の曲率半径r)で曲がった第1曲部23aと、大きい曲率半径(第2の曲率半径R(>r))で曲がった第2曲部23bとを有する。
図1に戻り、第1分岐ポート18a(第2分岐ポート18b)には、第1吸気バルブ34a(34b)が設けられている。各吸気バルブ34a,34bの軸部は、シリンダヘッド12に形成された貫通孔31a,31bそれぞれに挿入されており、各吸気バルブ34a,34bは、図1に示す矢印D方向に往復移動することで、各分岐ポート18a,18bの開閉を行う。
排気ポート15は、吸気ポート14と同様、共通ポート及び共通ポートから分岐した2つの分岐ポートを有し、各分岐ポートは、排気バルブ35a,35bにより開閉される。
次に、上述した吸気ポート14による作用について、図2、図3に基づき、かつ図4、図5の比較例と比較しながら説明する。
本第1の実施形態の吸気ポート14では、前述したように、第1分岐ポート18aと第2分岐ポート18bとの分岐部分20の稜線が、第1、第2分岐ポート18a,18bが並ぶ方向と、気体(吸気)の流通方向(図2(b)において太線矢印で示す方向)のそれぞれに対して略垂直な方向に延びている。このような構成を採用することにより、分岐部分20で分岐した後の気体(吸気)の流速分布を、図2(b)に太線矢印で示すように、第1、第2分岐ポート18a,18b内の位置(壁面近傍や中央部など)にかかわらず、略均一にすることができる。ここで、図4(a)に示す比較例(気体の流通方向に対して凹形状を有する分岐部分20’を採用した例)では、第1、第2分岐ポート18a,18b内の位置(壁面近傍や中央部など)により、分岐後の気体(吸気)の流速分布にバラツキが生じ、その結果、図4(a)に太線矢印で示すように、第1、第2分岐ポート18a,18bの下流端近傍の曲がり部分にて、剥離Eが生じるおそれがあるが、本第1の実施形態では、吸気の流速分布のバラツキを抑制することにより、このような剥離が生じるのを抑制することができる。
また、本第1の実施形態の吸気ポート14では、図2(a)に示すように、第1、第2分岐ポート18a、18bの内側面が、分岐部分20から気体の流通方向下流側にかけて、第1の曲率半径(r)で曲がった第1曲部22a、23aと、第2の曲率半径R(>r)で曲がった第2曲部22b、23bとを有している。これにより、本第1の実施形態では、図2(a)に太線矢印で示すように、分岐部分20で分岐した気体を当該内側部分に沿って円滑に(スムーズに)下流側に流すことができる。ここで、図4(b)に示す比較例(第1、第2分岐ポート18a,18bの内側部分に第1の曲率半径(r)で曲がった第1曲部22a’,23a’のみを設けた例)では、気体(吸気)が分岐部分20’に当たると、当該分岐部分20’から広がる方向に進むため、その広がりの影響により下流側において剥離Fが生じるおそれがあるが、本第1の実施形態では、吸気が円滑に流れるので、このような剥離が生じる可能性は低くなる。また、本第1の実施形態では、各分岐ポート18a,18bの内側部分に沿って流れる(IN−IN間を流れる)気体(吸気)の流速を速くすることができるので、図2(a)に示すタンブル流(白抜き矢印T)を強くすることができる。
更に、本第1の実施形態では、図3に示すように、吸気バルブ34a(34b)が存在している状態でも、気体(吸気)が第1、第2分岐ポート18a,18b内の位置にかかわらず略均一に流れるので、気体(吸気)は、吸気バルブ34a(34b)に沿って、スムーズに流れるようになる。この点、図4(a)、図4(b)の比較例では、図5に示すように吸気の流れが中央に集中することで、吸気が吸気バルブ34a(34b)に衝突するおそれがあり(図5の符合G参照)、これにより、流れ抵抗が大きくなり、吸気の流速が低下するおそれがある。
以上説明したように、本第1の実施形態では、各分岐ポート18a,18b内における吸気の流れを均一にするとともに、各分岐ポート18a,18bにおける内側部分(IN−IN間)の吸気の流れをスムーズにすることで、吸気の剥離を抑制し、かつ吸気バルブ34a,34b付近での流れ抵抗を抑制している。これにより、タンブル流を強くすることができるとともに、吸気の流速向上及び吸気流量増加を実現することが可能である。すなわち、図6のグラフに示すように、本第1の実施形態では、比較例と比較して、流量の低下を抑制しつつタンブル流を強くすることができ、ひいては、エンジン100の燃費向上、及びエンジンの出力向上を図ることが可能である。
≪第2の実施形態≫
次に、本発明の第2の実施形態について、図7〜図9に基づいて説明する。
図7(a)に示すように、本第2の実施形態では、第1の実施形態と同様、吸気ポート14の第1分岐ポート18aと第2分岐ポート18bとの分岐部分20の稜線が、第1、第2分岐ポート18a,18bが並ぶ方向と、気体(吸気)の流通方向のそれぞれに対して略垂直な方向に延びている。一方、本第2の実施形態では、第1、第2分岐ポート18a,18bの断面形状として、図7(a)のA−A線断面図である図7(b)に示すような断面形状を採用している。
第1分岐ポート18aは、図7(b)に示すように断面略矩形状であり、4つの角部48a〜48dを有している。これら4つの角部48a〜48dのうちの3つの角部48a〜48cの曲率半径は、残りの1つの角部48dの曲率半径よりも小さく設定されている。
また、第2分岐ポート18bは、第1分岐ポート18aの断面形状と上下対象の断面形状を有し、4つの角部49a〜49dのうちの3つの角部49a〜49cの曲率半径が、残りの1つの角部49dの曲率半径よりも小さく設定されている。
このように、本第2の実施形態では、第1、第2分岐ポート18a,18bが近接する側(内側)の角部48a,48b,49a,49bの曲率半径を小さく設定することで、第1、第2分岐ポート18a,18bの分岐部分20で分岐した吸気の流路を確保するようにしている。これにより、分岐部分20にて分岐した吸気は、そのまま内側部分(IN−IN間)を直線的に強く流れる(図7(c)参照)ので、タンブル流(図7(c)の白抜き矢印T)を強くすることができる。ここで、4つの角部全ての曲率半径が同一の第1、第2分岐ポート118a,118bを有する比較例(図8(a)、図8(b))では、曲率半径が同一であるため、分岐部分20で分岐した気体(吸気)が、図8(a)に示すように、第1、第2分岐ポート118a,118bの中心方向に流れ(拡散し)、図8(b)に示すような流れとなる。この場合、第1、第2分岐ポート118a,118b内側部分における、吸気の直線的な強い流れが生じないため、第1の実施形態の比較例(図4)と同様、吸気の剥離が生じるおそれがある。本第2の実施形態では、上述したような角部の曲率半径を採用することで、比較例において発生する剥離現象と同様の現象の発生を抑制することができる。
また、本第2の実施形態では、図7(b)に示すように、タンブル流(T)への影響の小さい部分(角部48dや角部49d)の曲率半径を大きくしているので、角部48d,49dにおける各分岐ポート8a,18bの断面変化を少なくでき、これにより、吸気の流量を稼ぐことができる。
また、本第2の実施形態では、角部48c,49c近傍に、吸気バルブ34a,34bが位置する。(図1参照)このため、角部48c,49cについても、上述したように、内側の角部48a.49a、48b,49bと同様、小さい曲率半径とすることで、吸気バルブ34a,34bの軸部に吸気が衝突することによる吸気の流れ抵抗を少なくするようにしている。
図9(a)には、本第2の実施形態における別の比較例が示され、図9(b)には図9(a)のB−B線断面図が示されている。この別の比較例では、図9(b)に符合H1で示す内側部分と、符合H2で示す外側部分に吸気を強く流すことを目的として、第1、第2分岐ポート218a、218bの断面形状が、図9(b)に示すような形状に設定されている。このような形状を採用した場合、図9(a)に示すように、符号J1で示される部分(図9(b)のH1部分に対応)が下側に膨らむため、符合J2で示される部分(吸気ポート14が下側に曲がる部分)の曲率半径が小さくなり、当該J2部分にて、流量低下が生じるおそれがある。これに対し、本第2の実施形態では、J1部分のような膨らみ部分がないので、図9の比較例のような影響を受けずに、分岐ポート18a,18bの内側部分における流量を大きく維持することができる。
以上説明したように、本第2の実施形態では、各分岐ポート18a,18bにおける吸気の流れを均一にするとともに、各分岐ポート18a,18bにおける内側部分の吸気の流れを直線的にすることで、吸気の剥離を抑制し、かつ、吸気バルブ34a,34bの軸部での流れ抵抗の増加を抑制する。これにより、タンブル流を強くすることができるとともに、吸気の流速向上及び吸気流量増加を実現することが可能である。
すなわち、本第2の実施形態では、流量の低下を抑制しつつ、タンブル流の向上を図ることができ、ひいてはエンジン100の燃費向上、及びエンジンの出力向上を図ることができる。
なお、上記第2の実施形態においては、第2分岐ポート18bの3つの角部48a〜48c(又は49a〜49c)の曲率半径を、角部48d(又は49d)の曲率半径よりも小さくする場合について説明したが、これに限らず、少なくとも、内側の2つの角部48a,48bが、外側の角部のうち吸気バルブ34a,34bの軸部から遠い側の角部48d(又は49d)よりも、曲率半径が小さく設定されていれば良い。
なお、エンジンは、上記第1、第2の実施形態で説明した特徴部分の両方を兼ね備えていても良い。
上述した各実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
10 エンジン(内燃機関)
12 シリンダヘッド
14 吸気ポート(吸気ポート構造)
16 共通ポート
18a 第1分岐ポート
18b 第2分岐ポート
20 分岐部分
22a,23a 第1曲部
22b,23b 第2曲部
34a,34b 吸気バルブ
48a〜48d 角部
49a〜49d 角部

Claims (2)

  1. シリンダヘッドに形成された気体が流通する共通ポートと、
    前記共通ポートの気体流通方向の下流側において分岐して形成された、1つの燃焼室に開口する第1分岐ポート及び第2分岐ポートと、を備え、
    前記第1分岐ポートと前記第2分岐ポートとの分岐部分の稜線は、前記第1、第2分岐ポートが並ぶ方向と、前記気体流通方向のそれぞれに対して略垂直な方向に延び、
    前記各分岐ポートの他方の分岐ポートと対向する部分は、前記分岐部分から気体流通方向下流側にかけて、前記他方の分岐ポートから離れる方向に第1の曲率半径で曲がった第1曲部と、前記第1の曲率半径よりも大きい第2の曲率半径で曲がった第2曲部とを有することを特徴とする吸気ポート構造。
  2. シリンダヘッドに形成された気体が流通する共通ポートと、
    前記共通ポートの気体流通方向の下流側において分岐して形成された、吸気バルブにより開閉される第1分岐ポート及び第2分岐ポートと、を備え、
    前記第1分岐ポートと前記第2分岐ポートとの分岐部分の稜線は、前記第1、第2分岐ポートが並ぶ方向と、前記気体流通方向のそれぞれに対して略垂直な方向に延び、
    前記各分岐ポートの断面形状は略矩形状であり、他方の分岐ポートに近い側の2つの角部は、前記他方の分岐ポートから遠い側の2つの角部のうち前記吸気バルブの軸部から遠い側の角部よりも、曲率半径が小さく設定されていることを特徴とする吸気ポート構造。
JP2009030940A 2009-02-13 2009-02-13 吸気ポート構造 Pending JP2010185408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030940A JP2010185408A (ja) 2009-02-13 2009-02-13 吸気ポート構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030940A JP2010185408A (ja) 2009-02-13 2009-02-13 吸気ポート構造

Publications (1)

Publication Number Publication Date
JP2010185408A true JP2010185408A (ja) 2010-08-26

Family

ID=42766205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030940A Pending JP2010185408A (ja) 2009-02-13 2009-02-13 吸気ポート構造

Country Status (1)

Country Link
JP (1) JP2010185408A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011229A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 内燃機関の吸気ポート
DE102016104249A1 (de) 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Brennkraftmaschine
JP2019044632A (ja) * 2017-08-30 2019-03-22 ダイハツ工業株式会社 内燃機関のシリンダヘッド

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011229A (ja) * 2011-06-29 2013-01-17 Toyota Motor Corp 内燃機関の吸気ポート
DE102016104249A1 (de) 2015-03-12 2016-09-15 Toyota Jidosha Kabushiki Kaisha Brennkraftmaschine
JP2016169668A (ja) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 内燃機関
US9790845B2 (en) 2015-03-12 2017-10-17 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2019044632A (ja) * 2017-08-30 2019-03-22 ダイハツ工業株式会社 内燃機関のシリンダヘッド

Similar Documents

Publication Publication Date Title
US7051702B2 (en) Intake apparatus for internal combustion engine
JP2010112178A (ja) エンジンの換気システム
JP2004124836A (ja) 内燃機関の吸気装置
CN108661829B (zh) 排气再循环装置
US11326548B2 (en) Engine
JP3903942B2 (ja) 内燃機関の吸気装置
US9797298B2 (en) Engine air intake structure
JP2010185408A (ja) 吸気ポート構造
US20180156166A1 (en) Intake manifold for internal combustion engine
JP2007285169A (ja) 過給機付き内燃機関のシリンダヘッド構造
US20180023464A1 (en) Exhaust-flow-rate control valve, and two-stage supercharging system provided with same
CN103038481A (zh) 排气涡轮增压器部件
JP6630748B2 (ja) エンジン
JP2004308472A (ja) 内燃機関の吸気装置
JP3861838B2 (ja) 内燃機関の吸気装置
JP2007309275A (ja) 内燃機関の吸気装置
JP2005226579A (ja) エンジンの排気ガス還流装置
JP2004308471A (ja) 内燃機関の吸気装置
JP3835423B2 (ja) 内燃機関の吸気装置
JP6531565B2 (ja) 内燃機関の吸気構造
JP7282683B2 (ja) ミキシングコネクタ及びエンジン
JP7347210B2 (ja) ターボ過給機付エンジン
JP2006258077A (ja) エンジン用リードバルブ
JP4282068B2 (ja) 内燃機関の排気系構造
US10273871B2 (en) Air intake device and valve