JP2010185056A - Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube - Google Patents

Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube Download PDF

Info

Publication number
JP2010185056A
JP2010185056A JP2009031824A JP2009031824A JP2010185056A JP 2010185056 A JP2010185056 A JP 2010185056A JP 2009031824 A JP2009031824 A JP 2009031824A JP 2009031824 A JP2009031824 A JP 2009031824A JP 2010185056 A JP2010185056 A JP 2010185056A
Authority
JP
Japan
Prior art keywords
tube
ionomer
resin
ionomer resin
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009031824A
Other languages
Japanese (ja)
Inventor
Satoshi Yamazaki
智 山崎
Hiroshi Hayami
宏 早味
Isato Aoi
勇人 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2009031824A priority Critical patent/JP2010185056A/en
Publication of JP2010185056A publication Critical patent/JP2010185056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-rigid, flame-retardant material which simultaneously has excellent thin-wall moldability and high rigidity while having flame retardancy, a tubular molded product using the high-rigid, flame-retardant material, and a heat-shrinkable tube using the tubular molded product. <P>SOLUTION: The ionomer resin composition contains a resin (a) containing an ethylenic ionomer resin (A), a flame retardant (b) having a bromine-based flame retardant(B) as a main component, and organoclay (C), a content of the flame retardant (b) being 10-100 pts.wt., and a content of the organoclay (C) being 2-60 pts.wt. based on 100 pts.wt. of the resin (a). An extrusion molded product and the tubular molded product use the ionomer resin composition. The heat-shrinkable tube is obtained using the tubular molded product. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、難燃性を有しながらも薄肉成形性と高い剛性を合わせ持つ高剛性難燃材料である、新規なアイオノマー樹脂組成物に関する。さらに本発明は、このアイオノマー樹脂組成物を用いたチューブ状成形品、及びこのチューブ状成形品を用いてなる熱収縮チューブに関する。   The present invention relates to a novel ionomer resin composition, which is a high-rigidity flame-retardant material having both flame retardancy and thin-wall moldability and high rigidity. Furthermore, the present invention relates to a tubular molded product using the ionomer resin composition and a heat shrinkable tube using the tubular molded product.

電子機器、OA機器、FPD、DVD、コンデンサー、二次電池等の民生用電子機器、電子機器部材や、車両、船舶等の分野に使用されている各種部品には難燃性を有するチューブ(難燃性チューブ)が広く要求されている。従来は、難燃性チューブとして、安価で加工性もよいPVCチューブが広く用いられていた。しかし、近年の環境対応のための脱PVCの流れから、PVCを使用しない難燃化材料(脱PVC難燃化材料)からなる難燃性チューブが求められている。   Flame retardant tubes (difficulty for electronic parts, OA equipment, consumer electronic equipment such as FPD, DVD, condenser, secondary battery, electronic equipment members, and various parts used in the fields of vehicles, ships, etc. There is a wide demand for flammable tubes. Conventionally, as a flame-retardant tube, an inexpensive and good workability PVC tube has been widely used. However, a flame-retardant tube made of a flame-retardant material that does not use PVC (de-PVC flame-retardant material) is required from the recent trend of de-PVC for environmental measures.

脱PVC難燃化材料としては、ポリオレフィン系樹脂にハロゲン系難燃剤、無機系難燃剤等を添加した材料が特許文献1(請求項1)等に記載されており、チューブとしての用途も開示されている。例えば、特許文献1では、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン系樹脂に臭素系難燃剤/三酸化アンチモンを添加した難燃化材料からなる難燃性ポリオレフィン系チューブが開示されている。   As a de-PVC flame retardant material, a material obtained by adding a halogen-based flame retardant, an inorganic flame retardant, or the like to a polyolefin-based resin is described in Patent Document 1 (Claim 1), and its use as a tube is also disclosed. ing. For example, Patent Document 1 discloses a flame-retardant polyolefin tube comprising a flame-retardant material obtained by adding a brominated flame retardant / antimony trioxide to a polyolefin resin such as ethylene-vinyl acetate copolymer (EVA). Yes.

電子機器部材や車両等の各種部品に使用される難燃性チューブには、もうひとつの流れとして、電子機器の省スペース化や車両の軽量化等の観点から、チューブ肉厚の薄肉化が要求されるようになりつつある。しかし、上記の難燃チューブ、例えば、EVAに臭素系難燃剤/三酸化アンチモンを添加したチューブでは、難燃性は得られても薄肉成形性(薄肉成形加工を可能にする性質)が悪く薄肉化は困難である。さらに、このチューブには、剛性が低く自立しての形状維持が不可能であるとの問題もある。   For flame retardant tubes used in various parts such as electronic equipment members and vehicles, another trend is to reduce the thickness of the tubes from the viewpoint of saving space in electronic equipment and reducing vehicle weight. It is getting started. However, the flame retardant tube described above, for example, a tube in which bromine-based flame retardant / antimony trioxide is added to EVA, has poor thin-wall formability (property that enables thin-wall molding processing) even if flame retardancy is obtained. Is difficult. Furthermore, this tube has a problem that its rigidity is low and it is impossible to maintain its shape independently.

薄肉化や自立しての形状維持の要請に応えるために、高剛性のチューブの開発は行われており、例えば特許文献2等で開示されている。しかし、特許文献2に開示されている高剛性のチューブは、難燃剤をまったく添加しておらず、チューブサイズによってはUL224で規定されるオールチュービング試験に合格はするものの、より難燃性が高いとされるVW−1試験での合格は困難である。   In order to meet the demand for thinning and self-sustaining shape maintenance, a highly rigid tube has been developed, and is disclosed, for example, in Patent Document 2. However, the high-rigidity tube disclosed in Patent Document 2 has no flame retardant added, and although it passes the all tubing test specified by UL224 depending on the tube size, it has higher flame retardancy. It is difficult to pass the VW-1 test.

特開平5−138732号公報JP-A-5-138732 特開2007−204729号公報JP 2007-204729 A

本発明は、難燃性を有しながらも、優れた薄肉成形性と高い剛性をあわせもつ高剛性難燃材料、この高剛性難燃材料を用いたチューブ状成形品、及びこのチューブ状成形品を用いて得られる熱収縮チューブを提供することを課題とする。   The present invention relates to a high-rigidity flame-retardant material having excellent thin-wall moldability and high rigidity while having flame retardancy, a tubular molded product using the high-rigidity flame-retardant material, and the tubular molded product It is an object of the present invention to provide a heat shrinkable tube obtained using the above.

本発明者は、上記の問題について鋭意検討した結果、エチレン系アイオノマー樹脂又はエチレン系アイオノマー樹脂を所定比率以上含む樹脂に、臭素系難燃剤を主体とする難燃剤、及び有機化クレーを分散させたアイオノマー樹脂組成物が、難燃性とともに、薄肉成形性(薄肉押出成形性)と高い剛性を達成できることを見出し、本発明を完成した。   As a result of earnestly examining the above problems, the present inventors dispersed a flame retardant mainly composed of a brominated flame retardant and an organized clay in an ethylene ionomer resin or a resin containing an ethylene ionomer resin in a predetermined ratio or more. The present inventors have found that the ionomer resin composition can achieve not only flame retardancy but also thin moldability (thin extrusion moldability) and high rigidity, thereby completing the present invention.

本発明者は、請求項1として、エチレン系アイオノマー樹脂(A)を含有する樹脂a、臭素系難燃剤(B)を主成分とする難燃剤b、及び有機化クレー(C)を含有し、前記樹脂aの100重量部に対し、前記難燃剤bの含有量が10重量部以上、100重量部以下であり、有機化クレー(C)の含有量が2重量部以上、60重量部以下であることを特徴とするアイオノマー樹脂組成物を提供する。   The present inventor, as claim 1, contains a resin a containing an ethylene ionomer resin (A), a flame retardant b containing a brominated flame retardant (B) as a main component, and an organized clay (C). With respect to 100 parts by weight of the resin a, the content of the flame retardant b is 10 parts by weight or more and 100 parts by weight or less, and the content of the organoclay (C) is 2 parts by weight or more and 60 parts by weight or less. An ionomer resin composition is provided.

本発明に使用するエチレン系アイオノマー樹脂(A)とは、エチレン−メタクリル酸共重合体あるいはエチレン−アクリル酸共重合体等の分子内にカルボキシル基を有するエチレン共重合体の分子間を、亜鉛イオン、カリウムイオン、ナトリウムイオン、マグネシウムイオン等の金属イオンで疑似架橋した樹脂を言い、例えば特許文献2に開示されている。樹脂aは、好ましくは、エチレン系アイオノマー樹脂(A)をその全量中の40重量%以上含有する。樹脂aは、全量がエチレン系アイオノマー樹脂(A)からなっていてもよい。   The ethylene-based ionomer resin (A) used in the present invention is an intermolecular molecule of an ethylene copolymer having a carboxyl group in a molecule such as an ethylene-methacrylic acid copolymer or an ethylene-acrylic acid copolymer. , A resin that is pseudo-crosslinked with a metal ion such as potassium ion, sodium ion, or magnesium ion, and is disclosed in Patent Document 2, for example. The resin a preferably contains 40% by weight or more of the ethylene ionomer resin (A) in the total amount. Resin a may consist entirely of an ethylene ionomer resin (A).

臭素系難燃剤(B)とは、臭素を含有する難燃剤を言い、例えばエチレンビス(ペンタブロモフェニル)等が挙げられる。臭素系難燃剤(B)を主成分とするとは、臭素系難燃剤(B)を難燃剤bの全量中の50重量%以上を含むことを言う。難燃剤bは、全量が臭素系難燃剤(B)からなっていてもよい。   The brominated flame retardant (B) refers to a flame retardant containing bromine, such as ethylene bis (pentabromophenyl). The phrase “having the brominated flame retardant (B) as a main component” means that the brominated flame retardant (B) contains 50% by weight or more of the total amount of the flame retardant b. The total amount of the flame retardant b may be a brominated flame retardant (B).

有機化クレー(C)とは、モンモリロナイト等の層状珪酸塩(クレー)において、層状に積層した珪酸塩平面の層間に有機化合物が導入(インターカレーション)されたものである。   The organic clay (C) is a layered silicate (clay) such as montmorillonite in which an organic compound is introduced (intercalated) between layers of silicate planes laminated in layers.

難燃剤bの含有量は、エチレン系アイオノマー樹脂(A)を含む樹脂aの100重量部に対し、10重量部以上、100重量部以下である。添加量が10重量部未満では難燃性が得られず、100重量部より多ければ剛性向上効果が低下し、高い剛性を得るためには有機化クレー(C)の増量が必要となる。より好ましくは20重量部以上、70重量部以下である。   The content of the flame retardant b is 10 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the resin a containing the ethylene ionomer resin (A). If the addition amount is less than 10 parts by weight, flame retardancy cannot be obtained. If the addition amount is more than 100 parts by weight, the effect of improving the rigidity is lowered, and in order to obtain high rigidity, the amount of the organic clay (C) needs to be increased. More preferably, it is 20 to 70 weight part.

又、有機化クレー(C)の含有量は、エチレン系アイオノマー樹脂(A)を含む樹脂aの100重量部に対し、2重量部以上、60重量部以下である。有機化クレー(C)の含有量が2重量部未満では、優れた薄肉成形性や高い剛性が得られない。一方、有機化クレー(C)の含有量が60重量部を超えると、加工性が低下する等生産性が悪くなる。より好ましくは、10重量部以上、50重量部以下である。   The content of the organized clay (C) is 2 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the resin a containing the ethylene ionomer resin (A). When the content of the organized clay (C) is less than 2 parts by weight, excellent thin-wall formability and high rigidity cannot be obtained. On the other hand, when the content of the organoclay (C) exceeds 60 parts by weight, the productivity is deteriorated such that workability is lowered. More preferably, it is 10 parts by weight or more and 50 parts by weight or less.

樹脂a、難燃剤b、及び有機化クレー(C)を上記の範囲内の組成で含有することを特徴とする請求項1に記載のアイオノマー樹脂組成物は、難燃性を有しながらも、優れた薄肉成形性と高い剛性をあわせもつ高剛性難燃材料である。   The ionomer resin composition according to claim 1, wherein the ionomer resin composition according to claim 1 contains the resin a, the flame retardant b, and the organized clay (C) in a composition within the above range. It is a high-rigidity flame-retardant material that combines excellent thin formability and high rigidity.

請求項3の発明は、樹脂aが、前記エチレン系アイオノマー樹脂(A)とアイオノマー以外の樹脂(D)からなり、(A)と(D)の重量比が、(A):(D)=100:0〜40:60の範囲内であることを特徴とする請求項2に記載のアイオノマー樹脂組成物である。   In the invention of claim 3, the resin a is composed of the ethylene-based ionomer resin (A) and a resin (D) other than the ionomer, and the weight ratio of (A) to (D) is (A) :( D) = The ionomer resin composition according to claim 2, wherein the ionomer resin composition is in a range of 100: 0 to 40:60.

本発明のアイオノマー樹脂組成物においては、樹脂aの全量をエチレン系アイオノマー樹脂(A)としてもよいし、又エチレン系アイオノマー樹脂(A)の一部を他の樹脂で置き換えてもよいが、この他の樹脂をアイオノマー以外の樹脂(D)とし、(A)と(D)の配合割合を、(A)/(D)=100:0〜40:60の範囲内とすれば、自立しての形状維持を可能とする剛性を保ちながら、薄肉成形性も悪化させずに、アイオノマー樹脂組成物を作製する際の溶融混練が容易となるため、好ましい。   In the ionomer resin composition of the present invention, the total amount of the resin a may be the ethylene ionomer resin (A), or a part of the ethylene ionomer resin (A) may be replaced with another resin. If the other resin is a resin (D) other than ionomer, and the blending ratio of (A) and (D) is within the range of (A) / (D) = 100: 0 to 40:60, the resin becomes independent. This is preferable because it can be easily melt-kneaded when preparing the ionomer resin composition without deteriorating the thin-wall moldability while maintaining the rigidity capable of maintaining the shape.

特に、難燃剤に三酸化アンチモンを配合する場合は、樹脂にアイオノマー以外の樹脂(D)を、(A)/(D)=95/5〜65/35(重量比)の範囲で配合することが好ましい。即ち、溶融混練により、三酸化アンチモンとアイオノマーのカルボン酸官能基が脱水反応してイオン結合が形成されることが知られているが、アイオノマー以外の樹脂を上記比率で添加することで容易にこの反応を抑制できる。なお、溶融混練の混合温度を低くしたり、熱履歴を短くすることによってもこの反応を抑制できる。   In particular, when antimony trioxide is added to the flame retardant, the resin (D) other than ionomer is added to the resin in the range of (A) / (D) = 95/5 to 65/35 (weight ratio). Is preferred. In other words, it is known that antimony trioxide and the carboxylic acid functional groups of the ionomer are dehydrated by melt kneading to form ionic bonds, but this can be easily achieved by adding a resin other than the ionomer at the above ratio. The reaction can be suppressed. Note that this reaction can also be suppressed by lowering the mixing temperature of the melt-kneading or shortening the heat history.

請求項2の発明は、前記アイオノマー以外の樹脂(D)が、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、低密度ポリエチレン、直鎖低密度ポリエチレン、及びポリエステルから選ばれる樹脂であることを特徴とする請求項1に記載のアイオノマー樹脂組成物である。   In the invention of claim 2, the resin (D) other than the ionomer is a resin selected from an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, a low density polyethylene, a linear low density polyethylene, and a polyester. The ionomer resin composition according to claim 1, wherein the ionomer resin composition is provided.

エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリエステル等は、エチレン系アイオノマーとのブレンドが容易である。従って、前記アイオノマー以外の樹脂として好ましく選択される。   Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, low density polyethylene, linear low density polyethylene, polyester, and the like can be easily blended with ethylene ionomer. Therefore, it is preferably selected as a resin other than the ionomer.

請求項4の発明は、前記難燃剤bが、臭素系難燃剤(B)と三酸化アンチモン(E)からなり、(B)と(E)の重量比が(B):(E)=100:0〜50:50の範囲内であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のアイオノマー樹脂組成物である。   In the invention of claim 4, the flame retardant b is composed of a brominated flame retardant (B) and antimony trioxide (E), and the weight ratio of (B) to (E) is (B) :( E) = 100. It is in the range of 0-50: 50, The ionomer resin composition according to any one of claims 1 to 3.

前記難燃剤としては、その全量が臭素系難燃剤(B)であってもよいが、その一部を三酸化アンチモン(E)に置き換えることも可能である。前記のように、溶融混練により、三酸化アンチモンとアイオノマーのカルボン酸官能基が脱水反応してイオン結合が形成されることが知られており、従来技術では、アイオノマーへの三酸化アンチモンの使用は困難であった。しかし、本発明においては、有機化クレー(C)を含有している結果、この反応が抑制されアイオノマーへの三酸化アンチモンの配合が可能となった。   The flame retardant may be entirely brominated flame retardant (B), but a part of it may be replaced with antimony trioxide (E). As described above, it is known that carboxylic acid functional groups of antimony trioxide and ionomer are dehydrated by melt kneading to form an ionic bond. In the prior art, the use of antimony trioxide for ionomer It was difficult. However, in the present invention, as a result of containing the organized clay (C), this reaction was suppressed, and it was possible to add antimony trioxide to the ionomer.

又、アイオノマー以外の樹脂Dを配合する場合は、アイオノマー/三酸化アンチモンの配合が更に容易になり、生産性の面からより好ましくなる。なお、臭素系難燃剤(B)の一部を三酸化アンチモン(E)に置き換えた場合でも、(B)と(E)の合計は、樹脂aの100重量部に対し、10重量部以上、100重量部以下である。   Further, when the resin D other than the ionomer is blended, the blending of the ionomer / antimony trioxide is further facilitated, which is more preferable from the viewpoint of productivity. Even when a part of the brominated flame retardant (B) is replaced with antimony trioxide (E), the total of (B) and (E) is 10 parts by weight or more with respect to 100 parts by weight of the resin a. 100 parts by weight or less.

(B)と(E)の重量比は、(B):(E)=100:0〜50:50の範囲内が好ましい。(B)と(E)の重量比を前記範囲内とすることにより、難燃性を保ちながら、溶融混練時の難燃剤の分散性悪化を防ぐことができ、特性を両立できるので好ましい。より好ましくは(B):(E)=90:10〜60:40の範囲である。   The weight ratio of (B) to (E) is preferably within the range of (B) :( E) = 100: 0 to 50:50. By setting the weight ratio of (B) and (E) within the above range, it is possible to prevent deterioration of the dispersibility of the flame retardant during melt kneading while maintaining flame retardancy, and it is preferable because both properties can be achieved. More preferably, it is the range of (B) :( E) = 90: 10-60: 40.

本発明のアイオノマー樹脂組成物は、難燃性を有しながら優れた押出成形性を有する。即ち、本発明のアイオノマー樹脂組成物を用いて押出成形品を作製する際に、本発明の効果が顕著に現れる。そこで、請求項5として、請求項1ないし請求項4のいずれか1項に記載のアイオノマー樹脂組成物を押出成形してなることを特徴とする押出成形品を提供する。この押出成形品としては、後述のチューブ状成形品以外にも、電線の被覆、フラットケーブル、異形押出成型品、ブロー成型品、フィルム等を挙げることができる。   The ionomer resin composition of the present invention has excellent extrudability while having flame retardancy. That is, the effect of the present invention is remarkably exhibited when producing an extruded product using the ionomer resin composition of the present invention. Then, as Claim 5, the extrusion molded article formed by extrusion-molding the ionomer resin composition of any one of Claim 1 thru | or 4 is provided. In addition to the tube-shaped molded product described later, examples of the extruded molded product include an electric wire coating, a flat cable, a modified extrusion molded product, a blow molded product, and a film.

請求項6の発明は、請求項1ないし請求項4のいずれか1項に記載のアイオノマー樹脂組成物をチューブ状に押出成形してなることを特徴とするチューブ状成形品である。本発明のアイオノマー樹脂組成物は、優れた押出成形性を有するが、特に薄肉成形性に優れている。従って、押出成形にてチューブ状成形品を作成する際、本発明の効果が特に顕著になる。   A sixth aspect of the present invention is a tubular molded article obtained by extruding the ionomer resin composition according to any one of the first to fourth aspects into a tubular shape. The ionomer resin composition of the present invention has excellent extrusion moldability, but is particularly excellent in thin-wall moldability. Therefore, the effect of the present invention is particularly remarkable when producing a tubular molded product by extrusion molding.

請求項7の発明は、請求項6に記載のチューブ状成形品を加熱条件下で径方向に膨張し(拡径)、その形状を冷却固定してなることを特徴とする熱収縮チューブである。   The invention according to claim 7 is a heat shrinkable tube characterized in that the tubular molded article according to claim 6 is expanded in the radial direction (expanded diameter) under heating conditions, and its shape is cooled and fixed. .

前記本発明のチューブ状成形品を加熱条件下で径方向に膨張させることにより、熱収縮チューブを作製することができる。本発明のチューブ状成形品は、エチレン系アイオノマー樹脂がベース材料であるため、前記チューブ状成形品より作成された熱収縮チューブは低温での収縮が可能であり、熱履歴を好まない機器内等での使用に適している。   A heat-shrinkable tube can be produced by expanding the tubular molded article of the present invention in the radial direction under heating conditions. In the tubular molded product of the present invention, since the ethylene ionomer resin is a base material, the heat-shrinkable tube made from the tubular molded product can be shrunk at a low temperature, and in a device that does not like heat history. Suitable for use in

請求項8の発明は、請求項6に記載のチューブ状成形品に電離放射線を照射して、前記アイオノマー樹脂組成物を架橋した後、加熱条件下で径方向に膨張し、その形状を冷却固定したことを特徴とする熱収縮チューブである。   According to an eighth aspect of the present invention, the tubular molded article according to the sixth aspect is irradiated with ionizing radiation to crosslink the ionomer resin composition, and then expands in the radial direction under heating conditions, and the shape is cooled and fixed. This is a heat-shrinkable tube.

本発明のチューブ状成形品に電離放射線を照射した後に、加熱条件下で径方向に膨張(拡径)させて熱収縮チューブを作製することも可能である。この熱収縮チューブも、エチレン系アイオノマー樹脂がベース材料であるため、低温での収縮が可能であり、熱履歴を好まない機器内等での使用に適している。又、電離放射線による照射架橋を施すことにより、自動車のトランスミッション用のワイヤーハーネス等に使用される熱収縮チューブに求められる優れた耐摩耗性、耐熱性を満足することができる。   It is also possible to produce a heat-shrinkable tube by irradiating the tube-shaped molded product of the present invention with ionizing radiation and then expanding (expanding diameter) in the radial direction under heating conditions. Since this heat-shrinkable tube is also made of an ethylene ionomer resin as a base material, it can be shrunk at a low temperature, and is suitable for use in devices that do not like heat history. In addition, by performing irradiation crosslinking with ionizing radiation, it is possible to satisfy the excellent wear resistance and heat resistance required for heat shrinkable tubes used in wire harnesses for automobile transmissions and the like.

本発明のアイオノマー樹脂組成物は、難燃性を有しながらも、優れた薄肉成形性と高い剛性をあわせもつ高剛性難燃材料である。本発明のチューブ状成形品は、この高剛性難燃材料を用いているので、難燃性と高い剛性をあわせもつものである。本発明の熱収縮チューブは、このチューブ状成形品を用いて得られるので、難燃性と高い剛性をあわせもつとともに、低温での収縮が可能であり、熱履歴を好まない機器内等での使用に適している。   The ionomer resin composition of the present invention is a high-rigidity flame-retardant material that has excellent thin moldability and high rigidity while having flame retardancy. Since the tubular molded product of the present invention uses this highly rigid flame retardant material, it has both flame retardancy and high rigidity. Since the heat-shrinkable tube of the present invention is obtained using this tubular molded product, it has both flame retardancy and high rigidity, and can be shrunk at a low temperature, and in a device that does not like heat history. Suitable for use.

次に本発明を実施するための形態を説明する。なお、本発明の範囲はこの形態に限定されるものではなく、本発明の趣旨を損ねない範囲で種々の変更が可能である。   Next, the form for implementing this invention is demonstrated. The scope of the present invention is not limited to this embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明のアイオノマー樹脂組成物は、上記の樹脂a、有機化クレー(C)及び難燃剤bを混合して得られるもののみでなく、分子内にカルボキシル基を有するエチレン共重合体と金属塩、有機化クレー(C)及び難燃剤b(及び必要により(D)等の他の成分)を混合して得られる樹脂組成物も含まれる。カルボキシル基を有するエチレン共重合体と金属塩とを混合すると、カルボキシル基は金属イオンによって中和されてカルボン酸イオンとなり、金属イオンとの塩を形成する。複数のカルボン酸イオンが金属イオンと会合することでエチレン共重合体同士が疑似架橋し、アイオノマー樹脂となる。   The ionomer resin composition of the present invention is not only obtained by mixing the resin a, the organic clay (C) and the flame retardant b, but also an ethylene copolymer having a carboxyl group in the molecule and a metal salt, Also included is a resin composition obtained by mixing organic clay (C) and flame retardant b (and other components such as (D) if necessary). When an ethylene copolymer having a carboxyl group and a metal salt are mixed, the carboxyl group is neutralized by a metal ion to become a carboxylate ion, thereby forming a salt with the metal ion. As the plurality of carboxylate ions are associated with metal ions, the ethylene copolymers are pseudo-crosslinked to form an ionomer resin.

本発明に使用するエチレン系アイオノマー樹脂としては、サーリン、ハイミラン等の商品名で市販されているものを使用することができる。   As the ethylene ionomer resin used in the present invention, those commercially available under trade names such as Surlyn and High Milan can be used.

分子内にカルボキシル基を有するエチレン共重合体としては、アクリル酸、メタクリル酸等のカルボキシル基を有するアクリル系モノマーとエチレンとの共重合体、無水マレイン酸等の酸無水物モノマーとエチレンとの共重合体が例示される。これらの共重合体の製造は共重合法、グラフト重合法等の既知の方法で行うことができ、各種の特性を向上させる目的で、更に他のモノマーを適宜共重合させることも可能である。   Examples of the ethylene copolymer having a carboxyl group in the molecule include a copolymer of an acrylic monomer having a carboxyl group such as acrylic acid and methacrylic acid and ethylene, and a copolymer of an acid anhydride monomer such as maleic anhydride and ethylene. Examples are polymers. These copolymers can be produced by a known method such as a copolymerization method or a graft polymerization method, and other monomers can be appropriately copolymerized for the purpose of improving various properties.

前記分子内にカルボキシル基を有するエチレン共重合体において、カルボキシル基含量の好ましい範囲は0.5〜50mol%、より好ましくは1〜30mol%である。0.5mol%未満では樹脂組成物の剛性や押出加工性が低下する場合があり、50mol%を超えると耐電解液性が低下する場合がある。   In the ethylene copolymer having a carboxyl group in the molecule, a preferable range of the carboxyl group content is 0.5 to 50 mol%, more preferably 1 to 30 mol%. If it is less than 0.5 mol%, the rigidity and extrusion processability of the resin composition may be reduced, and if it exceeds 50 mol%, the electrolytic solution resistance may be reduced.

アイオノマー樹脂組成物中のカルボン酸の一部又は全部は、金属塩又は有機化クレー中の金属イオンによって中和される。アイオノマー樹脂組成物中のカルボキシル基の55%以上が中和されていると、剛性が高くなり好ましい。なおカルボキシル基の中和度は、アイオノマー樹脂組成物中のカルボキシル基の総量に対するイオン化したカルボキシル基(カルボン酸イオン)量の割合であり、特許文献2等に記載のように、赤外吸収スペクトル(IR)測定で求めることができる。   Part or all of the carboxylic acid in the ionomer resin composition is neutralized by metal ions or metal ions in the organized clay. It is preferable that 55% or more of the carboxyl groups in the ionomer resin composition are neutralized because rigidity increases. The neutralization degree of the carboxyl group is the ratio of the amount of ionized carboxyl groups (carboxylate ions) to the total amount of carboxyl groups in the ionomer resin composition. As described in Patent Document 2 and the like, the infrared absorption spectrum ( IR) measurement.

臭素系難燃剤(B)としては、エチレンビス−テトラブロモフタルイミド(アルベマール社製、商品名SAYTEXBT−93)、あるいはアルベマール社製の商品名SAYTEX402、SAYTEX8010などを挙げることができる。臭素系難燃剤(B)としては、臭素含有量が多いほうが難燃性の付与に効果がある。臭素系難燃剤(B)は、使用するエチレン系アイオノマー樹脂やアイオノマー以外の樹脂との混ざり性を考慮して、適宜選定し添加すればよいが、環境規制に定められていないものを選定することが好ましい。   Examples of the brominated flame retardant (B) include ethylenebis-tetrabromophthalimide (trade name: SAYTEXBT-93, manufactured by Albemarle Corporation), and trade names: SAYTEX402, SAYTEX8010, manufactured by Albemarle Corporation. As the brominated flame retardant (B), a higher bromine content is more effective in imparting flame retardancy. The brominated flame retardant (B) may be appropriately selected and added in consideration of the miscibility with the ethylene ionomer resin to be used or a resin other than the ionomer, but the one not specified in the environmental regulations should be selected. Is preferred.

本発明で使用する有機化クレー(C)とは、モンモリロナイト等の層状珪酸塩(クレー)において、珪酸塩平面の層間に有機化合物が導入(インターカレーション)されたものである。層状珪酸塩では、層状に積層した珪酸塩平面の間に、ナトリウムイオンやカルシウムイオンのような中間層カチオンが存在して層状の結晶構造を保っているが、この中間層カチオンを有機カチオンとイオン交換することで、有機化合物が珪酸塩平面の表面に化学的に結合した有機化クレー(C)が得られる。   The organic clay (C) used in the present invention is a layered silicate (clay) such as montmorillonite in which an organic compound is introduced (intercalated) between the layers of the silicate plane. In layered silicates, intermediate layer cations such as sodium ions and calcium ions exist between layered silicate planes to maintain a layered crystal structure. By exchanging, an organic clay (C) in which the organic compound is chemically bonded to the surface of the silicate plane is obtained.

有機化クレー(C)は、層間に有機化合物がインターカレーションすることにより珪酸塩平面間の層間距離が大きくなり、有機物への分散性が向上する。又未処理のクレーでは、有機溶剤中で層間距離が変化することはないが、有機化クレー(C)は有機溶剤中で層間距離がさらに広がり膨潤する性質を持つため、更に分散性が向上する。このような有機化クレー(C)としては、Nanofil、エスベン等の商品名で市販されているものを使用することができる。   In the organic clay (C), the intercalation of the organic compound between the layers increases the interlayer distance between the silicate planes and improves the dispersibility in organic matter. In the case of untreated clay, the interlayer distance does not change in the organic solvent, but the organic clay (C) has the property that the interlayer distance further expands and swells in the organic solvent, so that the dispersibility is further improved. . As such an organized clay (C), those marketed under the trade names such as Nanofil and Sven can be used.

有機化クレー(C)の原料となる層状珪酸塩は、一般的には粘土、クレーとして知られているものであり、モンモリロナイト、バイデライト、へクトライト、サポナイト、スチブンサイト、ソーコナイト、ノントロナイト等のスメクタイト系粘土のほか、バーミキュライト、ハロイサイト、膨潤性マイカ等、天然及び合成粘土及びこれらの混合物が挙げられる。   The layered silicate used as the raw material for the organized clay (C) is generally known as clay or clay, and is a smectite such as montmorillonite, beidellite, hectorite, saponite, stevensite, sauconite, nontronite. In addition to the clay, natural and synthetic clays such as vermiculite, halloysite, and swellable mica, and mixtures thereof can be mentioned.

有機化クレー(C)の生成に用いられる有機化合物、即ち層間にインターカレーションされる有機化合物としては、第4級アンモニウム塩、ホスホニウム塩、スルホニウム塩、及びそれらの混合物からなる有機カチオンが挙げられる。さらに詳しくは第4級アンモニウム塩としては、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルステアリルアンモニウム、ジメチルジステアリルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、ベンサルコニウム等のベンジルトリアルキルアンモニウムイオンやトリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウム等のアルキルトリメチルアンモニウムイオン、さらにジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウム等のジメチルジアルキルアンモニウムイオン、さらにトリオクチルメチルアンモニウム、トリドデシルメチルアンモニウム等のトリアルキルメチルアンモニウムイオン、ベンゼン環を2個有するベンゼトニウムイオンが挙げられる。   Examples of the organic compound used for forming the organoclay (C), that is, the organic compound intercalated between the layers include organic cations composed of quaternary ammonium salts, phosphonium salts, sulfonium salts, and mixtures thereof. . More specifically, examples of quaternary ammonium salts include benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, benzyldimethyldodecylammonium, benzyldimethylstearylammonium, dimethyldistearylammonium, benzyldimethyloctadecylammonium, benzalkonium and the like. Alkyl ammonium ions, alkyl trimethyl ammonium ions such as trimethyl octyl ammonium, trimethyl dodecyl ammonium and trimethyl octadecyl ammonium, dimethyl dialkyl ammonium ions such as dimethyl dioctyl ammonium, dimethyl didodecyl ammonium and dimethyl dioctadecyl ammonium, and trioctyl methyl ammonium Moniumu, trialkyl methyl ammonium ions such as tridodecylmethylammonium include benzethonium ion having two benzene rings.

有機化クレー(C)のより具体的な製造方法としては、層状珪酸塩を水中で十分に剥離、分散させ、その後、水又はアルコールに溶解した有機カチオンを、層状珪酸塩のカチオン交換容量に対して0.5〜2.0倍量添加し、層状珪酸塩の珪酸塩平面に吸着しているナトリウムイオンと有機カチオンイオンをイオン交換する方法を挙げることができる。   As a more specific production method of the organized clay (C), the layered silicate is sufficiently peeled and dispersed in water, and then the organic cation dissolved in water or alcohol is used with respect to the cation exchange capacity of the layered silicate. And a method of ion-exchanging sodium ions and organic cation ions adsorbed on the silicate plane of the layered silicate.

アイオノマー以外の樹脂(D)としては、ポリエチレン、ポリプロピレンや、エチレンの2元系、3元系の共重合体、又それらポリマーのグラフト系樹脂、スチレン系樹脂、又それらポリマーのグラフト系樹脂、脂環式ポリマー、熱可塑性エラストマー、植物由来樹脂、生分解性樹脂、エンジニアリングプラスチックやポリエステル、ポリアミド等が挙げられる。   Resins (D) other than ionomers include polyethylene, polypropylene, ethylene binary and ternary copolymers, graft polymers of these polymers, styrene resins, graft resins of these polymers, and fats. Examples thereof include cyclic polymers, thermoplastic elastomers, plant-derived resins, biodegradable resins, engineering plastics, polyesters, and polyamides.

アイオノマー以外の樹脂(D)としては、エチレン部位を有する樹脂や高い極性を有する樹脂が好ましく、エチレン系コポリマー、グリシジル基含有3元系、無水マレイン酸含有3元系、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトEVA、ポリエステル系熱可塑性エラストマー、ポリブチレンサクシネート、低融点ポリブチレン−テレフタレート、ポリブチレンテレフタレート、非晶性ポリエチレンテレフタレート、ポリエチレン等を挙げることができる。   As the resin (D) other than the ionomer, a resin having an ethylene moiety or a resin having a high polarity is preferable. An ethylene copolymer, a glycidyl group-containing ternary system, a maleic anhydride-containing ternary system, maleic anhydride-grafted polyethylene, anhydrous Mention may be made of maleic acid graft EVA, polyester-based thermoplastic elastomer, polybutylene succinate, low melting point polybutylene-terephthalate, polybutylene terephthalate, amorphous polyethylene terephthalate, polyethylene and the like.

より好ましくは、EVA、エチレン−エチルアクリレート共重合体(EEA)、低密度ポリエチレン、直鎖低密度ポリエチレン(LLDPE)、ポリエステル類である。これらの樹脂をブレンドすることで、アイオノマーの溶融混練が容易になり、難燃剤として添加する三酸化アンチモンとアイオノマー樹脂の反応による溶融混練時の高トルク化、発泡等を抑制することができる。   More preferred are EVA, ethylene-ethyl acrylate copolymer (EEA), low density polyethylene, linear low density polyethylene (LLDPE), and polyesters. By blending these resins, it is easy to melt and knead the ionomer, and it is possible to suppress an increase in torque and foaming during the melt kneading due to the reaction between antimony trioxide added as a flame retardant and the ionomer resin.

本発明で使用する三酸化アンチモンは一般的な市販品を使用することができる。   As the antimony trioxide used in the present invention, a general commercial product can be used.

本発明のアイオノマー樹脂組成物には、本発明の趣旨を損ねない範囲で他の成分、例えば、トリメチロールプロパントリメタクリレートやトリアリルイソシアヌレート等の多官能性モノマーや、酸化防止剤、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することができる。   In the ionomer resin composition of the present invention, other components, for example, a polyfunctional monomer such as trimethylolpropane trimethacrylate and triallyl isocyanurate, an antioxidant, a flame retardant, Various additives such as an ultraviolet absorber, a light stabilizer, a heat stabilizer, a lubricant, and a colorant can be mixed.

本発明のアイオノマー樹脂組成物は、上記の材料を、溶融混練して製造することができる。溶融混練では、オープンロール、加圧ニーダー、単軸混合機、2軸混合機等の既知の混合装置を用いて混合することができ、使用するエチレン系アイオノマー樹脂の融点以上の温度で溶融混合することが好ましい。   The ionomer resin composition of the present invention can be produced by melt-kneading the above materials. In melt kneading, mixing can be performed using a known mixing device such as an open roll, a pressure kneader, a single-screw mixer, or a twin-screw mixer, and the mixture is melt-mixed at a temperature equal to or higher than the melting point of the ethylene ionomer resin used. It is preferable.

本発明の熱収縮チューブを作製する際に行われる拡径は、公知の熱収縮チューブの製造で通常行われている方法、例えば、チューブ内部を加圧してふくらませる方法、チューブを、減圧ゾーンを設けたラインに通す方法で行うことができる。拡径の程度としては、元の内径の1.5〜4倍程度が好ましい。本発明のチューブはエチレン系アイオノマーであるため、拡径時の加熱温度としては60℃以上100℃以下が望ましい。ただし、電離放射線でチューブ状成形品が照射され樹脂の架橋が行われた場合は、チューブの耐熱性が向上しているので、140℃以上、200℃以下が望ましい。   The diameter expansion performed when producing the heat-shrinkable tube of the present invention is a method usually performed in the production of a known heat-shrinkable tube, for example, a method of inflating the tube by pressurizing the inside of the tube, and providing the tube with a decompression zone. It can be done by passing through a separate line. The degree of diameter expansion is preferably about 1.5 to 4 times the original inner diameter. Since the tube of the present invention is an ethylene ionomer, the heating temperature during diameter expansion is desirably 60 ° C. or higher and 100 ° C. or lower. However, when the tube-shaped molded article is irradiated with ionizing radiation and the resin is cross-linked, the heat resistance of the tube is improved. Therefore, the temperature is preferably 140 ° C. or higher and 200 ° C. or lower.

電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度等工業的利用の観点から加速電子線が最も好ましい。   Examples of ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, α rays, ultraviolet rays, etc., but accelerated electrons are used from the viewpoint of industrial use, such as ease of use of ion sources, transmission thickness of ionizing radiation, and speed of crosslinking treatment. Lines are most preferred.

加速電子線の加速電圧は、成形品の肉厚や形状によって適宜設定すればよい。例えば厚み100μmサイズの成形品であれば、加速電圧は200〜10,000kVの間で選定される。照射線量としては30〜500kGyで充分な架橋度が得られる。   The acceleration voltage of the accelerating electron beam may be appropriately set depending on the thickness and shape of the molded product. For example, in the case of a molded product having a thickness of 100 μm, the acceleration voltage is selected between 200 and 10,000 kV. An irradiation dose of 30 to 500 kGy provides a sufficient degree of crosslinking.

次に発明を実施例により説明する。実施例は本発明の範囲を限定するものではない。   The invention will now be described by way of examples. The examples are not intended to limit the scope of the invention.

先ず、下記の実施例、比較例で行った、樹脂ペレットの作製、チューブ状成形品の作製、薄肉成形性の評価、熱収縮チューブの作製、熱収縮チューブの評価について説明する。   First, the production of resin pellets, the production of a tubular molded product, the evaluation of thin-wall formability, the production of a heat-shrinkable tube, and the evaluation of a heat-shrinkable tube performed in the following Examples and Comparative Examples will be described.

(樹脂ペレットの作製)
表1〜5に示す配合処方で、エチレンアイオノマー樹脂(A)、臭素系難燃剤(B)、有機化クレー(C)、アイオノマー以外の樹脂(D)、三酸化アンチモン(E)、及び酸化防止剤等の材料を、二軸混合機(26mmΦ、L/D=48.5)を使用し、バレル温度160〜180℃、スクリュー回転数200rpmで溶融混合した後、ストランドカットペレダイザでペレット化し、アイオノマー樹脂組成物のペレットを作製した。
(Production of resin pellets)
In the formulation shown in Tables 1 to 5, ethylene ionomer resin (A), brominated flame retardant (B), organic clay (C), resin other than ionomer (D), antimony trioxide (E), and antioxidant Using a twin-screw mixer (26 mmΦ, L / D = 48.5), the material such as the agent is melt-mixed at a barrel temperature of 160 to 180 ° C. and a screw rotation speed of 200 rpm, and then pelletized with a strand cut pelletizer. A pellet of the ionomer resin composition was prepared.

(チューブ状成形品の作製)
上記樹脂ペレットの作製で得られたアイオノマー樹脂組成物を、単軸溶融押出機(45mmΦ、L/D=24)を用いてチューブ状に押出成形し、内径10mmΦ、肉厚160μmのチューブ状成形品(表1〜5中では、160μmと表す。)及び内径10mmΦ、肉厚80μmのチューブ状成形品(表1〜5中では、80μmと表す。)を得た。押出にはDDR(Draw Down Ratio)引落率が1〜15のチュービングダイを用い、押出線速は40m/分とした。なお、DDR引落率は以下の式により計算する。
(Production of tube-shaped molded product)
The ionomer resin composition obtained by the production of the above resin pellets is extruded into a tube shape using a single-screw melt extruder (45 mmΦ, L / D = 24), and a tubular molded product having an inner diameter of 10 mmΦ and a wall thickness of 160 μm. (In Tables 1 to 5, it is expressed as 160 μm) and a tubular molded product having an inner diameter of 10 mmΦ and a wall thickness of 80 μm (in Tables 1 to 5, expressed as 80 μm) was obtained. For extrusion, a tubing die having a DDR (Draw Down Ratio) draw rate of 1 to 15 was used, and the extrusion linear velocity was 40 m / min. The DDR withdrawal rate is calculated by the following formula.

DDR引落率=(D −D )/(d −d
(D:ダイス外径、D:ポイント外径、d:被覆外径、d:被覆内径)
DDR withdrawal rate = (D 1 2 −D 2 2 ) / (d 1 2 −d 2 2 )
(D 1 : die outer diameter, D 2 : point outer diameter, d 1 : coating outer diameter, d 2 : coating inner diameter)

(薄肉成形性の評価)
上記肉厚80μmのチューブ状成形品の作製の際に、薄肉成形性を評価した。薄肉成形性は、80μmのチューブを連続して成形できるものを良好、外径変動やチューブ切れ、外観荒れが発生したものを不良と判定した。各実施例、比較例での評価結果は、表1〜5中の「成形性」の行に示す。
(Evaluation of thin-wall formability)
Thin-wall moldability was evaluated during the production of the above tubular molded product having a thickness of 80 μm. Thin-wall moldability was determined to be good when 80 μm tubes could be continuously formed, and poor when outer diameter fluctuations, tube breakage, and rough appearance occurred. The evaluation results in each example and comparative example are shown in the row of “formability” in Tables 1 to 5.

(熱収縮チューブの作製)
上記チューブ状成形品の作製により得られたチューブ状成型品を加熱下で拡径後、冷却固定して熱収縮チューブを得た。拡径処理は、上記チューブ状成型品をベースポリマーの軟化点以上の温度に加熱した状態で、チューブ内に圧縮空気を導入する方法により、所定の外径に膨張した後、冷却して形状を固定することにより行った。
(Production of heat-shrinkable tube)
The tube-shaped molded product obtained by the production of the above-mentioned tube-shaped molded product was expanded by heating and then fixed by cooling to obtain a heat-shrinkable tube. In the diameter expansion treatment, the tube-shaped molded product is heated to a temperature equal to or higher than the softening point of the base polymer, and is expanded to a predetermined outer diameter by a method of introducing compressed air into the tube. Performed by fixing.

なお、実施例1〜10及び比較例1〜5では、チューブ状成型品に電離放射線の照射を行わずに加熱して拡径を行った。実施例11〜15及び比較例6〜10では、チューブ状成型品に加速電圧2.0MeVの電子線200kGyを照射した後に加熱下で拡径した。実施例、比較例における拡径は、元の内径の2.5倍程度とした。又、実施例1〜10及び比較例1〜5では、拡径時の加熱温度は70℃とした。実施例11〜15及び比較例6〜10では、電子線で処理されており耐熱性が向上しているため、拡径時の加熱温度は140℃以上200℃以下とした。   In Examples 1 to 10 and Comparative Examples 1 to 5, the tube-shaped molded product was heated to expand the diameter without being irradiated with ionizing radiation. In Examples 11 to 15 and Comparative Examples 6 to 10, the tube-shaped molded product was irradiated with an electron beam of 200 kGy having an acceleration voltage of 2.0 MeV and then expanded under heating. The expanded diameter in the examples and comparative examples was about 2.5 times the original inner diameter. Moreover, in Examples 1-10 and Comparative Examples 1-5, the heating temperature at the time of diameter expansion was 70 degreeC. In Examples 11-15 and Comparative Examples 6-10, since the heat resistance was improved by the treatment with the electron beam, the heating temperature at the time of diameter expansion was set to 140 ° C. or more and 200 ° C. or less.

(熱収縮チューブの評価:収縮温度)
上記熱収縮チューブの作製で得られた熱収縮チューブを、50℃のギヤオーブン中に3分間放置してチューブ内径を測定する。その後10℃ずつ温度を上昇させて3分間放置し、内径(A)を測定し、以下に示す式により収縮率(%)を求めた。収縮率が80%以上になる温度を収縮温度とした。各実施例、比較例での結果は、表1〜5中の「収縮温度」の行に示す。
(Evaluation of heat shrinkable tube: shrinkage temperature)
The heat-shrinkable tube obtained by the production of the heat-shrinkable tube is left in a gear oven at 50 ° C. for 3 minutes to measure the tube inner diameter. Thereafter, the temperature was raised by 10 ° C. and left for 3 minutes, the inner diameter (A) was measured, and the shrinkage rate (%) was determined by the following formula. The temperature at which the shrinkage rate reached 80% or more was defined as the shrinkage temperature. The results in each example and comparative example are shown in the row of “shrinkage temperature” in Tables 1 to 5.

収縮率(%)=100×(1−(A−B)/(C−B))
A:加熱後の内径(mm)
B:押出チューブの内径(mm)
C:膨張後の押出チューブの内径(mm)
Shrinkage rate (%) = 100 × (1− (A−B) / (C−B))
A: Inner diameter after heating (mm)
B: Inside diameter of extruded tube (mm)
C: Inside diameter of the extruded tube after expansion (mm)

(熱収縮チューブの評価:剛性試験)
上記熱収縮チューブの作製で得られた熱収縮チューブを100mmの長さに切断し、チューブが水平になるように片端を支持した状態にした。この時、剛性が低いチューブでは、支持していない他端の口が閉じたり、チューブが水平を保てず垂れ下がる場合があるが、この場合を不合格と判定した。このような形状とならず、チューブが口開きした状態で自立している(水平を保っている)場合を合格と判定した。各実施例、比較例での評価結果は、表1〜5中の「剛性試験」の行に示す。
(Evaluation of heat-shrinkable tube: rigidity test)
The heat-shrinkable tube obtained by the production of the heat-shrinkable tube was cut into a length of 100 mm, and one end was supported so that the tube was horizontal. At this time, in the tube having low rigidity, the mouth of the other end that is not supported may be closed or the tube may hang down without being kept horizontal, but this case was determined to be unacceptable. The case where it was not such a shape and the tube was self-standing with the mouth open (maintaining horizontal) was determined to be acceptable. The evaluation results in each example and comparative example are shown in the row of “rigidity test” in Tables 1 to 5.

(熱収縮チューブの評価:弾性率)
熱収縮チューブを10cm長さに切断し、引張速度=100mm/分、標線間距離=20mmで引張試験を行い、応力−伸び曲線から弾性率(MPa)を求めた。各実施例、比較例での評価結果は、表1〜5中の「弾性率」の行に示す。
(Evaluation of heat-shrinkable tube: elastic modulus)
The heat-shrinkable tube was cut to a length of 10 cm, a tensile test was performed at a tensile speed = 100 mm / min, and a distance between marked lines = 20 mm, and an elastic modulus (MPa) was obtained from a stress-elongation curve. The evaluation results in each example and comparative example are shown in the row of “elastic modulus” in Tables 1 to 5.

(熱収縮チューブの評価:難燃試験)
UL規格224に記載のVW−1垂直燃焼試験を5点の試料について行った。試験は、各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、試料の上部に取り付けたクラフト紙が燃えたり、焦げたりしないものを合格レベルとし、5点全てが合格レベルに達したものを「合格」とした。5点中、1点でも合格レベルに達しなかった場合は「不合格」とした。各実施例、比較例での評価結果は、表1〜5中の「難燃試験」の行に示す。
(Evaluation of heat-shrinkable tube: flame retardant test)
The VW-1 vertical combustion test described in UL standard 224 was performed on five samples. In the test, when each sample was ignited 15 seconds for 5 times, the fire extinguished within 60 seconds, the absorbent cotton laid on the bottom was not burned by burning fallen objects, the kraft paper attached to the top of the sample burned Those that did not burn were considered acceptable levels, and all 5 points reached acceptable levels as “accepted”. If one of the 5 points did not reach the pass level, it was judged as “Fail”. The evaluation results in each example and comparative example are shown in the “flame retardant test” row in Tables 1-5.

次に、下記の実施例、比較例で使用した材料を以下に示す。
1. エチレンアイオノマー樹脂(A): 商品名ハイミラン1706(三井デュポンポリケミカル社製、MFR=0.9)(表中では「アイオノマー」と示す。)
2. アイオノマー以外の樹脂(D):
・酢酸ビニル含量46重量%、MFR=2.5のエチレン−酢酸ビニル共重合体(表中では「EVA1」と示す。)
・酢酸ビニル含量15重量%、MFR=1.5のエチレン−酢酸ビニル共重合体(表中では「EVA2」と示す。)
・エチルアクリレート含量23重量%、MFR=0.5のエチレンエチルアクリレートコポリマー(表中では「EEA」と示す。)
・MFR=0.6のLLDPE(表中では「LLDPE」と示す。)
3. 臭素系難燃剤(B):
エチレンビス(ペンタブロモフェニル)(融点350℃、臭素含有量82%)(商品名:Saytex8010)
4. 有機化クレー(C):
ROCK WOOD社製、商品名:Nanofil 15(層間有機処理剤としてジメチルジステアリルアンモニウム塩を用いたもの)
5. 三酸化アンチモン(E):平均粒径1μm品
6. 酸化防止剤:ヒンダードアミン系安定剤(商品名:ナウガード445、クロンプトン社製)
Next, materials used in the following examples and comparative examples are shown below.
1. Ethylene ionomer resin (A): Trade name Himiran 1706 (Mitsui DuPont Polychemical Co., Ltd., MFR = 0.9) (shown as “ionomer” in the table)
2. Resins other than ionomer (D):
An ethylene-vinyl acetate copolymer having a vinyl acetate content of 46% by weight and MFR = 2.5 (shown as “EVA1” in the table).
An ethylene-vinyl acetate copolymer having a vinyl acetate content of 15% by weight and MFR = 1.5 (shown as “EVA2” in the table).
An ethylene ethyl acrylate copolymer having an ethyl acrylate content of 23% by weight and MFR = 0.5 (shown as “EEA” in the table)
LLDPE with MFR = 0.6 (shown as “LLDPE” in the table)
3. Brominated flame retardant (B):
Ethylene bis (pentabromophenyl) (melting point 350 ° C., bromine content 82%) (trade name: Saytex 8010)
4). Organized clay (C):
Product name: Nanofil 15 (a product using dimethyl distearyl ammonium salt as an interlayer organic treatment agent) manufactured by ROCK WOOD
5). Antimony trioxide (E): product with an average particle size of 1 μm Antioxidant: Hindered amine stabilizer (trade name: Nowguard 445, manufactured by Crompton)

[実施例1〜3]
エチレン系アイオノマー樹脂(A)、臭素系難燃剤(B)、有機化クレー(C)、及び酸化防止剤を、表1に示す処方で配合し、上記の「樹脂ペレットの作製」の方法(バレル温度180℃)に従って樹脂ペレットを作製し、その後、「チューブ状成形品の作製」の方法に従って肉厚80μmと160μmのチューブ状成型品を作製した。又、「薄肉成形性の評価」に従って成形性を評価した。更に、得られたチューブ状成型品を用い「熱収縮チューブの作製」の電離放射線の照射を行わない場合の方法に従って熱収縮チューブを作製し、その収縮性、剛性、弾性率、難燃性に関して上記「熱収縮チューブの評価」の方法で評価を行なった。その結果を表1に示す。
[Examples 1 to 3]
An ethylene ionomer resin (A), a brominated flame retardant (B), an organized clay (C), and an antioxidant are blended according to the formulation shown in Table 1, and the above-mentioned “preparation of resin pellets” (barrel Resin pellets were prepared according to a temperature of 180 ° C., and then tube-shaped molded products having a thickness of 80 μm and 160 μm were prepared according to the method of “Production of tube-shaped molded product”. In addition, the moldability was evaluated according to “Evaluation of thin-wall moldability”. Furthermore, using the obtained tube-shaped molded product, a heat shrinkable tube was produced according to the method in the case of performing no irradiation with ionizing radiation in “Preparation of heat shrinkable tube”, and regarding its shrinkability, rigidity, elastic modulus, and flame retardancy Evaluation was carried out by the above-mentioned “Evaluation of heat-shrinkable tube”. The results are shown in Table 1.

表1に示す結果より、実施例1〜3は、成形性、収縮温度(110℃未満であれば、良好と解釈できる。)、剛性試験、弾性率(300MPa以上であれば、良好と解釈できる。)、難燃試験の全ての評価に良好な結果を示すことが確認された。   From the results shown in Table 1, Examples 1 to 3 can be interpreted as good in terms of moldability, shrinkage temperature (if less than 110 ° C., good), rigidity test, and elastic modulus (if 300 MPa or higher). )), It was confirmed that all results of the flame retardant test showed good results.

[実施例4]
三酸化アンチモン(E)を添加し、樹脂ペレット作製時のバレル温度を160℃とした事以外は、実施例1と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表1に示す。表1に示す結果より、実施例4は、成形性、収縮温度、剛性試験、弾性率、難燃試験の全ての評価に良好な結果を示すことが確認された。
[Example 4]
Preparation and evaluation of a tubular molded product and a heat-shrinkable tube were carried out in the same manner as in Example 1 except that antimony trioxide (E) was added and the barrel temperature at the time of resin pellet production was 160 ° C. The results are shown in Table 1. From the results shown in Table 1, it was confirmed that Example 4 showed good results in all evaluations of moldability, shrinkage temperature, rigidity test, elastic modulus, and flame retardancy test.

[実施例5〜10]
実施例5〜6、8〜10では、アイオノマー以外の樹脂(D)を、表1又は表2に示す種類、処方で添加した以外は、実施例4と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。又、実施例7では、アイオノマー以外の樹脂(D)を、表2に示す処方で添加し、更に臭素系難燃剤(B)及び三酸化アンチモン(E)の添加量を変えた以外は、実施例4と同様にして、チューブ状成型品、熱収縮チューブにての評価を実施した。それらの結果を表1又は表2に示す。表1又は表2に示す結果より、実施例5〜10は、成形性、収縮温度、剛性試験、弾性率、難燃試験の全ての評価に良好な結果を示すことが確認された。
[Examples 5 to 10]
In Examples 5 to 6 and 8 to 10, except that the resin (D) other than the ionomer was added in the type and formulation shown in Table 1 or Table 2, the same as in Example 4, a tubular molded product, heat A shrinkable tube was prepared and evaluated. Moreover, in Example 7, resin (D) other than ionomer was added according to the formulation shown in Table 2, and the addition amount of brominated flame retardant (B) and antimony trioxide (E) was changed. In the same manner as in Example 4, evaluation was performed using a tubular molded product and a heat-shrinkable tube. The results are shown in Table 1 or Table 2. From the results shown in Table 1 or Table 2, it was confirmed that Examples 5 to 10 showed good results in all evaluations of moldability, shrinkage temperature, rigidity test, elastic modulus, and flame retardancy test.

なお、アイオノマー以外の樹脂(D)の比率が増加すると弾性率の低下が見られるが(実施例4〜6間の比較)、いずれも剛性試験に合格しており自立する剛性は有している。又、実施例5〜10の間では、アイオノマー以外の樹脂(D)の種類や比率を変えているが、評価結果に特に大幅な差異は見られておらず、エチレン系アイオノマー樹脂と溶融混練でブレンドできる樹脂であれば特に問題は見られないと考えられる。   In addition, when the ratio of resin (D) other than ionomer is increased, a decrease in elastic modulus is observed (comparison between Examples 4 to 6), but both have passed the rigidity test and have independent rigidity. . Moreover, between Examples 5-10, although the kind and ratio of resin (D) other than an ionomer are changed, the significant difference is not looked at by the evaluation result, and it is melt-kneading with ethylene-type ionomer resin. It is considered that there is no particular problem as long as the resin can be blended.

[比較例1]
臭素系難燃剤(B)を添加しないこと以外は実施例2と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表3に示す。比較例1では、難燃剤が添加されていないため、難燃試験に合格しなかった。
[Comparative Example 1]
A tube-shaped molded product and a heat-shrinkable tube were prepared and evaluated in the same manner as in Example 2 except that the brominated flame retardant (B) was not added. The results are shown in Table 3. In Comparative Example 1, the flame retardant test was not passed because no flame retardant was added.

[比較例2]
有機化クレー(C)を添加しないこと以外は実施例1と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表3に示す。比較例2では、有機化クレー(C)が添加されていないため、難燃試験に合格するものの、薄肉加工性が悪化し、肉厚80μmのチューブを安定して作成することができなかった。又、肉厚160μmのチューブでも弾性率が低い結果となった。
[Comparative Example 2]
A tube-shaped molded product and a heat-shrinkable tube were prepared and evaluated in the same manner as in Example 1 except that the organic clay (C) was not added. The results are shown in Table 3. In Comparative Example 2, since the organoclay (C) was not added, the flame retardancy test was passed, but the thin-wall processability deteriorated, and a tube having a wall thickness of 80 μm could not be stably formed. Further, the elastic modulus was low even with a tube having a wall thickness of 160 μm.

[比較例3]
有機化クレー(C)を添加しないこと以外は実施例4と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表3に示す。比較例3では、有機化クレー(C)が添加されていないため、難燃試験に合格するものの、薄肉加工性が悪化し、肉厚80μmのチューブを安定して作成することができなかった。又、肉厚160μmのチューブでも弾性率が低い結果となった。
[Comparative Example 3]
A tube-shaped molded product and a heat-shrinkable tube were produced and evaluated in the same manner as in Example 4 except that the organic clay (C) was not added. The results are shown in Table 3. In Comparative Example 3, since the organoclay (C) was not added, the flame retardancy test was passed, but the thin-wall processability deteriorated, and a tube having a thickness of 80 μm could not be stably formed. Further, the elastic modulus was low even with a tube having a wall thickness of 160 μm.

[比較例4]
エチレン系アイオノマー樹脂(A)/アイオノマー以外の樹脂(D)の比率(重量比)を30/70としたこと以外は、実施例5と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表3に示す。比較例4では、エチレン系アイオノマーの比率が低いため、肉厚80μmのチューブを作成できるものの、肉厚が安定せず、加工性が低かった。又、弾性率が大幅に低下しており自立剛性も得られなくなっていた。
[Comparative Example 4]
Except that the ratio (weight ratio) of ethylene ionomer resin (A) / resin (D) other than ionomer was 30/70, in the same manner as in Example 5, a tube-shaped molded product, production of a heat-shrinkable tube, Evaluation was performed. The results are shown in Table 3. In Comparative Example 4, since the ratio of ethylene ionomer was low, a tube having a wall thickness of 80 μm could be produced, but the wall thickness was not stable and the workability was low. In addition, the elastic modulus is greatly reduced, and the self-supporting rigidity cannot be obtained.

[比較例5]
エチレン系アイオノマー樹脂(A)を用いずに、かわりにアイオノマー以外の樹脂(D)であるEVA1を用いたこと以外は、実施例4と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表3に示す。比較例5では、エチレン系アイオノマー樹脂(A)を用いなかったため、押出成形性、剛性が低い結果となった。
[Comparative Example 5]
Except for using EVA1 which is a resin (D) other than an ionomer instead of using an ethylene ionomer resin (A), a tubular molded product, production of a heat-shrinkable tube, as in Example 4, Evaluation was performed. The results are shown in Table 3. In Comparative Example 5, since the ethylene ionomer resin (A) was not used, the extrusion moldability and rigidity were low.

Figure 2010185056
Figure 2010185056

Figure 2010185056
Figure 2010185056

Figure 2010185056
Figure 2010185056

[実施例11]
エチレン系アイオノマー樹脂(A)、臭素系難燃剤(B)、有機化クレー(C)、及び酸化防止剤を、表4に示す処方で配合し、上記の「樹脂ペレットの作製」の方法(バレル温度180℃)に従って樹脂ペレットを作製し、その後「チューブ状成形品の作製」の方法に従って肉厚80μmと160μmのチューブ状成型品を作製した。又、「薄肉成形性の評価」に従って成形性を評価した。更に、得られたチューブ状成型品に、加速電圧2.0MeVの電離放射線を200kGy照射し「熱収縮チューブの作製」の方法に従って熱収縮チューブを作製し、その収縮性、剛性、弾性率、難燃性に関して上記「熱収縮チューブの評価」の方法で評価を行なった。その結果を表4に示す。表4に示す結果より、実施例11は、成形性、収縮温度、剛性試験、弾性率、難燃試験の全ての評価に良好な結果を示すことが確認された。
[Example 11]
An ethylene ionomer resin (A), a brominated flame retardant (B), an organized clay (C), and an antioxidant are blended according to the formulation shown in Table 4, and the above-mentioned “preparation of resin pellets” (barrel Resin pellets were prepared according to a temperature of 180 ° C., and then tube-shaped molded products having a thickness of 80 μm and 160 μm were prepared according to the method of “Production of tube-shaped molded product”. In addition, the moldability was evaluated according to “Evaluation of thin-wall moldability”. Further, the obtained tube-shaped product is irradiated with 200 kGy of ionizing radiation having an acceleration voltage of 2.0 MeV, and a heat-shrinkable tube is produced according to the method of “Preparation of heat-shrinkable tube”. Evaluation was made on the flammability by the method of “Evaluation of heat-shrinkable tube”. The results are shown in Table 4. From the results shown in Table 4, it was confirmed that Example 11 showed good results in all evaluations of moldability, shrinkage temperature, rigidity test, elastic modulus, and flame retardancy test.

[実施例12]
三酸化アンチモン(E)を添加し、樹脂ペレット作製時のバレル温度を160℃とした事以外は、実施例11と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表4に示す。表4に示す結果より、実施例12は、成形性、収縮温度、剛性試験、弾性率、難燃試験の全ての評価に良好な結果を示すことが確認された。
[Example 12]
Preparation and evaluation of a tubular molded product and a heat-shrinkable tube were carried out in the same manner as in Example 11 except that antimony trioxide (E) was added and the barrel temperature at the time of resin pellet production was 160 ° C. The results are shown in Table 4. From the results shown in Table 4, it was confirmed that Example 12 showed good results in all evaluations of moldability, shrinkage temperature, rigidity test, elastic modulus, and flame retardancy test.

[実施例13〜15]
実施例13〜15では、アイオノマー以外の樹脂(D)を、表4に示す種類、処方で添加した以外は、実施例12と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。それらの結果を表4に示す。表4に示す結果より、実施例13〜15は、成形性、収縮温度、剛性試験、弾性率、難燃試験の全ての評価に良好な結果を示すことが確認された。
[Examples 13 to 15]
In Examples 13 to 15, a tube-shaped molded product and a heat-shrinkable tube were prepared and evaluated in the same manner as in Example 12 except that the resin (D) other than the ionomer was added in the type and formulation shown in Table 4. Carried out. The results are shown in Table 4. From the results shown in Table 4, it was confirmed that Examples 13 to 15 showed good results in all evaluations of moldability, shrinkage temperature, rigidity test, elastic modulus, and flame retardancy test.

なお、実施例13〜15の間では、アイオノマー以外の樹脂(D)の種類や比率を変えているが、評価結果に、特に大幅な差異は見られておらず、エチレン系アイオノマー樹脂と溶融混練でブレンドできる樹脂であれば特に問題は見られないと考えられる。   In addition, between Examples 13-15, although the kind and ratio of resin (D) other than an ionomer were changed, the significant difference was not looked at by the evaluation result, and ethylene-type ionomer resin and melt-kneading were carried out. It is considered that there is no particular problem as long as it is a resin that can be blended with.

[比較例6]
臭素系難燃剤(B)を添加せず、有機化クレー(C)の添加量を60重量部とした以外は実施例11と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表5に示す。比較例6では、難燃剤が添加されていないため、難燃試験に合格しなかった。
[Comparative Example 6]
Preparation and evaluation of a tubular molded product and a heat-shrinkable tube were performed in the same manner as in Example 11 except that the brominated flame retardant (B) was not added and the addition amount of the organic clay (C) was 60 parts by weight. Carried out. The results are shown in Table 5. In Comparative Example 6, the flame retardant test was not passed because no flame retardant was added.

[比較例7]
有機化クレー(C)を添加せず、臭素系難燃剤(B)の添加量を30重量部とした以外は実施例11と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表5に示す。比較例7では、有機化クレー(C)が添加されていないため、難燃試験に合格するものの、薄肉加工性が悪化し、肉厚80μmのチューブを安定して作成することができなかった。又、肉厚160μmのチューブでも弾性率が低い結果となった。
[Comparative Example 7]
In the same manner as in Example 11 except that the organic clay (C) was not added and the addition amount of the brominated flame retardant (B) was 30 parts by weight, the tube-shaped molded product and the heat-shrinkable tube were produced and evaluated. Carried out. The results are shown in Table 5. In Comparative Example 7, since the organic clay (C) was not added, the flame retardancy test was passed, but the thin-wall processability was deteriorated, and a tube having a thickness of 80 μm could not be stably formed. Further, the elastic modulus was low even with a tube having a wall thickness of 160 μm.

[比較例8]
有機化クレー(C)を添加しないこと以外は実施例12と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表5に示す。比較例8では、有機化クレー(C)が添加されていないため、難燃試験に合格するものの、薄肉加工性が悪化し、肉厚80μmのチューブを安定して作成することができなかった。又、肉厚160μmのチューブでも弾性率が低い結果となった。
[Comparative Example 8]
A tube-shaped molded product and a heat-shrinkable tube were prepared and evaluated in the same manner as in Example 12 except that the organic clay (C) was not added. The results are shown in Table 5. In Comparative Example 8, since the organoclay (C) was not added, the flame retardancy test was passed, but the thin-wall processability deteriorated, and a tube having a wall thickness of 80 μm could not be stably formed. Further, the elastic modulus was low even with a tube having a wall thickness of 160 μm.

[比較例9]
エチレン系アイオノマー樹脂(A)/アイオノマー以外の樹脂(D)の比率(重量比)を30/70としたこと以外は、実施例13と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表5に示す。比較例9では、エチレン系アイオノマーの比率が低いため、肉厚80μmのチューブを作成できるものの、肉厚が安定せず、成形性が低かった。又、弾性率が大幅に低下しており自立剛性も得られなくなっていた。
[Comparative Example 9]
Except that the ratio (weight ratio) of ethylene ionomer resin (A) / resin (D) other than ionomer was 30/70, in the same manner as in Example 13, a tubular molded product, production of a heat-shrinkable tube, Evaluation was performed. The results are shown in Table 5. In Comparative Example 9, since the ratio of the ethylene ionomer was low, a tube having a wall thickness of 80 μm could be produced, but the wall thickness was not stable and the moldability was low. In addition, the elastic modulus is greatly reduced, and the self-supporting rigidity cannot be obtained.

[比較例10]
エチレン系アイオノマー樹脂(A)を用いずに、かわりにアイオノマー以外の樹脂(D)であるEVA1を用いたこと以外は、実施例12と同様にして、チューブ状成型品、熱収縮チューブの作製、評価を実施した。その結果を表5に示す。比較例10では、エチレン系アイオノマー樹脂(A)を用いなかったため、押出成形性、剛性が低い結果となった。
[Comparative Example 10]
Except for using EVA1 which is a resin (D) other than ionomer instead of using ethylene ionomer resin (A), a tube-shaped molded product, production of a heat-shrinkable tube, as in Example 12, Evaluation was performed. The results are shown in Table 5. In Comparative Example 10, since the ethylene ionomer resin (A) was not used, the extrusion moldability and rigidity were low.

Figure 2010185056
Figure 2010185056

Figure 2010185056
Figure 2010185056

Claims (8)

エチレン系アイオノマー樹脂(A)を含有する樹脂a、臭素系難燃剤(B)を主成分とする難燃剤b、及び有機化クレー(C)を含有し、前記樹脂aの100重量部に対し、前記難燃剤bの含有量が10重量部以上、100重量部以下であり、有機化クレー(C)の含有量が2重量部以上、60重量部以下であることを特徴とするアイオノマー樹脂組成物。   A resin a containing an ethylene ionomer resin (A), a flame retardant b mainly composed of a brominated flame retardant (B), and an organized clay (C), and 100 parts by weight of the resin a, The content of the flame retardant b is 10 parts by weight or more and 100 parts by weight or less, and the content of the organic clay (C) is 2 parts by weight or more and 60 parts by weight or less. . 前記アイオノマー以外の樹脂(D)が、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、低密度ポリエチレン、直鎖低密度ポリエチレン、及びポリエステルから選ばれる樹脂であることを特徴とする請求項1に記載のアイオノマー樹脂組成物。   The resin (D) other than the ionomer is a resin selected from an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, a low density polyethylene, a linear low density polyethylene, and a polyester. Item 12. The ionomer resin composition according to Item 1. エチレン系アイオノマー樹脂(A)を含有する樹脂aが、前記エチレン系アイオノマー樹脂(A)とアイオノマー以外の樹脂(D)からなり、(A)と(D)の重量比が、(A):(D)=100:0〜40:60の範囲内であることを特徴とする請求項2に記載のアイオノマー樹脂組成物。   The resin a containing the ethylene ionomer resin (A) is composed of the ethylene ionomer resin (A) and a resin (D) other than the ionomer, and the weight ratio of (A) to (D) is (A) :( The ionomer resin composition according to claim 2, wherein D) is in the range of 100: 0 to 40:60. 臭素系難燃剤(B)を主成分とする難燃剤bが、臭素系難燃剤(B)と三酸化アンチモン(E)からなり、(B)と(E)の重量比が、(B):(E)=100:0〜50:50の範囲内であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のアイオノマー樹脂組成物。   The flame retardant b mainly composed of the brominated flame retardant (B) is composed of the brominated flame retardant (B) and antimony trioxide (E), and the weight ratio of (B) to (E) is (B): The ionomer resin composition according to any one of claims 1 to 3, wherein (E) is in a range of 100: 0 to 50:50. 請求項1ないし請求項4のいずれか1項に記載のアイオノマー樹脂組成物を押出成形してなることを特徴とする押出成形品。   An extrusion-molded product obtained by extrusion-molding the ionomer resin composition according to any one of claims 1 to 4. 請求項1ないし請求項4のいずれか1項に記載のアイオノマー樹脂組成物をチューブ状に押出成形してなることを特徴とするチューブ状成形品。   A tube-shaped molded product obtained by extruding the ionomer resin composition according to any one of claims 1 to 4 into a tube shape. 請求項6に記載のチューブ状成形品を加熱条件下で径方向に膨張し、その形状を冷却固定してなることを特徴とする熱収縮チューブ。   A heat-shrinkable tube obtained by expanding the tubular molded product according to claim 6 in a radial direction under heating conditions and cooling and fixing the shape. 請求項6に記載のチューブ状成形品に電離放射線を照射して、前記アイオノマー樹脂組成物を架橋した後、加熱条件下で径方向に膨張し、その形状を冷却固定したことを特徴とする熱収縮チューブ。   The tube-shaped molded article according to claim 6 is irradiated with ionizing radiation to crosslink the ionomer resin composition, and then expands in a radial direction under heating conditions, and the shape is cooled and fixed. Shrink tube.
JP2009031824A 2009-02-13 2009-02-13 Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube Pending JP2010185056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031824A JP2010185056A (en) 2009-02-13 2009-02-13 Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031824A JP2010185056A (en) 2009-02-13 2009-02-13 Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube

Publications (1)

Publication Number Publication Date
JP2010185056A true JP2010185056A (en) 2010-08-26

Family

ID=42765899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031824A Pending JP2010185056A (en) 2009-02-13 2009-02-13 Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube

Country Status (1)

Country Link
JP (1) JP2010185056A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045644A1 (en) * 2013-09-26 2015-04-02 住友電気工業株式会社 Multilayer heat recovery article, wire splice and wire harness
JP2015089925A (en) * 2013-11-06 2015-05-11 住友電気工業株式会社 Thermally recovered article, wire splice and wire harness
WO2015068512A1 (en) * 2013-11-06 2015-05-14 住友電気工業株式会社 Thermal recovery article, wire splice, and wire harness
JP2016121365A (en) * 2016-04-04 2016-07-07 三菱化学株式会社 Polycarbonate resin composition and molded article
WO2016174961A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
WO2016174962A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
WO2019097874A1 (en) * 2017-11-16 2019-05-23 住友電気工業株式会社 Hollow extrusion molded article, crosslinked product thereof, heat-shrink tube, and layered heat-shrink tube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181167A (en) * 1997-10-15 1999-07-06 Okura Ind Co Ltd High-frequency-weldable resin composition
JP2000063603A (en) * 1998-08-20 2000-02-29 Okura Ind Co Ltd High-frequency heat-generating resin composition and high-frequency weldable molding made therefrom
JP2000129042A (en) * 1998-10-23 2000-05-09 Sumitomo Electric Ind Ltd Thermally restorable article prepared from ionomer and linear polyolefin
JP2002201318A (en) * 2000-12-28 2002-07-19 Sumitomo Wiring Syst Ltd Olefinic thermoplastic elastomer composition
JP2002292737A (en) * 2001-03-30 2002-10-09 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyolefin tube
JP2007204729A (en) * 2006-01-05 2007-08-16 Sumitomo Electric Ind Ltd Ionomer resin composition and heat shrinkable tube using the same
JP2008274097A (en) * 2007-04-27 2008-11-13 Sumitomo Electric Ind Ltd Ionomer resin composition and heat shrinkable tube using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181167A (en) * 1997-10-15 1999-07-06 Okura Ind Co Ltd High-frequency-weldable resin composition
JP2000063603A (en) * 1998-08-20 2000-02-29 Okura Ind Co Ltd High-frequency heat-generating resin composition and high-frequency weldable molding made therefrom
JP2000129042A (en) * 1998-10-23 2000-05-09 Sumitomo Electric Ind Ltd Thermally restorable article prepared from ionomer and linear polyolefin
JP2002201318A (en) * 2000-12-28 2002-07-19 Sumitomo Wiring Syst Ltd Olefinic thermoplastic elastomer composition
JP2002292737A (en) * 2001-03-30 2002-10-09 Mitsubishi Plastics Ind Ltd Heat-shrinkable polyolefin tube
JP2007204729A (en) * 2006-01-05 2007-08-16 Sumitomo Electric Ind Ltd Ionomer resin composition and heat shrinkable tube using the same
JP2008274097A (en) * 2007-04-27 2008-11-13 Sumitomo Electric Ind Ltd Ionomer resin composition and heat shrinkable tube using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045644A1 (en) * 2013-09-26 2015-04-02 住友電気工業株式会社 Multilayer heat recovery article, wire splice and wire harness
JP2015066701A (en) * 2013-09-26 2015-04-13 住友電気工業株式会社 Multilayer thermal recovery product, wire splice, and wire harness
US9985425B2 (en) 2013-09-26 2018-05-29 Sumitomo Electric Industries, Ltd. Multilayered heat-recoverable article, wire splice, and wire harness
US9524812B2 (en) 2013-11-06 2016-12-20 Sumitomo Electric Industries, Ltd. Heat-recoverable article, wire splice, and wire harness
WO2015068512A1 (en) * 2013-11-06 2015-05-14 住友電気工業株式会社 Thermal recovery article, wire splice, and wire harness
CN104968714A (en) * 2013-11-06 2015-10-07 住友电气工业株式会社 Thermal recovery article, wire splice, and wire harness
WO2015068511A1 (en) * 2013-11-06 2015-05-14 住友電気工業株式会社 Thermal recovery article, wire splice, and wire harness
US9692222B2 (en) 2013-11-06 2017-06-27 Sumitomo Electric Industries, Ltd. Heat-recoverable article, wire splice, and wire harness
JP2015089925A (en) * 2013-11-06 2015-05-11 住友電気工業株式会社 Thermally recovered article, wire splice and wire harness
WO2016174961A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
WO2016174962A1 (en) * 2015-04-28 2016-11-03 住友電気工業株式会社 Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
JP2016121365A (en) * 2016-04-04 2016-07-07 三菱化学株式会社 Polycarbonate resin composition and molded article
WO2019097874A1 (en) * 2017-11-16 2019-05-23 住友電気工業株式会社 Hollow extrusion molded article, crosslinked product thereof, heat-shrink tube, and layered heat-shrink tube

Similar Documents

Publication Publication Date Title
JP2010185056A (en) Ionomer resin composition, tubular molded product using the composition, and heat shrinkable tube
CN103172918B (en) A kind of fireproofing cable material without halide and preparation method thereof
US8173255B2 (en) Clean flame retardant insulation composition to enhance mechanical properties and flame retardancy for wire and cable
CN103642118B (en) Tube wall bubble-tight irradiation crosslinking halogen-free fire proofing and application during heat shrinkable
EP2684677B1 (en) Advanced halogen free flame retardant composition for heat shrinkable material and method of making the same
CN103012939A (en) Ultraviolet light cross-linking heat-shrinkage pipe material and method for producing ultraviolet light cross-linking heat-shrinkage pipe
MXPA04009451A (en) Cross-linkable and/or cross-linked nanofiller compositions.
CN103694551A (en) Irradiation crosslinking environment-friendly fire-retardant material for non-foaming pipe wall in heat shrinkage and application thereof
CN103739921A (en) Irradiation-crosslinked halogen-free red-phosphorus-free flame-retardant material capable of enabling pipe walls not to bubble during thermal shrinkage and application thereof
WO1999063004A1 (en) Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
WO2012124589A1 (en) Non-halogen flame-retardant resin composition, and insulating wire and tube in which same is used
JP5182543B2 (en) Ionomer resin composition and heat shrinkable tube using the same
JP5194400B2 (en) Ionomer resin composition and heat shrinkable tube using the same
JP4163052B2 (en) Flame retardant resin composition, method for producing the same, and insulated wire coated with the flame retardant resin composition
JP2000219814A (en) Flame-retardant resin composition and insulated electric wire, tube, heat-shrinkable tube, flat cable and high- voltage wire for dc
JP7374079B2 (en) Flame retardant resin composition, flame retardant heat shrinkable tube and flame retardant insulated wire
JP3175355B2 (en) Heat-shrinkable tube made of resin composition
JP2013018935A (en) Flame-retardant, flexible resin composition, resin tube, and insulated wire using the same
JPS5917935B2 (en) heat shrink tube
JPH06128428A (en) Non-halogen flame-retardant composition and tube
JP2007302871A (en) Resin composition, heat-shrinkable tube formed from the same resin composition and electric battery insulated and covered with the same heat-shrinkage tube
JP5079412B2 (en) Flame retardant resin composition, electric wire coating material containing the same, and electric wire coated thereby
JP5079411B2 (en) Flame retardant resin composition, electric wire coating material containing the same, and electric wire coated thereby
JP2004075993A (en) Flame-retardant resin composition and insulated electric wire coated therewith
JP2004277552A (en) Flame-retardant biodegradable resin crosslinked foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Effective date: 20120810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130128