JP2010182839A - Edge beveling method for multilayer wafer - Google Patents

Edge beveling method for multilayer wafer Download PDF

Info

Publication number
JP2010182839A
JP2010182839A JP2009024423A JP2009024423A JP2010182839A JP 2010182839 A JP2010182839 A JP 2010182839A JP 2009024423 A JP2009024423 A JP 2009024423A JP 2009024423 A JP2009024423 A JP 2009024423A JP 2010182839 A JP2010182839 A JP 2010182839A
Authority
JP
Japan
Prior art keywords
wafer
grindstone
laminated
edge
chamfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009024423A
Other languages
Japanese (ja)
Inventor
Koji Saito
浩嗣 斎藤
Kazuo Kobayashi
一雄 小林
Tomio Kubo
富美夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2009024423A priority Critical patent/JP2010182839A/en
Publication of JP2010182839A publication Critical patent/JP2010182839A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge beveling method for a multilayer wafer that facilitates alignment of the multilayer wafer when the multilayer wafer is carried to a processing stage for a postprocessing stage. <P>SOLUTION: A cup wheel type grindstone 12 which tilts at 3 to 10° to the center of the multilayer wafer mounted on a support chuck which is rotating, is fixed in a freely rotatable manner. A grindstone shaft 13 is moved to grind an upper surface, shorter than a maximum diameter, of a lower-layer wafer w<SB>1</SB>constituting the multilayer wafer to a length of 0.1 to 3 mm and to a depth ranging from 5 mm to a depth which does not reach a maximum diameter part of the lower-layer wafer, and to bevel an edge part of an upper-layer wafer w<SB>2</SB>of the multilayer wafer with a cut wheel type grindstone edge 12a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2枚の半導体ウエーハを積層した積層ウエーハ(SOIウエーハ、TSVウエーハ)のエッジ面をカップホイール型砥石を用いて面取りする加工方法に関するものである。 The present invention relates to a processing method for chamfering an edge surface of a laminated wafer (SOI wafer, TSV wafer) obtained by laminating two semiconductor wafers using a cup wheel type grindstone.

SOIウエーハの製造方法として、(A) 半導体ウェーハと支持ウェーハとを酸化膜を介して重ね合せることにより積層体を形成する工程と、(B) 半導体ウェーハを所定の厚さに薄膜化することにより支持ウェーハ上に埋込み酸化膜層を介して薄膜の単結晶シリコン層を形成する工程とを含む貼合せSOIウェーハの製造方法において、(C)前記工程(A)と工程(B)の間で重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる埋込み酸化膜層全体を支持ウェーハの重ね合わせ側の主面と単結晶シリコン層により被包することを特徴とする方法が提案されている(例えば、特許文献1参照)。 As a method for manufacturing an SOI wafer, (A) a step of forming a laminated body by superposing a semiconductor wafer and a support wafer via an oxide film, and (B) by thinning the semiconductor wafer to a predetermined thickness In a method for manufacturing a bonded SOI wafer, including a step of forming a thin single-crystal silicon layer on a supporting wafer via a buried oxide film layer, (C) overlapping between the step (A) and the step (B) The oxide film formed on the peripheral edge and chamfered portion of the main surface on the mating side is removed to leave the oxide film only on the overlapping surface excluding the peripheral edge. A method characterized by encapsulating with a main surface and a single crystal silicon layer has been proposed (see, for example, Patent Document 1).

また、直径150mmの素子基板(ウエーハ)と支持基板をそれぞれ用意し、素子基板に、ウエット酸化を施し、厚さ1μmの酸化膜を形成させ、酸化膜を形成した素子基板の研磨面側と、支持基板の研磨面とを重ね合わせて密着させて、密着させた接合基板を1000℃の高温下で熱処理を施して重ね合わせた面の接合力を強化させた。その後、直径125mmまで径小化させ、フッ酸処理して熱処理時に形成された酸化膜を除去した後に、表面を研削、1次研磨を施し、接合基板の端面部(最外周部)から2mmの範囲(領域)の外周部に外周ダレを発生させた後、再度、面取り加工により、直径100mmまで、径小化させ、最後に、2次研磨、及び、仕上げ研磨を行い、SOIウェーハを作成することも知られている(例えば、特許文献2参照)。 In addition, an element substrate (wafer) having a diameter of 150 mm and a support substrate are prepared, wet oxidation is performed on the element substrate, an oxide film having a thickness of 1 μm is formed, and the polishing surface side of the element substrate on which the oxide film is formed; The polished surface of the supporting substrate was superposed and adhered, and the adhered bonded substrate was subjected to heat treatment at a high temperature of 1000 ° C. to enhance the bonding force of the superimposed surfaces. Thereafter, the diameter is reduced to 125 mm, and after removing the oxide film formed during the heat treatment by hydrofluoric acid treatment, the surface is ground and subjected to primary polishing, and 2 mm from the end surface portion (outermost peripheral portion) of the bonded substrate. After generating a peripheral sag in the outer peripheral part of the range (region), the diameter is reduced to 100 mm again by chamfering, and finally, secondary polishing and finish polishing are performed to create an SOI wafer. This is also known (see, for example, Patent Document 2).

さらに、研磨テープを用いて積層(SOI)ウエーハのエッジ部を研磨する方法も提案されている(例えば、特許文献3参照)。 Furthermore, a method of polishing an edge portion of a laminated (SOI) wafer using an abrasive tape has also been proposed (see, for example, Patent Document 3).

一方、外周に研磨用作業面を備えた2つの円筒形研磨ドラムを単層の半導体基板の直径より小さい間隔を保って配設し、これらの研磨ドラムを所要の速度で回転させながら、傾斜可能な半導体基板保持手段に保持させた半導体基板の外周の面取りされたエッジを両研磨ドラムに同時に押し付けることにより、該エッジを異なる2点で鏡面研磨する方法も提案されている(例えば、特許文献4参照)。 On the other hand, two cylindrical polishing drums with a polishing work surface on the outer periphery are arranged at a distance smaller than the diameter of a single-layer semiconductor substrate, and these polishing drums can be tilted while rotating at a required speed. There has also been proposed a method in which a chamfered edge of a semiconductor substrate held by a semiconductor substrate holding means is pressed against both polishing drums at the same time to mirror-polish the edge at two different points (for example, Patent Document 4). reference).

また、ウェーハの径よりも小径に形成されたウェーハ保持部材に保持されたウェーハの周縁を面取りする傾斜可能な面取り用砥石を有する面取り手段を用い、ウエーハの端面とエッジ傾斜面を該面取り手段により面取り加工する装置も知られている(例えば、特許文献5参照)。 Further, a chamfering means having a chamfering grindstone capable of chamfering the peripheral edge of the wafer held by the wafer holding member formed to have a diameter smaller than the diameter of the wafer is used, and the end face and the edge inclined surface of the wafer are formed by the chamfering means. An apparatus for chamfering is also known (for example, see Patent Document 5).

さらに、ウエーハのシリコン基盤面を研削するカップホイール型砥石も知られている(例えば、特許文献6参照)。 Furthermore, a cup wheel type grindstone for grinding a silicon substrate surface of a wafer is also known (for example, see Patent Document 6).

半導体基板(ウエーハ)の径が150〜200mmから300〜450mmと拡径し、厚みが20〜100μmと極薄の次世代の半導体基板の出現が要望され、直径300〜450mmのSOIウエーハのエッジ研磨または研削に前記特許文献1乃至特許文献5に記載のエッジ面取り研削砥石や研磨テープを用いてSOIウエーハのエッジ面を面取りし、次いで、SOIウエーハの裏面研削、裏面研磨を行って得られる平坦加工SOIウエーハには、チッピングやクラックがエッジ部に数多く見受けられることが判明した。 Edge polishing of SOI wafers with diameters of 300-450 mm is demanded as the next generation semiconductor substrate with a diameter of semiconductor substrates (wafers) expanding from 150-200 mm to 300-450 mm and thickness of 20-100 μm is required. Alternatively, flat processing obtained by chamfering the edge surface of the SOI wafer using the edge chamfering grinding wheel or polishing tape described in Patent Document 1 to Patent Document 5 for grinding, and then performing back surface grinding and back surface polishing of the SOI wafer. It has been found that many chippings and cracks can be seen at the edge of the SOI wafer.

また、特許文献5に記載の傾斜可能な面取り砥石を用いてSOIウエーハの端面を垂直もしくは斜めに面取りしたSOIウエーハでは、後加工工程の裏面研削工程や研磨工程、あるいはウエーハ剥離工程におけるウエーハの芯出しを行うことが困難となり、積層されたウエーハの下段側ウエーハについては芯出しができるよう一部エッジ面が残されることがSOI半導体基板加工メーカーから要望されている。 Further, in an SOI wafer in which the end surface of the SOI wafer is chamfered vertically or obliquely using the tiltable chamfering grindstone described in Patent Document 5, the wafer core in the back grinding process, the polishing process, or the wafer peeling process in the post-processing process It is difficult to perform the alignment, and a SOI wafer substrate processing manufacturer has requested that a part of the edge surface be left so that the lower wafer on the stacked wafer can be centered.

特開2005−79109号公報JP 2005-79109 A 特開2006−100406号公報JP 2006-100406 A 米国特許第6,641,464号明細書US Pat. No. 6,641,464 米国特許第6,159,081号明細書US Pat. No. 6,159,081 特開平11−48109号公報JP-A-11-48109 特開2000−94342号公報JP 2000-94342 A

本発明は、裏面研削加工や研磨加工して得られる積層ウエーハにクラックやチッピングが生じず、かつ、これら後工程に積層ウエーハを移送する際に芯出しを可能とする積層ウエーハのエッジ部の面取り研削方法を提供するものである。 The present invention provides a chamfered edge portion of a laminated wafer that does not cause cracks or chipping in the laminated wafer obtained by back-grinding or polishing, and enables centering when transferring the laminated wafer to these subsequent processes. A grinding method is provided.

本発明は、カップホイール型砥石を回転自在に固定する砥石軸が旋回可能で、支持チャック上に載置された積層ウエーハの中心点方向に前後移動可能でかつ、昇降可能にコラムに設けられた面取り装置を用い、回転している支持チャックに支持されている積層ウエーハのエッジ部を面取りする方法において、先ず、カップホイール型砥石の刃先の傾斜角度が積層ウエーハ表面の鉛直軸に対し3〜10度となるよう砥石軸を旋回して砥石軸位置調整を行い、ついで、砥石軸を回転させながら支持チャック上に載置された積層ウエーハの中心点方向に砥石軸を前進させて積層ウエーハを構成する下段ウエーハ直径より短い上面を回転研削砥石の刃先で長さ0.1〜3mm、深さ5mm乃至下段ウエーハ最大直径部分に至らない深さまで研削するとともに積層ウエーハの上段のウエーハのエッジ部の面取り加工を行った後、回転している砥石軸をカップホイール型砥石の刃先が積層ウエーハに接触しなくなる位置まで後退させることを特徴とする、積層ウエーハのエッジ部の面取り研削方法を提供するものである。 In the present invention, a grindstone shaft for rotatably fixing a cup wheel type grindstone is rotatable, and can be moved back and forth in the direction of the center point of a laminated wafer placed on a support chuck, and provided in a column so as to be able to move up and down. In the method of chamfering the edge portion of the laminated wafer supported by the rotating support chuck using the chamfering device, first, the inclination angle of the cutting edge of the cup wheel type grindstone is 3 to 10 with respect to the vertical axis of the surface of the laminated wafer. The grindstone shaft is rotated to adjust the grindstone shaft position, and then the grindstone shaft is moved forward to the center point of the laminated wafer placed on the support chuck while rotating the grindstone shaft. If the upper surface shorter than the diameter of the lower wafer is ground with a cutting edge of a rotating grinding wheel to a length of 0.1 to 3 mm, a depth of 5 mm to a depth not reaching the maximum diameter of the lower wafer After chamfering the edge of the upper wafer of the laminated wafer, the rotating grindstone shaft is retracted to a position where the cutting edge of the cup wheel grindstone does not contact the laminated wafer. A method of chamfering and grinding a wafer edge portion is provided.

本発明の積層ウエーハのエッジ部の面取り研削方法は、後工程の際に積層ウエーハの芯出しが可能なように積層ウエーハの下段ウエーハの最大直径部分が残るように面取り加工できるとともに、かつ、上段のウエーハは端部がウエーハ平面に対し3〜10度傾斜して面取りされるので、後工程の裏面研削加工、裏面研磨加工、搬送工程において、積層ウエーハにチッピングやクラッキングが生じることはない。 The chamfering grinding method of the edge portion of the laminated wafer of the present invention can be chamfered so that the maximum diameter portion of the lower wafer of the laminated wafer remains so that the laminated wafer can be centered in the subsequent process, and the upper stage. Since the end of the wafer is chamfered with an inclination of 3 to 10 degrees with respect to the wafer plane, chipping and cracking do not occur in the laminated wafer in the back surface grinding, back surface polishing, and transporting steps in the subsequent steps.

図1は積層ウエーハのエッジ部の面取り装置の側面図である。FIG. 1 is a side view of a chamfering device for an edge portion of a laminated wafer. 図2は積層ウエーハのエッジ部の面取り工程の実施手順を示した説明図である。FIG. 2 is an explanatory view showing an execution procedure of the chamfering process of the edge portion of the laminated wafer.

図1に示す面取り装置1は、面取りツールステージ10と支持チャック20と砥石ドレッサ30により構成される。面取りツールステージ10は、フレーム40上に設けられたガイドウエイ11aとスライドウエイ11bより構成されるツールテーブル11の上面にコラム12を起立させ、このコラム正面上部より砥石軸昇降装置50を垂下させて設け、この砥石軸昇降装置の砥石軸取り付け板55の側面に砥石軸固定スイベル装置60を設け、カップホイール型砥石12を砥石軸13に固定した砥石ヘッド14の固定台15を前記砥石軸固定スイベル装置60にピン19廻りに揺動可能に取り付けている。砥石軸13はビルトインモータにより回転される。 A chamfering apparatus 1 shown in FIG. 1 includes a chamfering tool stage 10, a support chuck 20, and a grindstone dresser 30. The chamfering tool stage 10 raises a column 12 on the upper surface of a tool table 11 composed of a guide way 11a and a slide way 11b provided on a frame 40, and a grindstone shaft lifting device 50 is suspended from the upper front of the column. A grinding wheel shaft fixing swivel device 60 is provided on the side surface of the grinding wheel shaft mounting plate 55 of the grinding wheel shaft lifting device, and the fixed base 15 of the grinding wheel head 14 with the cup wheel type grinding wheel 12 fixed to the grinding wheel shaft 13 is mounted on the grinding wheel shaft fixing swivel. The device 60 is swingably mounted around the pin 19. The grindstone shaft 13 is rotated by a built-in motor.

前記ツールテーブル11は、ガイドウエイ11a上をスライドウエイ11bが滑走し、支持チャック20上に載置された積層ウエーハの中心点oに対し前後移動可能となっている。サーボモータ21cの回転駆動をボールネジ21dが受けて前記スライドウエイ11bを支持チャック20上に載置された積層ウエーハの中心点位置側に前進させるか、積層ウエーハの中心点位置から後退させる。スライドウエイ11bの前進後退の移動は、リニアアクチュエータ駆動、リニアモータ駆動であってもよい。 The tool table 11 is slidable on the guide way 11 a and slides on the center point o of the laminated wafer placed on the support chuck 20. The ball screw 21d receives the rotational drive of the servo motor 21c, and the slide way 11b is moved forward to the center point position side of the laminated wafer placed on the support chuck 20, or retracted from the center point position of the laminated wafer. The forward / backward movement of the slide way 11b may be linear actuator drive or linear motor drive.

砥石軸昇降装置50は、サーボモータ52の回転駆動をボールネジ51が受けて螺合体54を介して砥石軸取り付け板54を上下方向に昇降させる。前記螺合体54は案内レール53上を滑走する。砥石軸取り付け板55の昇降移動は、リニアアクチュエータ駆動、リニアモータ駆動であってもよい。 The grindstone shaft raising / lowering device 50 receives the rotational drive of the servo motor 52 by the ball screw 51 and raises / lowers the grindstone shaft mounting plate 54 in the vertical direction via the threaded body 54. The screw 54 slides on the guide rail 53. The up and down movement of the grindstone shaft mounting plate 55 may be driven by a linear actuator or a linear motor.

ビルトインモータを内蔵する固定台15は砥石軸固定スイベル装置60を構成する扇状の取り付け板63に固定され、この扇状の取り付け板63は破線で示すピン19を介して砥石軸昇降装置の砥石軸取り付け板55の側面に旋回(揺動)可能に支持される。この扇状の取り付け板63の円弧状外周面にはラック64が刻設され、砥石軸取り付け板55の側面に固定されたモータ65のピニオン66が噛合う。よって、モータ65のモータ軸の回転によりピニオン66が回動すると、扇状の取り付け板63がピン19廻りに旋回し、砥石軸の傾斜角度を調整することができる。砥石軸の傾斜角度(θ)は、所望する積層ウエーハwの直径方向の削除幅0.2〜3mm、および積層ウエーハのエッジ部傾斜角80〜87度により決定されるが、カップホイール型砥石の刃先12aの傾斜角度(θ)が積層ウエーハ表面の鉛直軸に対し3〜10度となるよう旋回させる。 The fixed base 15 incorporating the built-in motor is fixed to a fan-shaped mounting plate 63 that constitutes the wheel shaft fixing swivel device 60, and this fan-shaped mounting plate 63 is mounted on the wheel shaft of the wheel shaft lifting device via a pin 19 indicated by a broken line. It is supported on the side of the plate 55 so as to be able to turn (swing). A rack 64 is engraved on the arc-shaped outer peripheral surface of the fan-shaped mounting plate 63, and a pinion 66 of the motor 65 fixed to the side surface of the grindstone shaft mounting plate 55 is engaged. Therefore, when the pinion 66 is rotated by the rotation of the motor shaft of the motor 65, the fan-shaped mounting plate 63 is turned around the pin 19 and the inclination angle of the grindstone shaft can be adjusted. The inclination angle (θ) of the grindstone axis is determined by the desired deletion width 0.2 to 3 mm in the diameter direction of the laminated wafer w and the edge inclination angle 80 to 87 degrees of the laminated wafer. The blade edge 12a is turned so that the inclination angle (θ) of the blade edge 12a is 3 to 10 degrees with respect to the vertical axis of the surface of the laminated wafer.

カップホイール型砥石12は、例えば前記特許文献6に記載のカップホイール型砥石で、環状の周壁と、その一端に設けられた底壁とを備えたカップ状台金の前記周壁の底壁とは反対面の上面に環状に弧状砥石刃先12aを固定したカップホイ−ル型砥石12であって、前記台金は底壁の外面に周壁と同心に設けられた環状溝と該環状溝内に供給される研削液を周壁の内側へ導入するために該環状溝の底面から前記底壁を貫通して設けられ、該周壁の他端側へ向かう程度外周側へ傾斜して、かつ、周壁に同心に多数等間隔に設けられた研削液導入孔を有し、底壁とは反対面の周壁の上面に固定された環状の砥石は周壁の頂面より突出している部分において周壁および環状溝が共有する軸心と該軸心に直交する環状砥石の起立面に対し、軸心側から砥石外側に向かって30〜60度傾斜した研削液排出用スリットが多数等間隔に設けられ、スリットの高さが3〜10mmであり、砥石幅2〜7mm、スリットで区分けされた環状砥石刃の長さが10〜50mmであるカップホイール型砥石ある。カップホイール型砥石12の環状に並設された砥石刃12aの直径は、積層ウエーハの直径の0.5倍から1.5倍までの直径であることが好ましい。砥石刃12aは、ウエーハの基盤がシリコン基盤であるときは、砥番3,000〜8,000のダイヤモンドビトリファイドボンド砥石刃もしくはダイヤモンドレジンボンド砥石刃が好ましい。 The cup wheel-type grindstone 12 is, for example, the cup wheel-type grindstone described in Patent Document 6, and the bottom wall of the peripheral wall of the cup-shaped base metal provided with an annular peripheral wall and a bottom wall provided at one end thereof. A cup wheel type grindstone 12 in which an arcuate grindstone cutting edge 12a is fixed in an annular shape on the upper surface of the opposite surface, wherein the base metal is supplied to the outer surface of the bottom wall and an annular groove concentric with the peripheral wall. In order to introduce the grinding fluid to the inside of the peripheral wall, it is provided through the bottom wall from the bottom surface of the annular groove, is inclined to the outer peripheral side to the other end side of the peripheral wall, and is concentric with the peripheral wall An annular grindstone that has a large number of grinding fluid introduction holes provided at equal intervals and is fixed to the upper surface of the peripheral wall opposite to the bottom wall is shared by the peripheral wall and the annular groove at a portion protruding from the top surface of the peripheral wall. The shaft center side with respect to the shaft and the rising surface of the annular grindstone orthogonal to the shaft center A large number of grinding liquid discharge slits inclined at 30 to 60 degrees toward the outer side of the grindstone are provided at equal intervals, the slit height is 3 to 10 mm, the grindstone width is 2 to 7 mm, and the annular grindstone blade is divided by the slits. Is a cup wheel type grindstone having a length of 10 to 50 mm. The diameter of the grindstone blades 12a arranged in a ring shape of the cup wheel grindstone 12 is preferably 0.5 to 1.5 times the diameter of the laminated wafer. The grindstone blade 12a is preferably a diamond vitrified bond grindstone blade or a diamond resin bond grindstone blade having a grinding number of 3,000 to 8,000 when the wafer substrate is a silicon substrate.

カップホイール型砥石12は、前記特許文献6に記載の研削液中央供給型カップホイール型砥石の外に、市販のカップホイール型砥石も利用できる。 The cup wheel type grindstone 12 can use a commercially available cup wheel type grindstone in addition to the grinding liquid center supply type cup wheel grindstone described in Patent Document 6.

支持チャック20は、ポーラスセラミックチャックテーブル21を中空軸22で回転自在に軸承したバキュームチャックが好ましく、ポーラスセラミックチャックテーブル21の直径は、積層ウエーハの直径より0.5〜3mm小さい径であるのが好ましい。中空軸22管内には、減圧管、純水供給管、圧空供給管が設けられている。 The support chuck 20 is preferably a vacuum chuck in which a porous ceramic chuck table 21 is rotatably supported by a hollow shaft 22, and the diameter of the porous ceramic chuck table 21 is 0.5 to 3 mm smaller than the diameter of the laminated wafer. preferable. A decompression pipe, a pure water supply pipe, and a compressed air supply pipe are provided in the hollow shaft 22 pipe.

砥石ドレッサ30は、支持チャック20側から砥石軸13が後退する方向位置に設置され、積層ウエーハのエッジ面取り加工前、加工途中、もしくは加工後にカップホイール型砥石の砥石刃先12aを成形するのに使用される。   The grindstone dresser 30 is installed at a position where the grindstone shaft 13 retracts from the support chuck 20 side, and is used to mold the grindstone edge 12a of the cup wheel grindstone before, during or after edge chamfering of the laminated wafer. Is done.

積層ウエーハwのエッジ面取り加工は、図2に示すように、先ず、カップホイール型砥石12の刃先12aの傾斜角度(θ)が積層ウエーハw表面の鉛直軸に対し3〜10度となるよう砥石軸を旋回して砥石軸位置調整を行い(図2a参照)、ついで、砥石軸13を回転させながら支持チャック20上に載置された積層ウエーハwの中心点o方向に砥石軸を前進させて積層ウエーハwを構成する下段ウエーハw直径より短い径部分の上面を回転研削砥石の刃先12aで長さ0.1〜3mm、深さ5mm乃至下段ウエーハw最大直径部分に至らない深さまで研削するとともに積層Iウエーハの上段のウエーハwのエッジ部の面取り加工を行った(図2b参照)後、回転している砥石軸13をカップホイール型砥石の刃先12aが積層Iウエーハwに接触しなくなる位置まで後退させ、砥石軸13の回転を停止させる(図2c参照)。 As shown in FIG. 2, the edge chamfering of the laminated wafer w is first performed so that the inclination angle (θ) of the cutting edge 12a of the cup wheel type grindstone 12 is 3 to 10 degrees with respect to the vertical axis of the surface of the laminated wafer w. The axis of the grindstone is adjusted by turning the axis (see FIG. 2a), and then the grindstone axis is advanced in the direction of the center point o of the laminated wafer w placed on the support chuck 20 while rotating the grindstone axis 13. length 0.1~3mm at the cutting edge 12a of the rotating grinding wheel the upper surface of the shorter diameter portion than the lower wafer w 1 diameter constituting the laminated wafer w, ground to a depth that does not lead to a depth of 5mm to lower wafer w 1 maximum diameter section after lamination I wafer went upper of the wafer w 2 chamfering of the edge portion (see FIG. 2b), the rotation to which the wheel spindle 13 to the cutting edge 12a of the cup wheel type grinding wheel laminate I Parkway that while Retracted made to a position not in contact with the w, stops the rotation of the grinding wheel shaft 13 (see FIG. 2c).

300mm径積層ウエーハのエッジ面取り加工時間は、積層ウエーハの基盤の材料がシリコン、サファイヤ、ガラスであるかに依存するが、5〜20秒程度である。ポーラスセラミックチャックテーブル21を軸承する中空軸22の回転速度は50〜150rpm、砥石軸13の回転速度は2,000〜3,000rpmで行われる。 The edge chamfering time of the 300 mm diameter laminated wafer is about 5 to 20 seconds, although it depends on whether the material of the laminated wafer base is silicon, sapphire, or glass. The rotational speed of the hollow shaft 22 that supports the porous ceramic chuck table 21 is 50 to 150 rpm, and the rotational speed of the grindstone shaft 13 is 2,000 to 3,000 rpm.

被研削物として直径300mm、厚み750μmのシリコン基盤の表面に電子回路をプリント配線した半導体ウエーハ2枚のプリント配線面同士を向かい合わせて積層したSOIウエーハwを用い、図1に示す面取り装置1を用いて積層ウエーハの面取り加工を行った。 A chamfering apparatus 1 shown in FIG. 1 is used as an object to be ground by using an SOI wafer w in which two printed wiring surfaces of a semiconductor wafer in which an electronic circuit is printed and wired on the surface of a silicon substrate having a diameter of 300 mm and a thickness of 750 μm. The laminated wafer was chamfered.

先ず、砥番3,000のダイヤモンドビトリファイドカップホイール型砥石12の刃先12aの傾斜角度(θ)が積層ウエーハw表面の鉛直軸に対し5度となるよう砥石軸13をスイベル装置60で旋回して砥石軸の位置調整を行った。 First, the grindstone shaft 13 is swiveled by the swivel device 60 so that the inclination angle (θ) of the cutting edge 12a of the diamond vitrified cup wheel type grindstone 12 having a grinding number of 3,000 is 5 degrees with respect to the vertical axis of the surface of the laminated wafer w. The position of the grinding wheel shaft was adjusted.

ついで、120rpmで回転する支持チャック20のポーラスセラミックチャックテーブル21上に載置された積層ウエーハwの中心点o方向に、2,000rpmで回転する砥石軸13を前進させて行き積層ウエーハwを構成する下段ウエーハw直径300mmより短い径部分の上面を回転研削砥石の刃先12aで幅長さ1.5mm、深さ200μm研削するとともに積層Iウエーハの上段のウエーハwのエッジ部の面取り加工(傾斜角5度)を行った後、回転している砥石軸13をカップホイール型砥石の刃先12aが積層Iウエーハwに接触しなくなる待機位置まで後退させ、砥石軸13の回転を停止させた。 Next, the grindstone shaft 13 rotating at 2,000 rpm is advanced in the direction of the center point o of the laminated wafer w placed on the porous ceramic chuck table 21 of the support chuck 20 that rotates at 120 rpm to form the laminated wafer w. Lower wafer w 1 The upper surface of the diameter portion shorter than 300 mm is ground with a cutting edge 12a of a rotating grinding wheel at a length of 1.5 mm and a depth of 200 μm, and the edge portion of the upper wafer w 2 of the laminated I wafer is chamfered ( Then, the rotating grindstone shaft 13 was retracted to a standby position where the cutting edge 12a of the cup wheel grindstone would not contact the laminated I wafer w, and the rotation of the grindstone shaft 13 was stopped.

支持チャック20のポーラスセラミックチャックテーブル21の回転を停止させた後、積層ウエーハwの表面を加圧水吹きつけとブラシ洗浄し、続いてポーラスセラミックチャックテーブル21下面に加圧水を供給し、積層ウエーハwのポーラスセラミックチャックテーブル21からの剥離を容易とした。 After the rotation of the porous ceramic chuck table 21 of the support chuck 20 is stopped, the surface of the laminated wafer w is blown with pressurized water and brush-washed, and then pressurized water is supplied to the lower surface of the porous ceramic chuck table 21 to thereby porous the laminated wafer w. Peeling from the ceramic chuck table 21 was facilitated.

特許願2008−183398号明細書に記載の半導体基板用平坦化装置GDM300II(株式会社岡本工作機械製商品名)を用い、前記支持チャック20上のエッジ面取り研削加工された積層ウエーハを多関節型搬送ロボットの吸着パッドに吸着し、裏面研削ステージへ搬送した。 Using a semiconductor substrate planarization apparatus GDM300II (trade name, manufactured by Okamoto Machine Tool Co., Ltd.) described in Japanese Patent Application No. 2008-183398, an edge chamfered laminated wafer on the support chuck 20 is articulated. Adsorbed to the robot's suction pad and transferred to the back grinding stage.

粗研削ステージで砥番砥番600の粗研削カップホイール型ダイヤモンドレジンボンド砥石を用いて積層ウエーハのシリコン基盤面を粗研削加工(基板の回転数は300rpm、砥石軸の回転数は1,800rpm)し、シリコン基盤面を670μm削り取った。 Rough grinding of the silicon substrate surface of the laminated wafer using a rough grinding cup wheel type diamond resin bond grinding wheel with grinding number 600 on the coarse grinding stage (substrate rotation speed is 300 rpm, grinding wheel axis rotation speed is 1,800 rpm) Then, the silicon substrate surface was scraped 670 μm.

この粗研削加工された半導体基板のシリコン基盤面を仕上研削ステージで砥番8,000のカップホイール型ダイヤモンドビトリファイドボンド砥石を用いて粗研削加工された半導体基板のシリコン基盤面を仕上げ研削加工(基板の回転数は300rpm、砥石軸の回転数は1,800rpm)し、シリコン基盤面を30μm削り取り、シリコン基盤の厚みを20μmに低減させた。ついで、研削加工シリコン基盤面に純水を供給しながらブラシ洗浄を行った後、乾燥空気を吹きつけ乾燥させた。得られたシリコン基盤面には、研削条痕が見受けられた。 The silicon substrate surface of the roughly ground semiconductor substrate is subjected to finish grinding on the finish grinding stage using a cup wheel type diamond vitrified bond grindstone with an abrasive number of 8,000. Was rotated at 300 rpm and the grinding wheel shaft was rotated at 1,800 rpm), the silicon substrate surface was scraped by 30 μm, and the thickness of the silicon substrate was reduced to 20 μm. Next, brush cleaning was performed while supplying pure water to the ground silicon substrate surface, and then dried by blowing dry air. Grinding marks were observed on the obtained silicon substrate surface.

研削加工された半導体基板を研磨ステージへ移送させた後、この研削加工されたシリコン基盤面にヅポン・エアープロダクト社のシリカ系粒子分散水系研磨剤スラリー“SR300”(商品名)を100cc/分の量供給しながらシリコン基盤面に懸かる研磨パッドの圧力を230g/cm、研磨パッドの回転数を250rpm、半導体基板の回転数を150rpmで摺擦させて研削条痕を取り除くバフ研磨加工を6分間行った。シリコン基盤面の厚みは、3μm低減した。 After the ground semiconductor substrate is transferred to the polishing stage, the silica-based particle-dispersed aqueous abrasive slurry “SR300” (trade name) of ヅ Pon Air Products Co., Ltd. is 100 cc / min on the ground silicon substrate surface. A buff polishing process is performed for 6 minutes to remove grinding streaks by rubbing at a polishing pad pressure of 230 g / cm 2 , a polishing pad rotation speed of 250 rpm, and a semiconductor substrate rotation speed of 150 rpm while supplying a quantity. went. The thickness of the silicon substrate surface was reduced by 3 μm.

このバフ研磨加工されたシリコン基盤面にシリカ系粒子分散水系研磨剤スラリー“SR300”(商品名)を300cc/分の量供給しながらシリコン基盤面に懸かる研磨パッドの圧力を50g/cm、研磨パッドの回転数を20rpm、半導体基板の回転数を20rpmで摺擦させる第二バフ研磨加工を4分間行った。シリコン基盤面の厚みは、更に0.1μm低減した。このシリコン基盤面に付着している粒子の個数は、0.2μm径以下の粒子は5,043個、1.0μm以上の粒子は204個であった。 The pressure of the polishing pad over the silicon substrate surface is 50 g / cm 2 while supplying 300 cc / min of silica-based particle-dispersed aqueous slurry “SR300” (trade name) to the buffed silicon substrate surface. A second buffing process was performed for 4 minutes, in which the pad was rubbed at a rotation speed of 20 rpm and the rotation speed of the semiconductor substrate was 20 rpm. The thickness of the silicon substrate surface was further reduced by 0.1 μm. The number of particles adhering to the silicon substrate surface was 5,043 particles having a diameter of 0.2 μm or less, and 204 particles having a diameter of 1.0 μm or more.

しかる後に、この研削加工、バフ研磨加工されたシリコン基盤面に薬剤SC1を500cc/分の量供給するアルカリ洗浄を2分間行い、次いでフッ酸含有オゾン水で酸洗浄を1分行った後、純水でシリコン基盤面を洗浄し、スピン乾燥させて0.2μm径以下の異物粒子(研削屑や研磨屑)の付着が2個、表面平均粗さ(Ra)が0.002μmのシリコン基盤鏡面を有する積層ウエーハを得た。積層ウエーハにはチッピング、クラッキングは見受けられなかった。 Thereafter, this grinding and buffing silicon base surface was subjected to alkali cleaning for 2 minutes to supply the chemical SC1 in an amount of 500 cc / min, and then acid cleaning with hydrofluoric acid-containing ozone water for 1 minute. Wash the silicon substrate surface with water, spin dry, and apply a silicon substrate mirror surface with 2 particles of foreign particles (grinding debris and polishing debris) with a diameter of 0.2 μm or less and surface average roughness (Ra) of 0.002 μm. A laminated wafer having the above was obtained. No chipping or cracking was found on the laminated wafer.

上記実施例1と同様にして積層ウエーハ25件のエッジ面取り加工、裏面研削加工、裏面研磨加工、洗浄を実施したところ、24件の積層ウエーハにはチッピング、クラッキングは全く見受けられず、ただ1件のみ積層ウエーハの鏡面シリコン基盤エッジ部から長さ3mm程度のチッピング1本が見つかった。 In the same way as in Example 1, 25 edge chamfering, back grinding, back polishing, and cleaning were performed on 24 laminated wafers. No chipping or cracking was observed on 24 laminated wafers, only 1 Only one chip with a length of about 3 mm was found from the edge of the mirror silicon substrate of the laminated wafer.

後加工工程で、積層ウエーハにクラッキングやチッピングを生じさせない積層ウエーハのエッジ面取り加工ができる。エッジ面取り加工された積層ウエーハは、下段のウエーハの最大直径部分が残されるので、後加工工程の加工ステージに積層ウエーハが移送される際に行われる積層ウエーハの芯出しも容易である。 In the post-processing step, the edge chamfering of the laminated wafer can be performed without causing cracking or chipping in the laminated wafer. Since the edge chamfered laminated wafer retains the maximum diameter portion of the lower wafer, it is easy to center the laminated wafer when the laminated wafer is transferred to a processing stage in a post-processing step.

1 面取り装置 10 面取りツールステージ 11 ツールテーブル 12 カップホイール型砥石 13 砥石軸 20 支持チャック 30 砥石ドレッサ 50 砥石軸昇降装置 60 砥石軸固定スイベル装置 w 積層ウエーハ DESCRIPTION OF SYMBOLS 1 Chamfering device 10 Chamfering tool stage 11 Tool table 12 Cup wheel type grindstone 13 Grinding wheel shaft 20 Support chuck 30 Grinding wheel dresser 50 Grinding wheel shaft lifting device 60 Grinding wheel shaft fixed swivel device w Laminated wafer

Claims (1)

カップホイール型砥石を回転自在に固定する砥石軸が旋回可能で、支持チャック上に載置された積層ウエーハの中心点方向に前後移動可能でかつ、昇降可能にコラムに設けられた面取り装置を用い、回転している支持チャックに支持されている積層ウエーハのエッジ部を面取りする方法において、先ず、カップホイール型砥石の刃先の傾斜角度が積層ウエーハ表面の鉛直軸に対し3〜10度となるよう砥石軸を旋回して砥石軸位置調整を行い、ついで、砥石軸を回転させながら支持チャック上に載置された積層ウエーハの中心点方向に砥石軸を前進させて積層ウエーハを構成する下段ウエーハ直径より短い上面を回転研削砥石の刃先で長さ0.1〜3mm、深さ5mm乃至下段ウエーハ最大直径部分に至らない深さまで研削するとともに積層ウエーハの上段のウエーハのエッジ部の面取り加工を行った後、回転している砥石軸をカップホイール型砥石の刃先が積層ウエーハに接触しなくなる位置まで後退させることを特徴とする、積層ウエーハのエッジ部の面取り研削方法。 Uses a chamfering device provided on the column so that the grindstone shaft that rotatably fixes the cup wheel grindstone can rotate, can move back and forth in the direction of the center point of the laminated wafer placed on the support chuck, and can be raised and lowered In the method of chamfering the edge portion of the laminated wafer supported by the rotating support chuck, first, the inclination angle of the cutting edge of the cup wheel type grindstone is 3 to 10 degrees with respect to the vertical axis of the surface of the laminated wafer. The wheel axis position is adjusted by turning the wheel axis, and then the lower wafer diameter constituting the laminated wafer by advancing the wheel axis in the direction of the center point of the laminated wafer placed on the support chuck while rotating the grinding wheel axis. The shorter upper surface is ground with a cutting edge of a rotating grinding wheel to a length of 0.1 to 3 mm, a depth of 5 mm to a depth that does not reach the maximum diameter of the lower wafer and is laminated. After chamfering the edge portion of the upper wafer of the wafer, the rotating grinding wheel shaft is retracted to a position where the cutting edge of the cup wheel type grinding wheel is not in contact with the laminated wafer. Chamfering grinding method.
JP2009024423A 2009-02-05 2009-02-05 Edge beveling method for multilayer wafer Pending JP2010182839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024423A JP2010182839A (en) 2009-02-05 2009-02-05 Edge beveling method for multilayer wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024423A JP2010182839A (en) 2009-02-05 2009-02-05 Edge beveling method for multilayer wafer

Publications (1)

Publication Number Publication Date
JP2010182839A true JP2010182839A (en) 2010-08-19

Family

ID=42764182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024423A Pending JP2010182839A (en) 2009-02-05 2009-02-05 Edge beveling method for multilayer wafer

Country Status (1)

Country Link
JP (1) JP2010182839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601691A (en) * 2012-04-06 2012-07-25 大连理工大学 Conical surface grinding method
CN106425735A (en) * 2016-08-30 2017-02-22 苏州巴奈特机械设备有限公司 Special-shaped chamfering machine
JP2019166598A (en) * 2018-03-23 2019-10-03 株式会社東京精密 Wafer chamfering device and wafer chamfering method
JP2021121031A (en) * 2017-03-29 2021-08-19 株式会社東京精密 Wafer positioning apparatus and chamfering apparatus using the same
JP2022082623A (en) * 2018-03-23 2022-06-02 株式会社東京精密 Wafer chamfering device and wafer chamfering method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601691A (en) * 2012-04-06 2012-07-25 大连理工大学 Conical surface grinding method
CN106425735A (en) * 2016-08-30 2017-02-22 苏州巴奈特机械设备有限公司 Special-shaped chamfering machine
JP2021121031A (en) * 2017-03-29 2021-08-19 株式会社東京精密 Wafer positioning apparatus and chamfering apparatus using the same
JP7170089B2 (en) 2017-03-29 2022-11-11 株式会社東京精密 Wafer positioning device and chamfering device using the same
JP2019166598A (en) * 2018-03-23 2019-10-03 株式会社東京精密 Wafer chamfering device and wafer chamfering method
JP7046668B2 (en) 2018-03-23 2022-04-04 株式会社東京精密 Wafer chamfering device and wafer chamfering method
JP2022082623A (en) * 2018-03-23 2022-06-02 株式会社東京精密 Wafer chamfering device and wafer chamfering method
JP7247397B2 (en) 2018-03-23 2023-03-28 株式会社東京精密 Wafer chamfering device and wafer chamfering method

Similar Documents

Publication Publication Date Title
JP5123329B2 (en) Semiconductor substrate planarization processing apparatus and planarization processing method
JP2024036352A (en) Modified layer forming device
JP2010023119A (en) Flattening device and flattening method for semiconductor substrate
JP4892201B2 (en) Method and apparatus for processing step of outer peripheral edge of bonded workpiece
JP2010182839A (en) Edge beveling method for multilayer wafer
JP2011165994A (en) Flattening processing device of semiconductor substrate
JP6192778B2 (en) Silicon wafer processing equipment
WO2005055302A1 (en) Method for manufacturing single-side mirror surface wafer
JP2010205861A (en) Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same
JP2009285738A (en) Flattening device and flattening method for semiconductor substrate
JP2011124249A (en) Processing device and method for flattening semiconductor substrate
TWI804670B (en) Method and apparatus for manufacturing semiconductor device
JP2017204606A (en) Manufacturing method of wafer
JP2007221030A (en) Processing method for substrate
JP2010135524A (en) Cleaning method of silicon wafer having completed grinding process
JP2010219461A (en) Wafer polishing method
JP2011155095A (en) Apparatus for flattening semiconductor substrate, and temporary displacement surface plate used for the same
JP2017004989A (en) Manufacturing method for wafer, and manufacturing apparatus of wafer
JP6717706B2 (en) Wafer surface treatment equipment
JP2009123983A (en) Method for grinding back side of semiconductor substrate
TW202018794A (en) Substrate processing system and substrate processing method
JP7417837B2 (en) Crack propagation device and crack propagation method
TW201248710A (en) Method for grinding wafer
JP6979608B2 (en) Grinding device and grinding method
JP6979607B2 (en) Grinding device and grinding method