JP2010205861A - Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same - Google Patents

Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same Download PDF

Info

Publication number
JP2010205861A
JP2010205861A JP2009048708A JP2009048708A JP2010205861A JP 2010205861 A JP2010205861 A JP 2010205861A JP 2009048708 A JP2009048708 A JP 2009048708A JP 2009048708 A JP2009048708 A JP 2009048708A JP 2010205861 A JP2010205861 A JP 2010205861A
Authority
JP
Japan
Prior art keywords
laminated wafer
grinding wheel
wafer
chamfering
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009048708A
Other languages
Japanese (ja)
Inventor
Koji Saito
浩嗣 斎藤
Kazuo Kobayashi
一雄 小林
Eiichi Yamamoto
栄一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2009048708A priority Critical patent/JP2010205861A/en
Publication of JP2010205861A publication Critical patent/JP2010205861A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge chamfering method for a laminated wafer that facilitates the centering of the laminated wafer executed when the laminated wafer is transferred to a processing stage of a subsequent processing process. <P>SOLUTION: A cylindrical grinding wheel 12 is configured so that the thickness of the outer-peripheral surface is 0.3-1.5 mm. The cylindrical grinding wheel is used to chamfer the thickness of an edge and that of a bevel of the laminated wafer to the thickness of exceeding 1/3-1/2 of the thickness of one lower-tier base wafer w<SB>2</SB>of the laminated wafer w and 1/2 of the thickness of a wafer w<SB>1</SB>to be ground in the upper tier of the laminated wafer w while leaving the thickness of an insulating layer to be ≥10 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の半導体ウエーハを積層した積層ウエーハ(SOIウエーハ、TSVウエーハ)のベベル部およびエッジ部を薄厚の円筒砥石車を用いて面取りする加工装置およびそれを用いて積層ウエーハの面取り加工をする方法に関する。 The present invention relates to a processing apparatus for chamfering a bevel portion and an edge portion of a laminated wafer (SOI wafer, TSV wafer) in which a plurality of semiconductor wafers are laminated using a thin cylindrical grinding wheel, and chamfering of the laminated wafer using the same. On how to do.

SOIウエーハの製造方法として、(A) 半導体ウエーハと支持ウエーハとを酸化膜を介して重ね合せることにより積層体を形成する工程と、(B) 半導体ウエーハを所定の厚さに薄膜化することにより支持ウエーハ上に埋込み酸化膜層を介して薄膜の単結晶シリコン層を形成する工程とを含む貼合せSOIウエーハの製造方法において、(C)前記工程(A)と工程(B)の間で重ね合わせる側の主面の周端縁及び面取り部に形成された酸化膜を除去して周端縁を除く重ね合わせ面のみに酸化膜を残留させる埋込み酸化膜層全体を支持ウエーハの重ね合わせ側の主面と単結晶シリコン層により被包することを特徴とする方法が提案されている(例えば、特許文献1参照)。 As a method for manufacturing an SOI wafer, (A) a step of forming a laminated body by superposing a semiconductor wafer and a support wafer via an oxide film, and (B) by reducing the thickness of the semiconductor wafer to a predetermined thickness In a method for manufacturing a bonded SOI wafer, including a step of forming a thin single-crystal silicon layer on a supporting wafer through a buried oxide film layer, (C) overlapping between step (A) and step (B). The oxide film formed on the peripheral edge and chamfered portion of the main surface on the mating side is removed so that the oxide film remains only on the overlapping surface excluding the peripheral edge. A method characterized by encapsulating with a main surface and a single crystal silicon layer has been proposed (see, for example, Patent Document 1).

また、直径150mmの素子基板(ウエーハ)と支持基板をそれぞれ用意し、素子基板に、ウエット酸化を施し、厚さ1μmの酸化膜を形成させ、酸化膜を形成した素子基板の研磨面側と、支持基板の研磨面とを重ね合わせて密着させて、密着させた接合基板を1000℃の高温下で熱処理を施して重ね合わせた面の接合力を強化させた。その後、直径125mmまで径小化させ、フッ酸処理して熱処理時に形成された酸化膜を除去した後に、表面を研削、1次研磨を施し、接合基板の端面部(最外周部)から2mmの範囲(領域)の外周部に外周ダレを発生させた後、再度、面取り加工により、直径100mmまで、径小化させ、最後に、2次研磨、及び、仕上げ研磨を行い、SOIウエーハを作成することも知られている(例えば、特許文献2参照)。 In addition, an element substrate (wafer) having a diameter of 150 mm and a support substrate are prepared, wet oxidation is performed on the element substrate, an oxide film having a thickness of 1 μm is formed, and the polishing surface side of the element substrate on which the oxide film is formed; The polished surface of the supporting substrate was superposed and adhered, and the adhered bonded substrate was subjected to heat treatment at a high temperature of 1000 ° C. to enhance the bonding force of the superimposed surfaces. Thereafter, the diameter is reduced to 125 mm, and after removing the oxide film formed during the heat treatment by hydrofluoric acid treatment, the surface is ground and subjected to primary polishing, and 2 mm from the end surface portion (outermost peripheral portion) of the bonded substrate. After generating an outer peripheral sag in the outer peripheral portion of the range (region), the diameter is reduced to 100 mm by chamfering again, and finally, secondary polishing and finish polishing are performed to create an SOI wafer. This is also known (see, for example, Patent Document 2).

さらに、研磨テープを用いて積層(SOI)ウエーハのベベル部とエッジ部を研磨する方法も提案されている(例えば、特許文献3参照)。 Furthermore, a method of polishing a bevel portion and an edge portion of a laminated (SOI) wafer using an abrasive tape has also been proposed (see, for example, Patent Document 3).

さらにまた、周辺部にベベルを有するシリコンウエーハを複数枚積層し、該積層状態の複数枚のシリコンウエーハを一括して、周辺部のベベルを研削加工して垂直エッジ面を形成させた後、ついで個々のシリコンウエーハの面をバックグラインドすることにより、薄シリコンウエーハを得る方法も提案されている(例えば、特許文献4参照)。 Furthermore, after laminating a plurality of silicon wafers having bevels in the peripheral portion, and laminating the plurality of silicon wafers in the laminated state, the peripheral bevel is ground to form a vertical edge surface, and then There has also been proposed a method of obtaining a thin silicon wafer by back grinding the surface of each individual silicon wafer (see, for example, Patent Document 4).

また、図3に示すように支持基板用ウエーハ(101)と活性層用ウエーハが接合絶縁膜(102)を介して接合され、前記活性層用ウエーハが薄膜化加工を通して半導体素子の活性層(103)とされ、更にその外周部が前記活性層の表面に対して30度〜60度の角度でベベル加工され、ついで、前記接合絶縁膜(102)端部がエッチング処理により除かれ(107)前記活性層側のベベル加工により形成されたベベル面において露出しているSOIウエーハも提案されている(例えば、特許文献5参照)。 Further, as shown in FIG. 3, the support substrate wafer (101) and the active layer wafer are bonded via the bonding insulating film (102), and the active layer wafer is thinned and the active layer (103) of the semiconductor element is formed. Further, the outer peripheral portion thereof is beveled at an angle of 30 ° to 60 ° with respect to the surface of the active layer, and then the end portion of the bonding insulating film (102) is removed by an etching process (107) An SOI wafer exposed on a bevel surface formed by bevel processing on the active layer side has also been proposed (see, for example, Patent Document 5).

半導体基板(ウエーハ)の径が150〜200mmから300〜450mmと拡径し、厚みが20〜100μmと極薄の次世代の半導体基板の出現が要望され、直径300〜450mmのSOIウエーハやTSV積層ウエーハのエッジ研磨または研削に前記特許文献1乃至特許文献3に記載のエッジ面取り研削砥石や研磨テープを用いてSOIウエーハのエッジ面を面取りし、次いで、SOIウエーハやTSV積層ウエーハの裏面研削、裏面研磨を行って得られる平坦加工SOIウエーハには、チッピングやクラックがエッジ部に数多く見受けられることが判明した。 The next generation of ultra-thin semiconductor substrates with the diameter of semiconductor substrates (wafers) increasing from 150 to 200 mm to 300 to 450 mm and the thickness of 20 to 100 μm is required. SOI wafers and TSV stacks with diameters of 300 to 450 mm The edge surface of the SOI wafer is chamfered by using the edge chamfering grinding wheel or polishing tape described in Patent Documents 1 to 3 for edge polishing or grinding of the wafer, and then back surface grinding and back surface of the SOI wafer or TSV laminated wafer are performed. It has been found that many chippings and cracks are observed at the edge portion of the flat processed SOI wafer obtained by polishing.

前記特許文献4に記載されるSOIウエーハのベベル部およびエッジ部の垂直面取り方法は、SOIウエーハを用いた半導体デバイスの製造工程において外周部におけるSOI層の欠損(割れやチッピング)を防止できる優れた技術である。しかし、後加工工程の裏面研削(バックグライング)工程や研磨工程、あるいはウエーハ剥離工程におけるウエーハの芯出し作業が一々必要となる。半導体基板加工メーカーは、積層されたウエーハの下段側ウエーハについて、後工程では芯出し工程ができるようベースとなるウエーハに一部エッジ面が残されることを要望している。 The method for vertically chamfering the bevel portion and the edge portion of the SOI wafer described in Patent Document 4 is excellent in that the SOI layer can be prevented from being broken (cracked or chipped) in the outer peripheral portion in the manufacturing process of the semiconductor device using the SOI wafer. Technology. However, it is necessary to perform wafer centering operations in a back grinding process, a polishing process, or a wafer peeling process in a post-processing process. Semiconductor substrate processing manufacturers are requesting that some edge surfaces be left on the base wafer so that a centering process can be performed in the post-process of the lower wafer on the stacked wafer.

前記特許文献5に記載されるベベル部およびエッジ部の面取り方法は、SOIウエーハを用いた半導体デバイスの製造工程において外周部におけるSOI層の欠損(割れやチッピング)を防止できる優れた技術である。また、後工程においても芯出し工程が不要となる利点を有する。しかし、積層ウエーハのベベル部・エッジ部の面取りに研削工程とエッチング工程の2工程が必要であり、基板の薄肉平坦化装置に付属させるこれら面取り装置の設置面積も広くなる欠点がある。 The bevel part and edge chamfering method described in Patent Document 5 is an excellent technique capable of preventing the SOI layer from being damaged (cracked or chipped) in the outer peripheral part in the manufacturing process of the semiconductor device using the SOI wafer. In addition, there is an advantage that the centering step is not required in the post-process. However, the chamfering of the bevel portion and the edge portion of the laminated wafer requires two steps of a grinding step and an etching step, and there is a disadvantage that the installation area of these chamfering devices attached to the substrate thinning flattening device becomes wide.

特開2005−79109号公報JP 2005-79109 A 特開2006−100406号公報JP 2006-100406 A 米国特許第6,641,464号明細書US Pat. No. 6,641,464 特開2004−22899号公報の図7FIG. 7 of Japanese Patent Application Laid-Open No. 2004-22899 特開2007−214256号公報の図4(b)FIG. 4B of Japanese Patent Application Laid-Open No. 2007-214256

本発明は、後工程の裏面研削加工や研磨加工して得られる積層ウエーハにクラックやチッピングが生じず、かつ、これら後工程に積層ウエーハを移送する際の芯出しを可能とするベースウエーハ部直径部の面取り残部を残す積層ウエーハ(SOIウエーハ、TSVウエーハ)のベベル部・エッジ部の面取り研削方法および面取り装置を提供するものである。 The present invention provides a base wafer portion diameter that does not cause cracks or chipping in a laminated wafer obtained by back-grinding or polishing in a subsequent process, and enables centering when transferring the laminated wafer to the subsequent process. A chamfering grinding method and a chamfering device for bevel portions and edge portions of laminated wafers (SOI wafers, TSV wafers) that leave chamfered portions of the portions are provided.

本発明の請求項1は、厚みが0.3〜1.5mm、直径が積層ウエーハの直径よりも小さい径であって、砥番が500〜2,000番の円筒砥石車をその直径長手方向が水平方向に回転可能となるように砥石軸に軸承させた研削ヘッド、支持チャック上に直径方向が水平方向に載置された積層ウエーハの中心点方向に前記研削ヘッドの前記円筒砥石車を前後移動可能とする移動機構、前記砥石軸を回転させる回転駆動機構、前記砥石軸の昇降機構、積層ウエーハを載置する前記支持チャック、前記支持チャックのワークテーブルを軸承する回転軸の回転駆動機構、および、積層ウエーハの面取り加工部に研削液を供給する研削液供給機構、を備えることを特徴とする積層ウエーハの面取り装置を提供するものである。 According to the first aspect of the present invention, a cylindrical grinding wheel having a thickness of 0.3 to 1.5 mm and a diameter smaller than the diameter of the laminated wafer and having an abrasive number of 500 to 2,000 is provided in the longitudinal direction of the diameter. A grinding head that is supported by the grinding wheel shaft so that the grinding wheel can be rotated in the horizontal direction, and the cylindrical grinding wheel of the grinding head is moved back and forth in the direction of the center point of the laminated wafer that is horizontally mounted on the support chuck in the diametrical direction. A moving mechanism for enabling movement, a rotation driving mechanism for rotating the grinding wheel shaft, a lifting mechanism for the grinding wheel shaft, the support chuck for placing the laminated wafer, a rotation driving mechanism for the rotation shaft for supporting the work table of the support chuck, Also provided is a chamfering device for a laminated wafer, comprising a grinding fluid supply mechanism for supplying a grinding fluid to a chamfered portion of the laminated wafer.

本発明の請求項2は、請求項1の積層ウエーハの面取り装置を用い、次の工程を経て積層ウエーハのベベル部とエッジ部を面取り加工する方法を提供するものである。(1)支持チャック上に直径方向が水平方向に載置された積層ウエーハに対する円筒砥石車の高さ位置を砥石軸の昇降機構で調整する。(2)支持チャック上に載置された回転している積層ウエーハの中心点方向に前記研削ヘッドの移動機構により前記円筒砥石車を被研削加工される積層ウエーハのエッジ部に当接させ、ついで、回転する円筒砥石車を前進移動させて円筒砥石車の外周面を積層ウエーハのウエーハ外周面に当接させ、続いて円筒砥石車の外周面と上下面を積層ウエーハに摺擦させながら下段のベースウエーハの1枚の厚みの1/3〜1/2の厚みおよび上段の研削加工されるウエーハの厚みの1/2を越え絶縁層を10μm以上残す分の積層ウエーハの厚みを面取り加工させる円筒砥石車の前進移動を1〜5mm行う。この面取り加工の際、積層ウエーハと円筒砥石車の面取り加工部には、研削液供給機構より研削液が供給される。(3)前記円筒砥石車の前進移動による積層ウエーハのエッジ部およびベベル部の面取り加工が終了したら、前記研削ヘッドの移動機構により前記円筒砥石車を面取り加工された積層ウエーハより遠ざける後退移動を行う。 According to a second aspect of the present invention, there is provided a method for chamfering a bevel portion and an edge portion of a laminated wafer through the following steps using the chamfering device for the laminated wafer according to the first aspect. (1) The height position of the cylindrical grinding wheel with respect to the laminated wafer placed on the support chuck in the diametrical direction is adjusted by the lifting mechanism of the grinding wheel shaft. (2) The cylindrical grinding wheel is brought into contact with the edge portion of the laminated wafer to be ground by the moving mechanism of the grinding head in the direction of the center point of the rotating laminated wafer placed on the support chuck, Then, the rotating cylindrical grinding wheel is moved forward to bring the outer peripheral surface of the cylindrical grinding wheel into contact with the outer peripheral surface of the laminated wafer, and then the lower and lower surfaces of the cylindrical grinding wheel are rubbed against the laminated wafer. Cylinder for chamfering the thickness of the laminated wafer that exceeds 1/3 to 1/2 of the thickness of one base wafer and 1/2 of the thickness of the upper ground wafer and leaves an insulating layer of 10 μm or more. The grinding wheel is moved forward by 1 to 5 mm. In this chamfering process, the grinding liquid is supplied from the grinding liquid supply mechanism to the chamfering part of the laminated wafer and the cylindrical grinding wheel. (3) When the chamfering of the edge portion and the bevel portion of the laminated wafer by the forward movement of the cylindrical grinding wheel is finished, the cylindrical grinding wheel is moved backward from the laminated wafer chamfered by the moving mechanism of the grinding head. .

請求項1の積層ウエーハの面取り装置は、積層ウエーハのベベル部とエッジ部の面取りをベースウエーハの直径部分を残して同時に研削加工できるので、設置面積が小さくて済む。 In the laminated wafer chamfering apparatus according to the first aspect, since the chamfering of the bevel portion and the edge portion of the laminated wafer can be simultaneously ground while leaving the diameter portion of the base wafer, the installation area can be reduced.

請求項2の積層ウエーハのベベル部とエッジ部の面取り加工方法は、ベースウエーハの直径部分を残して研削加工するので、積層ウエーハの後工程の際に積層ウエーハの芯出しが可能である。 In the method for chamfering the bevel portion and the edge portion of the laminated wafer according to the second aspect of the invention, since the grinding process is performed leaving the diameter portion of the base wafer, the laminated wafer can be centered in the post-process of the laminated wafer.

図1は積層ウエーハのベベル部およびエッジ部の面取り装置の側面図である。FIG. 1 is a side view of a chamfering device for a bevel portion and an edge portion of a laminated wafer. 図2は積層ウエーハのベベル部およびエッジ部の面取り工程の実施手順を示す説明図である。FIG. 2 is an explanatory view showing an execution procedure of a chamfering process for a bevel portion and an edge portion of a laminated wafer. 図3は積層ウエーハのベベル部およびエッジ部が面取りされた積層ウエーハの部分断面図である。(公知)FIG. 3 is a partial cross-sectional view of a laminated wafer in which the bevel portion and the edge portion of the laminated wafer are chamfered. (Known)

図1に示す面取り装置1は、面取りツールステージ10と支持チャック20と研削液供給機構30,30により構成される。面取りツールステージ10は、フレーム40上に設けられたガイドウエイ11aとスライドウエイ11bより構成されるツールテーブル11の上面にコラム60を起立させ、このコラム正面上部より砥石軸昇降機構50を垂下させて設け、この砥石軸昇降機構の砥石軸取り付け板55の側面に砥石軸13を固定し、円筒砥石車12をその直径方向が水平面となるよう砥石軸13下端部に回転駆動機構により回転自在に固定することにより研削ヘッド14を構成する。回転駆動機構は図示されていないが、ビルトインモータ駆動が好ましいが、サーボモータとプーリとベルトの組み合わせの外付け回転駆動機構であってもよい。 A chamfering apparatus 1 shown in FIG. 1 includes a chamfering tool stage 10, a support chuck 20, and grinding fluid supply mechanisms 30 and 30. The chamfering tool stage 10 raises a column 60 on the upper surface of a tool table 11 composed of a guideway 11a and a slideway 11b provided on a frame 40, and a grindstone shaft lifting mechanism 50 is suspended from the upper front of the column. The grinding wheel shaft 13 is fixed to the side surface of the grinding wheel shaft mounting plate 55 of the grinding wheel shaft lifting mechanism, and the cylindrical grinding wheel 12 is rotatably fixed to the lower end portion of the grinding wheel shaft 13 by a rotational drive mechanism so that the diameter direction thereof becomes a horizontal plane. By doing so, the grinding head 14 is configured. Although a rotation drive mechanism is not shown, built-in motor drive is preferable, but an external rotation drive mechanism of a combination of a servo motor, a pulley, and a belt may be used.

前記ツールテーブル11は、ガイドウエイ11a上をスライドウエイ11bが滑走し、支持チャック20上に載置された積層ウエーハの中心点oに対し前後移動可能となっている。サーボモータ21cの回転駆動をボールネジ21dが受けて前記スライドウエイ21bを支持チャック20上に載置された積層ウエーハの中心点位置側に前進させるか、積層ウエーハの中心点位置から後退させる。スライドウエイ11bの前進後退の移動は、リニアアクチュエータ駆動、リニアモータ駆動であってもよい。前記スライドウエイ21bの上端には変位センサー(レーザー距離測定計)70が取り付けられ、円筒砥石車12の底面高さを測定する。 The tool table 11 is slidable on the guide way 11 a and slides on the center point o of the laminated wafer placed on the support chuck 20. The ball screw 21d receives the rotational drive of the servo motor 21c, and the slide way 21b is moved forward to the center point position side of the laminated wafer placed on the support chuck 20, or retracted from the center point position of the laminated wafer. The forward / backward movement of the slide way 11b may be linear actuator drive or linear motor drive. A displacement sensor (laser distance meter) 70 is attached to the upper end of the slide way 21b to measure the bottom surface height of the cylindrical grinding wheel 12.

砥石軸昇降装置50は、サーボモータ52の回転駆動をボールネジ51が受けて螺合体54を介して砥石軸取り付け板54を上下方向に昇降させる。前記螺合体54は案内レール53上を滑走する。砥石軸取り付け板55の昇降移動は、リニアアクチュエータ駆動、リニアモータ駆動であってもよい。 The grindstone shaft raising / lowering device 50 receives the rotational drive of the servo motor 52 by the ball screw 51 and raises / lowers the grindstone shaft mounting plate 54 in the vertical direction via the threaded body 54. The screw 54 slides on the guide rail 53. The up and down movement of the grindstone shaft mounting plate 55 may be driven by a linear actuator or a linear motor.

円筒砥石車12の厚みは、面取り加工される積層ウエーハの下段のベースウエーハの1枚の厚みの1/3〜1/2の厚みおよび上段のウエーハの面取り加工されるウエーハの厚みの1/2を越え絶縁層厚み(t)を10μm以上残す分の厚みを面取り加工する合計厚みの0.75〜1.5mmで、円筒砥石車の直径が積層ウエーハの直径より
も小さい径であって、砥番が500〜2,000番のCBN砥粒もしくはダイヤモンド砥粒のビトリファイドボンド砥石、メタルボンド砥石、レジンボンド砥石が好ましい。円筒砥石車12の砥石刃部分は、高さが0.75〜1.5mm、幅が1〜5mmの砥石刃外周環状幅となるように金属製円板外周縁付近面に電解メッキ加工して得たものでもよい。
The thickness of the cylindrical grinding wheel 12 is 1/3 to 1/2 of the thickness of one base wafer on the lower layer of the laminated wafer to be chamfered and 1/2 of the thickness of the wafer to be chamfered on the upper wafer. The thickness of the insulating layer thickness (t) exceeding 10 μm is chamfered to a total thickness of 0.75 to 1.5 mm, and the diameter of the cylindrical grinding wheel is smaller than the diameter of the laminated wafer. Vitrified bond grindstones, metal bond grindstones, and resin bond grindstones of CBN abrasive grains or diamond abrasive grains having a number of 500 to 2,000 are preferred. The grinding wheel portion of the cylindrical grinding wheel 12 is subjected to electrolytic plating on the peripheral surface of the outer periphery of the metal disk so as to have an outer circumferential width of the grinding wheel blade having a height of 0.75 to 1.5 mm and a width of 1 to 5 mm. It may be obtained.

支持チャック20は、ポーラスセラミックチャックテーブル21を中空軸22で回転自在に軸承したバキュームチャックが好ましく、ポーラスセラミックチャックテーブル21の直径は、積層ウエーハの直径より0.1〜5mm小さい径であるのが好ましい。中空軸22管内には、減圧管、純水供給管、圧空供給管が設けられている。 The support chuck 20 is preferably a vacuum chuck in which a porous ceramic chuck table 21 is rotatably supported by a hollow shaft 22, and the diameter of the porous ceramic chuck table 21 is 0.1 to 5 mm smaller than the diameter of the laminated wafer. preferable. A decompression pipe, a pure water supply pipe, and a compressed air supply pipe are provided in the hollow shaft 22 pipe.

研削液供給機構30は、積層ウエーハの面取り加工の際、積層ウエーハと円筒砥石車の面取り加工部(作業部)に向けて研削液を供給する。 The grinding fluid supply mechanism 30 supplies the grinding fluid toward the chamfering portion (working portion) of the laminated wafer and the cylindrical grinding wheel when chamfering the laminated wafer.

積層ウエーハwのベベル部およびエッジ部の面取り加工は、図2に示すように、次の工程を経て実施する。 The chamfering of the bevel portion and the edge portion of the laminated wafer w is performed through the following steps as shown in FIG.

(1)支持チャック20上に直径方向が水平方向に載置された積層ウエーハwに対する円筒砥石車12の底面高さ位置を砥石軸昇降機構50で下降させて調整する(図2a参照)。 (1) The bottom height position of the cylindrical grinding wheel 12 with respect to the laminated wafer w placed on the support chuck 20 in the diametrical direction is adjusted by lowering the grinding wheel shaft lifting mechanism 50 (see FIG. 2a).

(2)支持チャック20上に載置された積層ウエーハwを100〜300rpmの回転速度で回転させ、ついで、この積層ウエーハwの中心点o方向に向かって800〜2,000rpmの回転速度で回転する円筒砥石車12を研削ヘッド14の移動機構により前進移動させて円筒砥石車12の外周面を被研削加工される積層ウエーハwのエッジ部に当接させ、さらに円筒砥石車12を前進移動させて回転する円筒砥石車12の外周面と上下面を積層ウエーハに摺擦させながら積層ウエーハの下段ベースウエーハwの1枚の厚みの1/3〜1/2の厚みおよび上段の研削加工されるウエーハwの厚みの1/2を越え絶縁層の厚みを10μm以上残す分の積層ウエーハの厚みを面取り加工させる円筒砥石車前進移動1〜5mmを移動速度0.5〜3mm/分で行う(図2b参照)。この面取り加工の際、積層ウエーハwと円筒砥石車12とが接触する面取り加工部には、研削液供給機構30より研削液が供給される。 (2) The laminated wafer w placed on the support chuck 20 is rotated at a rotational speed of 100 to 300 rpm, and then rotated at a rotational speed of 800 to 2,000 rpm toward the center point o of the laminated wafer w. The cylindrical grinding wheel 12 is moved forward by the moving mechanism of the grinding head 14, the outer peripheral surface of the cylindrical grinding wheel 12 is brought into contact with the edge portion of the laminated wafer w to be ground, and the cylindrical grinding wheel 12 is further moved forward. is the outer peripheral surface and one grinding 1 / 3-1 / 2 the thickness and the upper thickness of the lower base wafer w 2 of the laminated wafer while the upper and lower surfaces is rubbed into laminated wafer of the cylindrical grinding wheel 12 rotating Te Cylindrical grinding wheel forward movement of 1-5 mm that chamfers the thickness of the laminated wafer that exceeds 1/2 of the thickness of the wafer w 1 and the insulating layer has a thickness of 10 μm or more. 5-3 mm / min (see FIG. 2b). During the chamfering process, the grinding liquid is supplied from the grinding liquid supply mechanism 30 to the chamfering part where the laminated wafer w and the cylindrical grinding wheel 12 are in contact with each other.

(3)前記円筒砥石車12の前進移動による積層ウエーハwのエッジ部およびベベル部の面取り加工が終了したら、前記研削ヘッド14の移動機構11により前記円筒砥石車12を面取り加工された積層ウエーハwより遠ざける後退移動を行い、砥石軸13の回転を停止させる(図2c参照)。 (3) When chamfering of the edge portion and the bevel portion of the laminated wafer w by the forward movement of the cylindrical grinding wheel 12 is completed, the laminated wafer w in which the cylindrical grinding wheel 12 is chamfered by the moving mechanism 11 of the grinding head 14. A backward movement is performed further away to stop the rotation of the grindstone shaft 13 (see FIG. 2c).

被研削物wとして、直径300mm、厚み750μmのシリコン基盤の表面に電子回路をプリント配線(厚み10μm)した半導体ウエーハ2枚w,wのプリント配線面同士を向かい合わせて積層したSOIウエーハwを用い、図1に示す面取り装置1を用いて積層ウエーハwの面取り加工を行った。 As an object to be ground w, an SOI wafer w obtained by laminating two printed wafer surfaces w 1 and w 2 facing each other on the surface of a silicon substrate having a diameter of 300 mm and a thickness of 750 μm with printed circuits (thickness 10 μm) facing each other. Then, the chamfering of the laminated wafer w was performed using the chamfering apparatus 1 shown in FIG.

先ず、厚み0.8mm、直径120mm、砥番800のダイヤモンドビトリファイド円筒砥石車12を砥石軸昇降機構50で下降させて、支持チャック20上に直径方向が水平方向に載置された積層ウエーハwの下段ウエーハwの最長直径部Lより10μm上位置となるよう円筒砥石車12の底面高さ位置を調整した。 First, the diamond vitrified cylindrical grinding wheel 12 having a thickness of 0.8 mm, a diameter of 120 mm, and a grinding number 800 is lowered by the grinding wheel shaft lifting mechanism 50, and the laminated wafer w in which the diametrical direction is horizontally placed on the support chuck 20. bottom height position of the cylindrical grinding wheel 12 so as to be 10μm on position than the longest diameter portion L of the lower wafer w 2 was adjusted.

ついで、200rpmで回転する支持チャック20のポーラスセラミックチャックテーブル21上に載置された積層ウエーハwの中心点o方向に、1,500rpmで回転する砥石軸13を2mm/分の速度で前進させて積層ウエーハwの外周面に円筒砥石車12の円筒外周面を当接させ、さらに同移動速度で円筒砥石車12を前進移動させて回転する円筒砥石車12の外周面と上下面を前期積層ウエーハwに摺擦させながら積層ウエーハの下段ベースウエーハw上部と上段ウエーハwのベベル部とエッジ部を研削加工する面取り高さ0.8mm、直径面の面取り幅2.5mmの面取り加工を行った。 Next, the grindstone shaft 13 rotating at 1,500 rpm is advanced at a speed of 2 mm / min toward the center point o of the laminated wafer w placed on the porous ceramic chuck table 21 of the support chuck 20 rotating at 200 rpm. The outer peripheral surface and the upper and lower surfaces of the cylindrical grinding wheel 12 rotating by rotating the cylindrical grinding wheel 12 forward at the same moving speed are brought into contact with the outer peripheral surface of the laminated wafer w. Chamfering with a chamfering height of 0.8 mm and a chamfering width of 2.5 mm on the diameter surface is performed by grinding the upper and lower base wafers w 2 and the bevel and edge of the upper wafer w 1 while rubbing against w. It was.

この面取り加工の際、積層ウエーハwと円筒砥石車12とが接触する面取り加工部に、一対の研削液供給機構30,30より純水(研削液)を2リットル/分の量供給しつつ面取り加工を行った。 In this chamfering process, chamfering is performed while supplying pure water (grinding liquid) in an amount of 2 liters / minute from the pair of grinding liquid supply mechanisms 30 and 30 to the chamfering part where the laminated wafer w and the cylindrical grinding wheel 12 are in contact with each other. Processing was performed.

円筒砥石車12による積層ウエーハwのエッジ部およびベベル部の面取り加工を終了した後、前記研削ヘッド14の移動機構により前記円筒砥石車12を面取り加工された積層ウエーハwより遠ざける後退移動を行い、砥石軸13の回転を停止させた。 After the chamfering of the edge portion and the bevel portion of the laminated wafer w by the cylindrical grinding wheel 12 is finished, the cylindrical grinding wheel 12 is moved backward from the laminated wafer w chamfered by the moving mechanism of the grinding head 14, The rotation of the grindstone shaft 13 was stopped.

支持チャック20のポーラスセラミックチャックテーブル21の回転を停止させた後、積層ウエーハwの表面を加圧水吹きつけとブラシ洗浄し、続いてポーラスセラミックチャックテーブル21下面に加圧水を供給し、積層ウエーハwのポーラスセラミックチャックテーブル21からの剥離を容易とした。 After the rotation of the porous ceramic chuck table 21 of the support chuck 20 is stopped, the surface of the laminated wafer w is blown with pressurized water and brush-washed, and then pressurized water is supplied to the lower surface of the porous ceramic chuck table 21 to thereby porous the laminated wafer w. Peeling from the ceramic chuck table 21 was facilitated.

特許願2008−183398号明細書に記載の半導体基板用平坦化装置GDM300II(株式会社岡本工作機械製商品名)を用い、前記支持チャック20上のベベル部とエッジ部を面取り研削加工された積層ウエーハwを多関節型搬送ロボットの吸着パッドに吸着し、裏面研削ステージへ搬送した。 A laminated wafer in which a bevel portion and an edge portion on the support chuck 20 are chamfered and ground using a planarization apparatus GDM300II (trade name, manufactured by Okamoto Machine Tool Co., Ltd.) for a semiconductor substrate described in Japanese Patent Application No. 2008-183398. w was adsorbed to the suction pad of the articulated transfer robot and transferred to the back grinding stage.

粗研削ステージで砥番600の粗研削カップホイール型ダイヤモンドレジンボンド砥石を用いて積層ウエーハのシリコン基盤面を粗研削加工(基板の回転数は300rpm、砥石軸の回転数は1,800rpm)し、シリコン基盤面wを670μm削り取った。 Roughly grind the silicon substrate surface of the laminated wafer using a rough grinding cup wheel type diamond resin bond grindstone of grinding number 600 on the rough grinding stage (substrate rotation speed is 300 rpm, grinding wheel shaft rotation speed is 1,800 rpm) The silicon substrate surface w 1 was cut off by 670 μm.

この粗研削加工されたシリコン基盤面wを仕上研削ステージで砥番8,000のカップホイール型ダイヤモンドビトリファイドボンド砥石を用いて粗研削加工されたシリコン基盤面wを仕上げ研削加工(基板の回転数は300rpm、砥石軸の回転数は1,800rpm)し、シリコン基盤面wを30μm削り取り、シリコン基盤wの厚みを20μmに低減させた。ついで、研削加工シリコン基盤面wに純水を供給しながらブラシ洗浄を行った後、乾燥空気を吹きつけ乾燥させた。得られたシリコン基盤面wには、研削条痕が見受けられた。 This rough ground silicon base surface w 1 is subjected to a final grinding process (rotation of the substrate) on the rough ground silicon base surface w 1 using a cup wheel type diamond vitrified bond grindstone with a polishing number of 8,000 in a finish grinding stage. The number of rotations was 300 rpm and the rotation speed of the grinding wheel shaft was 1,800 rpm), the silicon substrate surface w 1 was scraped by 30 μm, and the thickness of the silicon substrate w 1 was reduced to 20 μm. Then, after the brush cleaning while supplying pure water to the grinding silicon substrate surface w 1, and dried blowing dry air. Resulting in the silicon base surface w 1, grinding striation were found.

研削加工された半導体基板を研磨ステージへ移送させた後、この研削加工されたシリコン基盤面wに日本・エアープロダクト社のシリカ系粒子分散水系研磨剤スラリー“SR300”(商品名)を100cc/分の量供給しながらシリコン基盤面wに懸かる研磨パッドの圧力を230g/cm、研磨パッドの回転数を250rpm、積層半導体基板wの回転数を150rpmで摺擦させて研削条痕を取り除くバフ研磨加工を6分間行った。シリコン基盤面wの厚みは、3μm低減した。 After the ground semiconductor substrate is transferred to the polishing stage, the silica-based particle-dispersed aqueous abrasive slurry “SR300” (trade name) of Japan Air Products Co. is applied to the ground silicon substrate surface w 1 at 100 cc / Grinding marks are removed by rubbing at a pressure of 230 g / cm 2 , a polishing pad rotating on the silicon substrate surface w 1 while supplying a minute amount, a rotating speed of the polishing pad of 250 rpm, and a rotating speed of the laminated semiconductor substrate w of 150 rpm. Buffing was performed for 6 minutes. The thickness of the silicon substrate surface w 1 was reduced by 3 μm.

このバフ研磨加工されたシリコン基盤面wにシリカ系粒子分散水系研磨剤スラリー“SR300”(商品名)を300cc/分の量供給しながらシリコン基盤面wに懸かる研磨パッドの圧力を50g/cm、研磨パッドの回転数を20rpm、半導体基板の回転数を20rpmで摺擦させる第二バフ研磨加工を4分間行った。シリコン基盤面wの厚みは、更に0.1μm低減した。このシリコン基盤面に付着している粒子の個数は、0.2μm径以下の粒子は5,043個、1.0μm以上の粒子は204個であった。 The pressure of the polishing pad according to the silicon base surface w 1 .. This buffing silica-based particles dispersed aqueous abrasive slurry "SR300" (trade name) on the silicon base surface w 1 with an amount supplied of 300 cc / min 50 g / A second buffing process was performed for 4 minutes, in which the polishing pad was rubbed at cm 2 , the polishing pad rotating at 20 rpm, and the semiconductor substrate rotating at 20 rpm. The thickness of the silicon substrate surface w 1 was further reduced by 0.1 μm. The number of particles adhering to the silicon substrate surface was 5,043 particles having a diameter of 0.2 μm or less, and 204 particles having a diameter of 1.0 μm or more.

しかる後に、この研削加工、バフ研磨加工されたシリコン基盤面wに薬剤SC1を500cc/分の量供給するアルカリ洗浄を2分間行い、次いでフッ酸含有オゾン水で酸洗浄を1分行った後、純水でシリコン基盤面wを洗浄し、スピン乾燥させて0.2μm径以下の異物粒子(研削屑や研磨屑)の付着が2個、表面平均粗さ(Ra)が0.002μmのシリコン基盤鏡面を有する積層ウエーハを得た。積層ウエーハにはチッピング、クラッキングは見受けられなかった。 After that, after this grinding and buffing silicon base surface w 1 was subjected to alkali cleaning for 2 minutes to supply the drug SC1 in an amount of 500 cc / min, and then acid cleaning with hydrofluoric acid-containing ozone water for 1 minute. The silicon substrate surface w 1 is washed with pure water, spin-dried, and two foreign particles (grinding scraps and polishing scraps) having a diameter of 0.2 μm or less are attached, and the surface average roughness (Ra) is 0.002 μm. A laminated wafer having a silicon substrate mirror surface was obtained. No chipping or cracking was found on the laminated wafer.

上記実施例1と同様にして積層ウエーハ25物件のエッジ面取り加工、裏面研削加工、裏面研磨加工、洗浄を実施したところ、いずれの積層ウエーハにもチッピング、クラッキングは全く見受けられなかった。 When edge chamfering processing, back surface grinding processing, back surface polishing processing, and cleaning were performed in the same manner as in Example 1 above, no chipping or cracking was found on any of the stacked wafers.

後加工工程で、積層ウエーハwにクラッキングやチッピングを生じさせない積層ウエーハのベベル部とエッジ部の面取り加工ができる。面取り加工された積層ウエーハは、下段のウエーハwの最大直径部分が残されるので、後加工工程の加工ステージに積層ウエーハwが移送される際に行われる積層ウエーハの芯出しも容易である。 In the post-processing step, chamfering of the bevel portion and the edge portion of the laminated wafer that does not cause cracking or chipping in the laminated wafer w can be performed. Chamfered laminated wafer, the maximum diameter portion of the lower wafer w 2 is left, the laminated wafer w in the processing stage of the post-processing step is easily centering the laminated wafer is performed when it is transported.

1 面取り装置 10 面取りツールステージ 11 ツールテーブル 12 円筒砥石車 13 砥石軸 14 研削ヘッド 20 支持チャック 21 ワークテーブル(ポーラスセラミック製チャックテーブル) 30 研削液供給ノズル 50 砥石軸昇降装置 60 コラム 70 変位センサー w 積層ウエーハw 上段(裏面研削)ウエーハw 下段(ベース)ウエーハL 下段ウエーハ直径端部t 上段ウエーハ絶縁層面取り残し部厚み DESCRIPTION OF SYMBOLS 1 Chamfering apparatus 10 Chamfering tool stage 11 Tool table 12 Cylindrical grinding wheel 13 Grinding wheel shaft 14 Grinding head 20 Support chuck 21 Work table (Chuck table made of porous ceramic) 30 Grinding fluid supply nozzle 50 Grinding wheel shaft lifting device 60 Column 70 Displacement sensor w Lamination Wafer w 1 Upper stage (back grinding) Wafer w 2 Lower stage (base) Wafer L Lower wafer diameter end t Upper wafer Insulating layer chamfer thickness

Claims (2)

厚みが0.3〜1.5mm、直径が積層ウエーハの直径よりも小さい径であって、砥番が50〜2,000番の円筒砥石車をその直径長手方向が水平方向に回転可能となるように砥石軸に軸承させた研削ヘッド、支持チャック上に直径方向が水平方向に載置された積層ウエーハの中心点方向に前記研削ヘッドの前記円筒砥石車を前後移動可能とする移動機構、前記砥石軸を回転させる回転駆動機構、前記砥石軸の昇降機構、積層ウエーハを載置する前記支持チャック、前記支持チャックのワークテーブルを軸承する回転軸の回転駆動機構、および、積層ウエーハの面取り加工部に研削液を供給する研削液供給機構、を備えることを特徴とする積層ウエーハの面取り装置。 A cylindrical grinding wheel having a thickness of 0.3 to 1.5 mm and a diameter smaller than the diameter of the laminated wafer and having a grinding number of 50 to 2,000 can be rotated in the horizontal direction in the longitudinal direction of the diameter. A grinding head that is supported by the grinding wheel shaft, a moving mechanism that enables the cylindrical grinding wheel of the grinding head to move back and forth in the direction of the center point of the laminated wafer that is horizontally mounted on the support chuck in the diameter direction, Rotation drive mechanism for rotating the grinding wheel shaft, lifting mechanism for the grinding wheel shaft, the support chuck for placing the laminated wafer, a rotational drive mechanism for the rotational shaft for bearing the work table of the support chuck, and a chamfered portion of the laminated wafer A chamfering device for a laminated wafer, comprising: a grinding fluid supply mechanism for supplying a grinding fluid to the substrate. 請求項1の積層ウエーハの面取り装置を用い、次の工程を経て積層ウエーハのベベル部とエッジ部を面取り加工する方法。(1)支持チャック上に直径方向が水平方向に載置された積層ウエーハに対する円筒砥石車の高さ位置を砥石軸の昇降機構で調整する。(2)支持チャック上に載置された回転している積層ウエーハの中心点方向に前記研削ヘッドの移動機構により前記円筒砥石車を被研削加工される積層ウエーハのエッジ部に当接させ、ついで、回転する円筒砥石車を前進移動させて円筒砥石車の外周面を積層ウエーハのウエーハ外周面に当接させ、続いて円筒砥石車の外周面と上下面を積層ウエーハに摺擦させながら下段のベースウエーハの1枚の厚みの1/3〜1/2の厚みおよび上段の研削加工されるウエーハの厚みの1/2を越え絶縁層厚みを10μm以上残す分の積層ウエーハの厚みを面取り加工させる円筒砥石車の前進移動を1〜5mm行う。この面取り加工の際、積層ウエーハと円筒砥石車の面取り加工部には、研削液供給機構より研削液が供給される。(3)前記円筒砥石車の前進移動による積層ウエーハのエッジ部およびベベル部の面取り加工が終了したら、前記研削ヘッドの移動機構により前記円筒砥石車を面取り加工された積層ウエーハより遠ざける後退移動を行う。 A method for chamfering a bevel portion and an edge portion of a laminated wafer through the following steps using the chamfering device for a laminated wafer according to claim 1. (1) The height position of the cylindrical grinding wheel with respect to the laminated wafer placed on the support chuck in the diametrical direction is adjusted by the lifting mechanism of the grinding wheel shaft. (2) The cylindrical grinding wheel is brought into contact with the edge portion of the laminated wafer to be ground by the moving mechanism of the grinding head in the direction of the center point of the rotating laminated wafer placed on the support chuck, Then, the rotating cylindrical grinding wheel is moved forward to bring the outer peripheral surface of the cylindrical grinding wheel into contact with the outer peripheral surface of the laminated wafer, and then the lower and lower surfaces of the cylindrical grinding wheel are rubbed against the laminated wafer. The thickness of the laminated wafer is chamfered so as to exceed 1/3 to 1/2 of the thickness of one base wafer and 1/2 of the thickness of the wafer to be ground on the upper side, leaving an insulating layer thickness of 10 μm or more. The cylindrical grinding wheel is moved forward by 1 to 5 mm. In this chamfering process, the grinding liquid is supplied from the grinding liquid supply mechanism to the chamfering part of the laminated wafer and the cylindrical grinding wheel. (3) When the chamfering of the edge portion and the bevel portion of the laminated wafer by the forward movement of the cylindrical grinding wheel is finished, the cylindrical grinding wheel is moved backward from the laminated wafer chamfered by the moving mechanism of the grinding head. .
JP2009048708A 2009-03-03 2009-03-03 Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same Pending JP2010205861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048708A JP2010205861A (en) 2009-03-03 2009-03-03 Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048708A JP2010205861A (en) 2009-03-03 2009-03-03 Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same

Publications (1)

Publication Number Publication Date
JP2010205861A true JP2010205861A (en) 2010-09-16

Family

ID=42967091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048708A Pending JP2010205861A (en) 2009-03-03 2009-03-03 Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same

Country Status (1)

Country Link
JP (1) JP2010205861A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158510A (en) * 2013-05-16 2014-11-19 朱爱发 Manufacture method for cylindrical spherical surface wafer quartz crystal element
WO2015019916A1 (en) * 2013-08-07 2015-02-12 旭硝子株式会社 Method for processing plate-shaped body, method for manufacturing electronic device, and laminated article
CN110856900A (en) * 2018-08-21 2020-03-03 株式会社冈本工作机械制作所 Method and apparatus for manufacturing semiconductor device
US10818501B2 (en) 2018-05-24 2020-10-27 Toshiba Memory Corporation Method for manufacturing semiconductor device
JP7072180B1 (en) 2021-12-20 2022-05-20 有限会社サクセス Manufacturing method and equipment for semiconductor crystal wafers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158510A (en) * 2013-05-16 2014-11-19 朱爱发 Manufacture method for cylindrical spherical surface wafer quartz crystal element
WO2015019916A1 (en) * 2013-08-07 2015-02-12 旭硝子株式会社 Method for processing plate-shaped body, method for manufacturing electronic device, and laminated article
JPWO2015019916A1 (en) * 2013-08-07 2017-03-02 旭硝子株式会社 Method for processing plate-like body and method for manufacturing electronic device
US10818501B2 (en) 2018-05-24 2020-10-27 Toshiba Memory Corporation Method for manufacturing semiconductor device
CN110856900A (en) * 2018-08-21 2020-03-03 株式会社冈本工作机械制作所 Method and apparatus for manufacturing semiconductor device
US11735411B2 (en) 2018-08-21 2023-08-22 Okamoto Machine Tool Works, Ltd. Method and apparatus for manufacturing semiconductor device
JP7072180B1 (en) 2021-12-20 2022-05-20 有限会社サクセス Manufacturing method and equipment for semiconductor crystal wafers
JP2023091696A (en) * 2021-12-20 2023-06-30 有限会社サクセス Production method and production device for semiconductor crystal wafer

Similar Documents

Publication Publication Date Title
JP5123329B2 (en) Semiconductor substrate planarization processing apparatus and planarization processing method
US9293318B2 (en) Semiconductor wafer manufacturing method
JP5916513B2 (en) Processing method of plate
JP5963537B2 (en) Processing method of silicon wafer
JP4892201B2 (en) Method and apparatus for processing step of outer peripheral edge of bonded workpiece
TW201813768A (en) Wafer processing method capable of polishing a concave portion of a wafer having an annular reinforcing portion on its back surface so as to enhance productivity and processibility
JP6192778B2 (en) Silicon wafer processing equipment
JP2010205861A (en) Chamfering device for laminated wafer, and method for chamfering bevel and edge of laminated wafer using the same
JP5233111B2 (en) Manufacturing method of bonded SOI wafer
JP2011165994A (en) Flattening processing device of semiconductor substrate
JP4961183B2 (en) Semiconductor wafer processing method
JP2010182839A (en) Edge beveling method for multilayer wafer
JP2009285738A (en) Flattening device and flattening method for semiconductor substrate
JP5877520B2 (en) Planarization processing apparatus and planarization processing method for sapphire substrate
JP2011124249A (en) Processing device and method for flattening semiconductor substrate
JP2006303329A (en) Thin plate working method of silicon substrate and working apparatus used for it
JP2011103379A (en) Flat processing method of wafer
TWI804670B (en) Method and apparatus for manufacturing semiconductor device
JP2007335521A (en) Method for grinding outer periphery of wafer
JP4103808B2 (en) Wafer grinding method and wafer
JP2017204606A (en) Manufacturing method of wafer
JP5907797B2 (en) Wafer processing method
JP6963075B2 (en) Wafer surface treatment equipment
JP2017004989A (en) Manufacturing method for wafer, and manufacturing apparatus of wafer
JP2011155095A (en) Apparatus for flattening semiconductor substrate, and temporary displacement surface plate used for the same