JP2010182723A - Production process of semiconductor device - Google Patents

Production process of semiconductor device Download PDF

Info

Publication number
JP2010182723A
JP2010182723A JP2009022423A JP2009022423A JP2010182723A JP 2010182723 A JP2010182723 A JP 2010182723A JP 2009022423 A JP2009022423 A JP 2009022423A JP 2009022423 A JP2009022423 A JP 2009022423A JP 2010182723 A JP2010182723 A JP 2010182723A
Authority
JP
Japan
Prior art keywords
substrate
support substrate
semiconductor chips
grinding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022423A
Other languages
Japanese (ja)
Other versions
JP5140014B2 (en
Inventor
Sadahiro Kishii
貞浩 岸井
Goji Kamiyoshi
剛司 神吉
Yoshihiro Nakada
義弘 中田
Masato Tanaka
正人 田中
Akio Mutsukawa
昭雄 六川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Fujitsu Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Fujitsu Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2009022423A priority Critical patent/JP5140014B2/en
Publication of JP2010182723A publication Critical patent/JP2010182723A/en
Application granted granted Critical
Publication of JP5140014B2 publication Critical patent/JP5140014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92144Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming size-reduced and high-density vias, with high precision and interconnections of a semiconductor device. <P>SOLUTION: Semiconductor chips 2a and 2b are allocated on one surface side of a support substrate 1, which is ground from the other surface side, and the ground support substrate 1 is used as an insulating film, where via hole 6 is formed by using the photolithographic technique. After that, a conductive material is embedded in the via hole 6 to form a via, and further on its upper layer, wiring connected to the via is formed. The flat surface of the support substrate 1 is used as a surface when exposure is carried out, thus forming the via hole 6 highly accurately, and enabling vias to be formed there. Furthermore, it will become possible to highly precisely form wiring on the upper layer of the support substrate 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の製造方法に関し、特に、半導体チップを備える半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a semiconductor chip.

コンピュータ等をはじめとする各種電気機器には、複数の半導体チップを1枚の基板に搭載して一定の機能を実現するマルチ・チップ・モジュール(Multi Chip Module,MCM)が広く利用されている。近年では、様々な機能やサイズの半導体チップがMCMに搭載されるようになってきている。   In various electrical devices such as computers, a multi-chip module (MCM) that implements a certain function by mounting a plurality of semiconductor chips on a single substrate is widely used. In recent years, semiconductor chips having various functions and sizes have been mounted on the MCM.

MCMの形成に関しては、基板上の複数の半導体チップを被覆する絶縁膜を研磨し、その研磨後の絶縁膜に、フォトリソグラフィ技術を用いて、各半導体チップに接続する導電部を形成する技術等が知られている(例えば、特許文献1参照。)。このほか、基板上の粘着シートに接着した複数の半導体チップを封止した後、その基板及び粘着シートを除去することで、複数の半導体チップの表面位置を揃え、それらの半導体チップに導電部を接続する技術等も知られている(例えば、特許文献2〜4参照。)。また、導電部を備えた基板と半導体チップとを、それぞれに形成した位置合せマークを利用して接続するMCMの形成技術等も知られている(例えば、特許文献5参照。)。   Regarding the formation of MCM, a technique of polishing an insulating film covering a plurality of semiconductor chips on a substrate, and forming a conductive portion connected to each semiconductor chip using a photolithography technique on the polished insulating film, etc. Is known (for example, see Patent Document 1). In addition, after sealing a plurality of semiconductor chips bonded to the adhesive sheet on the substrate, the substrate and the adhesive sheet are removed, thereby aligning the surface positions of the plurality of semiconductor chips, and providing a conductive portion on these semiconductor chips. The technique etc. which connect are also known (for example, refer patent documents 2-4). Also known is an MCM forming technique for connecting a substrate having a conductive portion and a semiconductor chip using alignment marks formed on each substrate (for example, see Patent Document 5).

特開2001−274315号公報JP 2001-274315 A 特開2002−120132号公報JP 2002-120132 A 特開2002−110714号公報JP 2002-110714 A 特開2005−294444号公報JP 2005-294444 A 特開2004−079693号公報JP 2004-079693 A

MCMのほか、半導体チップを備えた半導体装置の形成にあっては、半導体チップの微細化や高密度化に対応するために、半導体チップに接続する導電部、或いは複数の半導体チップ間を接続する導電部を、高精度で形成することが重要になる。しかし、平面サイズや厚さ等、用いられる半導体チップの多様化に伴い、そのような導電部を高精度で形成することが難しい場合も出てきている。   In addition to MCM, in the formation of a semiconductor device including a semiconductor chip, in order to cope with the miniaturization and high density of the semiconductor chip, a conductive portion connected to the semiconductor chip or a plurality of semiconductor chips are connected. It is important to form the conductive portion with high accuracy. However, with the diversification of semiconductor chips used such as the planar size and thickness, there are cases where it is difficult to form such a conductive portion with high accuracy.

本発明の一観点によれば、第1基板の第1主面の上方に接着部材を介して半導体チップを配置する工程と、前記第1主面の上方に、前記半導体チップを覆う第2基板を配置する工程と、前記第1基板及び前記接着部材を貫通し、前記半導体チップに電気的に接続される導電部を形成する工程と、を含む半導体装置の製造方法が提供される。   According to an aspect of the present invention, a step of disposing a semiconductor chip above the first main surface of the first substrate via an adhesive member, and a second substrate covering the semiconductor chip above the first main surface And a step of forming a conductive portion that penetrates the first substrate and the adhesive member and is electrically connected to the semiconductor chip.

また、本発明の別の観点によれば、第1基板の第1主面の上方に、半導体チップが収容される貫通孔を有する第2基板を配置する工程と、前記貫通孔内の前記第1主面の上方に接着部材を介して前記半導体チップを配置する工程と、前記第1基板及び前記接着部材を貫通し、前記半導体チップに電気的に接続される導電部を形成する工程と、を含む半導体装置の製造方法が提供される。   According to another aspect of the present invention, a step of disposing a second substrate having a through hole in which a semiconductor chip is accommodated above the first main surface of the first substrate; and the first substrate in the through hole. A step of disposing the semiconductor chip via an adhesive member above one main surface; a step of forming a conductive portion that penetrates the first substrate and the adhesive member and is electrically connected to the semiconductor chip; A method for manufacturing a semiconductor device is provided.

開示の方法によれば、高精度で形成された導電部を備える、高性能で高信頼性の半導体装置を形成することが可能になる。   According to the disclosed method, a high-performance and highly reliable semiconductor device including a conductive portion formed with high accuracy can be formed.

支持基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のX1−X1断面模式図である。It is explanatory drawing of an example of a support substrate, Comprising: (A) is a plane schematic diagram, (B) is a X1-X1 cross-sectional schematic diagram of (A). 半導体チップ配置工程の一例の説明図であって、(A)は配置するチップの平面模式図、(B)はチップを配置した状態の平面模式図、(C)は(B)のX2−X2断面模式図である。It is explanatory drawing of an example of a semiconductor chip arrangement | positioning process, Comprising: (A) is a plane schematic diagram of the chip | tip to arrange | position, (B) is a plane schematic diagram in the state which has arrange | positioned a chip | tip, (C) is X2-X2 of (B). It is a cross-sectional schematic diagram. 第1の実施の形態に係る半導体チップ被覆工程の一例の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。It is a cross-sectional schematic diagram of an example of the semiconductor chip coating process according to the first embodiment, where (A) shows a state before coating, and (B) shows a state after coating. 第1の実施の形態に係る支持基板研削工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the support substrate grinding process which concerns on 1st Embodiment. 第1の実施の形態に係るビアホール形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the via-hole formation process which concerns on 1st Embodiment. 第1の実施の形態に係る第1導電材料形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the 1st electroconductive material formation process which concerns on 1st Embodiment. 第1の実施の形態に係る第1研磨工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the 1st grinding | polishing process which concerns on 1st Embodiment. 第1の実施の形態に係る絶縁層形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the insulating layer formation process which concerns on 1st Embodiment. 第1の実施の形態に係る配線溝形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the wiring groove | channel formation process which concerns on 1st Embodiment. 第1の実施の形態に係る第2導電材料形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the 2nd conductive material formation process which concerns on 1st Embodiment. 第1の実施の形態に係る第2研磨工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the 2nd grinding | polishing process which concerns on 1st Embodiment. 配線を形成した状態の一例の要部平面模式図である。It is a principal part plane schematic diagram of an example of the state which formed wiring. 第1の実施の形態に係る半導体チップ被覆工程の別例の断面模式図である。It is a cross-sectional schematic diagram of another example of the semiconductor chip covering step according to the first embodiment. 第2の実施の形態に係る半導体チップ被覆工程の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。It is a cross-sectional schematic diagram of the semiconductor chip coating step according to the second embodiment, (A) is a diagram showing a state before coating, (B) is a diagram showing a state after coating. 第2の実施の形態に係る支持基板研削工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the support substrate grinding process which concerns on 2nd Embodiment. 第3の実施の形態に係る剛性基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のY1−Y1断面模式図である。It is explanatory drawing of an example of the rigid board | substrate which concerns on 3rd Embodiment, (A) is a plane schematic diagram, (B) is a Y1-Y1 cross-sectional schematic diagram of (A). 第3の実施の形態に係る剛性基板形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the rigid board | substrate formation process which concerns on 3rd Embodiment. 第3の実施の形態に係る半導体チップ被覆工程の一例の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。It is a cross-sectional schematic diagram of an example of a semiconductor chip coating process according to the third embodiment, where (A) is a diagram showing a state before coating, and (B) is a diagram showing a state after coating. 第3の実施の形態に係る支持基板研削工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the support substrate grinding process which concerns on 3rd Embodiment. 第3の実施の形態に係るビアホール形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the via-hole formation process which concerns on 3rd Embodiment. 第3の実施の形態に係るビア形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the via formation process according to the third embodiment. 第3の実施の形態に係る配線溝形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the wiring groove | channel formation process which concerns on 3rd Embodiment. 第3の実施の形態に係る配線形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the wiring formation process which concerns on 3rd Embodiment. 第3の実施の形態に係る剛性基板の別例の平面模式図(その1)である。It is a plane schematic diagram (the 1) of another example of the rigid board concerning a 3rd embodiment. 第3の実施の形態に係る剛性基板の別例の平面模式図(その2)である。It is a plane schematic diagram (the 2) of another example of the rigid board concerning a 3rd embodiment. 第3の実施の形態に係る剛性基板の別例の平面模式図(その3)である。It is a plane schematic diagram (the 3) of another example of the rigid board concerning a 3rd embodiment. 剛性基板研削方法の一例の説明図であって、(A)は研削部材の斜視模式図、(B)は研削部材を用いた研削工程の要部断面模式図である。It is explanatory drawing of an example of the rigid substrate grinding method, Comprising: (A) is a perspective schematic diagram of a grinding member, (B) is a principal part cross-sectional schematic diagram of the grinding process using a grinding member. 第4の実施の形態に係る剛性基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のZ1−Z1断面模式図である。It is explanatory drawing of an example of the rigid board | substrate which concerns on 4th Embodiment, (A) is a plane schematic diagram, (B) is a Z1-Z1 cross-sectional schematic diagram of (A). 第4の実施の形態に係る剛性基板配置工程の一例の断面模式図であって、(A)は剛性基板配置前の状態を示す図、(B)は剛性基板配置後の状態を示す図である。It is a cross-sectional schematic diagram of an example of the rigid board | substrate arrangement | positioning process which concerns on 4th Embodiment, (A) is a figure which shows the state before rigid board | substrate arrangement | positioning, (B) is a figure which shows the state after rigid board | substrate arrangement | positioning. is there. 第4の実施の形態に係る半導体チップ配置工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the semiconductor chip arrangement | positioning process concerning 4th Embodiment. 第4の実施の形態に係る半導体チップ被覆工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the semiconductor chip coating process which concerns on 4th Embodiment. 第4の実施の形態に係る支持基板研削工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the support substrate grinding process which concerns on 4th Embodiment. 第4の実施の形態に係るビア形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the via formation process which concerns on 4th Embodiment. 第4の実施の形態に係る配線形成工程の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the wiring formation process which concerns on 4th Embodiment. 第4の実施の形態に係る剛性基板の別例の平面模式図である。It is a plane schematic diagram of another example of the rigid board | substrate which concerns on 4th Embodiment.

以下、MCMの形成を例に、図面を参照して詳細に説明する。
まず、第1の実施の形態について説明する。
図1は支持基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のX1−X1断面模式図である。
Hereinafter, an example of forming the MCM will be described in detail with reference to the drawings.
First, the first embodiment will be described.
1A and 1B are explanatory views of an example of a support substrate, in which FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along line X1-X1 in FIG.

図1には、形成するMCMに用いる複数の半導体チップを配置するための支持基板1を例示している。支持基板1には、例えば、ガラス基板を用いることができ、好ましくは、アルカリ金属等の金属不純物成分の少ない、透明のガラス基板を用いる。例えば、支持基板1として、石英ガラスや結晶化ガラス等のガラス基板(例えば、厚さ400μm)を用いる。   FIG. 1 illustrates a support substrate 1 for arranging a plurality of semiconductor chips used for the MCM to be formed. As the support substrate 1, for example, a glass substrate can be used, and preferably, a transparent glass substrate with few metal impurity components such as alkali metal is used. For example, a glass substrate (for example, a thickness of 400 μm) such as quartz glass or crystallized glass is used as the support substrate 1.

この図1に例示する支持基板1には、複数の半導体チップを配置するそれぞれの位置に対応して位置合せマーク1aが形成されている。位置合せマーク1aは、支持基板1の一方の面に、例えば、フォトリソグラフィ技術とエッチング技術(ドライエッチング又はウェットエッチング)を用いて凹部を形成することによって、形成される。形成した凹部は、その状態で位置合せマーク1aとして用いることができるほか、形成した凹部内をポリシリコンやチタン(Ti)等、支持基板1の主成分と異なる材料で埋め、それを位置合せマーク1aとして用いることもできる。図1には、凹部をそのような材料で埋めた状態を例示している。   In the support substrate 1 illustrated in FIG. 1, alignment marks 1a are formed corresponding to respective positions where a plurality of semiconductor chips are arranged. The alignment mark 1a is formed by forming a recess on one surface of the support substrate 1 by using, for example, a photolithography technique and an etching technique (dry etching or wet etching). The formed recess can be used as the alignment mark 1a in that state, and the formed recess is filled with a material different from the main component of the support substrate 1, such as polysilicon or titanium (Ti), and the alignment mark is filled therewith. It can also be used as 1a. FIG. 1 illustrates a state in which the concave portion is filled with such a material.

このような位置合せマーク1aを形成した支持基板1上に、形成するMCMに用いる、複数の半導体チップを配置する。
図2は半導体チップ配置工程の一例の説明図であって、(A)は配置するチップの平面模式図、(B)はチップを配置した状態の平面模式図、(C)は(B)のX2−X2断面模式図である。
A plurality of semiconductor chips used for the MCM to be formed are arranged on the support substrate 1 on which the alignment mark 1a is formed.
2A and 2B are explanatory views of an example of a semiconductor chip placement step, where FIG. 2A is a schematic plan view of a chip to be placed, FIG. 2B is a schematic plan view of a state in which a chip is placed, and FIG. It is X2-X2 cross-sectional schematic diagram.

図1に例示したような支持基板1を準備した後、その支持基板1上に、ここでは図2(A)〜(C)に例示するように、2種類の半導体チップ2a,2bをそれぞれ複数配置する。   After the support substrate 1 illustrated in FIG. 1 is prepared, a plurality of two types of semiconductor chips 2a and 2b are provided on the support substrate 1 as illustrated in FIGS. 2A to 2C. Deploy.

半導体チップ2a,2bは、いずれもLSI(Large Scale Integration)等のIC(Integrated Circuit)チップであり、図2(A)に例示したように、一方の面に外部接続用の複数の電極2cを備えている。電極2cは、半導体チップ2a,2bの種類にもよるが、タングステン(W),銅(Cu),アルミニウム(Al)等の金属材料を用いて形成される。また、半導体チップ2a,2bの表面には、電極2cの少なくとも一部を露出させるように形成された酸化シリコン(SiO),窒化シリコン(SiN)等の絶縁膜(保護膜)が形成されている。   Each of the semiconductor chips 2a and 2b is an IC (Integrated Circuit) chip such as an LSI (Large Scale Integration), and as illustrated in FIG. 2A, a plurality of electrodes 2c for external connection are provided on one surface. I have. The electrode 2c is formed using a metal material such as tungsten (W), copper (Cu), or aluminum (Al), although it depends on the type of the semiconductor chips 2a and 2b. An insulating film (protective film) such as silicon oxide (SiO) or silicon nitride (SiN) is formed on the surface of the semiconductor chips 2a and 2b so as to expose at least a part of the electrode 2c. .

支持基板1上に配置する半導体チップ2a,2bは、図2(B)に点線で図示したように、1組の半導体チップ2a,2bで1個のMCMを構成するようになっている。即ち、支持基板1上には、1個のMCMを構成する半導体チップ2a,2bの組が、一定の規則で整列して配置される。   The semiconductor chips 2a and 2b arranged on the support substrate 1 constitute one MCM by one set of semiconductor chips 2a and 2b as illustrated by a dotted line in FIG. That is, on the support substrate 1, a set of semiconductor chips 2 a and 2 b constituting one MCM is arranged aligned with a certain rule.

ここで用いる半導体チップ2a,2bは、図2(C)に例示したように、互いの厚さが異なっている。このように厚さの異なる半導体チップ2a,2bをそれぞれ、電極2c形成面側を支持基板1の位置合せマーク1a形成面側に対向させて、位置合せマーク1aに対応した位置に、接着部材3を用いて接着する。   The semiconductor chips 2a and 2b used here have different thicknesses as illustrated in FIG. 2C. As described above, the semiconductor chips 2a and 2b having different thicknesses are respectively arranged so that the surface on which the electrode 2c is formed is opposed to the surface on which the alignment mark 1a is formed on the support substrate 1, and the adhesive member 3 is positioned at a position corresponding to the alignment mark 1a. Adhere using.

接着部材3は、支持基板1の位置合せマーク1a形成面側全面に形成することができるほか、半導体チップ2a,2bの電極2c形成面と支持基板1の間にのみ形成することもできる。この図2(C)には、支持基板1の位置合せマーク1a形成面側全面に接着部材3を形成して半導体チップ2a,2bを接着した場合を例示している。なお、図2(B)では、接着部材3の図示を省略している。   The adhesive member 3 can be formed on the entire surface of the support substrate 1 where the alignment mark 1a is formed, or can be formed only between the electrode 2c formation surface of the semiconductor chips 2a and 2b and the support substrate 1. FIG. 2C illustrates a case where the adhesive member 3 is formed on the entire surface of the support substrate 1 where the alignment mark 1a is formed and the semiconductor chips 2a and 2b are bonded. In addition, illustration of the adhesive member 3 is abbreviate | omitted in FIG.2 (B).

接着部材3としては、エポキシ樹脂、フェノール樹脂又はベンゾシクロブテン(BCB)等を含有する樹脂製の接着剤を用いることができる。なお、接着剤は、組成にもよるが、エポキシ樹脂であれば180℃で1時間程度の処理で、フェノール樹脂であれば150℃で1時間程度の処理で、BCBであれば250℃で1時間程度の処理で、それぞれ硬化させることができる。また、接着部材3としては、このような接着剤のほか、ポリビニルアルコール(PVA)等を含有する粘着シート等を用いることもできる。   As the adhesive member 3, an adhesive made of a resin containing epoxy resin, phenol resin, benzocyclobutene (BCB), or the like can be used. Depending on the composition of the adhesive, the epoxy resin is treated at 180 ° C. for about 1 hour, the phenol resin is treated at 150 ° C. for about 1 hour, and the BCB is treated at 250 ° C. for 1 hour. Each can be cured by a treatment for about an hour. Moreover, as the adhesive member 3, in addition to such an adhesive, a pressure-sensitive adhesive sheet containing polyvinyl alcohol (PVA) or the like can be used.

接着部材3に接着剤を用いる場合は、支持基板1の位置合せマーク1a形成面側、又は半導体チップ2a,2bの電極2c形成面側に、接着剤を塗布し、半導体チップ2a,2bを支持基板1上に接着する。接着部材3に粘着シートを用いる場合は、支持基板1の位置合せマーク1a形成面側、又は半導体チップ2a,2bの電極2c形成面側に、粘着シートを貼付し、半導体チップ2a,2bを支持基板1上に接着する。   When an adhesive is used for the adhesive member 3, the adhesive is applied to the alignment mark 1a formation surface side of the support substrate 1 or the electrode 2c formation surface side of the semiconductor chips 2a and 2b to support the semiconductor chips 2a and 2b. Adhere to the substrate 1. When an adhesive sheet is used for the adhesive member 3, an adhesive sheet is attached to the side of the support substrate 1 where the alignment mark 1a is formed or the surface of the semiconductor chip 2a, 2b where the electrode 2c is formed, thereby supporting the semiconductor chips 2a, 2b. Adhere to the substrate 1.

また、無機系或いは有機系の所謂SOG(Spin On Glass)膜を形成する際の材料(SOG膜材料)を接着部材3として利用することもできる。その場合は、例えば、所定のSOG膜材料の塗膜を支持基板1の位置合せマーク1a形成面側にスピンコーティング等により形成し、その塗膜を介して半導体チップ2a,2bを支持基板1上に接着する。   Further, a material (SOG film material) for forming an inorganic or organic so-called SOG (Spin On Glass) film can be used as the adhesive member 3. In that case, for example, a coating film of a predetermined SOG film material is formed by spin coating or the like on the alignment mark 1a forming surface side of the support substrate 1, and the semiconductor chips 2a and 2b are formed on the support substrate 1 through the coating film. Adhere to.

位置合せマーク1aを用いた半導体チップ2a,2bの配置は、支持基板1の位置合せマーク1a形成面側、又は半導体チップ2a,2bの電極2c形成面側に、所定の接着部材3を設けた後、チップボンダー等の装置を用いて自動的に行うことができる。比較的高精度の装置を用いて半導体チップ2a,2bの配置を行った場合には、位置合せマーク1aに対する半導体チップ2a,2bの位置ずれは、目標値の±1μm以下に抑えることが可能である。   The arrangement of the semiconductor chips 2a and 2b using the alignment mark 1a is such that a predetermined adhesive member 3 is provided on the alignment mark 1a formation surface side of the support substrate 1 or on the electrode 2c formation surface side of the semiconductor chips 2a and 2b. Later, this can be done automatically using a device such as a chip bonder. When the semiconductor chips 2a and 2b are arranged using a relatively high precision device, the positional deviation of the semiconductor chips 2a and 2b with respect to the alignment mark 1a can be suppressed to a target value of ± 1 μm or less. is there.

支持基板1としてガラス基板を用い、その凹部内をポリシリコンやTi等の材料で埋めて位置合せマーク1aを形成している場合には、そのような材料はガラス基板に対して反射率が高く、位置合せマーク1aを光学的に検出し易い。従って、このような位置合せマーク1aを用いると、半導体チップ2a,2bを配置する際に位置合せマーク1aを容易に検出し、半導体チップ2a,2bを位置合せマーク1aに対応した位置に精度良く配置することが可能になる。   When a glass substrate is used as the support substrate 1 and the concave portion is filled with a material such as polysilicon or Ti to form the alignment mark 1a, such a material has a high reflectance with respect to the glass substrate. The alignment mark 1a can be easily detected optically. Therefore, when such an alignment mark 1a is used, the alignment mark 1a is easily detected when the semiconductor chips 2a and 2b are arranged, and the semiconductor chips 2a and 2b are accurately placed at positions corresponding to the alignment marks 1a. It becomes possible to arrange.

なお、半導体チップ2a,2bを配置した後の、支持基板1と半導体チップ2a,2bとの間の接着部材3の厚さは、概ね15μm以下である。
上記のようにして厚さの異なる半導体チップ2a,2bを支持基板1に配置した後は、支持基板1上に配置した半導体チップ2a,2bを樹脂等の被覆部材によって被覆する。
Note that the thickness of the adhesive member 3 between the support substrate 1 and the semiconductor chips 2a and 2b after the semiconductor chips 2a and 2b are arranged is approximately 15 μm or less.
After the semiconductor chips 2a and 2b having different thicknesses are disposed on the support substrate 1 as described above, the semiconductor chips 2a and 2b disposed on the support substrate 1 are covered with a covering member such as a resin.

図3は第1の実施の形態に係る半導体チップ被覆工程の一例の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。
ここでは、半導体チップ2a,2bを被覆するための被覆部材として、エポキシ樹脂等を含有する熱硬化性の樹脂基板4を用いる。例えば、熱硬化前には半導体チップ2a,2bや支持基板1に対して柔軟性を有し、所定の加熱条件、例えば180℃で1時間の加熱により硬化させることのできる、エポキシ樹脂系の樹脂基板4を用いる。
FIG. 3 is a schematic cross-sectional view of an example of the semiconductor chip coating process according to the first embodiment, where (A) shows a state before coating, and (B) shows a state after coating. .
Here, a thermosetting resin substrate 4 containing an epoxy resin or the like is used as a covering member for covering the semiconductor chips 2a and 2b. For example, an epoxy resin-based resin that has flexibility with respect to the semiconductor chips 2a and 2b and the support substrate 1 and can be cured by heating at a predetermined heating condition, for example, 180 ° C. for 1 hour before thermosetting. A substrate 4 is used.

このような樹脂基板4を用いて半導体チップ2a,2bを被覆する場合には、まず、支持基板1の半導体チップ2a,2bを配置した面側に樹脂基板4(例えば、厚さ625μm)を準備する。次いで、その樹脂基板4に、半導体チップ2a,2bを配置した支持基板1を押し付け、樹脂基板4内に半導体チップ2a,2bを埋め込む。そして、所定温度まで上昇させ、その温度で所定時間保持することにより、樹脂基板4を硬化させる。これにより、図3(B)に例示したような、支持基板1上に配置した半導体チップ2a,2bを樹脂基板4で被覆した基材(擬似ウェハ)10を得る。   When covering the semiconductor chips 2a and 2b using such a resin substrate 4, first, the resin substrate 4 (for example, a thickness of 625 μm) is prepared on the side of the support substrate 1 on which the semiconductor chips 2a and 2b are arranged. To do. Next, the support substrate 1 on which the semiconductor chips 2 a and 2 b are arranged is pressed against the resin substrate 4 to embed the semiconductor chips 2 a and 2 b in the resin substrate 4. Then, the resin substrate 4 is cured by raising the temperature to a predetermined temperature and holding the temperature for a predetermined time. Thereby, a base material (pseudo wafer) 10 in which the semiconductor chips 2a and 2b arranged on the support substrate 1 are covered with the resin substrate 4 as illustrated in FIG. 3B is obtained.

なお、樹脂基板4の硬化まで行った後には、その樹脂成分が支持基板1側方に流動して硬化したり、樹脂基板4の支持基板1側と反対側の露出面に凹凸や傾斜が生じて硬化したりして、擬似ウェハ10の形状が乱れている場合がある。そのような場合には、研削等で硬化後の樹脂基板4を成形し、支持基板1側方に流動した部分を研削したり、樹脂基板4の露出面を平坦化(水平化)したりするようにして、擬似ウェハ10の形状を整えるようにしてもよい。   After the resin substrate 4 is cured, the resin component flows to the side of the support substrate 1 and cures, or the exposed surface of the resin substrate 4 on the side opposite to the support substrate 1 side is uneven or inclined. Or the shape of the pseudo wafer 10 may be disturbed. In such a case, the cured resin substrate 4 is formed by grinding or the like, and the portion that flows to the side of the support substrate 1 is ground, or the exposed surface of the resin substrate 4 is flattened (leveled). In this manner, the shape of the pseudo wafer 10 may be adjusted.

次いで、支持基板1の薄化を行う。
図4は第1の実施の形態に係る支持基板研削工程の一例の断面模式図である。
支持基板1上に配置した半導体チップ2a,2bを樹脂基板4で被覆した後は、擬似ウェハ10の支持基板1に対して研削を行う。支持基板1の研削は、例えば、その研削を行う研削装置のテーブル(チャックテーブル等)の上に、擬似ウェハ10をその樹脂基板4側を下にして固定した状態で行う。
Next, the support substrate 1 is thinned.
FIG. 4 is a schematic cross-sectional view of an example of a support substrate grinding process according to the first embodiment.
After the semiconductor chips 2a and 2b arranged on the support substrate 1 are coated with the resin substrate 4, the support substrate 1 of the pseudo wafer 10 is ground. The support substrate 1 is ground, for example, in a state where the pseudo wafer 10 is fixed with the resin substrate 4 side facing down on a table (chuck table or the like) of a grinding apparatus that performs the grinding.

支持基板1の研削の際には、まず、研削直前の擬似ウェハ10の厚さd1と支持基板1の厚さd2との差分を求め、擬似ウェハ10における接着部材3及び樹脂基板4の厚さd3(=d1−d2)を求める(図3)。これは、支持基板1の厚さは初期の厚さからほぼ変動しない一方、接着部材3及び樹脂基板4の厚さは、先の硬化或いはその後の研削等によって初期の厚さから変動している可能性があるためである。そして、このようにして求めた接着部材3及び樹脂基板4の厚さd3に、研削によって最終的に得るべき支持基板1の厚さd4を加え、擬似ウェハ10が研削装置のテーブル面からその厚さd3+d4になるまで研削を行う。これにより、初期の厚さd2から厚さd4まで薄くした支持基板1を得る。なお、研削後の支持基板1の厚さd4は、5μm以下とすることが望ましく、この点については後述する。   When grinding the support substrate 1, first, the difference between the thickness d1 of the pseudo wafer 10 immediately before grinding and the thickness d2 of the support substrate 1 is obtained, and the thicknesses of the adhesive member 3 and the resin substrate 4 on the pseudo wafer 10 are obtained. d3 (= d1-d2) is obtained (FIG. 3). This is because the thickness of the support substrate 1 does not substantially vary from the initial thickness, while the thickness of the adhesive member 3 and the resin substrate 4 varies from the initial thickness due to previous curing or subsequent grinding or the like. This is because there is a possibility. Then, the thickness d4 of the support substrate 1 to be finally obtained by grinding is added to the thickness d3 of the adhesive member 3 and the resin substrate 4 obtained in this way, and the pseudo wafer 10 has its thickness from the table surface of the grinding apparatus. Grinding is performed until d3 + d4. Thereby, the support substrate 1 thinned from the initial thickness d2 to the thickness d4 is obtained. Note that the thickness d4 of the support substrate 1 after grinding is desirably 5 μm or less, and this will be described later.

このような支持基板1の研削は、その研削面を、研削装置のテーブル面から目標値の±1μm以下に制御することができる。また、研削面内の厚さのばらつきは、TTV(Total Thickness Variation)で1μm以下に制御することができる。   The grinding of the support substrate 1 can control the grinding surface from the table surface of the grinding device to a target value of ± 1 μm or less. Further, the thickness variation in the grinding surface can be controlled to 1 μm or less by TTV (Total Thickness Variation).

なお、支持基板1の研削後、その研削面に研削痕が生じているような場合には、その研削面を、CMP(Chemical Mechanical Polishing)やエッチング等により、例えば厚さ0.5μm程度さらに除去し、研削痕を除去するようにしてもよい。   If grinding marks are generated on the ground surface after grinding of the support substrate 1, the ground surface is further removed by, for example, about 0.5 μm in thickness by CMP (Chemical Mechanical Polishing), etching, or the like. Then, grinding marks may be removed.

このようにして支持基板1の研削まで行った後は、例えば以下の図5〜図12に例示するようにして、半導体チップ2a,2b間を電気的に接続するための配線構造を形成していく。   After the support substrate 1 is thus ground, a wiring structure for electrically connecting the semiconductor chips 2a and 2b is formed, for example, as illustrated in FIGS. Go.

まず、半導体チップ2a,2bの電極2cに電気的に接続されるビアの形成例について説明する。
図5は第1の実施の形態に係るビアホール形成工程の一例の断面模式図、図6は第1の実施の形態に係る第1導電材料形成工程の一例の断面模式図、図7は第1の実施の形態に係る第1研磨工程の一例の断面模式図である。
First, an example of forming vias electrically connected to the electrodes 2c of the semiconductor chips 2a and 2b will be described.
5 is a schematic cross-sectional view of an example of a via hole forming process according to the first embodiment, FIG. 6 is a schematic cross-sectional view of an example of a first conductive material forming process according to the first embodiment, and FIG. It is a cross-sectional schematic diagram of an example of the 1st grinding | polishing process which concerns on this embodiment.

支持基板1の研削後は、フォトリソグラフィ技術とエッチング技術を用い、図5に例示するように、その支持基板1に、半導体チップ2a,2b(それらの電極2c)に達するビアホール6を形成する。   After grinding of the support substrate 1, via holes 6 reaching the semiconductor chips 2a and 2b (their electrodes 2c) are formed in the support substrate 1, as illustrated in FIG. 5, using photolithography technology and etching technology.

その際は、まず、支持基板1上にレジストを塗布し、露光・現像処理により、ビアホール6を形成する位置に開口を有する、レジストパターンを形成する。そして、そのレジストパターンをマスクにしてエッチングを行う。エッチングは、例えば、支持基板1にガラス基板を用いた場合、テトラフルオロメタン(CF4),六フッ化硫黄(SF6),オクタフルオロシクロブタン(C48)のうちのいずれかのガスを使用したRIE(Reactive Ion Etching)により行うことができる。 In that case, first, a resist is applied on the support substrate 1, and a resist pattern having an opening at a position where the via hole 6 is formed is formed by exposure / development processing. Then, etching is performed using the resist pattern as a mask. In the etching, for example, when a glass substrate is used as the support substrate 1, any one gas of tetrafluoromethane (CF 4 ), sulfur hexafluoride (SF 6 ), and octafluorocyclobutane (C 4 F 8 ) is used. It can be performed by the used RIE (Reactive Ion Etching).

このようにRIEを行う場合であって、支持基板1下層の接着部材3に上記のようなエポキシ樹脂,フェノール樹脂,BCB,PVA,有機系SOG膜材料等の有機系材料を用いている場合には、RIEは、その接着部材3の位置で停止させることができる。従って、1つの擬似ウェハ10内、或いは異なる擬似ウェハ10間において、たとえ研削後の支持基板1の厚さにばらつきがあったとしても、このエッチング時点で半導体チップ2a,2b(電極2c)を露出させてしまうことがない。   When RIE is performed as described above, and an organic material such as epoxy resin, phenol resin, BCB, PVA, or organic SOG film material as described above is used for the adhesive member 3 under the support substrate 1. The RIE can be stopped at the position of the adhesive member 3. Therefore, even if there is a variation in the thickness of the support substrate 1 after grinding in one pseudo wafer 10 or between different pseudo wafers 10, the semiconductor chips 2a and 2b (electrodes 2c) are exposed at the time of this etching. I will not let you.

支持基板1のRIEを行って接着部材3を露出させた後は、それに続けて、その露出した接着部材3を、エッチングガスに酸素と窒素を使用し、圧力100mTorr〜300mTorr、電力1kWの条件でエッチングする。なお、エッチングガス中の窒素は、形成するビアホール6の側壁保護の役割を果たす。側壁保護が不要である場合には、エッチングガスに窒素を添加しなくても構わない。このような接着部材3のエッチングにより、支持基板1及び接着部材3を貫通して半導体チップ2a,2b(電極2c)に達するビアホール6を形成することができる。また、この接着部材3のエッチング時には、支持基板1上に形成していたレジストも除去することができる。   After the RIE of the support substrate 1 is performed and the adhesive member 3 is exposed, the exposed adhesive member 3 is subsequently subjected to oxygen and nitrogen as an etching gas under a pressure of 100 mTorr to 300 mTorr and a power of 1 kW. Etch. Note that nitrogen in the etching gas plays a role of protecting the side wall of the via hole 6 to be formed. When side wall protection is not necessary, nitrogen may not be added to the etching gas. By such etching of the adhesive member 3, the via hole 6 that penetrates the support substrate 1 and the adhesive member 3 and reaches the semiconductor chips 2 a and 2 b (electrode 2 c) can be formed. In addition, the resist formed on the support substrate 1 can be removed when the adhesive member 3 is etched.

さらに、この接着部材3のエッチング時には、接着部材3の除去後も、半導体チップ2a,2bの電極2c(W,Cu,Al等)及びその周りの保護膜(SiO,SiN等)のエッチングが抑えられる(エッチング選択比50以上)。従って、1つの擬似ウェハ10内、或いは異なる擬似ウェハ10間において、たとえ接着部材3の厚さにばらつきがあったとしても、半導体チップ2a,2bの電極2cや保護膜が過剰にエッチングされてしまうのを抑えることができる。   Further, when the adhesive member 3 is etched, the etching of the electrodes 2c (W, Cu, Al, etc.) of the semiconductor chips 2a, 2b and the surrounding protective film (SiO, SiN, etc.) is suppressed even after the adhesive member 3 is removed. (Etching selectivity 50 or more). Accordingly, even if the thickness of the bonding member 3 varies within one pseudo wafer 10 or between different pseudo wafers 10, the electrodes 2c and the protective film of the semiconductor chips 2a and 2b are excessively etched. Can be suppressed.

このように、ここでは、支持基板1の位置合せマーク1a形成面側に半導体チップ2a,2bを配置し、その支持基板1を、除去することなく、ビアホール6を形成する絶縁膜(層間絶縁膜)として用いる。   As described above, here, the semiconductor chips 2a and 2b are disposed on the alignment mark 1a forming surface side of the support substrate 1, and the support substrate 1 is not removed, but the insulating film (interlayer insulating film) for forming the via hole 6 is formed. ).

そのため、図4に例示した支持基板1の研削は、この図5に例示したように研削後の支持基板1にエッチングでビアホール6を形成することを考慮して行うことが好ましい。エッチングによるビアホール6の形成は、ビアホール6が低アスペクト比であるほど行い易い。このような観点からは、支持基板1は、形成するビアホール6の径にもよるが、厚さ5μm以下まで研削を行っておくことが好ましい。   Therefore, the grinding of the support substrate 1 illustrated in FIG. 4 is preferably performed in consideration of forming the via hole 6 by etching in the ground support substrate 1 as illustrated in FIG. Formation of the via hole 6 by etching is easier as the via hole 6 has a lower aspect ratio. From such a viewpoint, the support substrate 1 is preferably ground to a thickness of 5 μm or less, although it depends on the diameter of the via hole 6 to be formed.

但し、用いる研削装置の精度や接着部材3の厚さのばらつきによっては、研削後の支持基板1に厚さのばらつきが生じる可能性があり、また、支持基板1と樹脂基板4の材質によっては、加熱により擬似ウェハ10に反りが発生する可能性もある。研削は、ここでは研削装置のテーブル面(擬似ウェハ10の樹脂基板4側表面)を基準にして行うため、最終的に得る支持基板1の厚さを薄く設定しすぎると、場合によっては、研削後に接着部材3や樹脂基板4が部分的に露出してしまう可能性が生じてくる。このような可能性を考慮し、支持基板1は、その厚さを3μm〜5μmの範囲に設定して研削を行うことが好ましい。   However, depending on the accuracy of the grinding apparatus used and the thickness variation of the adhesive member 3, the thickness of the support substrate 1 after grinding may vary, and depending on the materials of the support substrate 1 and the resin substrate 4, Further, the pseudo wafer 10 may be warped by heating. Here, the grinding is performed based on the table surface of the grinding device (the surface of the pseudo wafer 10 on the side of the resin substrate 4). Therefore, if the thickness of the finally obtained support substrate 1 is set too thin, the grinding may be performed depending on the case. There is a possibility that the adhesive member 3 and the resin substrate 4 will be partially exposed later. In consideration of such a possibility, it is preferable that the support substrate 1 is ground with its thickness set in a range of 3 μm to 5 μm.

なお、ビアホール6形成用のレジストパターンを露光・現像により形成する際には、たとえ支持基板1の研削面内に表面位置のばらつきがあったとしても、そのばらつきが焦点深度内に入っていれば、その上にレジストパターンを高精度で形成することができる。そのため、このように厚さの異なる半導体チップ2a,2bを用いた場合にも、高精度でビアホール6を形成することができる。   When the resist pattern for forming the via hole 6 is formed by exposure / development, even if there is a variation in the surface position within the ground surface of the support substrate 1, the variation is within the depth of focus. Then, a resist pattern can be formed thereon with high accuracy. Therefore, even when the semiconductor chips 2a and 2b having different thicknesses are used, the via hole 6 can be formed with high accuracy.

また、ビアホール6形成用のレジストパターンを形成する際に、支持基板1に形成した位置合せマーク1aを用いることで、半導体チップ2a,2bの配置位置や、ビアホール6の形成位置を高精度で決定することができる。位置合せマーク1aは、支持基板1のレジストパターン形成面側と反対面側(半導体チップ2a,2b配置面側)に形成されるが、上記のような透明なガラス基板を用いた場合には、レジストパターン形成面側から位置合せマーク1aの検出が行える。   Further, when the resist pattern for forming the via hole 6 is formed, by using the alignment mark 1a formed on the support substrate 1, the arrangement position of the semiconductor chips 2a and 2b and the formation position of the via hole 6 are determined with high accuracy. can do. The alignment mark 1a is formed on the side opposite to the resist pattern forming surface side of the support substrate 1 (on the semiconductor chip 2a, 2b arrangement surface side). When a transparent glass substrate as described above is used, The alignment mark 1a can be detected from the resist pattern forming surface side.

このように、位置合せマーク1aを、半導体チップ2a,2bの配置と、ビアホール6の形成に共用すると、所望の位置に半導体チップ2a,2bの配置とビアホール6の形成を行うことができる。また、支持基板1にこのような位置合せマーク1aを形成しなかった場合や、支持基板1及び半導体チップ2a,2bのいずれにも位置合せマーク1aに相当するものを形成しなかった場合に比べ、MCM形成のスループットを大幅に向上させることができる。   As described above, when the alignment mark 1a is shared by the placement of the semiconductor chips 2a and 2b and the formation of the via hole 6, the placement of the semiconductor chips 2a and 2b and the formation of the via hole 6 can be performed at desired positions. Compared to the case where such an alignment mark 1a is not formed on the support substrate 1 or the case where no one corresponding to the alignment mark 1a is formed on either the support substrate 1 or the semiconductor chips 2a and 2b. The throughput of MCM formation can be greatly improved.

なお、支持基板1の研削面に研削痕が生じていると、このビアホール6形成時の露光の際、その研削痕によって露光光の反射異常が発生してしまう可能性がある。このような露光光の反射異常を発生させないためには、先の支持基板1の研削後にCMPやエッチングを行ってその研削痕を除去しておくことが好ましい。但し、研削痕があっても、このような露光光の反射異常を抑えることが可能である場合(例えば、別途レジスト下層に反射防止膜を形成する等)には、必ずしも支持基板1の研削後にその研削痕を除去することを要しない。   If a grinding mark is generated on the ground surface of the support substrate 1, an exposure light reflection abnormality may occur due to the grinding mark when the via hole 6 is exposed. In order not to cause such an exposure light reflection abnormality, it is preferable to remove the grinding traces by performing CMP or etching after the previous support substrate 1 is ground. However, even if there is a grinding mark, if it is possible to suppress such a reflection abnormality of the exposure light (for example, an antireflection film is separately formed on the resist underlayer), the support substrate 1 is not necessarily ground. It is not necessary to remove the grinding marks.

ビアホール6の形成後は、図6に例示するように、ビアホール6を埋める導電材料7aを形成する。その際は、例えば、まずスパッタリング法を用いてTiのバリア層、及びCuのシード層を形成し、そのシード層を電極とした電気めっき法を用いてCuのめっき層を堆積し、それらの層でビアホール6を埋める。或いは、まずスパッタリング法を用いてTiのバリア層を形成した後、CVD法を用いてW層を堆積し、それらの層でビアホール6を埋める。   After the via hole 6 is formed, a conductive material 7a for filling the via hole 6 is formed as illustrated in FIG. In this case, for example, a Ti barrier layer and a Cu seed layer are first formed by sputtering, and a Cu plating layer is deposited by electroplating using the seed layer as an electrode. Fill the via hole 6 with. Alternatively, a Ti barrier layer is first formed using a sputtering method, and then a W layer is deposited using a CVD method, and the via hole 6 is filled with these layers.

ビアホール6を導電材料7aで埋めた後は、図7に例示するように、支持基板1が露出するようにCMPを行い、支持基板1上の余剰の導電材料7aを除去する。これにより、支持基板1及び接着部材3を貫通し、半導体チップ2a,2bの電極2cに電気的に接続されたビア7を形成する。   After the via hole 6 is filled with the conductive material 7a, as illustrated in FIG. 7, CMP is performed so that the support substrate 1 is exposed, and excess conductive material 7a on the support substrate 1 is removed. Thereby, the via 7 penetrating the support substrate 1 and the adhesive member 3 and electrically connected to the electrodes 2c of the semiconductor chips 2a and 2b is formed.

なお、支持基板1の研削面に研削痕が生じていると、CMP後、その研削痕に導電材料7aが残ってしまう可能性がある。このような導電材料7aの残渣を生じさせないためには、先の支持基板1の研削後にCMPやエッチングを行ってその研削痕を除去しておくことが好ましい。但し、このような導電材料7aの残渣が生じた場合にも、それを選択的に除去することが可能であるような場合には、必ずしも支持基板1の研削後にその研削痕を除去することを要しない。   In addition, when the grinding trace has arisen on the grinding surface of the support substrate 1, the conductive material 7a may remain in the grinding trace after CMP. In order not to generate such a residue of the conductive material 7a, it is preferable to remove the grinding trace by performing CMP or etching after the previous support substrate 1 is ground. However, when such a residue of the conductive material 7a is generated, if it is possible to selectively remove the residue, it is not necessary to remove the grinding trace after grinding the support substrate 1. I don't need it.

続いて、半導体チップ2a,2b間を電気的に接続する配線の形成例について説明する。
図8は第1の実施の形態に係る絶縁層形成工程の一例の断面模式図、図9は第1の実施の形態に係る配線溝形成工程の一例の断面模式図、図10は第1の実施の形態に係る第2導電材料形成工程の一例の断面模式図、図11は第1の実施の形態に係る第2研磨工程の一例の断面模式図である。また、図12は配線を形成した状態の一例の要部平面模式図である。
Subsequently, an example of forming a wiring for electrically connecting the semiconductor chips 2a and 2b will be described.
8 is a schematic cross-sectional view of an example of an insulating layer forming process according to the first embodiment, FIG. 9 is a schematic cross-sectional view of an example of a wiring trench forming process according to the first embodiment, and FIG. FIG. 11 is a schematic cross-sectional view of an example of a second polishing process according to the first embodiment, and FIG. 11 is a schematic cross-sectional view of an example of a second polishing process according to the first embodiment. FIG. 12 is a schematic plan view of an essential part of an example of a state in which wiring is formed.

図5〜図7に例示したようにしてビア7を形成した後は、図8に例示するように、支持基板1上にSiO等の絶縁膜(層間絶縁膜)21を形成する。そして、その絶縁膜21上に、半導体チップ2a,2b間配線用の開口を有する、レジストパターンを形成する。次いで、そのレジストパターンをマスクにして絶縁膜21のエッチングを行い、図9に例示するように、絶縁膜21に配線溝22を形成する。ここでは、1組の半導体チップ2a,2bに接続されているビア7の形成領域を含む領域に、絶縁膜21を貫通するようにして配線溝22を形成している。   After the via 7 is formed as illustrated in FIGS. 5 to 7, an insulating film (interlayer insulating film) 21 such as SiO is formed on the support substrate 1 as illustrated in FIG. 8. Then, a resist pattern having an opening for wiring between the semiconductor chips 2 a and 2 b is formed on the insulating film 21. Next, the insulating film 21 is etched using the resist pattern as a mask to form a wiring groove 22 in the insulating film 21 as illustrated in FIG. Here, the wiring trench 22 is formed so as to penetrate the insulating film 21 in a region including the formation region of the via 7 connected to the pair of semiconductor chips 2a and 2b.

配線溝22の形成後は、図10に例示するように、配線溝22を埋める導電材料23aを形成する。その際は、例えば、まずスパッタリング法を用いてTiのバリア層、及びCuのシード層を形成し、その後、電気めっき法を用いてCuのめっき層を堆積し、それらの層で配線溝22を埋める。その後、CMPを行うことで、図11及び図12に例示するように、半導体チップ2a,2bの電極2c間を、ビア7を介して配線23により電気的に接続した状態を得る。   After the formation of the wiring groove 22, as illustrated in FIG. 10, a conductive material 23a that fills the wiring groove 22 is formed. In that case, for example, first, a Ti barrier layer and a Cu seed layer are formed by using a sputtering method, and then a Cu plating layer is deposited by using an electroplating method. fill in. Thereafter, CMP is performed to obtain a state in which the electrodes 2c of the semiconductor chips 2a and 2b are electrically connected by the wiring 23 via the vias 7 as illustrated in FIGS.

なお、ビア7及び配線23の形成後は、例えば、図11及び図12に鎖線Dで示したような位置でダイシングを行い、1組の半導体チップ2a,2bを含む各MCMに個片化する。   After the via 7 and the wiring 23 are formed, for example, dicing is performed at a position as shown by a chain line D in FIGS. 11 and 12 to separate each MCM including a pair of semiconductor chips 2a and 2b. .

以上説明したように、この第1の実施の形態によれば、支持基板1の一方の面側に半導体チップ2a,2bを配置し、その支持基板1を他方の面側から平坦性良く薄くして、それを絶縁膜として用いる。そのため、厚さの異なる半導体チップ2a,2bを用いたような場合にも、支持基板1に高精度でビア7を形成することができ、また、この平坦性の良い支持基板1(絶縁膜)の上層には、高精度で配線23を形成することができる。その結果、ビア7や配線23の微細化・高密度化にも対応可能になり、高性能で高信頼性のMCMを形成することが可能になる。   As described above, according to the first embodiment, the semiconductor chips 2a and 2b are arranged on one surface side of the support substrate 1, and the support substrate 1 is thinned with good flatness from the other surface side. It is used as an insulating film. Therefore, even when the semiconductor chips 2a and 2b having different thicknesses are used, the via 7 can be formed with high accuracy in the support substrate 1, and the support substrate 1 (insulating film) having good flatness can be formed. On the upper layer, the wiring 23 can be formed with high accuracy. As a result, it is possible to cope with miniaturization and high density of the via 7 and the wiring 23, and it is possible to form a high-performance and high-reliability MCM.

なお、以上の説明においては、図3に例示したように、半導体チップ2a,2bの被覆に用いる樹脂基板4として平板状のものを用いるようにしたが、樹脂基板4の形状はこれに限定されるものではない。   In the above description, as illustrated in FIG. 3, a flat substrate is used as the resin substrate 4 used for covering the semiconductor chips 2a and 2b. However, the shape of the resin substrate 4 is not limited to this. It is not something.

図13は第1の実施の形態に係る半導体チップ被覆工程の別例の断面模式図である。
樹脂基板4には、図13に例示するような、半導体チップ2a,2bにそれぞれ対応する領域に凹部4aを形成したものを用いることもできる。凹部4aは、全て同サイズで形成するようにしても、或いは、比較的大きな半導体チップ2aに対応する凹部4aを大きく、比較的小さな半導体チップ2bに対応する凹部4aを小さく形成するようにしてもよい。図13では、全て同サイズの凹部4aを形成した場合を例示している。なお、凹部4aは、必ずしも半導体チップ2a,2bのサイズと同サイズであることを要しない。
FIG. 13 is a schematic cross-sectional view of another example of the semiconductor chip covering step according to the first embodiment.
As the resin substrate 4, it is possible to use a resin substrate having recesses 4a formed in regions corresponding to the semiconductor chips 2a and 2b, as illustrated in FIG. The recesses 4a may all be formed in the same size, or the recesses 4a corresponding to relatively large semiconductor chips 2a may be formed large and the recesses 4a corresponding to relatively small semiconductor chips 2b may be formed small. Good. In FIG. 13, the case where the recessed part 4a of all the same size is formed is illustrated. The recess 4a is not necessarily the same size as the semiconductor chips 2a and 2b.

樹脂基板4にこのような凹部4aを形成することにより、半導体チップ2a,2bを樹脂基板4内に埋め込んだときの半導体チップ2a,2b周辺への樹脂の流動を抑えることが可能になり、擬似ウェハ10の形状の乱れを抑えることが可能になる。   By forming such a recess 4a in the resin substrate 4, it becomes possible to suppress the resin flow around the semiconductor chips 2a and 2b when the semiconductor chips 2a and 2b are embedded in the resin substrate 4. Disturbance of the shape of the wafer 10 can be suppressed.

このような樹脂基板4を用いた場合にも、以降、上記図4〜図12で述べたのと同様の処理を行うことで、ビア7及び配線23を備えるMCMを形成することができる。
次に、第2の実施の形態について説明する。
Even when such a resin substrate 4 is used, the MCM including the via 7 and the wiring 23 can be formed by performing the same processing as described in FIGS.
Next, a second embodiment will be described.

この第2の実施の形態においても、上記第1の実施の形態と同様、支持基板1上に接着部材3を用いて半導体チップ2a,2bを配置した後、樹脂基板4を用いて半導体チップ2a,2bを被覆する。   Also in the second embodiment, as in the first embodiment, after the semiconductor chips 2a and 2b are arranged on the support substrate 1 using the adhesive member 3, the semiconductor chip 2a is used using the resin substrate 4. , 2b.

図14は第2の実施の形態に係る半導体チップ被覆工程の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。
第2の実施の形態では、図14に例示するように、樹脂基板4の支持基板1が配置される側と反対側の面に、剛性を有する基板(剛性基板)30(例えば、厚さ725μm)をさらに配置し、擬似ウェハ10aを形成する。このような剛性基板30としては、シリコン(Si)基板、石英ガラスや結晶化ガラス等のガラス基板や、SiO,酸化アルミニウム(AlO),窒化アルミニウム(AlN)等のセラミック基板を用いることができる。
14A and 14B are schematic cross-sectional views of a semiconductor chip coating process according to the second embodiment, in which FIG. 14A shows a state before coating, and FIG. 14B shows a state after coating.
In the second embodiment, as illustrated in FIG. 14, a rigid substrate (rigid substrate) 30 (for example, a thickness of 725 μm) is provided on the surface of the resin substrate 4 opposite to the side on which the support substrate 1 is disposed. ) Are further arranged to form a pseudo wafer 10a. As such a rigid substrate 30, a silicon (Si) substrate, a glass substrate such as quartz glass or crystallized glass, or a ceramic substrate such as SiO, aluminum oxide (AlO), or aluminum nitride (AlN) can be used.

上記第1の実施の形態で述べたように、支持基板1上の半導体チップ2a,2bを樹脂基板4で被覆した後には、樹脂基板4の硬化や、支持基板1研削後の絶縁膜や導電材料の形成が行われ、その際、擬似ウェハ10は熱に曝される。仮に、支持基板1と樹脂基板4に、それらの熱膨張係数が大きく異なるような材料を用いていた場合には、そのままでは、そのような加熱時に、擬似ウェハ10に反りが発生してしまう可能性がある。例えば、樹脂基板4の硬化時にそのような反りが発生すると、その後に行う支持基板1の研削を所望の厚さまで高精度で行うことが難しくなる。また、支持基板1研削後の加熱時にそのような反りが発生すると、薄い支持基板1の破損や、反っているために後続の工程を実施できない或いは精度良く実施できないといったことが起こり得る。   As described in the first embodiment, after the semiconductor chips 2a and 2b on the support substrate 1 are coated with the resin substrate 4, the resin substrate 4 is cured, and the insulating film and the conductive material after the support substrate 1 is ground. Material formation takes place, during which the simulated wafer 10 is exposed to heat. If the support substrate 1 and the resin substrate 4 are made of materials whose coefficients of thermal expansion are greatly different, the pseudo wafer 10 may be warped during the heating as it is. There is sex. For example, when such a warp occurs when the resin substrate 4 is cured, it becomes difficult to perform grinding of the support substrate 1 performed thereafter to a desired thickness with high accuracy. Further, if such warpage occurs during heating after grinding of the support substrate 1, it may happen that the thin support substrate 1 is damaged or that subsequent processes cannot be performed or cannot be performed accurately because of warping.

一方、図14(B)に例示したような、樹脂基板4に剛性基板30を配置した擬似ウェハ10aの場合には、支持基板1及び樹脂基板4の材質によらず、擬似ウェハ10aの反りの発生を効果的に抑えることが可能になる。   On the other hand, in the case of the pseudo wafer 10a in which the rigid substrate 30 is arranged on the resin substrate 4 as illustrated in FIG. 14B, the warp of the pseudo wafer 10a is not affected by the material of the support substrate 1 and the resin substrate 4. Occurrence can be effectively suppressed.

図15は第2の実施の形態に係る支持基板研削工程の一例の断面模式図である。
剛性基板30を配置した擬似ウェハ10aの形成後は、上記第1の実施の形態と同様に、支持基板1の研削を行う。ここでは、まず、研削直前の擬似ウェハ10aの厚さd1、剛性基板30の厚さd5、及び支持基板1の厚さd2を用いて、接着部材3及び樹脂基板4の厚さd3(=d1−d2−d5)を求める(図14)。そして、接着部材3及び樹脂基板4の厚さd3と剛性基板30の厚さd5との和に、研削によって最終的に得るべき支持基板1の厚さd4を加え、擬似ウェハ10aが研削装置のテーブル面からその厚さd3+d4+d5になるまで研削を行う。これにより、初期の厚さd2から厚さd4まで薄くした支持基板1を得る。その後は、研削面に対してCMPやエッチングを行い、研削痕を除去するようにしてもよい。
FIG. 15 is a schematic cross-sectional view of an example of a support substrate grinding process according to the second embodiment.
After the formation of the pseudo wafer 10a on which the rigid substrate 30 is arranged, the support substrate 1 is ground as in the first embodiment. Here, first, using the thickness d1 of the pseudo wafer 10a immediately before grinding, the thickness d5 of the rigid substrate 30, and the thickness d2 of the support substrate 1, the thickness d3 (= d1) of the adhesive member 3 and the resin substrate 4 is used. -D2-d5) is obtained (FIG. 14). Then, the thickness d4 of the support substrate 1 to be finally obtained by grinding is added to the sum of the thickness d3 of the adhesive member 3 and the resin substrate 4 and the thickness d5 of the rigid substrate 30, and the pseudo wafer 10a becomes the grinding device. Grinding is performed from the table surface to the thickness d3 + d4 + d5. Thereby, the support substrate 1 thinned from the initial thickness d2 to the thickness d4 is obtained. Thereafter, CMP or etching may be performed on the ground surface to remove grinding marks.

そして、このように支持基板1の研削を行った後は、上記の図5〜図12で述べたのと同様に、半導体チップ2a,2b間を電気的に接続するビア7及び配線23を形成していくようにすればよい。   Then, after grinding of the support substrate 1 in this way, vias 7 and wirings 23 that electrically connect the semiconductor chips 2a and 2b are formed in the same manner as described above with reference to FIGS. You should do it.

この第2の実施の形態によっても、平坦性良く薄くした支持基板1を絶縁膜として用い、反りの発生を抑えて、支持基板1に高精度でビア7を形成することができる。また、そのビア7を形成した支持基板1の上層に、高精度で配線23を形成することができる。その結果、ビア7や配線23の微細化・高密度化にも対応可能になる。   Also according to the second embodiment, it is possible to form the via 7 with high accuracy in the support substrate 1 by using the support substrate 1 thinned with good flatness as an insulating film and suppressing the occurrence of warpage. Further, the wiring 23 can be formed with high accuracy on the upper layer of the support substrate 1 on which the vias 7 are formed. As a result, it is possible to cope with miniaturization and high density of the via 7 and the wiring 23.

次に、第3の実施の形態について説明する。
この第3の実施の形態は、半導体チップ2a,2bを配置した支持基板1上に、樹脂基板4に替えて剛性基板を配置する点で、上記第1の実施の形態と相違する。
Next, a third embodiment will be described.
The third embodiment is different from the first embodiment in that a rigid substrate is disposed instead of the resin substrate 4 on the support substrate 1 on which the semiconductor chips 2a and 2b are disposed.

図16は第3の実施の形態に係る剛性基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のY1−Y1断面模式図である。
図16に例示する剛性基板40は、支持基板1上に配置された半導体チップ2a,2bに対応する領域に、それらの半導体チップ2a,2bを収容可能な凹部40aが形成され、さらに、凹部40aに連通する溝40bが形成されている。剛性基板40としては、シリコン(Si)基板のほか、石英ガラスや結晶化ガラス等のガラス基板、SiO,AlO,AlN等のセラミック基板等を用いることができる。
16A and 16B are explanatory views of an example of a rigid substrate according to the third embodiment, in which FIG. 16A is a schematic plan view and FIG. 16B is a schematic cross-sectional view along Y1-Y1 in FIG.
In the rigid substrate 40 illustrated in FIG. 16, a recess 40a that can accommodate the semiconductor chips 2a and 2b is formed in a region corresponding to the semiconductor chips 2a and 2b disposed on the support substrate 1, and further, the recess 40a. A groove 40b communicated with is formed. As the rigid substrate 40, in addition to a silicon (Si) substrate, a glass substrate such as quartz glass or crystallized glass, a ceramic substrate such as SiO, AlO, or AlN can be used.

図17は第3の実施の形態に係る剛性基板形成工程の一例の断面模式図である。
図16に例示したような剛性基板40を形成する場合には、まず、凹部40a及び溝40bが未形成の剛性基板41(例えば、厚さ725μm)上に、凹部40a及び溝40bを形成する領域50a,50bを開口したマスクパターン50を形成する。そして、それをマスクにしてエッチング(ドライエッチング又はウェットエッチング)を行い、凹部40a及び溝40bを形成する。
FIG. 17 is a schematic cross-sectional view of an example of a rigid substrate forming process according to the third embodiment.
When the rigid substrate 40 as illustrated in FIG. 16 is formed, first, a region in which the recess 40a and the groove 40b are formed on the rigid substrate 41 (for example, a thickness of 725 μm) where the recess 40a and the groove 40b are not formed. A mask pattern 50 having openings 50a and 50b is formed. Then, etching (dry etching or wet etching) is performed using this as a mask to form the recesses 40a and the grooves 40b.

例えば、剛性基板41をSi基板とした場合には、所定領域を開口したレジストパターンを形成し、それをマスクにしてSF6を用いたRIEを行う(例えば、Siエッチング速度30μm/min)。それにより、剛性基板41に、図16に例示したような凹部40a及び溝40bを形成する。なお、形成する凹部40a及び溝40bの側壁保護のために、RIE中、SF6の供給を一時的に停止し、C48を供給するようにしてもよい。 For example, when the rigid substrate 41 is an Si substrate, a resist pattern having an opening in a predetermined region is formed, and RIE using SF 6 is performed using the resist pattern as a mask (for example, Si etching rate 30 μm / min). Thereby, the concave portion 40a and the groove 40b illustrated in FIG. 16 are formed in the rigid substrate 41. In addition, in order to protect the side wall of the recess 40a and the groove 40b to be formed, the supply of SF 6 may be temporarily stopped during the RIE to supply C 4 F 8 .

また、剛性基板41をガラス基板とした場合には、まず、所定領域を開口したタングステンシリサイド(WSi)のハードマスクを形成する(例えば、WSi:ガラス基板(SiO2)=1:16)。そして、トリフルオロメタン(CHF3)及び一酸化炭素(CO)を共に75sccmでそれぞれ供給し、ICP(Inductive Coupling Plasma)条件を1000W、バイアス条件を600WとしてRIEを行う(例えば、SiO2エッチング速度430nm/min)。それにより、剛性基板41に、図16に例示したような凹部40a及び溝40bを形成する。 When the rigid substrate 41 is a glass substrate, first, a tungsten silicide (WSi) hard mask having an opening in a predetermined region is formed (for example, WSi: glass substrate (SiO 2 ) = 1: 16). Then, both trifluoromethane (CHF 3 ) and carbon monoxide (CO) are supplied at 75 sccm, and RIE is performed with an ICP (Inductive Coupling Plasma) condition of 1000 W and a bias condition of 600 W (for example, an SiO 2 etching rate of 430 nm / sec). min). Thereby, the concave portion 40a and the groove 40b illustrated in FIG. 16 are formed in the rigid substrate 41.

一方、凹部40a及び溝40bをウェットエッチングにより形成する場合には、例えば、まず、剛性基板41の全面(表面及び裏面を含む)に、CVD法等を用いてSiN膜を形成し、そのSiN膜の所定領域を開口してハードマスクを形成する。そして、硝酸(HNO3),フッ化水素(HF),酢酸(CH3COOH)を含む溶液をエッチング液に用いてエッチングを行う。それにより、剛性基板41に、図16に例示したような凹部40a及び溝40bを形成する。 On the other hand, when the recess 40a and the groove 40b are formed by wet etching, for example, first, an SiN film is formed on the entire surface (including the front surface and the back surface) of the rigid substrate 41 using a CVD method or the like, and the SiN film A hard mask is formed by opening the predetermined region. Etching is performed using a solution containing nitric acid (HNO 3 ), hydrogen fluoride (HF), and acetic acid (CH 3 COOH) as an etchant. Thereby, the concave portion 40a and the groove 40b illustrated in FIG. 16 are formed in the rigid substrate 41.

図18は第3の実施の形態に係る半導体チップ被覆工程の一例の断面模式図であって、(A)は被覆前の状態を示す図、(B)は被覆後の状態を示す図である。
半導体チップ2a,2bを配置した支持基板1上に剛性基板40を配置する場合には、まず、剛性基板40の凹部40a及び溝40bに、例えば、エポキシ樹脂やBCB等の樹脂(接着剤)42を所定量入れる。さらに、その剛性基板40の凹部40a及び溝40bの形成面側に、エポキシ樹脂やBCB等の接着剤43を塗布する。
18A and 18B are schematic cross-sectional views of an example of a semiconductor chip coating process according to the third embodiment, where FIG. 18A shows a state before coating, and FIG. 18B shows a state after coating. .
When the rigid substrate 40 is arranged on the support substrate 1 on which the semiconductor chips 2a and 2b are arranged, first, a resin (adhesive) 42 such as an epoxy resin or BCB is provided in the recess 40a and the groove 40b of the rigid substrate 40, for example. Put a predetermined amount. Further, an adhesive 43 such as an epoxy resin or BCB is applied to the formation surface side of the recess 40a and the groove 40b of the rigid substrate 40.

そして、位置合せマーク1aに対応した位置に接着部材3を用いて半導体チップ2a,2bを接着した支持基板1を、樹脂42及び接着剤43を設けた剛性基板40に貼り合せて両者を接着し、擬似ウェハ10bを得る。このとき、凹部40a内には、半導体チップ2a,2bが収容されると共に、収容された半導体チップ2a,2bは、樹脂42で被覆された状態になる。   Then, the support substrate 1 to which the semiconductor chips 2a and 2b are bonded using the bonding member 3 at the position corresponding to the alignment mark 1a is bonded to the rigid substrate 40 provided with the resin 42 and the adhesive 43, and both are bonded. A pseudo wafer 10b is obtained. At this time, the semiconductor chips 2a and 2b are accommodated in the recess 40a, and the accommodated semiconductor chips 2a and 2b are covered with the resin 42.

なお、この時点では、例えば、樹脂42及び接着剤43を、後続の研削工程で支持基板1と剛性基板40とが剥離しないような接着強度が得られ、しかも、あまりガスを発生させないような条件を用いて硬化させておくことが好ましい。   At this time, for example, the resin 42 and the adhesive 43 can be bonded under such conditions that the support substrate 1 and the rigid substrate 40 do not peel off in the subsequent grinding step, and the gas does not generate much gas. It is preferable to make it harden | cure using.

なお、樹脂42による半導体チップ2a,2bの良好な被覆状態が得られるように、予め凹部40aに入れる樹脂42の量を調整しておくことが好ましい。また、ここでは凹部40a及び溝40bにエポキシ樹脂等の樹脂42を入れるようにしたが、SOG膜材料を入れるようにすることもできる。   In addition, it is preferable to adjust the amount of the resin 42 to be put in the recess 40a in advance so that a good covering state of the semiconductor chips 2a and 2b with the resin 42 is obtained. Here, the resin 42 such as an epoxy resin is placed in the recess 40a and the groove 40b, but an SOG film material may be placed.

図19は第3の実施の形態に係る支持基板研削工程の一例の断面模式図である。
支持基板1と剛性基板40との接着後は、支持基板1に対して研削を行う。その際は、支持基板1の厚さと、剛性基板40の厚さとを予め把握しておき、擬似ウェハ10bの厚さを測定して、接着剤43の厚さを求める。なお、接着剤43の厚さは、概ね10μm〜100μm程度になる。そして、剛性基板40と接着剤43の厚さの和に、さらに研削によって最終的に得るべき支持基板1の厚さを加え、擬似ウェハ10bが研削装置のテーブル面からその厚さになるまで研削を行う。
FIG. 19 is a schematic cross-sectional view of an example of a support substrate grinding process according to the third embodiment.
After the support substrate 1 and the rigid substrate 40 are bonded, the support substrate 1 is ground. In that case, the thickness of the support substrate 1 and the thickness of the rigid substrate 40 are grasped in advance, the thickness of the pseudo wafer 10b is measured, and the thickness of the adhesive 43 is obtained. In addition, the thickness of the adhesive 43 is approximately 10 μm to 100 μm. Then, the thickness of the support substrate 1 to be finally obtained by grinding is added to the sum of the thicknesses of the rigid substrate 40 and the adhesive 43, and grinding is performed until the pseudo wafer 10b reaches the thickness from the table surface of the grinding apparatus. I do.

このとき、剛性基板40に、例えばSi基板を用いている場合には、静電容量測定装置による厚さ測定が可能である。
なお、この支持基板1の研削は、その研削面を、研削装置のテーブル面から目標値の±1μm以下に制御することができ、研削面内のばらつきを1μm以下に制御することができる。
At this time, for example, when a Si substrate is used as the rigid substrate 40, the thickness can be measured by a capacitance measuring device.
In addition, the grinding of this support substrate 1 can control the grinding surface to ± 1 micrometer or less of a target value from the table surface of a grinding apparatus, and can control the dispersion | variation in a grinding surface to 1 micrometer or less.

支持基板1と剛性基板40との接着後の接着剤43の厚さは、所定の接着強度を確保するために概ね10μm以上と比較的厚くなるので、この接着剤43の厚さのばらつきによっては、支持基板1の研削の程度が制限される場合もある。即ち、接着剤43の厚さのばらつきによっては、研削装置のテーブル面を基準にして研削を行ったときに接着剤43等が部分的に露出してしまわないように、支持基板1の研削量を調整することが必要になる場合もある。   The thickness of the adhesive 43 after bonding the support substrate 1 and the rigid substrate 40 is relatively thick, approximately 10 μm or more in order to ensure a predetermined adhesive strength, so depending on the variation in the thickness of the adhesive 43 The degree of grinding of the support substrate 1 may be limited. That is, depending on the thickness variation of the adhesive 43, the amount of grinding of the support substrate 1 is prevented so that the adhesive 43 and the like are not partially exposed when grinding is performed with reference to the table surface of the grinding device. It may be necessary to adjust.

なお、研削後には、その研削面に対してCMPやエッチングを行い、研削痕を除去するようにしてもよい。
図20は第3の実施の形態に係るビアホール形成工程の一例の断面模式図である。
Note that after grinding, CMP or etching may be performed on the ground surface to remove grinding traces.
FIG. 20 is a schematic cross-sectional view of an example of a via hole forming process according to the third embodiment.

支持基板1の研削後は、半導体チップ2a,2bの電極2cに達するビアホール6を形成すると共に、ここでは、溝40bに達するビアホール6aを形成する。このようなビアホール6,6aの形成後には、樹脂42及び接着剤43の接着力強化のためのアニールを行う。この場合、アニールによって樹脂42及び接着剤43から発生したガスは、溝40b及びビアホール6,6aを介して外部に排気される。   After the support substrate 1 is ground, a via hole 6 reaching the electrode 2c of the semiconductor chips 2a and 2b is formed, and here, a via hole 6a reaching the groove 40b is formed. After the formation of the via holes 6 and 6a, annealing for strengthening the adhesive force between the resin 42 and the adhesive 43 is performed. In this case, the gas generated from the resin 42 and the adhesive 43 by annealing is exhausted to the outside through the groove 40b and the via holes 6 and 6a.

このような溝40b及びビアホール6aを形成しなかった場合には、アニールによって樹脂42及び接着剤43から発生したガスの逃げ道が無いか、或いは少ないため、擬似ウェハ10bの内圧が上昇する可能性がある。それにより、支持基板1と剛性基板40との剥離、或いは支持基板1の破損等が発生する可能性がある。剛性基板40に溝40bを形成し、支持基板1にビアホール6のほか排気用のビアホール6aを形成しておくことにより、そのような剥離や破損の発生を抑えることができる。   If the groove 40b and the via hole 6a are not formed, the internal pressure of the pseudo wafer 10b may be increased because there is little or no escape path for the gas generated from the resin 42 and the adhesive 43 by annealing. is there. As a result, the support substrate 1 and the rigid substrate 40 may be peeled off or the support substrate 1 may be damaged. By forming the groove 40 b in the rigid substrate 40 and forming the exhaust via hole 6 a in addition to the via hole 6 in the support substrate 1, the occurrence of such peeling and breakage can be suppressed.

以後は、上記第1の実施の形態と同様に、ビア7及び配線23等を形成していく。
図21は第3の実施の形態に係るビア形成工程の一例の断面模式図である。また、図22は第3の実施の形態に係る配線溝形成工程の一例の断面模式図、図23は第3の実施の形態に係る配線形成工程の一例の断面模式図である。
Thereafter, the via 7 and the wiring 23 are formed in the same manner as in the first embodiment.
FIG. 21 is a schematic cross-sectional view of an example of a via forming process according to the third embodiment. FIG. 22 is a schematic cross-sectional view of an example of a wiring groove forming process according to the third embodiment, and FIG. 23 is a schematic cross-sectional view of an example of a wiring forming process according to the third embodiment.

ビアホール6,6aの形成後、図21に例示するように、スパッタリング法、CVD法、電気めっき法等を用いて全面に導電材料を形成してビアホール6,6aを埋めた後、支持基板1が露出するようにCMPを行って支持基板1上の余剰導電材料を除去する。これにより、支持基板1内にビア7,7bを形成する。   After the formation of the via holes 6 and 6a, as illustrated in FIG. 21, a conductive material is formed on the entire surface by using a sputtering method, a CVD method, an electroplating method or the like to fill the via holes 6 and 6a. The excess conductive material on the support substrate 1 is removed by performing CMP so as to be exposed. As a result, vias 7 and 7 b are formed in the support substrate 1.

次いで、図22に例示したように、ビア7,7bを形成した支持基板1上に絶縁膜21を形成し、そこに配線溝22を形成する。そして、全面に導電材料を形成して配線溝22を埋めた後、絶縁膜21が露出するようにCMPを行って絶縁膜21上の余剰導電材料を除去する。これにより、図23に例示するように、半導体チップ2a,2bの電極2c間を、ビア7を介して電気的に接続する配線23を形成する。   Next, as illustrated in FIG. 22, the insulating film 21 is formed on the support substrate 1 on which the vias 7 and 7 b are formed, and the wiring groove 22 is formed there. Then, after a conductive material is formed on the entire surface and the wiring trench 22 is filled, CMP is performed so that the insulating film 21 is exposed, and excess conductive material on the insulating film 21 is removed. As a result, as illustrated in FIG. 23, wirings 23 are formed that electrically connect the electrodes 2 c of the semiconductor chips 2 a and 2 b via the vias 7.

この第3の実施の形態によっても、平坦性良く薄くした支持基板1を絶縁膜として用い、そこに高精度でビア7を形成することができ、また、その上層に高精度で配線23を形成することができる。その結果、ビア7や配線23の微細化・高密度化にも対応可能になる。   Also according to the third embodiment, the support substrate 1 thinned with good flatness can be used as an insulating film, and the via 7 can be formed with high precision thereover, and the wiring 23 can be formed with high precision thereover. can do. As a result, it is possible to cope with miniaturization and high density of the via 7 and the wiring 23.

また、この第3の実施の形態では、半導体チップ2a,2bを配置した支持基板1に剛性基板40を貼り合せるので、樹脂42及び接着剤43の硬化時や、支持基板1研削後の絶縁膜や導電材料の形成時に加熱を行っても、それらの反りの発生が抑えられる。例えば、樹脂基板4の硬化時に発生する反りは、支持基板1の研削を所望の厚さまで高精度で行うことを妨げる。また、支持基板1研削後の加熱時に発生する反りは、薄い支持基板1の破損や、後続の工程に影響を及ぼし得る。この第3の実施の形態では、剛性基板40を用いることにより、そのような原因となり得る支持基板1及び剛性基板40の反りの発生を効果的に抑えることができる。   In the third embodiment, since the rigid substrate 40 is bonded to the support substrate 1 on which the semiconductor chips 2a and 2b are arranged, the insulating film after the resin 42 and the adhesive 43 are cured or after the support substrate 1 is ground. Even if heating is performed during the formation of the conductive material, the occurrence of such warpage can be suppressed. For example, the warp that occurs when the resin substrate 4 is cured prevents the support substrate 1 from being ground to a desired thickness with high accuracy. Further, the warp generated during heating after grinding of the support substrate 1 can affect the thin support substrate 1 and subsequent processes. In the third embodiment, by using the rigid substrate 40, it is possible to effectively suppress the warpage of the support substrate 1 and the rigid substrate 40 that may cause such a cause.

また、この第3の実施の形態では、剛性基板40に溝40bを形成し、支持基板1にビアホール6,6aを形成することにより、樹脂42及び接着剤43から発生するガスを効果的に排気する。これにより、支持基板1と剛性基板40との剥離、支持基板1の破損等の発生を抑えてMCMの形成を行うことができる。   In the third embodiment, the grooves 40 b are formed in the rigid substrate 40 and the via holes 6 and 6 a are formed in the support substrate 1, thereby effectively exhausting the gas generated from the resin 42 and the adhesive 43. To do. As a result, the MCM can be formed while suppressing the peeling between the support substrate 1 and the rigid substrate 40, the breakage of the support substrate 1, and the like.

なお、剛性基板40は、上記図16に例示したような構成のほか、以下の図24〜図26に例示するような構成とすることもできる。
図24〜図26は第3の実施の形態に係る剛性基板の別例の平面模式図である。
The rigid substrate 40 may be configured as illustrated in FIGS. 24 to 26 below in addition to the configuration illustrated in FIG.
24 to 26 are schematic plan views of other examples of the rigid substrate according to the third embodiment.

図24に例示する剛性基板44は、1組又は複数組の半導体チップ2a,2bが収容可能な、平面矩形状で直線的に延びる凹部44aが、平行に複数形成された構成を有している。   The rigid substrate 44 illustrated in FIG. 24 has a configuration in which a plurality of recesses 44a that are linearly rectangular and extend linearly and can accommodate one or more pairs of semiconductor chips 2a and 2b are formed in parallel. .

このような剛性基板44を用いる場合には、まず、その凹部44aに樹脂42を入れ、表面に接着剤43を塗布し、その剛性基板44を、半導体チップ2a,2bを配置した支持基板1に貼り合せる。このとき、各凹部44aには、1組又は複数組の半導体チップ2a,2bが収容されるようになる。そして、半導体チップ2a,2b(電極2c)に達するビアホール6を形成すると共に、樹脂42等から発生するガスの排気用のビアホール6aを形成すればよい。   When using such a rigid substrate 44, first, the resin 42 is put into the recess 44a, the adhesive 43 is applied to the surface, and the rigid substrate 44 is attached to the support substrate 1 on which the semiconductor chips 2a and 2b are arranged. Paste. At this time, one or a plurality of sets of semiconductor chips 2a and 2b are accommodated in each recess 44a. Then, the via hole 6 reaching the semiconductor chips 2a and 2b (electrode 2c) may be formed, and the via hole 6a for exhausting the gas generated from the resin 42 and the like may be formed.

なお、このような凹部44aは、上記剛性基板40の凹部40a及び溝40bと同様に、エッチング(ドライエッチング又はウェットエッチング)によって形成することができる。   Such a recess 44a can be formed by etching (dry etching or wet etching) in the same manner as the recess 40a and the groove 40b of the rigid substrate 40.

また、図25に例示する剛性基板45は、図24に例示した剛性基板44と同様に、1組又は複数組の半導体チップ2a,2bが収容可能な直線状の凹部45aが、平行に複数形成された構成を有している。さらに、この剛性基板45は、その凹部45aの両端部が湾曲して形成された構成を有しており、この点で図24に例示した剛性基板44と相違している。   25, in the same manner as the rigid substrate 44 illustrated in FIG. 24, a plurality of linear recesses 45a that can accommodate one or a plurality of sets of semiconductor chips 2a and 2b are formed in parallel. It has the structure which was made. Further, the rigid substrate 45 has a configuration in which both end portions of the concave portion 45a are curved, which is different from the rigid substrate 44 illustrated in FIG.

このような剛性基板45の凹部45aは、エッチング(ドライエッチング又はウェットエッチング)による形成が可能であるほか、次の図27に例示するような研削部材を用いて形成することも可能である。   Such a recess 45a of the rigid substrate 45 can be formed by etching (dry etching or wet etching), and can also be formed by using a grinding member as illustrated in FIG.

図27は剛性基板研削方法の一例の説明図であって、(A)は研削部材の斜視模式図、(B)は研削部材を用いた研削工程の要部断面模式図である。
図27(A)には、筒状体61の先端部にダイヤモンド等の研削刃62が取り付けられた研削部材60を例示している。この研削部材60は、その筒状体61の中空部に、研削刃62に向かって水等の液体を流通させることができるようになっている。筒状体61は、形成する凹部45aのサイズに応じたサイズのものを使用することができる。例えば、外径20mm、内径10mmのサイズの筒状体61が使用される。
27A and 27B are explanatory views of an example of a rigid substrate grinding method, in which FIG. 27A is a schematic perspective view of a grinding member, and FIG. 27B is a schematic cross-sectional view of an essential part of a grinding process using the grinding member.
FIG. 27A illustrates a grinding member 60 in which a grinding blade 62 such as diamond is attached to the tip of a cylindrical body 61. The grinding member 60 can circulate liquid such as water toward the grinding blade 62 in the hollow portion of the cylindrical body 61. The cylindrical body 61 can be of a size corresponding to the size of the recess 45a to be formed. For example, a cylindrical body 61 having an outer diameter of 20 mm and an inner diameter of 10 mm is used.

研削を行う際には、この研削部材60を凹部45aの形成位置に配置し、水等を流通させつつ、その研削部材60を回転させながら直線状に移動させて、剛性基板45の凹部45aを形成する。   When grinding is performed, the grinding member 60 is disposed at a position where the recess 45a is formed, and the grinding member 60 is moved linearly while circulating water or the like, so that the recess 45a of the rigid substrate 45 is moved. Form.

このようにして形成される剛性基板45によっても、図24に例示した剛性基板44と同様に、半導体チップ2a,2bを配置した支持基板1と剛性基板45との間に存在する樹脂42等から発生するガスを効果的に排気することが可能である。   Also with the rigid substrate 45 formed in this manner, as with the rigid substrate 44 illustrated in FIG. 24, the resin 42 and the like existing between the support substrate 1 on which the semiconductor chips 2a and 2b are arranged and the rigid substrate 45 are used. It is possible to exhaust the generated gas effectively.

また、図26に例示する剛性基板46は、支持基板1上に配置される全ての半導体チップ2a,2bを収容可能な平面円形状の単一の凹部46aが形成された構成を有している。   In addition, the rigid substrate 46 illustrated in FIG. 26 has a configuration in which a single flat circular recess 46a that can accommodate all the semiconductor chips 2a and 2b disposed on the support substrate 1 is formed. .

このような剛性基板46の凹部46aは、エッチング(ドライエッチング又はウェットエッチング)による形成が可能であるほか、図27に例示したような研削部材60を用いて形成することが可能である。特に、このような比較的大面積の凹部46aを有する剛性基板46の場合には、スループットの観点から、適当なサイズの研削部材60を用いて凹部46aを形成することが好ましい。   Such a recess 46a of the rigid substrate 46 can be formed by etching (dry etching or wet etching), or can be formed by using a grinding member 60 as illustrated in FIG. In particular, in the case of the rigid substrate 46 having such a relatively large-area recess 46a, it is preferable to form the recess 46a using a grinding member 60 of an appropriate size from the viewpoint of throughput.

この図26に例示するような剛性基板46によっても、半導体チップ2a,2bを配置した支持基板1と剛性基板45との間に存在する樹脂42等から発生するガスを効果的に排気することが可能である。   The rigid substrate 46 illustrated in FIG. 26 can also effectively exhaust the gas generated from the resin 42 and the like existing between the support substrate 1 on which the semiconductor chips 2a and 2b are arranged and the rigid substrate 45. Is possible.

次に、第4の実施の形態について説明する。
この第4の実施の形態は、支持基板1上に、半導体チップ2a,2bを収容可能な貫通孔を有する剛性基板を配置する点で、上記第3の実施の形態と相違する。
Next, a fourth embodiment will be described.
The fourth embodiment is different from the third embodiment in that a rigid substrate having a through hole capable of accommodating the semiconductor chips 2a and 2b is disposed on the support substrate 1.

図28は第4の実施の形態に係る剛性基板の一例の説明図であって、(A)は平面模式図、(B)は(A)のZ1−Z1断面模式図である。
図28に例示する剛性基板47は、半導体チップ2a,2bを収容可能な、平面矩形状の貫通孔47aが複数形成されている。剛性基板47としては、上記剛性基板40と同様、Si基板のほか、石英ガラスや結晶化ガラス等のガラス基板、SiO,AlO,AlN等のセラミック基板等を用いることができる。
FIG. 28 is an explanatory diagram of an example of a rigid substrate according to the fourth embodiment. FIG. 28A is a schematic plan view, and FIG. 28B is a schematic cross-sectional view taken along Z1-Z1 in FIG.
The rigid substrate 47 illustrated in FIG. 28 has a plurality of planar rectangular through holes 47a that can accommodate the semiconductor chips 2a and 2b. As the rigid substrate 47, in addition to the Si substrate, a glass substrate such as quartz glass or crystallized glass, a ceramic substrate such as SiO, AlO, or AlN can be used in addition to the Si substrate.

また、剛性基板47は、上記剛性基板40の形成に用いた手法と同様の手法を用いて、形成することができる。即ち、上記図17に例示したのと同様に、まず、貫通孔47aが未形成の剛性基板に、貫通孔47aを形成する領域を開口したマスクパターンを形成する。そして、それをマスクにしてエッチング(ドライエッチング又はウェットエッチング)を行い、貫通孔47aを形成すればよい。   Further, the rigid substrate 47 can be formed by using a method similar to the method used for forming the rigid substrate 40. That is, as illustrated in FIG. 17, first, a mask pattern in which a region for forming the through hole 47 a is opened is formed on a rigid substrate in which the through hole 47 a is not formed. Then, etching (dry etching or wet etching) may be performed using this as a mask to form the through hole 47a.

図29は第4の実施の形態に係る剛性基板配置工程の一例の断面模式図であって、(A)は剛性基板配置前の状態を示す図、(B)は剛性基板配置後の状態を示す図である。
貫通孔47aを形成した剛性基板47を準備した後、その剛性基板47を、ここでは、図1に例示したような半導体チップ2a,2bが未配置の位置合せマーク1a付き支持基板1の上に配置する。その際、剛性基板47は、接着剤を用いずに、支持基板1に直接接着することができる。例えば、支持基板1の位置合せマーク1a形成面側に剛性基板47を載せ、酸素含有雰囲気中、800℃、30分の条件で熱処理を行うと、支持基板1上に剛性基板47が直接接着されるようになる。
FIG. 29 is a schematic cross-sectional view of an example of a rigid substrate placement process according to the fourth embodiment, where (A) shows a state before placement of the rigid substrate, and (B) shows a state after placement of the rigid substrate. FIG.
After preparing the rigid substrate 47 in which the through hole 47a is formed, the rigid substrate 47 is placed on the support substrate 1 with the alignment mark 1a in which the semiconductor chips 2a and 2b illustrated in FIG. Deploy. At this time, the rigid substrate 47 can be directly bonded to the support substrate 1 without using an adhesive. For example, when the rigid substrate 47 is placed on the side of the support substrate 1 where the alignment mark 1a is formed and heat treatment is performed in an oxygen-containing atmosphere at 800 ° C. for 30 minutes, the rigid substrate 47 is directly bonded onto the support substrate 1. Become so.

なお、半導体チップ2a,2bは、その種類にもよるが、400℃以上の熱に曝されると、その特性が劣化する場合がある。従って、このような800℃といった高温の熱処理によって支持基板1上に剛性基板47を直接接着する場合には、半導体チップ2a,2bを支持基板1上に配置していない状態で、剛性基板47を接着する。   Note that, depending on the type of the semiconductor chips 2a and 2b, their characteristics may deteriorate when exposed to heat of 400 ° C. or higher. Therefore, when the rigid substrate 47 is directly bonded on the support substrate 1 by such a high-temperature heat treatment such as 800 ° C., the rigid substrate 47 is mounted in a state where the semiconductor chips 2a and 2b are not disposed on the support substrate 1. Glue.

このように、接着剤を用いることなく、支持基板1上に剛性基板47を直接接着した場合には、接着剤の厚さのばらつきを考慮することを要せず、後に行う支持基板1の研削時には、支持基板1を薄く、高精度で加工することが可能になる。また、支持基板1と剛性基板47とを非常に強固に接着することが可能である。   As described above, when the rigid substrate 47 is directly bonded onto the support substrate 1 without using an adhesive, it is not necessary to consider the variation in the thickness of the adhesive, and the support substrate 1 is ground later. Sometimes, the support substrate 1 can be thin and processed with high accuracy. Further, the support substrate 1 and the rigid substrate 47 can be bonded very firmly.

図30は第4の実施の形態に係る半導体チップ配置工程の一例の断面模式図である。
支持基板1上に剛性基板47を直接接着した後は、その剛性基板47の貫通孔47a内の支持基板1上に、半導体チップ2a,2bを、その電極2cを支持基板1側に向け、接着部材3を用いて配置する。
FIG. 30 is a schematic cross-sectional view of an example of a semiconductor chip placement step according to the fourth embodiment.
After the rigid substrate 47 is directly bonded onto the support substrate 1, the semiconductor chips 2a and 2b are bonded onto the support substrate 1 in the through hole 47a of the rigid substrate 47, and the electrodes 2c are directed to the support substrate 1 side. Arrange using the member 3.

図31は第4の実施の形態に係る半導体チップ被覆工程の一例の断面模式図である。
半導体チップ2a,2bの配置後は、剛性基板47の貫通孔47a内に、半導体チップ2a,2bを被覆する樹脂48を入れ、擬似ウェハ10cを得る。
FIG. 31 is a schematic cross-sectional view of an example of a semiconductor chip covering step according to the fourth embodiment.
After the semiconductor chips 2a and 2b are arranged, the resin 48 that covers the semiconductor chips 2a and 2b is put into the through holes 47a of the rigid substrate 47 to obtain the pseudo wafer 10c.

ここでは、先にエポキシ樹脂,フェノール樹脂,BCB等の有機系樹脂48aを入れて半導体チップ2a,2bを被覆し、熱処理後、無機系樹脂48bを入れて有機系樹脂48aを被覆し、さらに熱処理を行うことで、樹脂48を形成する。貫通孔47a内に入れる有機系樹脂48aは、半導体チップ2a,2bを強固に被覆する。有機系樹脂48aの表面に形成した無機系樹脂48bは、後に行うビア7や配線23の形成時に用いられる薬液等から有機系樹脂48a及び半導体チップ2a,2bを保護する役割を果たす。また、熱処理時に有機系樹脂48aから発生するガス、及び無機系樹脂48bから発生するガスは、いずれも貫通孔47aの開口から排気することができる。   Here, an organic resin 48a such as an epoxy resin, a phenol resin, or BCB is first put to cover the semiconductor chips 2a and 2b, and after heat treatment, an inorganic resin 48b is put to coat the organic resin 48a, and further heat treatment is performed. As a result, the resin 48 is formed. The organic resin 48a put in the through hole 47a firmly covers the semiconductor chips 2a and 2b. The inorganic resin 48b formed on the surface of the organic resin 48a plays a role of protecting the organic resin 48a and the semiconductor chips 2a and 2b from chemicals and the like used when forming the via 7 and the wiring 23 to be performed later. Further, the gas generated from the organic resin 48a and the gas generated from the inorganic resin 48b during the heat treatment can be exhausted from the opening of the through hole 47a.

このように貫通孔47a内に配置した半導体チップ2a,2bを樹脂48で被覆することにより、この貫通孔47a部分における支持基板1の強度を確保することができる。そのため、後に行う支持基板1の研削時に、貫通孔47a部分を起点とするような支持基板1の破損を防ぐことが可能になる。   Thus, by covering the semiconductor chips 2a and 2b arranged in the through hole 47a with the resin 48, the strength of the support substrate 1 in the through hole 47a portion can be ensured. Therefore, it becomes possible to prevent damage to the support substrate 1 starting from the through-hole 47a portion when the support substrate 1 is ground later.

図32は第4の実施の形態に係る支持基板研削工程の一例の断面模式図である。
貫通孔47a内の半導体チップ2a,2bを樹脂48で被覆した後は、支持基板1に対して研削を行う。ここでは、支持基板1上に剛性基板47を直接接着しているため、研削に際し、接着剤の厚さのばらつきに起因した制限がなく、支持基板1を薄く、高精度で加工することができる。また、この研削に先立ち、貫通孔47a内に樹脂48を入れて支持基板1の強度を確保しているため、支持基板1の破損を抑えて支持基板1の研削を行うことができる。なお、研削後には、その研削面に対してCMPやエッチングを行い、研削痕を除去するようにしてもよい。
FIG. 32 is a schematic cross-sectional view of an example of a support substrate grinding process according to the fourth embodiment.
After the semiconductor chips 2a and 2b in the through holes 47a are coated with the resin 48, the support substrate 1 is ground. Here, since the rigid substrate 47 is directly bonded onto the support substrate 1, there is no limitation due to variations in the thickness of the adhesive during grinding, and the support substrate 1 can be processed thinly and with high accuracy. . Prior to this grinding, the resin 48 is put into the through-hole 47a to ensure the strength of the support substrate 1, so that the support substrate 1 can be ground while preventing damage to the support substrate 1. Note that after grinding, CMP or etching may be performed on the ground surface to remove grinding traces.

図33は第4の実施の形態に係るビア形成工程の一例の断面模式図である。
支持基板1の研削後は、まず、半導体チップ2a,2b(電極2c)に達するビアホール6を形成する。そして、スパッタリング法、CVD法、電気めっき法等を用いて全面に導電材料を形成してビアホール6を埋めた後、支持基板1が露出するようにCMPを行って支持基板1上の余剰導電材料を除去する。これにより、支持基板1内にビア7を形成する。
FIG. 33 is a schematic cross-sectional view of an example of a via formation process according to the fourth embodiment.
After the support substrate 1 is ground, first, via holes 6 reaching the semiconductor chips 2a and 2b (electrodes 2c) are formed. Then, a conductive material is formed on the entire surface using a sputtering method, a CVD method, an electroplating method, etc., and the via hole 6 is filled. Then, CMP is performed so that the support substrate 1 is exposed, and surplus conductive material on the support substrate 1 is formed. Remove. As a result, the via 7 is formed in the support substrate 1.

図34は第4の実施の形態に係る配線形成工程の一例の断面模式図である。
ビア7の形成後は、まず、ビア7を形成した支持基板1上に絶縁膜21を形成し、そこに配線溝22を形成する。そして、全面に導電材料を形成して配線溝22を埋めた後、絶縁膜21が露出するようにCMPを行って絶縁膜21上の余剰導電材料を除去する。これにより、半導体チップ2a,2bの電極2c間を、ビア7を介して電気的に接続する配線23を形成する。
FIG. 34 is a schematic cross-sectional view of an example of a wiring forming process according to the fourth embodiment.
After the via 7 is formed, first, the insulating film 21 is formed on the support substrate 1 on which the via 7 is formed, and the wiring groove 22 is formed there. Then, after a conductive material is formed on the entire surface and the wiring trench 22 is filled, CMP is performed so that the insulating film 21 is exposed, and excess conductive material on the insulating film 21 is removed. Thereby, the wiring 23 which electrically connects between the electrodes 2c of the semiconductor chips 2a and 2b via the vias 7 is formed.

この第4の実施の形態によっても、平坦性良く薄くした支持基板1を絶縁膜として用い、そこに高精度でビア7を形成することができ、また、その上層に高精度で配線23を形成することができる。その結果、ビア7や配線23の微細化・高密度化にも対応可能になる。また、貫通孔47aを形成した剛性基板47を用いることにより、反りや破損の発生を抑えて、MCMを形成することが可能になる。   Also according to the fourth embodiment, the support substrate 1 thinned with good flatness can be used as an insulating film, and the via 7 can be formed therewith with high accuracy, and the wiring 23 can be formed thereover with high accuracy. can do. As a result, it is possible to cope with miniaturization and high density of the via 7 and the wiring 23. Further, by using the rigid substrate 47 in which the through holes 47a are formed, it becomes possible to form the MCM while suppressing the occurrence of warping and breakage.

なお、ここでは、支持基板1と剛性基板47とを熱処理によって直接接着する場合を例示したが、両者を接着剤によって接着するようにしてもよい。その場合は、貫通孔47aを形成した剛性基板47を、半導体チップ2a,2bを配置した支持基板1上に、接着剤を介して接着する。その後は、上記同様、貫通孔47a内に樹脂48を入れ、支持基板1の研削を行い、ビア7及び配線23を形成していけばよい。   Although the case where the support substrate 1 and the rigid substrate 47 are directly bonded by heat treatment is illustrated here, the both may be bonded by an adhesive. In that case, the rigid substrate 47 in which the through-hole 47a is formed is bonded to the support substrate 1 on which the semiconductor chips 2a and 2b are arranged via an adhesive. Thereafter, as in the above, the resin 48 is put into the through hole 47a, the support substrate 1 is ground, and the via 7 and the wiring 23 are formed.

また、ここでは、研削前に貫通孔47a内に樹脂48を入れる場合を例示したが、研削時に支持基板1の破損が発生する可能性が少ないような場合には、先に支持基板1の研削を行い、その研削後に貫通孔47a内に樹脂を入れるようにすることも可能である。   Further, here, the case where the resin 48 is put into the through hole 47a before grinding is illustrated, but when the possibility that the support substrate 1 is damaged during grinding is low, the support substrate 1 is ground first. It is also possible to insert the resin into the through hole 47a after grinding.

なお、剛性基板47は、上記図28に例示したような構成のほか、以下の図35に例示するような構成とすることもできる。
図35は第4の実施の形態に係る剛性基板の別例の平面模式図である。
The rigid substrate 47 may be configured as illustrated in FIG. 35 below in addition to the configuration illustrated in FIG.
FIG. 35 is a schematic plan view of another example of the rigid substrate according to the fourth embodiment.

図35に例示する剛性基板49は、半導体チップ2a,2bに対応する領域に、半導体チップ2a,2bを収容可能な、平面円形状の貫通孔49aが形成されている点で、図28に例示した剛性基板47と相違している。このような平面円形状の貫通孔49aは、エッチング(ドライエッチング又はウェットエッチング)による形成が可能であるほか、図27に例示したような研削部材60を用いて形成することが可能である。   The rigid substrate 49 illustrated in FIG. 35 is illustrated in FIG. 28 in that planar circular through holes 49a that can accommodate the semiconductor chips 2a and 2b are formed in regions corresponding to the semiconductor chips 2a and 2b. This is different from the rigid substrate 47. Such a planar circular through hole 49a can be formed by etching (dry etching or wet etching), or can be formed by using a grinding member 60 as illustrated in FIG.

また、図28に例示した剛性基板47や図35に例示した剛性基板49に替えて、図24〜図26に例示した剛性基板44〜46の凹部44a〜46aをさらにエッチング或いは研削して貫通孔とした剛性基板を用いることも可能である。   Further, instead of the rigid substrate 47 illustrated in FIG. 28 and the rigid substrate 49 illustrated in FIG. 35, the recesses 44a to 46a of the rigid substrates 44 to 46 illustrated in FIGS. It is also possible to use a rigid substrate.

以上、MCMの形成方法を例に、第1〜第4の実施の形態について説明した。
なお、第1〜第4の実施の形態で述べた支持基板1及び剛性基板30,40,44〜47,49には、SEMI(Semiconductor Equipment and Materials International)規格に準じた形状のものを用いることが好ましい。それにより、上記のMCM形成に、半導体装置製造における既存設備を適用し易くなる。
The first to fourth embodiments have been described above by taking the MCM formation method as an example.
Note that the support substrate 1 and the rigid substrates 30, 40, 44 to 47, 49 described in the first to fourth embodiments have shapes conforming to the SEMI (Semiconductor Equipment and Materials International) standard. Is preferred. Thereby, it becomes easy to apply the existing equipment in semiconductor device manufacture to the above MCM formation.

また、以上の説明では、支持基板1に位置合せマーク1aを形成する場合を例示したが、このような位置合せマーク1aを形成しない場合にも、同様にしてMCMを形成することは可能である。例えば、位置合せマーク1aを用いずに、支持基板1上に一定の精度で半導体チップ2a,2bを配置することができる場合や、研削後の支持基板1にビア7等を形成することができる場合等には、必ずしも位置合せマーク1aを形成することを要しない。   In the above description, the case where the alignment mark 1a is formed on the support substrate 1 is exemplified. However, even when such an alignment mark 1a is not formed, it is possible to form the MCM similarly. . For example, when the semiconductor chips 2a and 2b can be arranged on the support substrate 1 with a certain accuracy without using the alignment mark 1a, or vias 7 can be formed in the support substrate 1 after grinding. In some cases, it is not always necessary to form the alignment mark 1a.

また、以上の説明では、支持基板1のビア7を形成した後、その上に絶縁膜21を形成し、その絶縁膜21内にシングルダマシン法を用いて配線23を形成する場合を例示した。このほか、デュアルダマシン法を用いてビア7と配線23を同時に形成することも可能である。例えば、まず、支持基板1の研削後に、絶縁膜21を形成する。そして、絶縁膜21及び支持基板1を貫通し、半導体チップ2a,2bの電極2cに達するビアホール6を形成し、さらに、そのビアホール6の形成領域を含む絶縁膜21内の所定領域に配線溝22を形成する。形成したビアホール6及び配線溝22を導電材料で埋め、CMPにより余剰導電材料を除去することで、ビア7及び配線23を同時に形成する。   In the above description, the case where the via 7 of the support substrate 1 is formed, the insulating film 21 is formed thereon, and the wiring 23 is formed in the insulating film 21 using the single damascene method is illustrated. In addition, the via 7 and the wiring 23 can be simultaneously formed using a dual damascene method. For example, first, after the support substrate 1 is ground, the insulating film 21 is formed. Then, a via hole 6 that penetrates the insulating film 21 and the support substrate 1 and reaches the electrodes 2c of the semiconductor chips 2a and 2b is formed, and further, a wiring groove 22 is formed in a predetermined region in the insulating film 21 including the region where the via hole 6 is formed. Form. By filling the formed via hole 6 and the wiring groove 22 with a conductive material and removing excess conductive material by CMP, the via 7 and the wiring 23 are formed simultaneously.

また、以上の説明では、2種類の半導体チップ2a,2bを含むMCMの形成を例示したが、上記の手法は、2種類以上の半導体チップ(互いの厚さが異なっているか否かを問わない)を含むMCMの形成に広く適用可能である。また、1種類の半導体チップのみを含むシングル・チップ・モジュール(Single Chip Module,SCM)の形成にも、同様に適用可能である。   In the above description, the formation of the MCM including the two types of semiconductor chips 2a and 2b has been exemplified. However, the above-described method can be applied to two or more types of semiconductor chips (whether or not their thicknesses are different from each other). It is widely applicable to the formation of MCMs including The present invention is also applicable to the formation of a single chip module (SCM) including only one type of semiconductor chip.

1 支持基板
1a 位置合せマーク
2a,2b 半導体チップ
2c 電極
3 接着部材
4 樹脂基板
4a,40a,44a,45a,46a 凹部
6,6a ビアホール
7,7b ビア
7a,23a 導電材料
10,10a,10b,10c 擬似ウェハ
21 絶縁膜
22 配線溝
23 配線
30,40,41,44,45,46,47,49 剛性基板
40b 溝
42 樹脂
43 接着剤
47a,49a 貫通孔
48 樹脂
48a 有機系樹脂
48b 無機系樹脂
50 マスクパターン
50a,50b 領域
60 研削部材
61 筒状体
62 研削刃
DESCRIPTION OF SYMBOLS 1 Support substrate 1a Alignment mark 2a, 2b Semiconductor chip 2c Electrode 3 Adhesive member 4 Resin substrate 4a, 40a, 44a, 45a, 46a Recess 6, 6a Via hole 7, 7b Via 7a, 23a Conductive material 10, 10a, 10b, 10c Pseudo wafer 21 Insulating film 22 Wiring groove 23 Wiring 30, 40, 41, 44, 45, 46, 47, 49 Rigid substrate 40b Groove 42 Resin 43 Adhesive 47a, 49a Through hole 48 Resin 48a Organic resin 48b Inorganic resin 50 Mask pattern 50a, 50b area 60 grinding member 61 cylindrical body 62 grinding blade

Claims (7)

第1基板の第1主面の上方に接着部材を介して半導体チップを配置する工程と、
前記第1主面の上方に、前記半導体チップを覆う第2基板を配置する工程と、
前記第1基板及び前記接着部材を貫通し、前記半導体チップに電気的に接続される導電部を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Disposing a semiconductor chip via an adhesive member above the first main surface of the first substrate;
Disposing a second substrate covering the semiconductor chip above the first main surface;
Forming a conductive portion that penetrates the first substrate and the adhesive member and is electrically connected to the semiconductor chip;
A method for manufacturing a semiconductor device, comprising:
前記第2基板を配置する工程では、前記第2基板を配置すると共に、前記第2基板の前記第1基板側と反対側に、剛性を有する第3基板を配置することを特徴とする請求項1に記載の半導体装置の製造方法。   The step of disposing the second substrate includes disposing the second substrate and disposing a rigid third substrate on the side opposite to the first substrate side of the second substrate. 2. A method for manufacturing a semiconductor device according to 1. 前記第2基板の配置前に、前記第2基板に前記半導体チップが収容される凹部を形成する工程をさらに含むことを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a recess for accommodating the semiconductor chip in the second substrate before the second substrate is arranged. 第1基板の第1主面の上方に、半導体チップが収容される貫通孔を有する第2基板を配置する工程と、
前記貫通孔内の前記第1主面の上方に接着部材を介して前記半導体チップを配置する工程と、
前記第1基板及び前記接着部材を貫通し、前記半導体チップに電気的に接続された導電部を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Disposing a second substrate having a through hole in which a semiconductor chip is accommodated above the first main surface of the first substrate;
Disposing the semiconductor chip via an adhesive member above the first main surface in the through hole;
Forming a conductive portion penetrating the first substrate and the adhesive member and electrically connected to the semiconductor chip;
A method for manufacturing a semiconductor device, comprising:
前記導電部の形成前に、前記第1基板を、前記第1主面と反対側の第2主面側から薄化する工程をさらに含むことを特徴とする請求項1乃至4のいずれかに記載の半導体装置の製造方法。   5. The method according to claim 1, further comprising a step of thinning the first substrate from a second main surface side opposite to the first main surface before forming the conductive portion. The manufacturing method of the semiconductor device of description. 前記導電部を形成する工程では、
前記第1基板及び前記接着部材を貫通し、前記半導体チップに達するコンタクトホールを形成し、
形成された前記コンタクトホール内に導電材料を形成する、
ことを特徴とする請求項1乃至5のいずれかに記載の半導体装置の製造方法。
In the step of forming the conductive portion,
Forming a contact hole penetrating the first substrate and the adhesive member and reaching the semiconductor chip;
Forming a conductive material in the formed contact hole;
6. A method of manufacturing a semiconductor device according to claim 1, wherein the method is a semiconductor device manufacturing method.
第1基板と、
前記第1基板の第1主面の上方に接着部材を介して配置された半導体チップと、
前記第1主面の上方に配置された、前記半導体チップを覆う第2基板と、
前記第1基板及び前記接着部材を貫通し、前記半導体チップに電気的に接続された導電部と、
を含むことを特徴とする半導体装置。
A first substrate;
A semiconductor chip disposed above the first main surface of the first substrate via an adhesive member;
A second substrate covering the semiconductor chip, disposed above the first main surface;
A conductive portion that penetrates the first substrate and the adhesive member and is electrically connected to the semiconductor chip;
A semiconductor device comprising:
JP2009022423A 2009-02-03 2009-02-03 Manufacturing method of semiconductor device Expired - Fee Related JP5140014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022423A JP5140014B2 (en) 2009-02-03 2009-02-03 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022423A JP5140014B2 (en) 2009-02-03 2009-02-03 Manufacturing method of semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012175494A Division JP5554380B2 (en) 2012-08-08 2012-08-08 Semiconductor device
JP2012175493A Division JP5399542B2 (en) 2012-08-08 2012-08-08 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010182723A true JP2010182723A (en) 2010-08-19
JP5140014B2 JP5140014B2 (en) 2013-02-06

Family

ID=42764098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022423A Expired - Fee Related JP5140014B2 (en) 2009-02-03 2009-02-03 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5140014B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188555A (en) * 2011-03-10 2012-10-04 Sumitomo Bakelite Co Ltd Semiconductor device and method of manufacturing semiconductor device
JP2012222150A (en) * 2011-04-08 2012-11-12 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device
JP2015072300A (en) * 2013-10-01 2015-04-16 株式会社ディスコ Method for producing photomask
JP2016155735A (en) * 2014-04-07 2016-09-01 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2016169141A (en) * 2015-03-10 2016-09-23 日本電気硝子株式会社 Support glass substrate and laminate using the same
KR20170048315A (en) * 2014-09-03 2017-05-08 니폰 덴키 가라스 가부시키가이샤 Supporting glass substrate and laminate using same
KR20170095798A (en) * 2014-12-16 2017-08-23 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
KR20230021766A (en) * 2014-12-16 2023-02-14 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
JP7556505B2 (en) 2020-12-25 2024-09-26 国立大学法人東京工業大学 Semiconductor device and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI641573B (en) * 2014-04-07 2018-11-21 日本電氣硝子股份有限公司 Supporting glass substrate and laminated body use the same, semiconductor package and fabricating method thereof and electronic apparatus
CN106397101B (en) * 2016-09-05 2018-11-09 东南大学 A method of selectivity prepares 2,6- dichlorotoleune

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501802A (en) * 1994-05-23 1997-02-18 ゼネラル・エレクトリック・カンパニイ Processing low dielectric constant materials for high speed electronic circuits
JP2004208326A (en) * 2000-03-17 2004-07-22 Matsushita Electric Ind Co Ltd Module with built-in electric element, and its manufacturing method
JP2008305931A (en) * 2007-06-07 2008-12-18 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501802A (en) * 1994-05-23 1997-02-18 ゼネラル・エレクトリック・カンパニイ Processing low dielectric constant materials for high speed electronic circuits
JP2004208326A (en) * 2000-03-17 2004-07-22 Matsushita Electric Ind Co Ltd Module with built-in electric element, and its manufacturing method
JP2008305931A (en) * 2007-06-07 2008-12-18 Fujitsu Microelectronics Ltd Semiconductor device and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188555A (en) * 2011-03-10 2012-10-04 Sumitomo Bakelite Co Ltd Semiconductor device and method of manufacturing semiconductor device
JP2012222150A (en) * 2011-04-08 2012-11-12 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device
JP2015072300A (en) * 2013-10-01 2015-04-16 株式会社ディスコ Method for producing photomask
JP2016155735A (en) * 2014-04-07 2016-09-01 日本電気硝子株式会社 Support glass substrate and laminate using the same
KR20170048315A (en) * 2014-09-03 2017-05-08 니폰 덴키 가라스 가부시키가이샤 Supporting glass substrate and laminate using same
JPWO2016035674A1 (en) * 2014-09-03 2017-06-15 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2020128338A (en) * 2014-09-03 2020-08-27 日本電気硝子株式会社 Support glass substrate and laminate including the same
KR102402822B1 (en) * 2014-09-03 2022-05-27 니폰 덴키 가라스 가부시키가이샤 Supporting glass substrate and laminate using same
KR20170095798A (en) * 2014-12-16 2017-08-23 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
KR20230021766A (en) * 2014-12-16 2023-02-14 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
KR102509782B1 (en) 2014-12-16 2023-03-14 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
KR102630404B1 (en) 2014-12-16 2024-01-29 니폰 덴키 가라스 가부시키가이샤 Support glass substrate and laminate using same
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2016169141A (en) * 2015-03-10 2016-09-23 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP7556505B2 (en) 2020-12-25 2024-09-26 国立大学法人東京工業大学 Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP5140014B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5140014B2 (en) Manufacturing method of semiconductor device
JP5399542B2 (en) Manufacturing method of semiconductor device
US9287172B2 (en) Interposer-on-glass package method
US7833895B2 (en) TSVS having chemically exposed TSV tips for integrated circuit devices
US7973415B2 (en) Manufacturing process and structure of through silicon via
TWI282592B (en) Manufacturing method of semiconductor device
JP5313626B2 (en) Electronic component built-in substrate and manufacturing method thereof
US20060205182A1 (en) Method for manufacturing semiconductor device
TWI604570B (en) A chip scale sensing chip package and a manufacturing method thereof
US8278738B2 (en) Method of producing semiconductor device and semiconductor device
US8178977B2 (en) Semiconductor device and method of manufacturing the same
US11784128B2 (en) Die interconnect substrate, an electrical device and a method for forming a die interconnect substrate
TW201906021A (en) Semiconductor package structure and manufacturing method thereof
JP2008182059A (en) Semiconductor device and its manufacturing method
KR20190055715A (en) Semiconductor device and method of manufacture
WO2018133057A1 (en) Packaging method for wafer-level chip, and package
WO2016178311A1 (en) Manufacturing method and wiring substrate with through electrode
JP5554380B2 (en) Semiconductor device
JP2004087661A (en) Chip-shaped electronic component and method for manufacturing the same and pseudo wafer used for its manufacturing and method for manufacturing the same, and mounting structure
JP2010062278A (en) Semiconductor device and method of manufacturing the same
US7910478B2 (en) Method of manufacturing semiconductor devices
TW202312374A (en) Stiffener frame for semiconductor device packages
KR100620163B1 (en) Method for backgrinding a semiconductor
KR20080058207A (en) Manufacturing method of electronic component
KR100864430B1 (en) methods of manufacturing a double side substrate having a dual semiconductor device and double side substrates fabricated thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5140014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees