JP2010180436A - Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate - Google Patents

Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate Download PDF

Info

Publication number
JP2010180436A
JP2010180436A JP2009023328A JP2009023328A JP2010180436A JP 2010180436 A JP2010180436 A JP 2010180436A JP 2009023328 A JP2009023328 A JP 2009023328A JP 2009023328 A JP2009023328 A JP 2009023328A JP 2010180436 A JP2010180436 A JP 2010180436A
Authority
JP
Japan
Prior art keywords
base material
foil base
support
foil
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009023328A
Other languages
Japanese (ja)
Other versions
JP2010180436A5 (en
Inventor
Susumu Hoshino
進 星野
Hiroshi Nakamura
博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009023328A priority Critical patent/JP2010180436A/en
Publication of JP2010180436A publication Critical patent/JP2010180436A/en
Publication of JP2010180436A5 publication Critical patent/JP2010180436A5/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle jet film deposition method and a particle jet film deposition system capable of continuously depositing a film of a solid material on a long sheet-like foil substrate. <P>SOLUTION: The particle jet film deposition system S1 comprises: a jetting device 20 for diffusing solid particles fed to a nozzle 21 into a gas flow inside the nozzle and jetting the solid particles from a jetting port 25; a conveying device 10 for feeding a long sheet-like foil substrate W in front of the nozzle 21 and moving it across a jet area JA; and a back side supporting device 30 which is provided opposite to the jetting port 25 across the foil substrate W to support the back side of the foil substrate W. The solid particles are jetted on the foil substrate which is conveyed by the conveying device 10 with a back side being supported by the back side supporting device 30, and collision-fixed to continuously form the film of the solid material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、長尺シート状の箔基材に連続成膜を形成する微粒子噴射成膜システムおよび成膜方法に関するものである。   The present invention relates to a fine particle injection film forming system and a film forming method for forming a continuous film on a long sheet-like foil base material.

固体微粒子を気体ガス流とともに基材に噴射し、基材表面に衝突固着させて固体材料の膜を形成する成膜方法として、エアロゾル・デポジション(Aerosol Deposition:AD)法やパウダー・ジェット・デポジション(Powder Jet Deposition:PJD)法が知られている(例えば特許文献1、特許文献2を参照)。パウダー・ジェット・デポジション法(PJD法)は、ノズル内部を流れる気流により生じるエジェクター効果を利用して固体微粒子を気体中に分散させ、固気混相流をノズルから噴射し加工対象に衝突させて、常温常圧下において基材表面に固体材料の膜を形成する。   As a film formation method for injecting solid fine particles onto a substrate together with a gas gas flow and causing the solid material film to collide and adhere to the surface of the substrate to form a solid material film, the aerosol deposition (AD) method or powder jet deposition is used. A position (Powder Jet Deposition: PJD) method is known (see, for example, Patent Document 1 and Patent Document 2). In the powder jet deposition method (PJD method), solid fine particles are dispersed in a gas using the ejector effect generated by the airflow flowing inside the nozzle, and a solid-gas mixed phase flow is injected from the nozzle to collide with the object to be processed. A film of a solid material is formed on the surface of the substrate under normal temperature and pressure.

特開2003−277948号公報JP 2003-277948 A 特開2006−200033号公報JP 2006-200033 A

上記のように常温の固体微粒子を基材に衝突させて固着させる成膜方法は、その固着メカニズムについて必ずしも明確化されていないが、固体微粒子の基材に衝突する際の衝突エネルギーを利用し、固体と基材との間に物理的又は化学的な結合を生じさせると解されている。そのため、ノズルから噴射された固体微粒子が基材に衝突したときに衝突エネルギーが分散されないように基材を配設することが必要とされる。従来では基材を支持台に固定し、この支持台又はノズルを移動することにより基材とノズルとを相対移動させて基材表面に固体の膜を生成するように微粒子噴射成膜システムが構成されていた。しかし、このように基材を支持台に固定する構成では、長尺シート状の基材、例えばロールに巻かれた銅箔やポリイミドシート等の基材に対し、固体材料の膜を連続成膜することが困難であるという課題があった。   As described above, the film forming method for causing solid fine particles at room temperature to collide with the base material is not necessarily clarified with respect to the adhering mechanism, but using the collision energy when colliding with the base material of the solid fine particles, It is understood that a physical or chemical bond is created between the solid and the substrate. Therefore, it is necessary to dispose the base material so that the collision energy is not dispersed when the solid fine particles ejected from the nozzle collide with the base material. Conventionally, a fine particle injection film forming system is configured so that a base is fixed to a support base and the base and nozzle are moved relative to each other by moving the support base or nozzle to generate a solid film on the surface of the base. It had been. However, in the configuration in which the substrate is fixed to the support base in this way, a solid material film is continuously formed on a long sheet-like substrate such as a copper foil or a polyimide sheet wound on a roll. There was a problem that it was difficult to do.

本発明は、このような課題に鑑みてなされたものであり、長尺シート状の箔基材に固体材料の膜を連続して形成可能な微粒子噴射成膜方法および微粒子噴射成膜システムを提供することを目的とする。   The present invention has been made in view of such problems, and provides a fine particle injection film forming method and a fine particle injection film forming system capable of continuously forming a solid material film on a long sheet-like foil base material. The purpose is to do.

上記目的を達成するため、第1の本発明は、箔基材連続成膜の微粒子噴射成膜システムである。この微粒子噴射成膜システムは、ノズルに供給された固体微粒子をノズルの内部に設けられた流路を流れる気体に分散させて流下させ、流路の下流端部に設けられた噴射口から気体とともに噴射する噴射装置と、長尺シート状の箔基材を噴射口の前方に供給し固体微粒子の噴射領域を横切って移動させる搬送装置と、噴射口の前方に位置した箔基材を挟んで噴射口と対向する位置に設けられ、搬送装置により搬送される箔基材の裏面を支持する裏面支持装置とを備え、搬送装置により搬送され裏面支持装置により裏面側が支持された箔基材の表面に、噴射口から気体とともに噴射した固体微粒子を衝突させて固着させ、常温かつ常圧下において箔基材の表面に固体材料の膜を連続形成するように構成される。   In order to achieve the above object, a first aspect of the present invention is a fine particle jet film forming system for continuously forming a foil base material. In this fine particle injection film forming system, solid fine particles supplied to a nozzle are dispersed and flowed down in a gas flowing in a flow path provided inside the nozzle, together with gas from an injection port provided at the downstream end of the flow path. Injecting between an injection device for injecting, a conveying device for supplying a long sheet-like foil base material in front of the injection port and moving it across the injection region of the solid fine particles, and a foil base material positioned in front of the injection port A back surface support device that is provided at a position facing the mouth and supports the back surface of the foil base material that is transported by the transport device, and is transported by the transport device to the surface of the foil base material that is supported by the back surface support device. The solid fine particles injected together with the gas from the injection port are collided and fixed, and a film of the solid material is continuously formed on the surface of the foil base at normal temperature and normal pressure.

なお、前記裏面支持装置は、噴射装置とともに基台に設置されたベース部材と、噴射口に対向してベース部材に移動可能に設けられ噴射領域において箔基材の裏面を支持する支持部材(例えば、実施形態における支持ローラ235、支持ベルト335)とを備え、この支持部材は、箔基材の裏面を接触支持する部分(例えば、実施形態における支持部235p、支持面235s)が、搬送装置により搬送される箔基材と同一速度で移動し、接触支持する部分と箔基材とが搬送方向に相対滑りを生じることなく箔基材を支持するように構成することが好ましい。   The back surface support device includes a base member installed on the base together with the spray device, and a support member (for example, a support member that supports the back surface of the foil base material in the spray region provided to be movable to the base member so as to face the spray port. The support roller 235 and the support belt 335 in the embodiment are provided, and the support member is configured so that a portion (for example, the support portion 235p and the support surface 235s in the embodiment) that contacts and supports the back surface of the foil base is provided by the transport device. It is preferable that the foil base material is moved at the same speed as that of the foil base material to be conveyed, and the foil base material supports the foil base material without causing relative slip in the conveyance direction.

あるいは、前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、噴射口に対向してベース部材に設けられ前記噴射領域において箔基材の裏面を支持する支持部材とを備え、この支持部材は、搬送装置により搬送される箔基材の裏面を接触支持する支持面を有するとともに、箔基材が支持面から離間することなく相対摺動可能に箔基材の裏面を吸引する吸引手段(例えば、実施形態におけるポーラス部材135b、排気路、吸引回収装置70)を備え、搬送装置により搬送される箔基材が、噴射領域において吸引手段により支持面に接触支持された状態で摺動移動されるように構成することが好ましい。   Or the said back surface support apparatus is equipped with the base member installed in the base with the said injection apparatus, and the support member which is provided in a base member facing the injection port, and supports the back surface of a foil base material in the said injection area | region. The support member has a support surface that contacts and supports the back surface of the foil base material conveyed by the transport device, and sucks the back surface of the foil base material so that the foil base material can slide relative to the support surface without being separated from the support surface. Suction member (for example, the porous member 135b, the exhaust path, and the suction recovery device 70 in the embodiment), and the foil base material transported by the transport device is in contact with and supported by the support surface by the suction device in the ejection region. It is preferable to be configured to be slidably moved.

上記目的を達成するため、第2の本発明は、ノズルに供給された固体微粒子をノズルの内部に設けられた流路を流れる気体に分散させて流下させ、流路の下流端部に設けられた噴射口から気体とともに噴射する噴射装置を用い、長尺シート状の箔基材の表面に固体材料の膜を連続形成する箔基材連続成膜方法である。搬送装置により箔基材を噴射口の前方に供給するとともに、噴射口の前方に位置した箔基材を挟んで噴射口と対向する位置に設けられた裏面支持装置により箔基材の裏面を支持させた状態で箔基材を固体微粒子の噴射領域を横切って移動させ、裏面が支持された状態で移動される箔基材の表面に噴射口から気体とともに固体微粒子を噴射し衝突させて固着させ、箔基材の表面に常温かつ常圧下において固体材料の膜を連続形成することを特徴とする。   In order to achieve the above object, the second aspect of the present invention is provided at the downstream end of the flow path by dispersing the solid fine particles supplied to the nozzle in a gas flowing through the flow path provided in the nozzle. This is a foil base material continuous film forming method in which a solid material film is continuously formed on the surface of a long sheet-like foil base material using an injection device that injects the gas together with the gas from the injection port. The foil base material is supplied to the front of the injection port by the transport device, and the back surface of the foil base material is supported by the back surface support device provided at a position facing the injection port across the foil base material positioned in front of the injection port. In this state, the foil base material is moved across the injection area of the solid fine particles, and solid fine particles are injected together with gas from the injection port onto the surface of the foil base material to be moved in a state where the back surface is supported to be fixed by being collided. The film of the solid material is continuously formed on the surface of the foil base at normal temperature and normal pressure.

なお、前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、噴射口に対向してベース部材に移動可能に設けられ前記噴射領域において箔基材の裏面を支持する支持部材(例えば、実施形態における支持ローラ235、支持ベルト335)とを備え、この支持部材は、箔基材の裏面を接触支持する部分(例えば、実施形態における支持部235p、支持面235s)が、搬送装置により搬送される前記箔基材と同一速度で移動し、前記接触支持する部分と箔基材とが搬送方向に相対滑りを生じることなく箔基材を支持するように構成され、裏面が前記接触支持する部分に相対滑りなく支持された状態で移動される箔基材の表面側に噴射口から噴射された固体微粒子が衝突し固着して固体材料の膜が連続形成されるように構成することが好ましい。   The back support device includes a base member installed on a base together with the spray device, and a support member that is movably provided on the base member so as to face the spray port and supports the back surface of the foil base material in the spray region. (For example, the support roller 235 and the support belt 335 in the embodiment), and the support member conveys a portion that supports the back surface of the foil base material (for example, the support portion 235p and the support surface 235s in the embodiment). It is configured to move at the same speed as the foil base material transported by the apparatus, and to support the foil base material without causing relative sliding in the transport direction between the contact supporting part and the foil base material, and the back surface is A solid material film is continuously formed by the solid fine particles injected from the injection port colliding and fixing on the surface side of the foil base that is moved in a state of being supported without relative slip on the contact supporting part. It is preferable that the formed.

あるいは、前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、噴射口に対向してベース部材に設けられ前記噴射領域において箔基材の裏面を支持する支持部材とを備え、この支持部材は、搬送装置により搬送される箔基材の裏面を接触支持する支持面を有するとともに、箔基材が支持面から離間することなく相対摺動可能に箔基材の裏面を吸引するように構成され、裏面が吸引されて支持面から離間することなく接触支持された状態で摺動移動される箔基材の表面側に噴射口から噴射された固体微粒子が衝突し固着して固体材料の膜が連続形成されるように構成することが好ましい。   Or the said back surface support apparatus is equipped with the base member installed in the base with the said injection apparatus, and the support member which is provided in a base member facing the injection port, and supports the back surface of a foil base material in the said injection area | region. The support member has a support surface that contacts and supports the back surface of the foil base material conveyed by the transport device, and sucks the back surface of the foil base material so that the foil base material can slide relative to the support surface without being separated from the support surface. Solid particles injected from the injection port collide and adhere to the surface side of the foil base that is slid and moved in a state where the back surface is sucked and contacted and supported without being separated from the support surface. It is preferable that the solid material film is formed continuously.

本発明では、長尺シート状の箔基材が搬送装置により噴射領域を横切って移動され、噴射領域において裏面側が裏面支持装置により支持された状態で移動される箔基材の表面に噴射装置により噴射口から固体微粒子が噴射される。従って、本発明によれば、長尺シート状の箔基材に固体材料の膜を連続して形成可能な微粒子噴射成膜方法および微粒子噴射成膜システムを提供することができる。   In the present invention, the long sheet-like foil base material is moved across the injection region by the conveying device, and the injection device applies the surface of the foil base material that is moved in a state where the back surface side is supported by the back surface support device in the injection region. Solid fine particles are ejected from the ejection port. Therefore, according to the present invention, it is possible to provide a fine particle injection film forming method and a fine particle injection film forming system capable of continuously forming a solid material film on a long sheet-like foil base material.

第1構成形態の微粒子噴射成膜システムの概要構成図である。It is a schematic block diagram of the fine particle injection film-forming system of a 1st structure form. 噴射装置の一例として示す単管タイプの噴射装置の側断面図である。It is a sectional side view of the single pipe type injection device shown as an example of an injection device. 噴射装置の他の一例として示す複合管タイプの噴射装置の側断面図である。It is a sectional side view of the compound pipe type injection device shown as other examples of an injection device. 図1中のIV−IV矢視方向に見たノズルの平面図である。It is the top view of the nozzle seen in the IV-IV arrow direction in FIG. 第2構成形態の微粒子噴射成膜システムの概要構成図である。It is a schematic block diagram of the fine particle injection film-forming system of a 2nd structure form. 第3構成形態の微粒子噴射成膜システムの概要構成図である。It is a schematic block diagram of the fine particle injection film-forming system of a 3rd structure form. 第4構成形態の微粒子噴射成膜システムの概要構成図である。It is a schematic block diagram of the fine particle injection film-forming system of a 4th structure form.

以下、本発明を実施するための形態について、図面を参照しながら説明する。図1,5,6,7に、常温かつ常圧下において箔基材の表面に固体材料の膜を連続形成する箔基材連続成膜の微粒子噴射成膜システムの概要構成を示しており、まず、図1を参照して第1構成形態の微粒子噴射成膜システムS1について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIGS. 1, 5, 6 and 7 show a schematic configuration of a fine particle jet film forming system for continuously forming a solid material film on a surface of a foil base material at normal temperature and normal pressure. The fine particle injection film forming system S1 of the first configuration form will be described with reference to FIG.

微粒子噴射成膜システムS1は、大別的に、箔基材Wを搬入する搬入ステージ1、箔基材に対し成膜加工(PJD加工)を行う成膜ステージ2、成膜加工後の箔基材を切断する切断ステージ4、切断された箔基材を搬出する搬出ステージ5から構成される。搬入ステージ1には、長尺シート状の箔基材Wを成膜ステージ2に供給し固体微粒子の噴射領域JAを横切って移動させる搬送装置10が設けられ、成膜ステージ2には、搬送装置10により搬送される箔基材Wの表面(被加工面)に噴射口25から固体微粒子を噴射する噴射装置20、及び箔基材Wを挟んで噴射口25と対向する位置に設けられ箔基材の裏面を支持する裏面支持装置30が設けられている。切断ステージ4には、成膜ステージ2を通り固体材料の膜が形成された状態で搬送される箔基材Wを搬送方向と直交する幅方向に切断する切断装置40が設けられ、搬出ステージには切断装置40により切断された箔基材Wを搬出する搬出装置50が設けられている。なお、図1では記載を省略するが、マイクロプロセッサを含み各ステージを構成する装置(搬送装置10、噴射装置20、裏面支持装置30、切断装置40、搬出装置50)の作動を制御する制御装置が備えられ、微粒子噴射成膜システムS1が構成される。   The fine particle injection film forming system S1 is roughly divided into a carry-in stage 1 for carrying in a foil base material W, a film forming stage 2 for performing film forming processing (PJD processing) on the foil base material, and a foil base after film forming processing. It comprises a cutting stage 4 for cutting the material and an unloading stage 5 for unloading the cut foil base material. The carry-in stage 1 is provided with a transfer device 10 for supplying a long sheet-like foil base material W to the film formation stage 2 and moving it across the injection region JA of the solid fine particles. 10 is a foil base that is provided at a position facing the injection port 25 with the foil substrate W interposed therebetween, and an injection device 20 that injects solid fine particles from the injection port 25 onto the surface (processed surface) of the foil substrate W conveyed by 10. A back surface support device 30 for supporting the back surface of the material is provided. The cutting stage 4 is provided with a cutting device 40 that cuts the foil base material W that is transported in a state where the film of the solid material has passed through the film forming stage 2 in the width direction orthogonal to the transport direction, Is provided with a carry-out device 50 for carrying out the foil substrate W cut by the cutting device 40. In addition, although description is abbreviate | omitted in FIG. 1, the control apparatus which controls the action | operation of the apparatus (The conveying apparatus 10, the injection apparatus 20, the back surface support apparatus 30, the cutting | disconnection apparatus 40, and the carrying-out apparatus 50) which comprises each stage including a microprocessor. And a fine particle injection film forming system S1 is configured.

図1においては、微粒子噴射成膜システムの好適な構成例として、搬送装置10により箔基材Wを表面が下向きとなる水平姿勢で噴射装置20の上方を図1における左方から右方に移動させ、ノズル21上端に開口する噴射口25から、その上方を移動する箔基材Wに上向きに固体微粒子を噴射して固体の膜を形成する構成を示す。   In FIG. 1, as a preferred configuration example of the fine particle injection film forming system, the foil substrate W is moved from the left side to the right side in FIG. Then, a solid film is formed by ejecting solid fine particles upward from the injection port 25 opened at the upper end of the nozzle 21 onto the foil base material W moving above.

箔基材Wは、薄肉の金属あるいは樹脂の長尺シート状の基材であり、例えば、厚さが10〜100μm程度、幅が10〜100mm程度の銅箔やアルミ箔が、数十メートル〜百メートル程度の長さでロール状に巻かれたロールシートが用いられる。   The foil base W is a long sheet-like base material of a thin metal or resin. For example, a copper foil or an aluminum foil having a thickness of about 10 to 100 μm and a width of about 10 to 100 mm is several tens of meters to A roll sheet wound in a roll shape with a length of about 100 meters is used.

搬送装置10は、成膜ステージ2の上流側(図1における左側)に設けられたプーリーローラ11と、成膜ステージ2の下流側(同、右側)に箔基材Wを挟んで設けられた上下一対の搬送ローラ12とを備えて構成される。プーリーローラ11および搬送ローラ12は、ともに中心軸が箔基材Wの幅方向(紙面直行方向)に延びて軸方向長さが箔基材Wの幅よりも幾分大きい円筒状ないし円柱状をなし、このシステムのベースとなる基台BFに回転可能に配設されている。上下の搬送ローラ12の外周には、箔基材Wの表裏面を挟み込む押圧面12sが形成されており、例えば金属シャフトの外周にゴムや樹脂等がモールドされて構成される。   The transfer device 10 is provided with a pulley roller 11 provided on the upstream side (left side in FIG. 1) of the film forming stage 2 and the foil base material W sandwiched on the downstream side (the same right side) of the film forming stage 2. A pair of upper and lower conveying rollers 12 is provided. Both the pulley roller 11 and the transport roller 12 have a cylindrical shape or a columnar shape in which the central axis extends in the width direction (perpendicular to the paper surface) of the foil base material W and the axial length is somewhat larger than the width of the foil base material W. None, it is rotatably arranged on a base BF which is the base of this system. On the outer periphery of the upper and lower transport rollers 12, a pressing surface 12s is formed that sandwiches the front and back surfaces of the foil base W. For example, rubber, resin, or the like is molded on the outer periphery of the metal shaft.

上下の搬送ローラ12は、箔基材Wを所定圧力で挟み込んだ挟持位置と、挟み込みを解除した解除位置とに切り替え可能に構成されるとともに、制御装置により駆動が制御されるローラ駆動モータが接続されており、箔基材Wを上下の搬送ローラ12,12間に挟み込んだ挟持位置でローラ駆動モータの回転を制御することにより、箔基板Wを引き込んで所望の移動速度で搬送可能になっている。なお、搬入ステージ1には、プーリーローラ11よりも上流側に位置して箔基材Wが巻かれたロールを回転可能に支持するロールホルダ、及びロールから繰り出された箔基材Wが弛みない張りつめた状態で噴射領域に供給されるように、成膜ステージ2に位置する箔基材Wに所定のテンションを与えるテンショナーが設けられている。   The upper and lower transport rollers 12 are configured to be switchable between a sandwiching position in which the foil base material W is sandwiched at a predetermined pressure and a release position in which the sandwiching is released, and a roller drive motor whose drive is controlled by a controller is connected. By controlling the rotation of the roller drive motor at the nipping position where the foil base material W is sandwiched between the upper and lower conveying rollers 12, 12, the foil substrate W can be drawn and conveyed at a desired moving speed. Yes. The carry stage 1 is positioned on the upstream side of the pulley roller 11 and rotatably supports a roll on which the foil base material W is wound, and the foil base material W fed out from the roll is not loosened. A tensioner is provided to apply a predetermined tension to the foil base material W positioned on the film forming stage 2 so that the film is supplied to the injection region in a tensioned state.

このため、ロールホルダからプーリーローラ11を介して、箔基板Wを上下の搬送ローラ12,12の間に挟持させ、箔基板Wが図1における右方に移動するようにローラ駆動モータを回転させると、ロールホルダに巻かれた箔基板Wが撓みなくぴんと張った伸張状態で成膜ステージ2の噴射装置20の前方に供給され、固体微粒子が噴射される噴射領域JAを横切って水平に移動される。このとき、ローラ駆動モータの回転速度を制御することにより、箔基板Wを所望の速度(例えば図中に示す一定の送り速度V)で移動させることができ、これにより成膜ステージ2において任意の速度で連続的に成膜加工を行うことができる。なお、上下一対の搬送ローラ12,12のうちいずれか一方をローラ駆動モータにより回転させる駆動ローラ、他方を回転自在な従動ローラ(ピンチローラ)としてもよい。成膜ステージ2には、噴射装置20、裏面支持装置30、膜厚検出センサ38、吸引回収装置70などが設けられている。   Therefore, the foil substrate W is sandwiched between the upper and lower transport rollers 12 and 12 from the roll holder via the pulley roller 11, and the roller drive motor is rotated so that the foil substrate W moves to the right in FIG. Then, the foil substrate W wound around the roll holder is supplied to the front of the spraying device 20 of the film forming stage 2 in a stretched state without being bent, and is moved horizontally across the spraying area JA where the solid fine particles are sprayed. The At this time, by controlling the rotation speed of the roller drive motor, the foil substrate W can be moved at a desired speed (for example, a constant feed speed V shown in the figure). Film formation can be performed continuously at a speed. One of the pair of upper and lower transport rollers 12 and 12 may be a driving roller that is rotated by a roller driving motor, and the other may be a rotatable driven roller (pinch roller). The film deposition stage 2 is provided with an injection device 20, a back surface support device 30, a film thickness detection sensor 38, a suction recovery device 70, and the like.

噴射装置20は、ノズル21に供給された固体微粒子をノズルの内部に設けられた流路を流れる気体に分散させて流下させ、流路の下流端部に設けられた噴射口25から気体とともに噴射する。このような噴射装置として、例えば本出願人に係る特開2000−94332号公報に開示したような噴射装置(単管タイプの噴射装置という)や、本出願人に係る特開2006−224205号公報に開示したような噴射装置(複合管タイプの噴射装置という)がある。   The injection device 20 disperses the solid fine particles supplied to the nozzle 21 in a gas flowing through a flow path provided in the nozzle, and causes the solid fine particles to flow down from the injection port 25 provided at the downstream end of the flow path. To do. As such an injection device, for example, an injection device (referred to as a single tube type injection device) disclosed in Japanese Patent Laid-Open No. 2000-94332 related to the present applicant, or Japanese Patent Application Laid-Open No. 2006-224205 related to the present applicant. There is an injection device (referred to as a composite tube type injection device) as disclosed in the above.

図2は、噴射装置20の一例として、単管タイプの噴射装置20Aの構成を模式的に示したものである。この噴射装置20Aは、固体微粒子Gをノズル21に供給する微粒子供給ユニット110、固体微粒子噴射用のガスをノズル21に供給するガス供給ユニット115、ガス供給ユニット115によるガス供給や移動ユニットによる箔基材Wの相対移動を制御する噴射制御ユニット120などを備えて構成される。なお、本構成形態の噴射装置20Aのノズルをノズル21A、次述する噴射装置20Bのノズルをノズル21Bと表記する。   FIG. 2 schematically shows a configuration of a single-tube type injection device 20A as an example of the injection device 20. This injection device 20A includes a fine particle supply unit 110 for supplying solid fine particles G to the nozzle 21, a gas supply unit 115 for supplying solid fine particle injection gas to the nozzle 21, a gas supply by the gas supply unit 115, and a foil base by a moving unit. An injection control unit 120 that controls the relative movement of the material W is provided. In addition, the nozzle of 20 A of injection apparatuses of this structure form is described as the nozzle 21A, and the nozzle of the injection apparatus 20B described below is described as the nozzle 21B.

ノズル21Aの内部には、図2における左端側に噴射口25が開口するパイプ状の供給ノズル22が設けられ、この供給ノズル22の右端側にガス供給パイプ116が接続される。供給ノズル22の左右中間部には、固体微粒子Gが通過可能な孔部23が壁面を貫通して開口形成され、この孔部23の周囲に形成された微粒子供給溝113に微粒子導入路112を通って微粒子タンク111に貯留された固体微粒子が供給される。   Inside the nozzle 21 </ b> A, a pipe-shaped supply nozzle 22 having an injection port 25 is provided on the left end side in FIG. 2, and a gas supply pipe 116 is connected to the right end side of the supply nozzle 22. A hole 23 through which the solid particles G can pass is formed in the left and right intermediate portions of the supply nozzle 22 so as to pass through the wall surface, and the particle introduction path 112 is provided in the particle supply groove 113 formed around the hole 23. The solid particulates stored in the particulate tank 111 are supplied.

このような噴射装置20Aにおいて、ガス供給ユニット115からノズル21Aに所定圧力でガス(供給ガスという)を供給すると、ガス供給パイプ116から供給ノズル22に流入した供給ガスがノズル内を噴射口25に向けて高速で流下し、このガス流により孔部23の形成領域においてエジェクター効果により負圧が発生する。また、孔部23に近接してガス供給パイプ116の先端部が配設され流路断面積が拡大しているため、段差部分に乱流が発生し孔部近傍の負圧が増大される。そのため、微粒子供給溝113に位置する固体微粒子Gが吸い上げられるように孔部23を通って供給ノズル22内に供給され、供給ノズル22を流れる供給ガスのガス流により分散されつつ供給ノズル内を流下し、下流端部の噴射口25から噴射される。   In such an injection device 20A, when a gas (referred to as supply gas) is supplied from the gas supply unit 115 to the nozzle 21A at a predetermined pressure, the supply gas that has flowed into the supply nozzle 22 from the gas supply pipe 116 passes through the nozzle to the injection port 25. The gas flows down at a high speed, and a negative pressure is generated by the ejector effect in the region where the hole 23 is formed. In addition, since the distal end portion of the gas supply pipe 116 is disposed in the vicinity of the hole 23 and the flow path cross-sectional area is enlarged, turbulent flow is generated in the stepped portion, and the negative pressure near the hole is increased. Therefore, the solid fine particles G located in the fine particle supply groove 113 are supplied into the supply nozzle 22 through the hole 23 so as to be sucked up, and flow down through the supply nozzle while being dispersed by the gas flow of the supply gas flowing through the supply nozzle 22. And it injects from the injection port 25 of a downstream end part.

このときの固体微粒子Gの速度は、ノズル21に供給される供給ガスの種類及び圧力を制御することにより設定され、供給ガスが空気または窒素の場合には、50〜300m/sec程度の速度、すなわち当該気体における音速未満の速度で噴射される。なお、ノズル21は、噴射加工を行う際に、搬送装置10により搬送され裏面支持装置30に裏面が支持された箔基材Wの表面の通過位置(パスライン)とノズル先端部との間隔(ギャップ)が0.5〜2mm程度となる加工位置に配置される。   The speed of the solid fine particles G at this time is set by controlling the type and pressure of the supply gas supplied to the nozzle 21. When the supply gas is air or nitrogen, the speed is about 50 to 300 m / sec. In other words, the gas is injected at a speed less than the speed of sound. In addition, when performing the injection processing, the nozzle 21 is transported by the transport device 10 and the distance between the passage position (pass line) of the front surface of the foil base material W whose back surface is supported by the back surface support device 30 and the nozzle tip ( The gap is disposed at a machining position where the gap is about 0.5 to 2 mm.

次に、図3は、噴射装置20の他の一例として、複合管タイプの噴射装置20Bの構成を模式的に示したものである。この噴射装置20Bは、上述した噴射装置20Aと同様の微粒子供給ユニット110、ガス供給ユニット115、及び噴射制御ユニット120を備え、ノズル21の構成が相違する。この噴射装置20Bのノズル21Bにおいては、既述した供給ノズル22の先端側に、供給ノズル22よりも大径で軸方向に延びる加速ノズル24が設けられ、この加速ノズル24の先端に噴射口25が形成される。供給ノズル22の先端部と加速ノズル24の基端部は一部重なって配設され、この重複部に、幅が狭い円環状の加速ガス噴流路26が形成される。加速ノズル24の基端部には加速ガス噴流路26と繋がる加速ガス導入路27が形成され、この加速ガス導入路27に接続された加速ガス供給配管117を介してガス供給ユニット115に接続される。   Next, FIG. 3 schematically shows a configuration of a composite pipe type injection device 20B as another example of the injection device 20. The injection device 20B includes the same fine particle supply unit 110, gas supply unit 115, and injection control unit 120 as the injection device 20A described above, and the configuration of the nozzle 21 is different. In the nozzle 21 </ b> B of the injection device 20 </ b> B, an acceleration nozzle 24 having a diameter larger than that of the supply nozzle 22 and extending in the axial direction is provided on the front end side of the supply nozzle 22 described above, and an injection port 25 is provided at the front end of the acceleration nozzle 24. Is formed. The distal end portion of the supply nozzle 22 and the proximal end portion of the acceleration nozzle 24 are partially overlapped, and an annular acceleration gas jet channel 26 having a narrow width is formed in the overlapping portion. An acceleration gas introduction passage 27 connected to the acceleration gas jet passage 26 is formed at the base end portion of the acceleration nozzle 24, and is connected to the gas supply unit 115 via the acceleration gas supply pipe 117 connected to the acceleration gas introduction passage 27. The

このような噴射装置20Bでは、前述の噴射装置20Aと同様にガス供給ユニット115からノズル21Bに供給ガスを供給すると、供給ノズル22内を流れるガス流のエジェクター効果、およびガス供給パイプ116と供給ノズル22との段差部に生じる乱流の効果により微粒子供給溝113に位置する固体微粒子Gが孔部23を通って供給ノズル22内に吸い上げられ、ガス流によって分散されながら供給ノズル内を流下する。このとき、加速ガス導入路27には、加速ガス供給配管117を介してガス供給ユニット115からガス(加速ガスという)が供給されており、加速ガス噴流路26から高速で噴出する加速ガスのガス流により供給ノズル22の出口領域に大きな負圧が発生するとともに、流路断面積の急拡大に伴う乱流が発生する。そのため,供給ノズル22の出口領域に位置する固体微粒子が負圧によって加速ノズル内に吸引されるとともに、乱流に巻き込まれて加速ガス中に分散され、加速ガスの噴流により加速されて下流端の噴射口から噴射される。   In such an injection device 20B, when the supply gas is supplied from the gas supply unit 115 to the nozzle 21B as in the above-described injection device 20A, the ejector effect of the gas flow flowing in the supply nozzle 22, the gas supply pipe 116 and the supply nozzle The solid fine particles G located in the fine particle supply groove 113 are sucked into the supply nozzle 22 through the hole portion 23 due to the effect of turbulent flow generated in the stepped portion with respect to 22, and flow down in the supply nozzle while being dispersed by the gas flow. At this time, gas (referred to as acceleration gas) is supplied to the acceleration gas introduction path 27 from the gas supply unit 115 via the acceleration gas supply pipe 117, and the gas of the acceleration gas ejected from the acceleration gas jet flow path 26 at a high speed. A large negative pressure is generated in the outlet region of the supply nozzle 22 by the flow, and a turbulent flow is generated due to a rapid expansion of the cross-sectional area of the flow path. For this reason, the solid fine particles located in the outlet region of the supply nozzle 22 are sucked into the acceleration nozzle by negative pressure, and are entrained in the turbulent flow and dispersed in the acceleration gas, and are accelerated by the jet of the acceleration gas and are accelerated at the downstream end. It is injected from the injection port.

このときの固体微粒子Gの速度は、ノズル21Bに供給される供給ガス、加速ガスの種類及び圧力を制御することにより設定され、例えば、供給ガス及び加速ガスを空気または窒素とした場合に、50〜300m/sec程度の音速未満の速度で噴射される。このような二重ノズルの噴射装置によれば、加速ガス噴流路26から加速ノズル内に高速で噴出する加速ガスによる負圧発生効果により固体微粒子の噴射量が増大されるとともに、乱流の効果により加速ガス中に均一に分散され成膜効率を向上させることができる。   The speed of the solid fine particles G at this time is set by controlling the type and pressure of the supply gas and the acceleration gas supplied to the nozzle 21B. For example, when the supply gas and the acceleration gas are air or nitrogen, 50 Injected at a speed less than about 300 m / sec. According to such a double nozzle injection device, the injection amount of the solid fine particles is increased by the negative pressure generation effect by the acceleration gas ejected from the acceleration gas jet passage 26 into the acceleration nozzle at a high speed, and the effect of turbulence is also achieved. Thus, the film can be uniformly dispersed in the accelerating gas and the film formation efficiency can be improved.

以上では、説明簡明化のため、噴射口25が円孔で単一の場合(供給ノズル22、加速ノズル24がパイプ状で単一の場合)について説明したが、ノズル21(21A,21B)は、加工対象である箔基材Wに対する成膜幅に合わせた噴射幅を有して構成される。このような幅広ノズルの構成例として、図1中のIV−IV矢視方向に見たノズル21の平面図を図4に示す。図示のように、ノズル21は、図2、図3に断面図を示したノズル構造が複数並列に設けられ、上向きに開口する噴射口25が千鳥状に配列されて構成される。   In the above, for the sake of simplicity of explanation, the case where the injection port 25 is a single round hole (when the supply nozzle 22 and the acceleration nozzle 24 are a single pipe) has been described, the nozzle 21 (21A, 21B) The spray width is adapted to the film formation width for the foil base material W to be processed. As a configuration example of such a wide nozzle, FIG. 4 shows a plan view of the nozzle 21 viewed in the direction of arrows IV-IV in FIG. As shown in the figure, the nozzle 21 includes a plurality of nozzle structures whose cross-sectional views are shown in FIGS. 2 and 3 arranged in parallel, and jet ports 25 that open upward are arranged in a staggered manner.

この複数のノズル群からなるノズル21の前後方向幅は、このシステムにおいて連続成膜可能な箔基材の幅に合わせて設定されており、加工対象となる箔基材への成膜幅に合わせて、各ノズルへの供給ガス、加速ガスの供給を制御することにより行われる。例えば、図4に二点鎖線で付記するような箔基材Wを対象とし、この箔基材Wの表面全体に成膜加工を行うような場合には、噴射口25の上方を箔基材Wが通過する各ノズルに供給ガス、加速ガスを供給して固体微粒子を噴射させ、噴射口25の上方に箔基材が存在しない前後両端のノズルに供給ガス、加速ガスを供給せず固体微粒子の噴射を停止状態とする。そして、搬送装置により箔基材Wを長手方向に移動させることにより、箔基材Wの全面に固体微粒子が均一に噴射される。   The width in the front-rear direction of the nozzle 21 composed of the plurality of nozzle groups is set in accordance with the width of the foil base material that can be continuously formed in this system, and is matched to the film forming width on the foil base material to be processed. Thus, the supply of the supply gas and the acceleration gas to each nozzle is controlled. For example, in the case where a foil base material W as indicated by a two-dot chain line in FIG. 4 is targeted and film formation is performed on the entire surface of the foil base material W, the upper side of the injection port 25 is placed on the foil base material. The supply gas and the acceleration gas are supplied to each nozzle through which W passes to inject the solid fine particles, and the solid fine particles are supplied without supplying the supply gas and the acceleration gas to the nozzles at the front and rear ends where the foil base material does not exist above the injection port 25. Is stopped. Then, by moving the foil base W in the longitudinal direction by the transport device, the solid fine particles are uniformly sprayed on the entire surface of the foil base W.

なお、ノズル21における噴射口25,25…の配列パターン(各列の噴射口の配設ピッチや列間ピッチ、列間での噴射口のオフセット量、列数等)は、対象とする成膜加工の内容に合わせて適宜、好適な配列パターンを選択することができる。また、例えば加速ノズルを矩形ダクト状に形成する等により、幅方向の延びる単一のスリット状の噴出口を形成するように構成してもよい。   The arrangement pattern of the injection ports 25, 25... In the nozzle 21 (the arrangement pitch of the injection ports in each row, the pitch between rows, the offset amount of the injection ports between rows, the number of rows, etc.) is the target film formation. A suitable arrangement pattern can be selected as appropriate in accordance with the contents of processing. Moreover, you may comprise so that the single slit-shaped jet nozzle extended in the width direction may be formed, for example by forming an acceleration nozzle in rectangular duct shape.

ノズル21には、噴射口25から噴射されたが箔基材Wに固着されずに漂う固体微粒子を吸引して回収する吸引回収装置70が付設されている。吸引回収装置70は、噴射口25,25…の周囲に固体微粒子の噴射領域を覆うように上方に開いて設けられた吸入ダクト71と、吸入ダクト71の基端側に接続されてダクト内の気体を吸引するバキュームブロワ、バキュームブロワにより供給ガスや加速ガス、噴射領域周辺の空気とともに吸引された固体微粒子を分離して回収する微粒子回収器などから構成される。   The nozzle 21 is provided with a suction collection device 70 that sucks and collects the solid fine particles that are ejected from the ejection port 25 but drift without being fixed to the foil base material W. The suction recovery device 70 is connected to the suction duct 71 which is opened upward so as to cover the injection region of the solid fine particles around the injection ports 25, 25... A vacuum blower for sucking gas, a fine gas collector for separating and collecting solid fine particles sucked together with supply gas, acceleration gas, and air around the injection region by the vacuum blower, and the like.

バキュームブロワの単位時間当たりの排気量(排気速度)は、噴出口25から噴射されるガスの単位時間当たりの噴射量よりも大きく設定されており、例えばガス供給ユニット115からノズルに供給されるガスの供給量に合わせてバキュームブロワの排気量が変化するようにバキュームブロワの作動を比例制御することにより、噴射領域の周囲を常時わずかな負圧状態となるように構成される。このため、噴射口25,25…から箔基材に噴射されたが箔基材Wに固着せずに漂う固体微粒子や反射された固体微粒子等が、吸入ダクト71の周縁から周囲に漏れ出ることなく吸引され回収される。これにより固体微粒子の回収・再利用を図り成膜コストを低減できるとともに、浮遊する固体微粒子に伴う種々の問題、例えば搬送ローラへの巻き込みや膜厚検出器への付着、作業環境の悪化などを未然に防止してシステム環境を良好に保持することができる。   The exhaust amount (exhaust speed) per unit time of the vacuum blower is set to be larger than the injection amount per unit time of the gas injected from the jet outlet 25, for example, the gas supplied from the gas supply unit 115 to the nozzle The operation of the vacuum blower is proportionally controlled so that the exhaust amount of the vacuum blower changes in accordance with the supply amount of the vacuum blower, so that a slight negative pressure is always generated around the injection region. For this reason, solid particulates that have been ejected from the ejection ports 25, 25... To the foil base material but are not fixed to the foil base material W, reflected solid particulate matter, etc. leak out from the periphery of the suction duct 71 to the surroundings. It is sucked and collected without any damage. This makes it possible to collect and reuse solid particulates and reduce film formation costs, as well as various problems associated with floating solid particulates, such as entrainment on transport rollers, adhesion to film thickness detectors, and deterioration of the working environment. The system environment can be maintained well by preventing it in advance.

ここで、前述したような噴射装置20(20A,20B)により、気体とともに固体微粒子を噴射し、成膜対象の表面に衝突固着させて成膜するパウダー・ジェット・デポジション(PJD)法の成膜加工では、ノズル21から噴射されるガス流の噴射力が極めて強い。そのため、薄箔シート状の箔基材Wは、搬送装置10によりぴんと張った伸張状態で噴射領域を搬送可能であっても、厚さが薄い場合には噴射により破損を生じやすく、肉厚が厚い場合であっても噴射により箔基材Wが搖動してしまう。さらに、PJD法は、固体微粒子の衝突エネルギーを利用して固体微粒子を基材表面に固着させるところ、箔基材Wが噴射により搖動等した場合には、固体微粒子の衝突エネルギーが減殺されてしまい良好な付着性を得ることができない。そこで、微粒子噴射成膜システムS1では、箔基材Wを挟んで噴射口25と対向する位置に、搬送装置10により搬送される箔基材Wの裏面を支持する裏面支持装置30が設けられている。   Here, by the injection device 20 (20A, 20B) as described above, solid fine particles are injected together with the gas, and the powder jet deposition (PJD) method for forming a film by colliding and fixing to the surface of the film formation target is formed. In the film processing, the injection force of the gas flow injected from the nozzle 21 is extremely strong. Therefore, even if the thin foil sheet-like foil base material W can be transported through the spray region in a tensioned state by the transport device 10, if the thickness is thin, it is likely to be damaged by the spray, and the thickness is Even if it is thick, the foil base material W swings by spraying. Further, in the PJD method, the solid fine particles are fixed to the substrate surface using the collision energy of the solid fine particles. When the foil base material W is oscillated by jetting, the collision energy of the solid fine particles is reduced. Good adhesion cannot be obtained. Therefore, in the fine particle injection film forming system S1, the back surface support device 30 that supports the back surface of the foil base material W that is transported by the transport device 10 is provided at a position facing the injection port 25 across the foil base material W. Yes.

裏面支持装置30は、噴射装置20とともに基台BFに設置されたベース部材31と、噴射装置20の噴射口25に対向してベース部材31に設けられ、噴射領域JAにおいて箔基材Wの裏面を支持する支持部材35とを備えて構成される。支持部材35は、噴射される固気混相流の噴射力を受けとめ可能な十分な剛性を有した帯板状ないしブロック状に形成される。支持部材35の下面には、噴射口25から噴射され箔基材に衝突する固体微粒子の噴射面域よりも幾分広く、所定の平面度及び表面粗さに研磨された支持面35sが形成されており、この支持面35sに箔基材Wの裏面が接触支持された状態で相対移動される。支持部材35は、アルミナや窒化ケイ素等のセラミック材料、あるいはステンレスや超鋼等の金属材料を用い、表面を平坦に研磨仕上げたうえ摩擦係数を低減する手段、例えばフッ素樹脂のコーティング等を施して構成される。   The back surface support device 30 is provided on the base member 31 so as to face the base member 31 installed on the base BF together with the injection device 20 and the injection port 25 of the injection device 20, and the back surface of the foil base material W in the injection region JA. And a support member 35 that supports the structure. The support member 35 is formed in a band plate shape or block shape having sufficient rigidity capable of receiving the injection force of the injected solid-gas mixed phase flow. On the lower surface of the support member 35, a support surface 35 s is formed which is slightly wider than the injection surface area of the solid fine particles injected from the injection port 25 and colliding with the foil base material and is polished to a predetermined flatness and surface roughness. In this state, the back surface of the foil base material W is relatively contacted and supported by the support surface 35s. The support member 35 is made of a ceramic material such as alumina or silicon nitride, or a metal material such as stainless steel or super steel. Composed.

支持部材35は、支持面35sが、プーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡したときの箔基材Wの裏面の高さ位置と同一、または箔基材Wの裏面の高さ位置よりもわずかに低く箔基材Wの裏面を軽く押圧するような高さ位置に配設され、搬送装置10により移動される箔基材Wが搖動することなく安定的に接触支持されるようになっている。なお、支持面35sを挟む箔基材の移動方向上流側及び下流側に弱テーパ状の導入部及び導出部が形成されている。   In the support member 35, the support surface 35s is the same as the height position of the back surface of the foil base material W when the foil base material W is stretched between the pulley roller 11 and the transport roller 12, or the foil base. Slightly lower than the height position of the back surface of the material W is disposed at such a height position that lightly presses the back surface of the foil base material W, and the foil base material W moved by the transport device 10 is stable without swinging. It is designed to be contacted and supported. In addition, weakly tapered lead-in portions and lead-out portions are formed on the upstream side and the downstream side in the movement direction of the foil base material sandwiching the support surface 35s.

そのため、プーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡し搬送ローラ12を回転させて箔基材Wを移動させると、プーリーローラ11側から成膜ステージ2に導入される箔基材Wが順次噴射領域JAを横切って搬送ローラ12の方向に移動し、噴射領域JAにおいては、箔基材Wの裏面が支持部材の支持面35sに支持された状態で相対移動される。そして、このように裏面が支持された箔基材Wの表面に噴射口25から固体微粒子が噴射される。従って、箔基材Wの肉厚が比較的薄い場合であっても、噴射によって箔基材が破損したり搖動したりするようなことがなく、噴射口25から噴射された固体微粒子が箔基材Wの表面に衝突固着して、常温常圧下で固体材料の成膜層GLが安定的に形成される。   Therefore, when the foil base material W is rotated between the pulley roller 11 and the transport roller 12 while the foil base material W is stretched and rotated, the foil base material W is moved to the film forming stage 2 from the pulley roller 11 side. The foil substrate W to be moved sequentially moves in the direction of the conveying roller 12 across the jetting area JA, and in the jetting area JA, the relative movement of the back surface of the foil base material W is supported by the support surface 35s of the support member. Is done. Then, solid fine particles are ejected from the ejection port 25 onto the surface of the foil base material W whose back surface is thus supported. Therefore, even when the thickness of the foil base material W is relatively thin, the foil base material is not damaged or rocked by the injection, and the solid fine particles injected from the injection port 25 are not foil base. The solid-state film-forming layer GL is stably formed at the normal temperature and pressure under impact and fixation on the surface of the material W.

ノズル21の右側方、すなわち成膜ステージ2の出口側には、噴射領域JAを通って固体材料の膜が形成された箔基材の成膜層GLの厚さと表面形状(膜厚分布)を非接触で検出する膜厚検出センサ38が設けられている。膜厚検出センサ38は、箔基材W及び固体微粒子の材質に応じて適宜な形態のセンサを用いることができ、例えば箔基材Wの裏面に照射した光の反射光から膜厚分布を光学的に検出する検出センサや、静電容量の変化から膜厚分布を検出する静電容量型の検出センサなどを用いることができる。   On the right side of the nozzle 21, that is, on the outlet side of the film forming stage 2, the thickness and surface shape (film thickness distribution) of the film forming layer GL of the foil base material on which the film of the solid material is formed through the injection region JA. A film thickness detection sensor 38 that detects in a non-contact manner is provided. As the film thickness detection sensor 38, a sensor having an appropriate form can be used according to the material of the foil base material W and the solid fine particles. For example, the film thickness distribution is optically reflected from the reflected light of the light irradiated on the back surface of the foil base material W. It is possible to use a detection sensor that automatically detects, a capacitance type detection sensor that detects a film thickness distribution from a change in capacitance, and the like.

膜厚検出センサ38の検出信号は、この微粒子噴射成膜システムS1の作動を統合的に制御する制御装置に入力されており、制御装置は膜厚検出センサ38によりリアルタイムで計測される固体材料の膜厚や表面形状のうねりに応じてシステムを構成する各装置の作動を制御する。具体的には、成膜加工プログラムにおいて規定された膜厚及び表面うねりの目標値と、膜厚検出センサ38により計測された膜厚分布に基づいて算出される平均膜厚及び表面うねりとを比較し、噴射装置20を構成する各ノズルの供給ガス圧力や加速ガス圧力を自動的に調整する。   The detection signal of the film thickness detection sensor 38 is input to a control device that comprehensively controls the operation of the fine particle injection film formation system S1, and the control device detects the solid material measured in real time by the film thickness detection sensor 38. The operation of each device constituting the system is controlled according to the waviness of the film thickness and the surface shape. Specifically, the target values of film thickness and surface waviness specified in the film forming processing program are compared with the average film thickness and surface waviness calculated based on the film thickness distribution measured by the film thickness detection sensor 38. Then, the supply gas pressure and the acceleration gas pressure of each nozzle constituting the injection device 20 are automatically adjusted.

例えば、箔基材の幅方向に膜厚の小さい領域が存在するような場合に、相当する位置に噴射口25が設けられたノズルについて、その偏差に応じて供給ガス及び加速ガスの少なくとも一方の圧力を上昇させて固体微粒子の噴射量を増大させ、膜厚のばらつきが所定の範囲内になるように制御装置がフィードバック制御する。また、例えば、幅方向について全体的に膜厚が小さいような場合に、搬送ローラ12を回転駆動するローラ駆動モータの回転速度をその偏差に応じて低速側に変化させ、平均膜厚が所定の範囲内になるように制御装置がフィードバック制御する。   For example, when there is a region with a small film thickness in the width direction of the foil base material, at least one of the supply gas and the acceleration gas according to the deviation of the nozzle provided with the injection port 25 at the corresponding position The control device performs feedback control so that the variation in film thickness is within a predetermined range by increasing the pressure and increasing the injection amount of the solid fine particles. Further, for example, when the film thickness is small as a whole in the width direction, the rotation speed of the roller drive motor that rotationally drives the transport roller 12 is changed to the low speed side according to the deviation, and the average film thickness is predetermined. The control device performs feedback control so as to be within the range.

なお、膜厚検出センサ38により計測される成膜層GLの平均膜厚または表面うねりの検出値が所定範囲を超え、上記のようなフィードバック制御が実行されたときに、操作装置の表示パネルや回転灯等に注意喚起のワーニングが表示される。一方、平均膜厚または表面うねりの検出値が予め設定された所定許容範囲を超えた場合や、補正範囲が予め設定された所定範囲を超えたような場合には、操作装置の表示パネルや回転灯に警報を表示し、搬送装置10による箔基材の搬送作動、噴射装置20による固体微粒子の噴射作動が停止するように構成される。これにより箔基材Wや固体微粒子Gの無効な消費が抑制される。   When the average film thickness or surface waviness detection value of the film formation layer GL measured by the film thickness detection sensor 38 exceeds a predetermined range and the feedback control as described above is executed, the display panel of the operating device or A warning warning is displayed on the revolving light. On the other hand, when the detected value of average film thickness or surface waviness exceeds a preset predetermined allowable range, or when the correction range exceeds a preset predetermined range, the display panel of the operating device or the rotation An alarm is displayed on the lamp, and the conveyance operation of the foil base material by the conveyance device 10 and the injection operation of the solid fine particles by the injection device 20 are stopped. Thereby, the invalid consumption of the foil base material W or the solid fine particles G is suppressed.

このようにして成膜層GLが形成された箔基材は、搬送装置10により成膜ステージ2から切断ステージ4に送り出される。切断ステージ4には、長尺シート状の箔基材Wを製品仕様に合わせた所定の長さ寸法に切断する切断装置40が設けられている。切断装置40は、例えば箔基材の幅方向にシャー角を有するシャーリング刃を上下に高速移動させて箔基材を剪断するシャーリング機構や、円盤状のカッター刃を箔基材Wの裏面側に当接させて幅方向に高速移動させるロータリーカッタ機構、あるいはレーザ光の出射ヘッドを箔基材Wの上方で幅方向に高速移動させるレーザ加工機などにより構成される。   The foil base material on which the film formation layer GL is formed in this manner is sent out from the film formation stage 2 to the cutting stage 4 by the transport device 10. The cutting stage 4 is provided with a cutting device 40 that cuts the long sheet-like foil base material W into a predetermined length according to the product specifications. For example, the cutting device 40 has a shearing mechanism that shears the foil base by moving a shearing blade having a shear angle in the width direction of the foil base up and down, and a disc-shaped cutter blade on the back side of the foil base W. A rotary cutter mechanism that is brought into contact with each other and moved at a high speed in the width direction, or a laser processing machine that moves a laser beam emitting head at a high speed in the width direction above the foil substrate W is used.

ここで、搬送装置10により移動される箔基材の搬送速度は、PJD法による成膜加工の内容に応じて変化するが、一例として、銅の箔基材Wに、表面を銅の薄膜でコーティングしたシリコン微粒子を1列のノズルから噴射し衝突固着させる成膜加工の場合、箔基材の送り速度(搬送速度)は、概ね数十mm/sec程度以下である。よって、このような比較的低速の成膜加工を対象とするシステムにおいては、シャーリング機構やロータリーカッタ機構で移動中の箔基材を幅方向に直角に切断することができ、これにより簡明かつ安価に切断装置を構成できる。   Here, although the conveyance speed of the foil base material moved by the conveyance device 10 changes according to the content of the film forming process by the PJD method, as an example, the surface of the copper foil base material W is a copper thin film. In the film forming process in which the coated silicon fine particles are jetted from one row of nozzles and collide and fixed, the feeding speed (conveying speed) of the foil base material is about several tens of mm / sec or less. Therefore, in such a system targeting relatively low-speed film formation, the moving foil base material can be cut at right angles to the width direction by the shearing mechanism or the rotary cutter mechanism, thereby simplifying and inexpensively. A cutting device can be configured.

一方、ノズル列を副列化し、あるいは多段階の噴射構成とすることにより成膜加工時の送り速度をより高速化することが可能である。このような場合には、箔基材Wの上方に、レーザ光の出射ヘッドが箔基材の搬送方向及び幅方向に移動制御可能な光軸移動型またはファイバー伝送型のレーザを用い、搬送装置10により搬送される箔基材Wの移動と同期させて、出射ヘッドを搬送方向及び幅方向に移動させて箔基材を幅方向に直角に切断するように構成することができる。このような切断装置を用いることにより非接触で切断部分に機械的なひずみを生じさせることがなく、高速の微粒子噴射成膜システムを構築することができる。   On the other hand, it is possible to further increase the feed rate during the film forming process by sub-arraying the nozzle array or adopting a multi-stage injection configuration. In such a case, an optical axis moving type or fiber transmission type laser in which the laser beam emitting head can be controlled to move in the conveying direction and the width direction of the foil base material above the foil base material W is used. In synchronization with the movement of the foil base material W transported by 10, the emission head can be moved in the transport direction and the width direction to cut the foil base material at right angles to the width direction. By using such a cutting apparatus, it is possible to construct a high-speed fine particle injection film forming system without causing mechanical distortion in the cut portion without contact.

搬出ステージ5には、成膜ステージ2で成膜層GLが形成され、切断ステージで所定長さに切断された短冊状の製品シートを搬出する搬出装置50が設けられている。搬出装置50は、例えば金属ベルトやセラミックチェーンなどを用いたコンベア機構や、製品シートの長さに合わせたパレットを搬出方向に移動させるパレット機構などにより構成することができる。搬出装置50は搬送装置10と同期制御され、成膜層GLが形成された短冊状の製品シートがアンロードされる。   The unloading stage 5 is provided with an unloading device 50 for unloading the strip-shaped product sheet having the film forming layer GL formed on the film forming stage 2 and cut to a predetermined length by the cutting stage. The carry-out device 50 can be configured by a conveyor mechanism using, for example, a metal belt or a ceramic chain, or a pallet mechanism that moves a pallet according to the length of the product sheet in the carry-out direction. The carry-out device 50 is controlled synchronously with the transfer device 10, and the strip-shaped product sheet on which the film formation layer GL is formed is unloaded.

以上のように構成される微粒子噴射成膜システムS1においては、ロールに巻かれた長尺シート状の箔基材Wが、搬送装置10により噴射装置20の噴射領域JAを横切って移動され、噴射口25と対向する位置に設けられた裏面支持装置30により裏面側が支持された状態で相対移動される箔基材Wの表面に、噴射口25から気体とともに当該気体の音速未満の速度で固体微粒子が噴射されて衝突固着し、常温常圧下において箔基材に固体材料の膜が連続形成される。従って、長尺シート状の箔基材に固体材料の膜を連続して安定的に形成することができる。   In the fine particle injection film forming system S <b> 1 configured as described above, a long sheet-like foil base material W wound around a roll is moved across the injection area JA of the injection device 20 by the conveying device 10, and injection is performed. Solid fine particles on the surface of the foil base W, which is relatively moved in a state where the back surface side is supported by the back surface support device 30 provided at a position facing the mouth 25, together with the gas from the injection port 25 at a speed less than the sound speed of the gas. Are injected and fixed by collision, and a film of solid material is continuously formed on the foil base material at normal temperature and pressure. Therefore, a solid material film can be continuously and stably formed on the long sheet-like foil base material.

次に、長尺シート状の箔基材に固体材料の膜を連続形成可能な第2構成形態の微粒子噴射成膜システムS2について図5を参照しながら説明する。本構成形態の微粒子噴射成膜システムS2は、既述した第1構成形態の微粒子噴射成膜システムS1と比較して、成膜ステージ2に設けられた裏面支持装置の構成のみが異なり、他は同様である。そこで、微粒子噴射成膜システムS1と同様部分に同一番号を付して重複説明を省略し、構成が相違する裏面支持装置130について詳細に説明する。   Next, a fine particle injection film forming system S2 having a second configuration capable of continuously forming a solid material film on a long sheet-like foil base material will be described with reference to FIG. The fine particle injection film forming system S2 of this configuration form is different from the fine particle injection film forming system S1 of the first configuration form described above only in the configuration of the back surface support device provided in the film forming stage 2. It is the same. Therefore, the same reference numerals are given to the same parts as those of the fine particle injection film forming system S1, and the duplicate description is omitted, and the back support device 130 having a different configuration will be described in detail.

裏面支持装置130は、噴射装置20とともに基台BFに設置されたベース部材131と、噴射装置20の噴射口25に対向してベース部材131に設けられ、噴射領域JAにおいて箔基材Wの裏面を支持する支持部材135とを備えて構成される。支持部材135は、内部に排気路が形成され負圧発生器あるいは真空ポンプが接続されるボディ部材135aと、アルミナや窒化ケイ素等のセラミック、あるいはステンレス等の金属の粉体を焼結した多孔質材料(セラミックポーラス、メタルポーラス)により形成され、ボディ部材に固定されたポーラス部材135bとからなり、噴射される固気混相流の噴射力を受けとめ可能な十分な剛性を有したブロック状に形成される。   The back surface support device 130 is provided on the base member 131 so as to face the injection port 25 of the injection device 20 and the base member 131 installed on the base BF together with the injection device 20, and the back surface of the foil base material W in the injection region JA. And a support member 135 that supports the structure. The support member 135 is a porous body formed by sintering a body member 135a in which an exhaust passage is formed and to which a negative pressure generator or a vacuum pump is connected, and ceramic powder such as alumina and silicon nitride, or metal powder such as stainless steel. It is made of a material (ceramic porous, metal porous) and is composed of a porous member 135b fixed to the body member, and is formed in a block shape having sufficient rigidity capable of receiving the injection force of the injected solid-gas mixed phase flow. The

ポーラス部材135bが設けられた支持部材135の下面側は、噴射口25から噴射され箔基材に衝突する固体微粒子の噴射面域よりも広く、所定の平面度に研磨された支持面135sが形成され、摩擦係数を低減する手段、例えばフッ素樹脂のコーティング等を施して構成される。支持部材135は、支持面135sが、プーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡したときの箔基材Wの裏面の高さ位置と略同一の高さ位置に配設される。真空発生器等により排気路内部の空気が排気されるとポーラス部材135bの微細な孔部を通して支持面近傍の空気が吸引され、支持面135sに接触する箔基材が弱い吸引力で支持面135sに吸引される。   The lower surface side of the support member 135 provided with the porous member 135b is wider than the injection surface area of the solid fine particles injected from the injection port 25 and colliding with the foil base material, and the support surface 135s polished to a predetermined flatness is formed. And a means for reducing the friction coefficient, for example, coating with a fluororesin or the like. In the support member 135, the support surface 135 s has substantially the same height as the height position of the back surface of the foil base W when the foil base W is stretched between the pulley roller 11 and the transport roller 12. Arranged in position. When the air inside the exhaust passage is exhausted by a vacuum generator or the like, the air in the vicinity of the support surface is sucked through the fine holes of the porous member 135b, and the foil base material in contact with the support surface 135s is supported with a weak suction force by the support surface 135s. Sucked into.

そのため、プーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡し搬送ローラ12を回転させて箔基材Wを移動させると、成膜ステージ2に導入される箔基材Wが順次噴射領域JAを横切って搬送ローラ12の方向に移動し、噴射領域JAにおいては、箔基材Wが支持面135sに弱い吸引力で吸引され、支持面135sから離間することなく裏面が支持部材135に接触支持された状態で摺動移動される。そして、このように裏面が支持された箔基材Wの表面に噴射口25から固体微粒子が噴射される。このため、噴射によって箔基材が搖動するようなことがなく、噴射口25から噴射された固体微粒子が箔基材Wの表面に衝突固着して、常温常圧下で固体材料の成膜層GLが安定的に形成される。   Therefore, when the foil base W is moved between the pulley roller 11 and the transport roller 12 while the foil base W is stretched in a stretched state, the foil base W is moved to move the foil base W to the film forming stage 2. W sequentially moves across the jetting area JA in the direction of the conveying roller 12, and in the jetting area JA, the foil base W is sucked by the support surface 135s with a weak suction force, and the back surface is not separated from the support surface 135s. It is slid and moved while being supported by the support member 135. Then, solid fine particles are ejected from the ejection port 25 onto the surface of the foil base material W whose back surface is thus supported. For this reason, the foil base material does not swing due to the injection, and the solid fine particles injected from the injection port 25 collide and adhere to the surface of the foil base material W, so that the film forming layer GL of the solid material at normal temperature and normal pressure. Is stably formed.

このように構成される微粒子噴射成膜システムS2では、ロールに巻かれた長尺シート状の箔基材Wが、搬送装置10により噴射装置20の噴射領域JAを横切って移動され、噴射口25と対向して設けられた裏面支持装置130に裏面が支持された状態で摺動移動される箔基材Wの表面に、噴射口25から気体とともに固体微粒子が噴射されて衝突固着する。このため、長尺シート状の箔基材Wに,常温常圧下で固体材料の膜を安定的に連続形成することができる。また本構成の微粒子噴射成膜システムS2においては、裏面が吸引されて支持面から離間することなく接触支持された箔基材の表面側に固体微粒子が衝突するため、固体微粒子が衝突する領域における箔基材Wの安定度を高めることができ、これにより連続成膜における固体微粒子の成膜率を向上させることができる。   In the fine particle injection film forming system S <b> 2 configured as described above, the long sheet-like foil base material W wound around the roll is moved across the injection area JA of the injection device 20 by the transport device 10, and the injection port 25. The solid fine particles are jetted together with the gas from the jet port 25 and fixed by collision on the surface of the foil base W that is slid and moved in a state where the back side is supported by the back side support device 130 provided opposite to the side. Therefore, a solid material film can be stably and continuously formed on the long sheet-like foil base W under normal temperature and pressure. Further, in the fine particle injection film forming system S2 of the present configuration, the solid fine particles collide with the surface side of the foil base that is contact-supported without being separated from the support surface by being sucked back, so in the region where the solid fine particles collide. The stability of the foil base material W can be increased, whereby the film formation rate of the solid fine particles in the continuous film formation can be improved.

次に、長尺シート状の箔基材に固体材料の膜を連続形成可能な第3構成形態の微粒子噴射成膜システムS3について図6を参照しながら説明する。本構成形態の微粒子噴射成膜システムS3は、既述した第1構成形態の微粒子噴射成膜システムS1、第2構成形態の微粒子噴射成膜システムS2と比較して、成膜ステージ2に設けられた裏面支持装置の構成のみが異なり、他は同様である。そこで、微粒子噴射成膜システムS1,S2と同様部分に同一番号を付して重複説明を省略し、構成が相違する裏面支持装置230について詳細に説明する。   Next, a fine particle injection film forming system S3 having a third configuration capable of continuously forming a solid material film on a long sheet-like foil base material will be described with reference to FIG. The fine particle injection film forming system S3 of this configuration form is provided in the film forming stage 2 as compared with the fine particle injection film forming system S1 of the first configuration form and the fine particle injection film forming system S2 of the second configuration form described above. Only the configuration of the back support device is different, and the others are the same. Therefore, the same parts as those of the fine particle spray film forming systems S1 and S2 are denoted by the same reference numerals and redundant description is omitted, and the back support device 230 having a different configuration will be described in detail.

裏面支持装置230は、噴射装置20とともに基台BFに設置されたベース部材231と、噴射装置20の噴射口25に対向してベース部材231に設けられ、噴射領域JAにおいて箔基材Wの裏面を支持する支持部材235とを備えて構成される。支持部材235は、箔基材Wの裏面を接触支持する部分が、搬送装置10により搬送される箔基材と同一速度Vで移動し、上記接触支持する部分と箔基材Wとが搬送方向に相対滑りを生じることなく箔基材Wを支持するように構成される。   The back surface support device 230 is provided on the base member 231 so as to face the base member 231 installed on the base BF together with the injection device 20 and the injection port 25 of the injection device 20, and the back surface of the foil base material W in the injection region JA. And a support member 235 for supporting the structure. In the support member 235, a portion that supports and supports the back surface of the foil base material W moves at the same speed V as the foil base material that is transported by the transport device 10, and the contact support portion and the foil base material W are transported in the transport direction. It is configured to support the foil base material W without causing relative slip.

裏面支持装置230における支持部材235は、外周に箔基材Wの裏面を支持する円筒状の支持面235sを有して噴射口25に対向する位置に設けられ、箔基板Wの幅方向(図6における紙面直行方向)に延びる中心軸235c周りに回転駆動される支持ローラからなり、例えば、ステンレス等の金属材料やアルミナ等のセラミック材料を用いて形成される。支持ローラ(支持部材)235は、噴射口25に対向し箔基材Wの裏面を接触支持する外周下端の支持部235pがプーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡したときの箔基材Wの裏面の高さ位置と同一、または箔基材Wの裏面の高さ位置よりもわずかに低く箔基材Wの裏面を軽く押圧するような高さ位置に配設される。そして、支持部235pの周速が搬送装置10により搬送される箔基材Wの移動速度Vと同一となるように、支持ローラ(支持部材)235の回転速度が設定される。   The support member 235 in the back surface support device 230 has a cylindrical support surface 235 s that supports the back surface of the foil base material W on the outer periphery, and is provided at a position facing the injection port 25. 6, and a support roller that is driven to rotate about a central axis 235 c extending in a direction perpendicular to the paper surface in FIG. 6, and is formed using, for example, a metal material such as stainless steel or a ceramic material such as alumina. The support roller (support member) 235 is in a state in which the support portion 235p at the lower end of the outer periphery facing the injection port 25 and supporting the back surface of the foil substrate W extends the foil substrate W between the pulley roller 11 and the transport roller 12 The height position that is the same as the height position of the back surface of the foil base material W when stretched over or slightly lower than the height position of the back surface of the foil base material W It is arranged. And the rotational speed of the support roller (support member) 235 is set so that the peripheral speed of the support part 235p becomes the same as the moving speed V of the foil base material W conveyed by the conveying apparatus 10.

具体的には、支持ローラ235の半径をR[mm]、回転速度をN[rad/sec]とし、搬送ローラ12の半径をr[mm]、回転速度をn[rad/sec]としたときに、V=n・r=N・R。ここで、支持ローラ235の半径Rは、噴射領域JAの搬送方向幅(図6において紙面に沿った左右方向幅)に応じ、当該幅領域において平面と同視し得る大きさに規定される。そして、このように半径Rが規定された支持ローラ235の回転速度を、N=n・r/Rとなるように制御する。これにより、支持ローラ外周の支持面235sの周速が、搬送装置10により搬送される箔基材Wの移動速度Vと同一になり、箔基材Wの裏面を接触支持する支持部235pにおいて、箔基材Wが搬送方向に相対滑りを生じることなく支持される。   Specifically, when the radius of the support roller 235 is R [mm], the rotation speed is N [rad / sec], the radius of the transport roller 12 is r [mm], and the rotation speed is n [rad / sec]. V = n · r = N · R. Here, the radius R of the support roller 235 is defined to be a size that can be regarded as a plane in the width region according to the conveyance direction width of the ejection region JA (the width in the left-right direction along the paper surface in FIG. 6). Then, the rotational speed of the support roller 235 having the defined radius R is controlled so that N = n · r / R. Thereby, the peripheral speed of the support surface 235s on the outer periphery of the support roller becomes the same as the moving speed V of the foil base material W transported by the transport device 10, and in the support portion 235p that contacts and supports the back surface of the foil base material W, The foil substrate W is supported without causing relative slip in the transport direction.

そのため、プーリーローラ11と搬送ローラ12との間に伸張状態で張り渡した箔基材Wを、搬送ローラ12を回転させて移動させると、成膜ステージ2に導入される箔基材Wが順次噴射領域JAを横切って移動し、噴射領域JAにおいては、裏面が支持部235pに相対滑りなく支持された状態の箔基材Wの表面に固体微粒子が噴射される。すなわち、噴射領域JAにおいては、箔基材Wが支持部材に固定保持された状態と同様に強固に支持された状態で固体微粒子が噴射される。このため、固気混相流の噴射によって箔基材Wが破損したり搖動したりするようなことがなく、噴射口25から噴射された固体微粒子が箔基材Wの表面に衝突固着して、常温常圧下で固体材料の成膜層GLが安定的に形成される。   Therefore, when the foil base material W stretched between the pulley roller 11 and the transport roller 12 is moved by rotating the transport roller 12, the foil base material W introduced into the film forming stage 2 is sequentially It moves across the injection area JA, and in the injection area JA, solid fine particles are injected onto the surface of the foil base W in a state where the back surface is supported by the support portion 235p without relative slip. That is, in the injection area JA, the solid fine particles are injected in a state in which the foil base W is firmly supported in the same manner as the state in which the foil base W is fixedly held by the support member. For this reason, the foil base material W is not damaged or swung by the injection of the solid-gas mixed phase flow, and the solid fine particles injected from the injection port 25 collide and adhere to the surface of the foil base material W. The film-forming layer GL made of a solid material is stably formed under normal temperature and pressure.

このように構成される微粒子噴射成膜システムS3では、ロールに巻かれた長尺シート状の箔基材Wが、搬送装置10により噴射装置20の噴射領域JAを横切って移動され、噴射口25と対向して設けられた裏面支持装置230に裏面が相対滑りなく支持された状態で移動される箔基材Wの表面に、噴射口25から気体とともに固体微粒子が噴射されて衝突固着する。このため、長尺シート状の箔基材Wに,常温常圧下で固体材料の膜を安定的に連続形成することができる。また本構成の微粒子噴射成膜システムS3においては、裏面が支持部235pに相対滑りなく支持された箔基材の表面側に固体微粒子が衝突するため、箔基材W表面の平滑性を維持しながら連続成膜を実現しつつ固体微粒子の衝突領域にける箔基材Wの安定度を固定保持状態と同程度に高めることができ、これにより連続成膜における固体微粒子の成膜率を大幅に向上させることができる。   In the fine particle injection film forming system S3 configured as described above, a long sheet-like foil base material W wound around a roll is moved across the injection area JA of the injection device 20 by the transport device 10, and the injection port 25 is provided. The solid fine particles are jetted together with the gas from the jet port 25 and fixed by collision on the surface of the foil base W which is moved in a state where the back side is supported without relative slip by the back side support device 230 provided opposite to. Therefore, a solid material film can be stably and continuously formed on the long sheet-like foil base W under normal temperature and pressure. Further, in the fine particle injection film forming system S3 of this configuration, since the solid fine particles collide with the surface side of the foil base material whose back surface is supported by the support portion 235p without relative slip, the smoothness of the surface of the foil base material W is maintained. However, it is possible to increase the stability of the foil base material W in the solid fine particle collision region to the same level as the fixed holding state while realizing continuous film formation, thereby greatly increasing the film formation rate of the solid fine particles in the continuous film formation. Can be improved.

次に、長尺シート状の箔基材に固体材料の膜を連続形成可能な第4構成形態の微粒子噴射成膜システムS4について図7を参照しながら説明する。本構成形態の微粒子噴射成膜システムS4は、既述した第1〜第3構成形態の微粒子噴射成膜システムS1〜S3と比較して、成膜ステージ2に設けられた裏面支持装置の構成のみが異なり、他は同様である。よって、微粒子噴射成膜システムS1〜S3と同様部分に同一番号を付して重複説明を省略し、構成が相違する裏面支持装置330について詳細に説明する。   Next, a fine particle injection film forming system S4 having a fourth configuration capable of continuously forming a solid material film on a long sheet-like foil base material will be described with reference to FIG. Compared with the fine particle injection film forming systems S1 to S3 of the first to third structural forms described above, the fine particle spray film forming system S4 of this structure form is only the structure of the back surface support device provided in the film forming stage 2. Are different, and the others are the same. Therefore, the same number is attached | subjected to the part similar to microparticle injection film-forming system S1-S3, duplication description is abbreviate | omitted, and the back surface support apparatus 330 from which a structure differs is demonstrated in detail.

裏面支持装置330は、噴射装置20とともに基台BFに設置されたベース部材331と、噴射装置20の噴射口25に対向してベース部材331に設けられ、噴射領域JAにおいて箔基材Wの裏面を支持する支持部材335とを備えて構成される。支持部材335は、第3構成形態の裏面支持装置230における支持部材235と同様に、箔基材Wの裏面を接触支持する部分が、搬送装置10により搬送される箔基材と同一速度Vで移動し、上記接触支持する部分と箔基材Wとが搬送方向に相対滑りを生じることなく箔基材Wを支持するように構成される。   The back surface support device 330 is provided on the base member 331 so as to face the injection port 25 of the injection device 20 and the base member 331 installed on the base BF together with the injection device 20, and the back surface of the foil base material W in the injection region JA. And a support member 335 for supporting the structure. Similarly to the support member 235 in the back surface support device 230 of the third configuration mode, the support member 335 has a portion that contacts and supports the back surface of the foil base material W at the same speed V as the foil base material transported by the transport device 10. The portion that moves and contacts and supports the foil substrate W is configured to support the foil substrate W without causing relative slip in the transport direction.

裏面支持装置330における支持部材335は、ベース部材331に設けられた駆動プーリ336と従動プーリ337との間に巻き掛けられて回転駆動される無端ベルト状の支持ベルトからなり、例えば、箔基材Wよりも幾分幅広サイズの薄肉ステンレスベルトを利用して構成される。この裏面支持装置330では、駆動プーリ336及び従動プーリ337の間に位置する支持ベルト(支持部材)335の外周下面に箔基材Wの裏面を支持する支持面335sが形成され、この支持面335sが噴射口25に対向し、プーリーローラ11と搬送ローラ12との間に箔基材Wを伸張状態で張り渡したときの箔基材Wの裏面の高さ位置と同一、または箔基材Wの裏面の高さ位置よりもわずかに低く箔基材Wの裏面を軽く押圧するような高さ位置に配設される。   The support member 335 in the back surface support device 330 is composed of an endless belt-like support belt that is wound around a drive pulley 336 and a driven pulley 337 provided on the base member 331 and driven to rotate. It is constructed using a thin stainless steel belt that is slightly wider than W. In this back surface support device 330, a support surface 335s that supports the back surface of the foil base material W is formed on the outer peripheral lower surface of a support belt (support member) 335 positioned between the drive pulley 336 and the driven pulley 337, and this support surface 335s. Faces the injection port 25 and is the same as the height position of the back surface of the foil base W when the foil base W is stretched between the pulley roller 11 and the transport roller 12 in the stretched state, or the foil base W It is disposed at such a height position that it is slightly lower than the height position of the back surface of the foil substrate and lightly presses the back surface of the foil base material W.

そして、駆動プーリ336と従動プーリ337との間における支持ベルト335の移動速度、すなわち支持面335sの移動速度が、搬送装置10により搬送される箔基材Wの移動と同一となるように、駆動プーリ336の回転速度が設定される。従って、駆動プーリ336と従動プーリ337との間において、箔基材Wが搬送方向に相対滑りを生じることなく支持面335sに支持された状態で支持ベルト335とともに移動する。 Then, the driving speed of the support belt 335 between the driving pulley 336 and the driven pulley 337, that is, the moving speed of the support surface 335s is driven so as to be the same as the movement of the foil base material W transported by the transport device 10. The rotational speed of the pulley 336 is set. Accordingly, the foil base material W moves between the driving pulley 336 and the driven pulley 337 together with the support belt 335 while being supported by the support surface 335 s without causing relative sliding in the transport direction.

ここで、支持ベルト335の内周側には、噴射領域JAの背後において支持ベルト335の内周面を支持するバックサポート部材338が設けられている。バックサポート部材338は、例えば、アルミナや窒化ホウ素等のセラミック材料、あるいはアルミニウム合金や銅合金等の金属材料を用い、表面を平坦に研磨したうえで摩擦係数を低減する手段、例えばフッ素樹脂のコーティング等を施して構成され、下方からの押圧力に抗して支持ベルト335の内周面を支持するように、ベース部材331に固定配設される。   Here, on the inner peripheral side of the support belt 335, a back support member 338 is provided that supports the inner peripheral surface of the support belt 335 behind the injection region JA. The back support member 338 is made of, for example, a ceramic material such as alumina or boron nitride, or a metal material such as aluminum alloy or copper alloy. And is fixedly disposed on the base member 331 so as to support the inner peripheral surface of the support belt 335 against a pressing force from below.

プーリーローラ11と搬送ローラ12との間に伸張状態で張り渡した箔基材Wを、搬送ローラ12を回転させて移動させると、成膜ステージ2に導入された箔基材Wが搬送方向に相対滑りなく支持面335sに支持された状態で支持ベルト335とともに噴射領域JAを横切って移動し、噴射領域においては、バックサポート部材338により背後が強固に支持された状態の箔基材Wの表面に固体微粒子が噴射される。すなわち、バックサポート部材338が設けられた噴射領域JAにおいては、箔基材Wが支持部材に固定保持された状態と同様に強固に支持された状態で固体微粒子が噴射される。このため、固気混相流の噴射によって箔基材Wが破損したり搖動したりするようなことがなく、噴射口25から噴射された固体微粒子が箔基材Wの表面に衝突固着して、常温常圧下で固体材料の成膜層GLが安定的に形成される。   When the foil base material W stretched between the pulley roller 11 and the transport roller 12 is moved by rotating the transport roller 12, the foil base material W introduced into the film forming stage 2 is moved in the transport direction. The surface of the foil base material W is moved across the ejection area JA together with the support belt 335 while being supported on the support surface 335s without relative slip, and the back surface of the foil base material W is firmly supported by the back support member 338 in the ejection area. Solid fine particles are sprayed on the surface. That is, in the injection area JA where the back support member 338 is provided, the solid fine particles are injected in a state in which the foil base W is firmly supported in the same manner as the state in which the foil base W is fixedly held by the support member. For this reason, the foil base material W is not damaged or swung by the injection of the solid-gas mixed phase flow, and the solid fine particles injected from the injection port 25 collide and adhere to the surface of the foil base material W. The film-forming layer GL made of a solid material is stably formed under normal temperature and pressure.

このように構成される微粒子噴射成膜システムS4では、ロールに巻かれた長尺シート状の箔基材Wが、搬送装置10により噴射装置20の噴射領域JAを横切って移動され、噴射口25と対向して設けられた裏面支持装置330に裏面が相対滑りなく支持された状態で移動される箔基材Wの表面に、噴射口25から気体とともに固体微粒子が噴射されて衝突固着する。このため、長尺シート状の箔基材Wに,常温常圧下で固体材料の膜を安定的に連続形成することができる。また本構成の微粒子噴射成膜システムS4においては、背後がバックサポート部材338により強固にサポートされかつ支持面335sに相対滑りなく支持された箔基材の表面側に固体微粒子が衝突するため、箔基材W表面の平滑性を維持しながら連続成膜を実現しつつ固体微粒子の衝突領域にける箔基材Wの安定度を固定保持状態と同程度に高めることができ、これにより連続成膜における固体微粒子の成膜率を大幅に向上させることができる。   In the fine particle injection film forming system S4 configured as described above, the long sheet-like foil base material W wound around the roll is moved across the injection area JA of the injection device 20 by the transport device 10 and the injection port 25. The solid fine particles are jetted together with the gas from the jet port 25 and fixed by collision on the surface of the foil base W which is moved in a state where the back side is supported without relative slip by the back side support device 330 provided oppositely. Therefore, a solid material film can be stably and continuously formed on the long sheet-like foil base W under normal temperature and pressure. Further, in the fine particle injection film forming system S4 of this configuration, the solid fine particles collide with the surface side of the foil base material whose back is firmly supported by the back support member 338 and supported relative to the support surface 335s without relative slip. While maintaining the smoothness of the surface of the substrate W, it is possible to increase the stability of the foil substrate W in the collision region of the solid fine particles to the same level as the fixed holding state, thereby continuously forming the film. The film formation rate of the solid fine particles in can be greatly improved.

なお、支持ベルト335に微細なピンホールを多数形成するとともに、駆動プーリ336、従動プーリ337及びバックサポート部材338が配設され、支持ベルト335によって囲まれたベルト内周側のプーリ室339を、真空発生器等により排気し支持面335sに相対滑りなく接触する箔基材Wが弱い吸引力で支持面335sに吸引されるように構成することも好ましい構成形態である。このような構成によれば、支持ベルト335との接触領域において箔基材Wが支持面から離間せずかつ相対摺動することなく支持されるため、固体微粒子の衝突領域にける箔基材Wの安定度をさらに高め、安定した連続成膜を実現することができる。   The support belt 335 has many fine pinholes, and a drive pulley 336, a driven pulley 337, and a back support member 338 are disposed, and a pulley chamber 339 on the inner circumference side of the belt surrounded by the support belt 335 is provided. It is also a preferable configuration that the foil base W that is evacuated by a vacuum generator or the like and contacts the support surface 335s without relative slip is sucked to the support surface 335s with a weak suction force. According to such a configuration, since the foil base material W is supported in the contact area with the support belt 335 without being separated from the support surface and without sliding relative to the support surface 335, the foil base material W in the solid fine particle collision area is supported. The stability of the film can be further increased, and stable continuous film formation can be realized.

本構成形態の説明では、一例として薄肉の無端金属ベルトを用いた構成を例示したが、箔基材Wの幅に合わせたセラミックチェーンや、箔基材Wの幅に合わせた短冊状のプレートを連結したコンベア(無限軌道)等を用いて本構成形態と同様の裏面支持装置を構成することも可能である。   In the description of the present configuration, a configuration using a thin endless metal belt is illustrated as an example. However, a ceramic chain according to the width of the foil base W or a strip-shaped plate according to the width of the foil base W is used. It is also possible to configure a back support device similar to this configuration form using a connected conveyor (infinite track) or the like.

以上、第1〜第4構成形態の微粒子噴射成膜システムS1〜S4について、その代表的な構成例を説明したが、本発明は例示した各構成形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において各部の構成を適宜変更して適用することができる。例えば、各構成形態では、箔基材Wが水平方向に移動され固体微粒子が上方に噴射される形態を示したが、箔基材Wが鉛直方向に移動され固体微粒子が水平方向に噴射される形態であってもよく、箔基材が鉛直面に沿って左右(前後)方向に移動され固体微粒子が水平方向に噴射されるような形態等であってもよい。   As mentioned above, although the typical structural example was demonstrated about the fine particle injection film-forming system S1-S4 of the 1st-4th structure form, this invention is not limited to each illustrated structure form, The configuration of each part can be appropriately changed and applied without departing from the spirit of the invention. For example, in each configuration mode, the foil base W is moved in the horizontal direction and the solid fine particles are ejected upward. However, the foil base W is moved in the vertical direction and the solid fine particles are ejected in the horizontal direction. A form may be sufficient, and the form etc. in which a foil base material is moved to the left-right (front-back) direction along a vertical surface, and a solid fine particle is injected in a horizontal direction may be sufficient.

G 固体微粒子
W 箔基材
S1 第1構成形態の微粒子噴射成膜システム
S2 第2構成形態の微粒子噴射成膜システム
S3 第3構成形態の微粒子噴射成膜システム
S4 第4構成形態の微粒子噴射成膜システム
BF 基台
1 搬入ステージ
2 成膜ステージ
4 切断ステージ
5 搬出ステージ
10 搬送装置
12 搬送ローラ(12s 押圧面)
20 噴射装置(20A:単管タイプの噴射装置、20B:複合管タイプの噴射装置)
21 ノズル(21A:単管タイプ,21B:複合管タイプ)
25 噴射口
38 膜厚検出センサ
40 切断装置
50 搬出装置
70 吸引回収装置
30,130,230,330 裏面支持装置
31,131,231,331 ベース部材
35,135,235,335 支持部材(235:支持ローラ、335:支持ベルト)
35s,135s,235s,335s 支持面
235p 支持部
336 駆動プーリ
337 従動プーリ
338 バックサポート部材
G Solid particle W Foil substrate S1 Fine particle injection film forming system S2 in the first configuration form Fine particle injection film forming system S3 in the second configuration form Fine particle injection film forming system S4 in the third configuration form Fine particle injection film forming system in the fourth configuration form System BF Base 1 Carry-in stage 2 Film forming stage 4 Cutting stage 5 Carry-out stage 10 Carrying device 12 Carrying roller (12s pressing surface)
20 injection device (20A: single tube type injection device, 20B: composite tube type injection device)
21 nozzles (21A: single pipe type, 21B: composite pipe type)
25 Injection port 38 Film thickness detection sensor 40 Cutting device 50 Unloading device 70 Suction collection device 30, 130, 230, 330 Back surface support device 31, 131, 231, 331 Base member 35, 135, 235, 335 Support member (235: Support Roller, 335: support belt)
35 s, 135 s, 235 s, 335 s Support surface 235 p Support portion 336 Drive pulley 337 Drive pulley 338 Back support member

Claims (16)

ノズルに供給された固体微粒子を前記ノズルの内部に設けられた流路を流れる気体に分散させて流下させ、前記流路の下流端部に設けられた噴射口から前記気体とともに噴射する噴射装置と、
長尺シート状の箔基材を前記噴射口の前方に供給し前記固体微粒子の噴射領域を横切って移動させる搬送装置と、
前記噴射口の前方に位置した箔基材を挟んで前記噴射口と対向する位置に設けられ、前記搬送装置により搬送される前記箔基材の裏面を支持する裏面支持装置とを備え、
前記搬送装置により搬送され前記裏面支持装置により裏面側が支持された前記箔基材の表面に、前記噴射口から前記気体とともに噴射した前記固体微粒子を衝突させて固着させ、常温かつ常圧下において前記箔基材の表面に固体材料の膜を連続形成することを特徴とする箔基材連続成膜の微粒子噴射成膜システム。
An injection device that disperses solid particulates supplied to a nozzle in a gas flowing in a flow path provided inside the nozzle and causes the solid fine particles to flow down and injects the gas together with the gas from an injection port provided at a downstream end of the flow path; ,
A conveying device that feeds a long sheet-like foil base material in front of the injection port and moves across the injection region of the solid fine particles;
A back surface support device that supports the back surface of the foil base material that is provided at a position facing the spray port across the foil base material positioned in front of the spray port;
The solid fine particles ejected together with the gas from the ejection port are caused to collide and adhere to the surface of the foil base material conveyed by the conveying device and supported on the back surface side by the back surface supporting device, and the foil is fixed at normal temperature and normal pressure. A fine particle jet film forming system for continuously forming a foil base material, wherein a film of a solid material is continuously formed on the surface of the base material.
前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、前記噴射口に対向して前記ベース部材に移動可能に設けられ前記噴射領域において前記箔基材の裏面を支持する支持部材とを備え、
前記支持部材は、前記箔基材の裏面を接触支持する部分が、前記搬送装置により搬送される前記箔基材と同一速度で移動し、前記接触支持する部分と前記箔基材とが搬送方向に相対滑りを生じることなく前記箔基材を支持するように構成したことを特徴とする請求項1に記載の箔基材連続成膜の微粒子噴射成膜システム。
The back support device includes a base member installed on a base together with the spray device, and a support that supports the back surface of the foil substrate in the spray region provided to be movable to the base member so as to face the spray port. With members,
In the support member, a portion that supports and supports the back surface of the foil base moves at the same speed as the foil base that is transported by the transport device, and the contact support and the foil base are transported in the transport direction. The fine particle jet film forming system for continuously forming a foil base material according to claim 1, wherein the foil base material is supported without causing relative slippage.
前記支持部材は、外周に前記箔基材の裏面を支持する円筒状の支持面を有して前記噴射口に対向する位置に設けられ、前記箔基板の幅方向に延びる中心軸周りに回転駆動される支持ローラからなり、
前記噴射口に対向し前記箔基材の裏面を接触支持する部分の周速が前記搬送装置により搬送される前記箔基材の移動速度と同一となるように、前記支持ローラの回転速度が設定されることを特徴とする請求項2に記載の箔基材連続成膜の微粒子噴射成膜システム。
The support member has a cylindrical support surface that supports the back surface of the foil base material on the outer periphery, is provided at a position facing the injection port, and is driven to rotate around a central axis extending in the width direction of the foil substrate. Made of support rollers,
The rotational speed of the support roller is set so that the peripheral speed of the portion facing the injection port and supporting the back surface of the foil base material is the same as the moving speed of the foil base material transported by the transport device The fine-particle jet film forming system for continuous film formation of a foil base material according to claim 2.
前記支持部材は、前記ベース部材に設けられた駆動プーリと従動プーリとの間に巻き掛けられて回転駆動される無端ベルト状の支持ベルトからなり、
前記駆動プーリ及び前記従動プーリの間に位置する前記支持ベルトの外周に前記箔基材の裏面を支持する支持面が形成されて前記噴射口に対向する位置に配設され、
前記駆動プーリ及び前記従動プーリ間における前記支持ベルトの移動速度が前記搬送装置により搬送される前記箔基材の移動速度と同一となるように前記駆動プーリの回転速度が設定されることを特徴とする請求項2に記載の箔基材連続成膜の微粒子噴射成膜システム。
The support member is composed of an endless belt-like support belt that is wound between a drive pulley and a driven pulley provided on the base member and is driven to rotate.
A support surface for supporting the back surface of the foil base material is formed on the outer periphery of the support belt positioned between the drive pulley and the driven pulley, and is disposed at a position facing the injection port.
The rotational speed of the driving pulley is set so that the moving speed of the support belt between the driving pulley and the driven pulley is the same as the moving speed of the foil base material transported by the transport device. The fine particle jet film forming system for forming a foil base material continuously according to claim 2.
前記支持ベルトの内周側に、前記噴射領域の背後において前記支持ベルトを支持するバックサポート部材を設けたことを特徴とする請求項4に記載の箔基材連続成膜の微粒子噴射成膜システム。   5. The fine particle jet film forming system for continuous film formation of a foil base material according to claim 4, wherein a back support member for supporting the support belt is provided behind the jet region on the inner peripheral side of the support belt. . 前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、前記噴射口に対向して前記ベース部材に設けられ前記噴射領域において前記箔基材の裏面を支持する支持部材とを備え、
前記支持部材は、前記搬送装置により搬送される前記箔基材の裏面を接触支持する支持面を有するとともに、前記箔基材が前記支持面から離間することなく相対摺動可能に前記箔基材の裏面を吸引する吸引手段を備え、
前記搬送装置により搬送される前記箔基材が、前記噴射領域において前記吸引手段により前記支持面に接触支持された状態で摺動移動されるように構成したことを特徴とする請求項1に記載の箔基材連続成膜の微粒子噴射成膜システム。
The back surface support device includes a base member installed on a base together with the spray device, and a support member that is provided on the base member so as to face the spray port and supports the back surface of the foil base material in the spray region. Prepared,
The support member has a support surface that contacts and supports the back surface of the foil base material that is transported by the transport device, and the foil base material is slidable relative to the support surface without being separated from the support surface. A suction means for sucking the back surface of
The said foil base material conveyed by the said conveying apparatus was comprised so that sliding movement might be carried out in the state contacted and supported by the said suction surface by the said suction means in the said injection | pouring area | region. Fine film injection film forming system for continuous film formation of foil base.
前記支持部材は、前記支持面にフッ素樹脂加工が施された多孔質材料により形成されることを特徴とする請求項6に記載の箔基材連続成膜の微粒子噴射成膜システム。   The fine particle jet film forming system according to claim 6, wherein the supporting member is made of a porous material having a fluororesin processed on the supporting surface. 前記噴射装置は、前記噴射口が上向きに開口するように前記ノズルが配設されて前記固体微粒子が前記噴射口から上方に噴射され、前記裏面支持装置が前記ノズルの上方に位置して前記噴射口と対向して設けられることを特徴とする請求項1〜7のいずれか一項に記載の箔基材連続成膜の微粒子噴射成膜システム。   The injection device has the nozzle disposed so that the injection port opens upward, the solid fine particles are injected upward from the injection port, and the back surface support device is positioned above the nozzle to perform the injection. The fine particle jet film forming system for continuous film formation of a foil base material according to any one of claims 1 to 7, wherein the fine particle spray film forming system is provided facing the mouth. 前記噴射口の周囲に、前記噴射領域を覆い前記噴射口から噴射されたが前記箔基材に固着されずに漂う前記固体微粒子を吸引して回収する吸引回収手段を備えたことを特徴とする請求項1〜8のいずれか一項に記載の微粒子噴射成膜システム。   A suction recovery means for sucking and recovering the solid fine particles that cover the spray region and that are sprayed from the spray port but are not fixed to the foil base material is provided around the spray port. The fine particle injection film forming system according to claim 1. 前記搬送装置は、外周に前記箔基材に押圧される円筒状の押圧面を有し、前記噴射口よりも前記箔基材の移動方向前方に位置する前記箔基材の表面側と裏面側とに対向して設けられ、前記箔基材の幅方向に延びる中心軸周りに回転される搬送ローラを備え、
前記箔基材の表裏を前記押圧面により挟み込んで前記搬送ローラを回転させることにより、前記箔基材が伸展された状態で前記噴射領域を移動するように構成したことを特徴とする請求項1〜9のいずれか一項に記載の箔基材連続成膜の微粒子噴射成膜システム。
The conveying device has a cylindrical pressing surface pressed against the foil base material on the outer periphery, and is located on the front side and the back side of the foil base material that is located in front of the injection direction in the movement direction of the foil base material. And a conveyance roller that is rotated around a central axis that extends in the width direction of the foil base material.
The front and back surfaces of the foil base material are sandwiched between the pressing surfaces and the transport roller is rotated to move the spray region in a state where the foil base material is extended. The fine particle injection film-forming system of foil base material continuous film formation as described in any one of -9.
前記噴射口の側方に、前記噴射領域を通り前記固体材料の膜が形成された状態で前記搬送装置により搬送される前記箔基材の前記固体材料の膜厚を検出する膜厚検出センサを備え、
前記膜厚検出センサにより検出された前記固体材料の膜厚に応じて前記搬送装置による前記箔基材の搬送速度が制御されるように構成したことを特徴とする請求項1〜10のいずれか一項に記載の箔基材連続成膜の微粒子噴射成膜システム。
A film thickness detection sensor that detects the film thickness of the solid material of the foil base material that is transported by the transport device in a state where the film of the solid material is formed on the side of the ejection port and passes through the ejection region. Prepared,
The structure according to any one of claims 1 to 10, wherein the transport speed of the foil base material by the transport device is controlled according to the film thickness of the solid material detected by the film thickness detection sensor. The fine particle jet film-forming system for foil base material continuous film formation according to one item.
前記噴射口の側方に、前記噴射領域を通り前記固体材料の膜が形成された状態で前記搬送装置により搬送される前記箔基材を、当該箔基材の搬送方向と直交する幅方向に切断する切断装置を備えたことを特徴とする請求項1〜11のいずれか一項に記載の箔基材連続成膜の微粒子噴射成膜システム。   In the width direction orthogonal to the conveyance direction of the foil base material, the foil base material transported by the transport device in a state where the film of the solid material is formed on the side of the ejection port and the film of the solid material is formed. The fine particle jet film forming system for foil base material continuous film formation according to any one of claims 1 to 11, further comprising a cutting device for cutting. 前記切断装置は、前記箔基材を切断する切断部が、前記箔基材の搬送方向および当該移動方向と直行する前記幅方向に移動可能に構成され、
前記切断部が、前記搬送装置により搬送される前記箔基材の移動に応じて前記箔基材の搬送方向に移動しながら前記幅方向に移動して前記箔基材を切断するように構成したことを特徴とする請求項12に記載の箔基材連続成膜の微粒子噴射成膜システム。
The cutting device is configured such that a cutting portion that cuts the foil base material is movable in the width direction perpendicular to the transport direction of the foil base material and the movement direction,
The cutting unit is configured to move in the width direction while cutting in the foil base while moving in the transport direction of the foil base in accordance with the movement of the foil base that is transported by the transport device. The fine-particle jet film forming system for continuous film formation of a foil base material according to claim 12.
ノズルに供給された固体微粒子を前記ノズルの内部に設けられた流路を流れる気体に分散させて流下させ、前記流路の下流端部に設けられた噴射口から前記気体とともに噴射する噴射装置を用い、長尺シート状の箔基材の表面に固体材料の膜を連続形成する箔基材連続成膜方法であって、
搬送装置により前記箔基材を前記噴射口の前方に供給するとともに、
前記噴射口の前方に位置した箔基材を挟んで前記噴射口と対向する位置に設けられた裏面支持装置により前記箔基材の裏面を支持させた状態で前記箔基材を前記固体微粒子の噴射領域を横切って移動させ、
裏面が支持された状態で移動される前記箔基材の表面に前記噴射口から前記気体とともに前記固体微粒子を噴射し衝突させて固着させ、
前記箔基材の表面に常温かつ常圧下において固体材料の膜を連続形成することを特徴とする箔基材連続成膜方法。
An injection device that disperses solid particulates supplied to a nozzle in a gas flowing in a flow path provided in the nozzle and causes the solid fine particles to flow down and injects the gas together with the gas from an injection port provided in a downstream end of the flow path. Use, a foil base material continuous film forming method for continuously forming a solid material film on the surface of a long sheet-like foil base material,
While supplying the foil base material to the front of the injection port by a transport device,
In the state where the back surface of the foil base material is supported by a back surface support device provided at a position facing the injection port with the foil base material positioned in front of the injection port, Move across the spray area,
The solid fine particles are jetted and collided together with the gas from the jet port on the surface of the foil base that is moved in a state where the back surface is supported,
A method for continuously forming a foil base material, wherein a film of a solid material is continuously formed on the surface of the foil base material at normal temperature and normal pressure.
前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、前記噴射口に対向して前記ベース部材に移動可能に設けられ前記噴射領域において前記箔基材の裏面を支持する支持部材とを備え、
前記支持部材は、前記箔基材の裏面を接触支持する部分が、前記搬送装置により搬送される前記箔基材と同一速度で移動し、前記接触支持する部分と前記箔基材とが搬送方向に相対滑りを生じることなく前記箔基材を支持するように構成され、
裏面が前記接触支持する部分に相対滑りなく支持された状態で移動される前記箔基材の表面側に前記噴射口から噴射された前記固体微粒子が衝突し固着して固体材料の膜が連続形成されるように構成したことを特徴とする請求項14に記載の箔基材連続成膜方法。
The back support device includes a base member installed on a base together with the spray device, and a support that supports the back surface of the foil substrate in the spray region provided to be movable to the base member so as to face the spray port. With members,
In the support member, a portion that supports and supports the back surface of the foil base moves at the same speed as the foil base that is transported by the transport device, and the contact support and the foil base are transported in the transport direction. Is configured to support the foil substrate without causing relative slippage,
A solid material film is continuously formed by the solid fine particles injected from the injection port colliding and fixing to the front surface side of the foil base that is moved in a state in which the back surface is supported without relative slip on the contact-supporting portion. The foil base material continuous film forming method according to claim 14, wherein the foil base material is formed as described above.
前記裏面支持装置は、前記噴射装置とともに基台に設置されたベース部材と、前記噴射口に対向して前記ベース部材に設けられ前記噴射領域において前記箔基材の裏面を支持する支持部材とを備え、
前記支持部材は、前記搬送装置により搬送される前記箔基材の裏面を接触支持する支持面を有するとともに、前記箔基材が前記支持面から離間することなく相対摺動可能に前記箔基材の裏面を吸引するように構成され、
裏面が吸引されて前記支持面から離間することなく接触支持された状態で摺動移動される前記箔基材の表面側に前記噴射口から噴射された前記固体微粒子が衝突し固着して固体材料の膜が連続形成されるように構成したことを特徴とする請求項14に記載の箔基材連続成膜方法。
The back surface support device includes a base member installed on a base together with the spray device, and a support member that is provided on the base member so as to face the spray port and supports the back surface of the foil base material in the spray region. Prepared,
The support member has a support surface that contacts and supports the back surface of the foil base material that is transported by the transport device, and the foil base material is slidable relative to the support surface without being separated from the support surface. Configured to suck the back of the
The solid fine particles injected from the injection port collide and adhere to the surface side of the foil base that is slid and moved in a state where the back surface is sucked and is not contacted with the support surface without being separated from the support surface. The method for continuously forming a foil base material according to claim 14, wherein the film is continuously formed.
JP2009023328A 2009-02-04 2009-02-04 Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate Pending JP2010180436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023328A JP2010180436A (en) 2009-02-04 2009-02-04 Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023328A JP2010180436A (en) 2009-02-04 2009-02-04 Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014206554A Division JP2015025210A (en) 2014-10-07 2014-10-07 Fine particle injection film deposition system and foil substrate continuous film deposition method

Publications (2)

Publication Number Publication Date
JP2010180436A true JP2010180436A (en) 2010-08-19
JP2010180436A5 JP2010180436A5 (en) 2013-04-11

Family

ID=42762172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023328A Pending JP2010180436A (en) 2009-02-04 2009-02-04 Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate

Country Status (1)

Country Link
JP (1) JP2010180436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042856A (en) * 2009-08-24 2011-03-03 Fujitsu Ltd Film deposition device and film deposition method
JP2013539157A (en) * 2010-07-21 2013-10-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for forming a superconducting layer on a substrate
JP2014058721A (en) * 2012-09-18 2014-04-03 Sekisui Chem Co Ltd Thin film deposition method
CN109594110A (en) * 2018-12-13 2019-04-09 江苏师范大学 A kind of localization repairs the device and method of high-speed blanking press Large Copper Screw Nut abrasion
EP3862168A4 (en) * 2018-12-06 2021-12-29 Lg Chem, Ltd. Ejection apparatus, molding apparatus, and method for manufacturing molded body

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118072A (en) * 1974-08-06 1976-02-13 Central Glass Co Ltd KYUCHAKU KONBEYA
JPH02264810A (en) * 1989-04-05 1990-10-29 Ishikawajima Harima Heavy Ind Co Ltd Measuring coating thickness and instrument for the same
JPH03281784A (en) * 1990-03-30 1991-12-12 Mitsubishi Paper Mills Ltd Production of conveyance mat roller
JP2001129443A (en) * 1999-11-10 2001-05-15 Toyota Motor Corp Coating device
JP2002059288A (en) * 2000-08-09 2002-02-26 Anayama Create:Kk Flexible blanking system
JP2003119573A (en) * 2001-10-11 2003-04-23 National Institute Of Advanced Industrial & Technology Apparatus for manufacturing composite structure
JP2004300572A (en) * 2003-03-17 2004-10-28 Toto Ltd Apparatus and method for forming composite structure
JP2005154894A (en) * 2003-10-27 2005-06-16 Fuji Photo Film Co Ltd Film forming apparatus
JP2006289162A (en) * 2005-04-06 2006-10-26 Hitachi Plant Technologies Ltd Coater
JP2007048998A (en) * 2005-08-11 2007-02-22 Seiko Epson Corp Suction device and drawing device
JP2007326062A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Film forming device and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118072A (en) * 1974-08-06 1976-02-13 Central Glass Co Ltd KYUCHAKU KONBEYA
JPH02264810A (en) * 1989-04-05 1990-10-29 Ishikawajima Harima Heavy Ind Co Ltd Measuring coating thickness and instrument for the same
JPH03281784A (en) * 1990-03-30 1991-12-12 Mitsubishi Paper Mills Ltd Production of conveyance mat roller
JP2001129443A (en) * 1999-11-10 2001-05-15 Toyota Motor Corp Coating device
JP2002059288A (en) * 2000-08-09 2002-02-26 Anayama Create:Kk Flexible blanking system
JP2003119573A (en) * 2001-10-11 2003-04-23 National Institute Of Advanced Industrial & Technology Apparatus for manufacturing composite structure
JP2004300572A (en) * 2003-03-17 2004-10-28 Toto Ltd Apparatus and method for forming composite structure
JP2005154894A (en) * 2003-10-27 2005-06-16 Fuji Photo Film Co Ltd Film forming apparatus
JP2006289162A (en) * 2005-04-06 2006-10-26 Hitachi Plant Technologies Ltd Coater
JP2007048998A (en) * 2005-08-11 2007-02-22 Seiko Epson Corp Suction device and drawing device
JP2007326062A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Film forming device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042856A (en) * 2009-08-24 2011-03-03 Fujitsu Ltd Film deposition device and film deposition method
JP2013539157A (en) * 2010-07-21 2013-10-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for forming a superconducting layer on a substrate
JP2014058721A (en) * 2012-09-18 2014-04-03 Sekisui Chem Co Ltd Thin film deposition method
EP3862168A4 (en) * 2018-12-06 2021-12-29 Lg Chem, Ltd. Ejection apparatus, molding apparatus, and method for manufacturing molded body
US11752695B2 (en) 2018-12-06 2023-09-12 Lg Chem, Ltd. Discharge apparatus, forming apparatus, and method of producing formed body
CN109594110A (en) * 2018-12-13 2019-04-09 江苏师范大学 A kind of localization repairs the device and method of high-speed blanking press Large Copper Screw Nut abrasion

Similar Documents

Publication Publication Date Title
JP2010180436A (en) Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate
US9061304B2 (en) Method and apparatus for a clean cut with a laser
KR20080089183A (en) Method and device for removing dust of conveyed article
JPWO2016063940A1 (en) Foreign matter removal method and foreign matter removal device
EP2939641B1 (en) Method and device for producing powder-storing sheet
US20220297237A1 (en) Device for manufacturing electrode
US10537909B2 (en) Powder coating apparatus
KR102605703B1 (en) Device for manufacturing electrode
JP2011190167A5 (en)
JP2015025210A (en) Fine particle injection film deposition system and foil substrate continuous film deposition method
US20200316643A1 (en) Film forming method
US11369990B2 (en) Film forming method
JP2010180436A5 (en) Fine particle injection film forming system and foil base material continuous film forming method
JP2014101159A (en) Transport device
JP2004114248A (en) Cutting and removing device
JP2004123254A (en) Method of carrying large sheet material and its device
TW202327810A (en) Dedusting device, sander and method for dedusting a workpiece
KR20160033648A (en) Liquid application device and liquid application method
JP6146664B2 (en) Opposed air blow
JP2007331074A (en) Method and apparatus for manufacturing tape
TWI796461B (en) Apparatus and methods of processing a glass sheet
US7208045B2 (en) Powdering unit, powdering station and method for their operation
JP2004196435A (en) Method and device for conveying large-sized thin plate-shaped material
JP2012096800A (en) Sheet sticking apparatus and sheet sticking method
JP2004248825A (en) Processing device and processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141114