JPH02264810A - Measuring coating thickness and instrument for the same - Google Patents

Measuring coating thickness and instrument for the same

Info

Publication number
JPH02264810A
JPH02264810A JP8616489A JP8616489A JPH02264810A JP H02264810 A JPH02264810 A JP H02264810A JP 8616489 A JP8616489 A JP 8616489A JP 8616489 A JP8616489 A JP 8616489A JP H02264810 A JPH02264810 A JP H02264810A
Authority
JP
Japan
Prior art keywords
coating
base material
distance
film thickness
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8616489A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nasu
敏幸 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8616489A priority Critical patent/JPH02264810A/en
Publication of JPH02264810A publication Critical patent/JPH02264810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Nozzles (AREA)

Abstract

PURPOSE:To enable a real coating thickness to be measured by detecting a stage difference between the surfaces of a fresh coating formed by a flame sprayer and of parent material. CONSTITUTION:A coating 5 is formed on the whole surface 2a of a parent material 2 by continuing the flame spray of a coating material 4 while moving a flame spray gun 12 in parallel to the axis of the parent material 2. Initially, the tips of the contacts 7b and 8b of distance sensors 7 and 8, respectively, are brought into contact with the surface 2a which is not yet coated and both the sensors 7 and 8 measure a distance D3 to the surface 2a. When a region on which the coating 5 is formed has been passed by the distance sensor 7, the contact 7b is pushed up by the coating 5 whereby a distance D2 to the surface 5a of the coating 5 is measured. Since the contact 8a of the distance sensor 8 positioned ahead of the flame spray gun 12 in the moving direction thereof is still in contact with the surface 2a, the sensor 8 measures a distance D3. The distances D2 and D3 are outputted to arithmetic means as electric signals, a difference between the distances D2 and D3 is calculated and a result is detected as a coating thickness for one pass of the coating 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被膜の膜厚測定方法および装置に係わり、特
に、被膜材を母材へ溶射することによって形成される被
膜の膜厚を、被膜材の溶射工程中において測定する際に
好適に用いられる膜厚測定方法および装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for measuring the thickness of a coating, and in particular, to measuring the thickness of a coating formed by thermally spraying a coating material onto a base material. The present invention relates to a film thickness measuring method and apparatus that are suitably used when measuring a coating material during a thermal spraying process.

[従来の技術] 従来、溶射による被膜形成は、通常、被膜材を溶解しつ
つ母材へ向けて溶射する溶射ガンを、前記母材に沿って
多数回移動させ(以降、母材の一端部から他端部へ至る
1回の移動を1パスと称す≧、lパスあたり数十ミクロ
ンの厚さの被膜を母材上に形成することにより、最終的
には数十ミクロンから数百ミクロンの膜厚を得るように
している。
[Prior Art] Conventionally, coating formation by thermal spraying involves moving a thermal spray gun along the base material multiple times to melt the coating material and spray the base material (hereinafter, one end of the base material). One movement from one end to the other end is called one pass ≧ By forming a film with a thickness of several tens of microns on the base material per pass, the final film will have a thickness of several tens of microns to several hundred microns. We are trying to obtain the desired film thickness.

そして、母材に形成された被膜の膜厚を測定する方法と
して、例えば、円柱体の周面に被膜を形成する場合には
、以下に述べるような手段が採られている。
As a method for measuring the thickness of a coating formed on a base material, for example, when a coating is formed on the circumferential surface of a cylindrical body, the following method is adopted.

まず、全バス中の中間段階で溶射を中断し、この段階ま
でに形成された被膜の外径をマイクロメータ等によって
測定して中間チエツクを行う。
First, thermal spraying is interrupted at an intermediate stage during the entire bath, and an intermediate check is performed by measuring the outer diameter of the coating formed up to this stage with a micrometer or the like.

この情報をもとに、後段の溶射条件を設定して溶射を再
開し、全バス終了後において、再度、被膜の外径測定を
行って、設定膜厚との比較に基づき溶射の過不足を判定
して、溶射の継続の必要性を判別する。
Based on this information, the thermal spraying conditions for the subsequent stage are set and the thermal spraying is restarted.After all the baths are completed, the outer diameter of the coating is measured again, and based on the comparison with the set coating thickness, the thermal spraying is over or under-sprayed. to determine whether it is necessary to continue thermal spraying.

次いで、母材温度が室温まで低下したのちに、被膜外径
を測定し、その測定値から、室温状態における母材外径
を差し引いて最終的な膜厚を算出する。
Next, after the base material temperature has decreased to room temperature, the outer diameter of the coating is measured, and the final film thickness is calculated by subtracting the outer diameter of the base material at room temperature from the measured value.

[発明が解決しようとする課題] ところで、前述の方法によって被膜の膜厚を測定すると
、次のような不具合が生じる。
[Problems to be Solved by the Invention] By the way, when the thickness of the film is measured by the method described above, the following problems occur.

すなわち、溶射の中間段階および全バス終了段階のいず
れの段階においても、母材温度は100°〜200°と
高温であって熱膨張状態であり、かつ、その温度分布が
半径方向ならびに軸線方向において不均一であることか
ら、これらの段階で、母材温度が室温まで低下した際に
おける縮み代を精度よ(想定することが困難であるとい
った不具合である。
In other words, at both the intermediate stage of thermal spraying and the final stage of the entire bath, the base material temperature is as high as 100° to 200° and is in a state of thermal expansion, and the temperature distribution is in the radial and axial directions. Due to the non-uniformity, it is difficult to accurately estimate the amount of shrinkage at these stages when the base material temperature drops to room temperature.

このような不具合は、母材の外径が大きいほど顕著にな
る。
Such defects become more noticeable as the outer diameter of the base material increases.

そして、前述の不具合により、室温状態での最終的な測
定結果を待たなければ実際の膜厚の過不足の判定が行え
ず、したがって、母材の温度低下後において、膜厚が不
足した場合には再溶射を行い、過大な場合には研磨加工
あるいは切削加工等の後加工を施すという作業を余儀な
(されている。
Due to the above-mentioned problem, it is not possible to judge whether the actual film thickness is too large or too short without waiting for the final measurement results at room temperature. re-spraying, and if excessive, post-processing such as polishing or cutting is required.

しかしながら、再溶射においては、母材の予熱時間およ
び溶射後の除熱時間が数十時間と長いために、生産性や
コストへ大きな影響を与え、後者の後加工を施す場合に
おいては、溶射によって形成される被膜の硬度が高いた
めに、溶射処理以上の時間と費用がかかってしまう。
However, in re-spraying, the preheating time of the base material and the heat removal time after thermal spraying are long, several tens of hours, which has a large impact on productivity and costs. Because the hardness of the film formed is high, it takes more time and cost than thermal spraying.

また、中間段階において被膜の外径測定を行う場合、溶
射の中断により母材温度や環境温度が低下することから
、溶射を再開して新たな被膜を積層すると、既に形成さ
れている被膜と新たに形成される被膜との間の密着力が
減少して、両者間において剥離が生じる原因になるおそ
れがある。
In addition, when measuring the outer diameter of the coating at an intermediate stage, the base material temperature and the environmental temperature will drop due to the interruption of thermal spraying, so if thermal spraying is restarted and a new coating is laminated, the existing coating will overlap with the new coating. There is a risk that the adhesion between the film and the film formed on the film may decrease, causing peeling between the two.

したがって、従来においては前述の不具合への対処が望
まれており、本発明は、このような従来において残され
ている課題を解決せんとするものである。
Therefore, it has been desired to address the above-mentioned problems in the prior art, and the present invention is intended to solve these remaining problems in the prior art.

[課題を解決するための手段] 本発明は、前述の課題を有効に解決し得る被膜の測定方
法および装置の2つの発明を提供するもので、第1の態
様に係わる被膜の測定方法は、母材に沿って移動させら
れる溶射装置から溶射される被膜材によって前記母材表
面に形成される被膜の膜厚を測定するための膜厚測定方
法であって、溶射装置によって形成される新規被膜の表
面と、前記母材表面あるいは先行形成された被膜表面と
の間の段差を検出することにより被膜の厚さを測定する
ことを特徴とする。
[Means for Solving the Problems] The present invention provides two inventions, a coating measuring method and an apparatus, which can effectively solve the above-mentioned problems, and the coating measuring method according to the first aspect includes: A film thickness measuring method for measuring the film thickness of a coating formed on the surface of a base material by a coating material sprayed from a thermal spraying device that is moved along the base material, the method comprising: a new coating formed by the thermal spraying device; The method is characterized in that the thickness of the coating is measured by detecting a step difference between the surface of the substrate and the surface of the base material or the previously formed coating.

また、第2のt♂様に係わる被膜の膜厚測定装置4は、
母材に沿って移動させられる溶射装置から溶射される被
膜材によって前記母材表面に形成される被膜の膜厚を測
定するための膜厚測定装置であって、母材の表面から所
定距離をおいて配設された基台と、この基台に、前記溶
射装置の移動方向に沿って間隔をおいて設けられ、前記
母材に形成された被膜の表面と基台との距離あるいは母
材と基台との距離を検出する一対の距離センサと、これ
らの距離センサからの出力信号に基づき、両者の測定距
離の差を算出する演算手段とを備えていることを特徴と
する。
Further, the film thickness measuring device 4 for the film related to the second t♂ is as follows:
A film thickness measuring device for measuring the film thickness of a coating formed on the surface of a base material by a coating material sprayed from a thermal spraying device that is moved along the base material, the device being a base provided at intervals along the movement direction of the thermal spraying device, and a distance between the surface of the coating formed on the base material and the base or the base material; It is characterized by comprising a pair of distance sensors that detect the distance between the base and the base, and a calculation means that calculates the difference between the measured distances between the two based on output signals from these distance sensors.

[作用] 本発明の第1の態様によれば、溶射装置によって形成さ
れる新規の被膜表面と、この新規の被膜が形成される母
材表面あるいは先行して形成されている被膜表面との段
差を測定することにより、母材表面との相対的な位置関
係において被膜表面の位置検出を行う。
[Operation] According to the first aspect of the present invention, there is a difference in level between the surface of the new coating formed by the thermal spraying device and the surface of the base material on which the new coating is formed or the surface of the coating previously formed. By measuring , the position of the coating surface relative to the base material surface is detected.

これによって、母材に熱伸縮が生じた場合においても、
母材表面を基準として新規の被膜表面の位置が検出され
るから、母材の熱伸縮に拘わらず、被膜の膜厚の実厚さ
が測定される。
As a result, even when thermal expansion and contraction occurs in the base material,
Since the position of the new coating surface is detected with reference to the base material surface, the actual thickness of the coating can be measured regardless of thermal expansion and contraction of the base material.

また、第2の態様よれば、溶射装置によって母材表面に
新規の被膜が面方向に順次形成されると、溶射装置の移
動方向後方に位置する一方の距離センサによって前記新
規の被膜の表面位置が検出され、同時に、他方の距離セ
ンサによって、溶射装置の移動方向前方に位置する母材
表面あるいは先行して形成された被膜表面の位置が検出
される。
According to the second aspect, when a new coating is sequentially formed on the surface of the base material by the thermal spraying device, one distance sensor located at the rear in the moving direction of the thermal spraying device detects the surface position of the new coating. is detected, and at the same time, the position of the base material surface or the previously formed coating surface located in front of the moving direction of the thermal spraying device is detected by the other distance sensor.

そして、演算手段により、前記両距離センサにおける検
出値の差を演算することにより、母材表面あるいは先行
して形成されている被膜表面と新規の被膜表面との距離
、すなわち、膜厚が測定され、前記第1の態様に係わる
膜厚測定方法が有効に実施される。
Then, the distance between the base material surface or the previously formed coating surface and the new coating surface, that is, the coating thickness, is measured by calculating the difference between the detection values from both distance sensors using the calculation means. , the film thickness measuring method according to the first aspect is effectively implemented.

[実施例] 以下、本発明の一実施例を図面に基づき説明する。。[Example] Hereinafter, one embodiment of the present invention will be described based on the drawings. .

まず、本発明の第1の態様の説明に先立って、この第1
の態様の実施に好適に用いられる、第2の態様に係わる
膜厚測定装置の一実施例について説明する。
First, prior to explaining the first aspect of the present invention, this first aspect
An example of a film thickness measuring device according to the second aspect, which is suitably used to implement the aspect, will be described.

図中、符号1は、本実施例に係わる膜厚測定装置を示し
、この膜厚測定装置1は、円柱状の母材2への被膜形成
に適用されたもので、母材2に沿って移動させられる溶
射装置3から溶射される被膜材4によって前記母材2の
表面2aに形成される被膜5の膜厚tを測定するための
膜厚測定装置であって、母材2の表面2aから所定用1
!IDIをおいて配設された基台6と、この基台6に、
前記溶射装置3の移動方向に沿って間隔りをおいて設け
られ、前記母材2に形成された被膜5の表面5aと基台
6との距離あるいは母材2と基台6との距離を検出する
一対の距離センサ7・8と、これらの距離センサ7・8
からの出力信号に基づき、両者の測定距離D2・D3の
差を算出する演算手段9と、この演算手段9に電気的に
接続されたコントロールユニット10とを備えた概略構
成となっている。
In the figure, reference numeral 1 indicates a film thickness measuring device according to this embodiment, and this film thickness measuring device 1 is applied to forming a film on a cylindrical base material 2. This is a film thickness measuring device for measuring the film thickness t of the coating 5 formed on the surface 2a of the base material 2 by the coating material 4 sprayed from the moving thermal spraying device 3. From prescribed use 1
! A base 6 placed at an IDI, and on this base 6,
The distance between the surface 5a of the coating 5 formed on the base material 2 and the base 6 or the distance between the base material 2 and the base 6 is provided at intervals along the moving direction of the thermal spraying device 3. A pair of distance sensors 7 and 8 to detect and these distance sensors 7 and 8
The general configuration includes a calculation means 9 that calculates the difference between the measured distances D2 and D3 based on an output signal from the calculation means 9, and a control unit 10 electrically connected to the calculation means 9.

次いで、これらの詳細について説明する。Next, these details will be explained.

前記母材2は、その両端部においてクランプ機構11に
よって支持されているとともに、このクランプ機構11
により、軸線回りの一定方向に一定速度で回転させられ
るようになっている。
The base material 2 is supported by a clamp mechanism 11 at both ends thereof, and the clamp mechanism 11
This allows it to rotate at a constant speed in a constant direction around the axis.

前記溶射装置3は、前記母材2の表面2aから所定距離
(D4)離間した位置に、母材2の表面2aと対向状態
で配設され、粉末状の被覆材4を溶解して前記表面2a
へ吹き付ける溶射ガン12と、この溶射ガン12を母材
2の軸線と平行に往復移動させるマニピュレータ13と
、前記溶射ガン12へ粉末状の被覆材4を供給するホッ
パ14とを具備している。
The thermal spraying device 3 is disposed at a position facing the surface 2a of the base material 2 at a predetermined distance (D4) from the surface 2a of the base material 2, and melts the powder coating material 4 to coat the surface. 2a
A manipulator 13 that reciprocates the thermal spraying gun 12 parallel to the axis of the base material 2, and a hopper 14 that supplies the coating material 4 in powder form to the thermal spraying gun 12.

そして、前記マニビル−タ13およびホッパ14は、前
記コントロールユニット10の指令に基づき、溶射ガン
12を移動させ、また、溶射ガン12への被覆材4の供
給量の調整を行うようになっている。
The manibulator 13 and the hopper 14 move the thermal spray gun 12 based on commands from the control unit 10, and also adjust the amount of coating material 4 supplied to the thermal spray gun 12. .

前記基台6は、本実施例においては、前記母材2の一端
部(図中の左側の端部で、被膜5の形成が開始される側
の端部)に固定状態で配設されて、前記母材2との間隔
が保持されるようになっている。
In this embodiment, the base 6 is disposed in a fixed state at one end of the base material 2 (the left end in the figure, the end on which the coating 5 is started to be formed). , the distance from the base material 2 is maintained.

前記距離センサ7・8は、本実施例においてはダイアル
ゲージが用いられており、その固定部7a・8aにおい
て前記基台6に固定され、また、固定部7a・8aに相
対移動可能に装着される接触子7b・8bが、前記母材
2の表面2a、あるいは、被膜5の表面5aに常時接触
させられるようになっている。
The distance sensors 7 and 8 are dial gauges used in this embodiment, and are fixed to the base 6 at their fixed parts 7a and 8a, and are mounted to the fixed parts 7a and 8a so that they can move relative to each other. The contacts 7b and 8b are kept in constant contact with the surface 2a of the base material 2 or the surface 5a of the coating 5.

したがって、各距離センサ7・8は、前記基台6と母材
2の表面2aとの距離D1が一定に設定されていること
により、前記各接触子7b・8bの固定部7a・8aか
らの突出量が各距離センサ7・8の測定距離D2・D3
として置き換えられる。
Therefore, since the distance D1 between the base 6 and the surface 2a of the base material 2 is set constant, each distance sensor 7, 8 can detect the distance from the fixed part 7a, 8a of each contactor 7b, 8b. The amount of protrusion is the measured distance D2 and D3 of each distance sensor 7 and 8
be replaced as

一方、前記両距離センサ7・8間の間隔りは、溶射ガン
12によって溶射される被覆材4の溶射幅Wの3倍程度
に設定されている。
On the other hand, the distance between the distance sensors 7 and 8 is set to about three times the spray width W of the coating material 4 sprayed by the spray gun 12.

次いで、前記構成の膜厚測定装置lの作用とともに、本
発明の第2の態様の一実施例について説明する。
Next, an embodiment of the second aspect of the present invention will be described along with the operation of the film thickness measuring device 1 having the above structure.

まず、母材2への被覆材4の溶射に先立って、母材2の
予熱を行う。
First, prior to spraying the coating material 4 onto the base material 2, the base material 2 is preheated.

次いで、溶射ガン12を母材2の一端部へ移動させて位
置合わせしたのちに、母材2を回転させつつ溶射ガン1
2から溶解された被覆材4を前記母材2表面2aへ溶射
することにより、第2図に示すように、母材2の表面2
aに全周に亙って被膜5を形成する。
Next, the thermal spray gun 12 is moved to one end of the base material 2 and aligned, and then the thermal spray gun 1 is moved while rotating the base material 2.
By thermally spraying the coating material 4 melted from 2 onto the surface 2a of the base material 2, the surface 2 of the base material 2 is
A coating 5 is formed over the entire circumference of a.

この溶射操作に続いて、前記溶射ガン12を、第1図に
矢印(イ)で示すように、母材2の軸線と平行に移動さ
せつつ被覆材4の溶射を継続することにより、母材2の
表面2aの全面に1バス分の被膜5を形成する。
Following this thermal spraying operation, the thermal spraying gun 12 is moved parallel to the axis of the base material 2 as shown by the arrow (A) in FIG. 1 while continuing to spray the coating material 4 on the base material. A coating 5 for one bath is formed on the entire surface 2a of 2.

一方、膜厚測定装置1の両路離センサ7・8は、当初、
それぞれの接触子7b・8bの先端が朱?!覆状態の母
材2の表面2aに接触させられて、両者共に、母材2の
表面2aまでの距離D3を測定している。
On the other hand, the two-way separation sensors 7 and 8 of the film thickness measuring device 1 initially
Is the tip of each contact 7b and 8b vermilion? ! Both are brought into contact with the surface 2a of the base material 2 in the covered state, and the distance D3 to the surface 2a of the base material 2 is measured.

そして、前述のように一端部から他端部へ向かう被膜5
の形成の進行に伴い、第2図に示すように、新規の被膜
5の形成領域が溶射ガン12の移動方向後方に位置する
距離センサ7を通過させられると、この新規の被膜5に
よって距離センサ7の接触子7bが押し上げられること
により、この新規の被膜5の表面5aまでの距離D2が
測定される。
Then, as described above, the coating 5 extends from one end to the other end.
As the formation of the new coating 5 progresses, as shown in FIG. By pushing up the contact 7b of No. 7, the distance D2 to the surface 5a of the new coating 5 is measured.

ここで、溶射ガフ12の移動方向前方に位置する距離セ
ンサ8は、その接触子8aが未だ母材2の表面2aに接
触させれていることから、母材2の表面2aまでの距離
D3を測定している。
Here, the distance sensor 8 located in front of the moving direction of the thermal spray gaff 12 detects the distance D3 to the surface 2a of the base material 2 because its contact 8a is still in contact with the surface 2a of the base material 2. Measuring.

このようにして測定された各距離D2・D3は、電気信
号として演算手段9へ出力され、この演算手段9により
、前記両路MD2と距離D3との差が演算され、その演
算結果が、新規の被膜5の1バス分の膜厚tとして検出
される。
Each of the distances D2 and D3 measured in this way is output as an electric signal to the calculation means 9, and the calculation means 9 calculates the difference between the two paths MD2 and the distance D3, and the calculation result is used as a new It is detected as the film thickness t of one bus of the coating 5.

一方、第2図に示すように、新規の被膜5の一端部(第
2図の右側の端部)には、厚さの不均一な過渡領域Cが
形成されるが、この過渡領域Cの部分の測定値は、例え
ば、タイマー等によって無視される。
On the other hand, as shown in FIG. 2, a transition region C with non-uniform thickness is formed at one end of the new coating 5 (the right end in FIG. 2). The measurement value of the part is ignored, for example by a timer.

このような母材2の一端部から他端部へ向かう方向への
被膜5の形成操作を完了したのちに、第1図に矢印(ロ
)で示すように、溶射ガン12を逆方向へ移動させつつ
、1バス目に形成された被膜50表面5a上に、2バス
目の被膜5を形成する。
After completing the operation of forming the coating 5 in the direction from one end of the base material 2 to the other end, the thermal spray gun 12 is moved in the opposite direction as shown by the arrow (b) in FIG. While doing so, the coating 5 of the second bath is formed on the surface 5a of the coating 50 formed in the first bath.

このとき、距離センサ7・8は、2バス目の新規な被膜
5の形成がその下方まで進行する間、両路離センサ7・
8ともに、1バス目において形成された被膜5の表面5
aまでの距離D2を測定しており、さらなる新規の被膜
5の形成の進行に伴い、各距離センサ7・8が、1バス
目とは逆の順序で作動させられて、2バス目の被膜5の
膜厚が測定される。
At this time, while the formation of the new coating 5 of the second bus progresses to the bottom thereof, the distance sensors 7 and 8 are activated.
8, the surface 5 of the coating 5 formed in the first bath.
As the formation of a new coating 5 progresses, each distance sensor 7 and 8 is operated in the reverse order of the first bus, and the distance D2 to the second bus is measured. The film thickness of No. 5 is measured.

これらの各パス毎に測定された膜厚tは、演算手段9に
おいて積算されるとともに、最終パスよりも1バス前の
被膜形成が終了した時点で、予め設定されている膜厚T
と比較され、この比較結果ニ基ツキコントロールユニッ
ト10カラホッパ14へ信号が出力されて、溶射ガン1
2への被覆材4の供給量が調整されることにより、最終
パスにおいて形成すべき膜厚が制御される。
The film thickness t measured for each of these passes is integrated in the calculating means 9, and at the time when film formation is completed one bus before the final pass, the film thickness T measured in advance is calculated.
Based on the comparison result, a signal is output to the control unit 10 and color hopper 14, and the thermal spray gun 1 is
By adjusting the amount of coating material 4 supplied to coating material 2, the thickness of the film to be formed in the final pass is controlled.

このようにして被膜5の膜厚tを測定すると、形成され
る新規の被膜5の表面5aと母材2や先行して形成され
た被膜5の表面5aとの差によって膜厚tが測定される
から、形成される被膜5の表面5aと裏面間の距離が測
定されて、結果的に、実際の膜厚tを測定することとな
る。
When the film thickness t of the coating 5 is measured in this way, the film thickness t is measured based on the difference between the surface 5a of the newly formed coating 5 and the surface 5a of the base material 2 or the coating 5 previously formed. Therefore, the distance between the front surface 5a and the back surface of the coating 5 to be formed is measured, and as a result, the actual film thickness t is measured.

しかも、前記膜厚tの測定が、母材2の表面2aや、先
行して形成された被膜5の表面5aを基準として行われ
るから、母材2に熱膨張が生じた状・態においても、あ
るいは、母材2を回転させる際に芯ずれが生じた状態に
おいても、これらの変位に追従して、膜厚測定の基準面
が変化し、この変化した基準面に基づき膜厚測定が行わ
れるから、膜厚tの測定結果に影響はない。
Moreover, since the film thickness t is measured with reference to the surface 2a of the base material 2 and the surface 5a of the coating 5 previously formed, even when the base material 2 undergoes thermal expansion, Alternatively, even in a state where misalignment occurs when rotating the base material 2, the reference plane for film thickness measurement changes following these displacements, and the film thickness measurement is performed based on this changed reference plane. Therefore, the measurement result of the film thickness t is not affected.

したがって、高精度の被膜形成が可能となり、被膜形成
後の後加工が不要ないしは大幅に軽減される。
Therefore, it is possible to form a film with high precision, and post-processing after the film is formed is unnecessary or significantly reduced.

また、測定操作が、被膜5の形成作業と同時に実施され
るので、作業の中断がなく、作業性ならびに生産コスト
の面でも有利である。
Furthermore, since the measurement operation is carried out simultaneously with the work of forming the coating 5, there is no interruption of the work, which is advantageous in terms of workability and production cost.

さらに、被膜Sを多層状に積層する場合において、温度
条件を一定に保持でき、したがって、従来において不具
合とされていた各層間における密着力の低下が抑制され
るとともに、被膜5間の剥離が抑制される。
Furthermore, when the coatings S are laminated in multiple layers, the temperature conditions can be kept constant, and therefore, a decrease in adhesion between each layer, which has been considered a problem in the past, is suppressed, and peeling between the coatings 5 is suppressed. be done.

なお、前記実施例は一例であって、適用する母材2の種
類や形成する被膜の種類、あるいは、設計要求等に基づ
き種々変更可能である。
Note that the above-mentioned embodiments are merely examples, and various changes can be made based on the type of base material 2 to be applied, the type of coating to be formed, design requirements, etc.

例えば、前記実施例においては、円柱状の母材2に被膜
5を形成する場合について例示したが、平板状のものへ
の適用も可能である。
For example, in the embodiment described above, the coating 5 is formed on the cylindrical base material 2, but the present invention can also be applied to a flat plate.

また、距離センサは、一対に限らず3個あるいはそれ以
上設置することも可能であり、さらに、溶射ガン12と
同様に、母材に対して相対移動させるようにしてもよい
Further, the number of distance sensors is not limited to one pair, but three or more distance sensors may be installed.Furthermore, like the thermal spray gun 12, they may be moved relative to the base material.

また、距離センサとしては、レーザ変位計、磁気変位計
、あるいは、超音波変位計等を使用してもよい。
Further, as the distance sensor, a laser displacement meter, a magnetic displacement meter, an ultrasonic displacement meter, or the like may be used.

距離センサを移動させるようにすると、形成される被膜
5の全面に亙ってその膜厚tの管理が行え、これを溶射
装置へフィードパ・ツクすることにより、−層均一な被
膜形成が可能となる。
By moving the distance sensor, the film thickness t can be controlled over the entire surface of the coating 5 to be formed, and by feeding this to the thermal spraying device, it is possible to form a uniform coating. Become.

さらに、前記実施例においては、最終パスにおいて形成
される膜厚tを調整することにより、最終的な設定膜厚
Tとする例について示したが、各パス毎に、そのパスに
設定された膜厚との比較を行うとともに、各パス毎に膜
厚調整を行うようにすることもできる。
Furthermore, in the above embodiment, an example was shown in which the final set film thickness T is obtained by adjusting the film thickness t formed in the final pass. It is also possible to compare the thickness and adjust the film thickness for each pass.

[発明の効果] 以上説明したように、本発明の第1の態様によれば、被
膜を形成する母材に熱伸縮が生じた場合においても、母
材表面や先行して形成されている被膜の表面を基準とし
て新規の被膜表面位置を検出し、これによって、母材の
熱伸縮に拘わらず膜厚の実厚さが測定される。
[Effects of the Invention] As explained above, according to the first aspect of the present invention, even when thermal expansion and contraction occurs in the base material on which the coating is formed, the surface of the base material and the coating previously formed are The new coating surface position is detected using the surface of the base material as a reference, and thereby the actual thickness of the coating is measured regardless of thermal expansion and contraction of the base material.

したがって°、高精度の膜厚測定を行うことができ、こ
れに伴い、形成される被膜の膜厚の過不足をなくして均
一な被膜を形成することができるとともに、後加工等の
作業を軽減して、作業性の向上ならびに生産コストの低
減を図ることができる等の優れた効果を奏する。
Therefore, it is possible to measure the film thickness with high precision, and with this, it is possible to form a uniform film by eliminating excess or deficiency of the film thickness, and to reduce the work such as post-processing. This provides excellent effects such as improving workability and reducing production costs.

また、第2の態様よれば、溶射装置によって母材表面に
新規の被膜か面方向に順次形成されると、一方の距離セ
ンサによって前記新規の被膜の表面位置を検出し、同時
に、他方の距離センサによって、母材表面あるいは先行
して形成された被膜表面の位置を検出し、そして、演算
手段により、前記両路離センサにおける検出値の差を演
算することにより、母材表面あるいは先行して形成され
ている被膜表面と新規の被膜表面との距離、すなわち、
膜厚を測定することができ、これによって、前記第1の
態様に係わる膜厚測定方法を有効に実施することができ
る。
Further, according to the second aspect, when a new coating is sequentially formed on the surface of the base material by the thermal spraying device, one distance sensor detects the surface position of the new coating, and at the same time, the other distance is detected. The sensor detects the position of the base material surface or the previously formed coating surface, and the calculation means calculates the difference between the detection values of the two path separation sensors. The distance between the formed coating surface and the new coating surface, i.e.
The film thickness can be measured, thereby making it possible to effectively implement the film thickness measuring method according to the first aspect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は一実施
例を備えた溶射装置の一例を示す概略平面図、第2図は
要部の拡大図である。 1・・・・・・・・・膜厚測定装置、    2・・・
母材、3・・・・・・・・・溶射装置、     4・
・・被覆材、5・・・・・・・・・被膜、      
 6・・・基台、7・8・・・距離センサ、    9
・・・演算手段。
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic plan view showing an example of a thermal spraying apparatus equipped with one embodiment, and FIG. 2 is an enlarged view of the main parts. 1... Film thickness measuring device, 2...
Base material, 3... Thermal spraying equipment, 4.
...Covering material, 5...Coating,
6... Base, 7.8... Distance sensor, 9
...Calculation means.

Claims (2)

【特許請求の範囲】[Claims] (1)母材に沿って移動させられる溶射装置から溶射さ
れる被膜材によって前記母材に形成される被膜の膜厚を
測定するための膜厚測定方法であって、溶射装置によっ
て形成される新規被膜の表面と、前記母材表面あるいは
先行形成された被膜表面との間の段差を検出することに
より被膜の厚さを測定することを特徴とする被膜の膜厚
測定方法
(1) A film thickness measuring method for measuring the film thickness of a coating formed on a base material by a coating material sprayed from a thermal spraying device that is moved along the base material, the coating being formed by the thermal spraying device. A method for measuring the thickness of a coating, characterized in that the thickness of the coating is measured by detecting a step between the surface of the new coating and the surface of the base material or the surface of the previously formed coating.
(2)母材に沿って移動させられる溶射装置から溶射さ
れる被膜材によって前記母材表面に形成される被膜の膜
厚を測定するための膜厚測定装置であって、母材の表面
から所定距離をおいて配設された基台と、この基台に、
前記溶射装置の移動方向に沿って間隔をおいて設けられ
、前記母材に形成された被膜の表面と基台との距離ある
いは母材と基台との距離を検出する一対の距離センサと
、これらの距離センサからの出力信号に基づき、両者の
測定距離の差を算出する演算手段とを備えていることを
特徴とする被膜の膜厚測定装置
(2) A film thickness measuring device for measuring the film thickness of a coating formed on the surface of the base material by a coating material sprayed from a thermal spraying device that is moved along the base material, the device comprising: A base placed at a predetermined distance, and on this base,
a pair of distance sensors that are provided at intervals along the moving direction of the thermal spraying device and detect the distance between the surface of the coating formed on the base material and the base or the distance between the base material and the base; A film thickness measuring device for a film, characterized in that it is equipped with a calculation means for calculating the difference between the measured distances based on the output signals from these distance sensors.
JP8616489A 1989-04-05 1989-04-05 Measuring coating thickness and instrument for the same Pending JPH02264810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8616489A JPH02264810A (en) 1989-04-05 1989-04-05 Measuring coating thickness and instrument for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8616489A JPH02264810A (en) 1989-04-05 1989-04-05 Measuring coating thickness and instrument for the same

Publications (1)

Publication Number Publication Date
JPH02264810A true JPH02264810A (en) 1990-10-29

Family

ID=13879110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8616489A Pending JPH02264810A (en) 1989-04-05 1989-04-05 Measuring coating thickness and instrument for the same

Country Status (1)

Country Link
JP (1) JPH02264810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180436A (en) * 2009-02-04 2010-08-19 Nikon Corp Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180436A (en) * 2009-02-04 2010-08-19 Nikon Corp Particle jet film deposition system for continuous film deposition of foil substrate, and continuous film deposition method of foil substrate

Similar Documents

Publication Publication Date Title
US8315834B2 (en) System and method for measuring coating thickness
EP0007207B1 (en) Method and apparatus for applying a covering of material to a workpiece
CN102449430B (en) Dry coating thickness measurement method and instrument
US10801098B2 (en) Adaptive robotic thermal spray coating cell
EP2031347B1 (en) Method and apparatus for measuring coating thickness with a laser
US6120833A (en) Method and device for measuring the thickness of an insulating coating
JP4389195B2 (en) Thermal spray system and thermal spray method
US8176777B2 (en) Device and method for measuring layer thicknesses
CN112432601A (en) Sensor device
EP2474823A1 (en) Corrosion sensor and method for manufacturing a corrosion sensor
EP2522950A1 (en) Method and device for measuring layer thickness
CN107209010A (en) Method and application system for coating cavity wall
US6961133B2 (en) Method and apparatus for non-contact thickness measurement
CN108655537A (en) A kind of robot compensates welding method automatically
CN109648172B (en) Arc voltage assisted GTA additive manufacturing melt width detection visual system real-time calibration method
US11592281B2 (en) Predetermining the thickness of a coating
JPH02264810A (en) Measuring coating thickness and instrument for the same
JP2000346635A (en) Method and apparatus for controlling thickness of coating film
JPH0291533A (en) Method and device for measuring temperature of circumferential surface of rotating roll
CN114778158B (en) Self-checking system and method of 3D printing device
JPH01320422A (en) Method and instrument for measuring pipe shape
Hudomalj et al. Analysis and Comparison of In Situ Coating Thickness Measurements Using Two Different Sensing Techniques
JPH0821719A (en) On-line method for measuring coated-film thickness
Hudomalj et al. A Novel Approach to In Situ Coating Thickness Measurements in Thermal Spraying
JPH045511A (en) Film thickness measuring instrument