JP2010180380A - Glass-coated phosphorescent light emitter particle and method of manufacturing the same - Google Patents

Glass-coated phosphorescent light emitter particle and method of manufacturing the same Download PDF

Info

Publication number
JP2010180380A
JP2010180380A JP2009027694A JP2009027694A JP2010180380A JP 2010180380 A JP2010180380 A JP 2010180380A JP 2009027694 A JP2009027694 A JP 2009027694A JP 2009027694 A JP2009027694 A JP 2009027694A JP 2010180380 A JP2010180380 A JP 2010180380A
Authority
JP
Japan
Prior art keywords
glass
phosphor
particles
layer
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009027694A
Other languages
Japanese (ja)
Inventor
Hiroshi Mizukami
博 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arise Corporate Corp
Original Assignee
Arise Corporate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arise Corporate Corp filed Critical Arise Corporate Corp
Priority to JP2009027694A priority Critical patent/JP2010180380A/en
Priority to PCT/JP2010/051788 priority patent/WO2010090312A1/en
Priority to TW099103782A priority patent/TW201036924A/en
Publication of JP2010180380A publication Critical patent/JP2010180380A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/12Polymers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing phosphorescent light emitter particles with excellent water resistance and with uniform particle size and phosphor distribution. <P>SOLUTION: On a temporary retaining member, (1) a mask having periodically arranged holes is mounted, and multiple mixture layers (A) are formed by screen printing a mixture of glass fine particles and a resin adhesive agent; (2) before the resin adhesive agent cures, a mixture of phosphor particles and glass particles are spread on the mixture layers (A) to form a phosphor layer (B) thereon; (3) the mask used in step (1) is aligned and mounted on the phosphor layer (B) and a mixture layer (A) is formed by screen printing a mixture of glass fine particles and a resin adhesive agent; (4) by repeating step (2) and step (3) as needed, a granular laminate is formed with three layers or five or more layers where the mixture layer (A) and the phosphor layer (B) are stacked alternately; and (5) glass-coated phosphorescent light emitter particles are manufactured by firing the granular laminate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば避難誘導用の標識や誘導ライン、道路の白線等あるいは装飾模様等に用いられる蓄光性発光体粒子及びその製造方法に関し、特に、耐水性に優れ、輝度ムラの少ない蓄光性発光体粒子及びその製造方法に関するものである。   The present invention relates to phosphorescent phosphor particles used for, for example, signs for evacuation guidance, guidance lines, road white lines, or decorative patterns, and a method for producing the same, and in particular, phosphorescent luminescence with excellent water resistance and low luminance unevenness. The present invention relates to body particles and a method for producing the same.

近年、紫外線等によって励起し、かなりの長時間残光が観測される蓄光性発光体、例えば、MAl24(Mはカルシウム、ストロンチウム又はバリウム)を母結晶とし、ユウロピウム等のランタノイドで賦活する蓄光性発光体(特許文献1)が開発されている。 In recent years, phosphorescent phosphors that are excited by ultraviolet rays or the like and have long afterglow observed, for example, MAl 2 O 4 (M is calcium, strontium, or barium) are used as mother crystals and activated by lanthanoids such as europium. A luminous phosphor (Patent Document 1) has been developed.

このような蓄光性発光体は、避難誘導用の標識や誘導ライン等に利用されているが、蓄光性発光体単独では容易に加水分解されるので、雨水等に触れる屋外での使用が耐久性の観点で欠点があった。そのため、蓄光性発光体とセラミック母材とを混合焼成した後粉砕する方法(特許文献2,3)、仮保持部材上に蓄光性発光体粒子とガラス粒子とを混合した混合部材層を形成させ、仮保持部材を剥離後、焼成−粉砕−再焼成する方法(特許文献4)などの方法で、蓄光性発光体を被覆して、耐水性を改善した蓄光性発光体粒子として使用することが提案されている。   Such phosphorescent illuminants are used for evacuation guidance signs, guide lines, etc., but the phosphorescent illuminator alone is easily hydrolyzed, so it is durable to use outdoors that touch rainwater etc. There were drawbacks in terms of Therefore, a method of pulverizing a phosphorescent phosphor and a ceramic base material after mixing and firing (Patent Documents 2 and 3), and forming a mixed member layer in which phosphorescent phosphor particles and glass particles are mixed on a temporary holding member. In addition, after the temporary holding member is peeled off, it is possible to use the phosphorescent phosphor particles with improved water resistance by covering the phosphorescent phosphor by a method such as firing-grinding-refiring (Patent Document 4). Proposed.

特許第2543825号公報Japanese Patent No. 2543825 特許第3580652号公報Japanese Patent No. 3580652 特許第3580653号公報Japanese Patent No. 3580653 特開2007−112685号公報JP 2007-112585 A

ところが、前記蓄光性発光体粒子の製造方法では、蓄光体とセラミック母材又はガラス材を混合し焼成した後、粉砕することにより蓄光性発光体粒子としているため、蓄光性発光体がガラス材等で十分に被覆できず、耐水性の問題点が十分に解決されていなかった。また、ここの発光体粒子の中に、発光体が均一量に配合されず、個々の粒子ごとに発光輝度にムラが生じるという課題があった。また、粉砕により粒子化しているため、粒子の大きさが不揃い、すなわち粒度分布が大きく、同じく、輝度ムラが生じるという課題もあり、所望の粒径の発光体を得るために篩い分けが必要であったため、歩留まりが低く、生産コストに問題があった。   However, in the manufacturing method of the phosphorescent phosphor particles, the phosphorescent phosphor is made of a glass material or the like because the phosphorescent phosphor and the ceramic base material or the glass material are mixed and fired and then pulverized to form phosphorescent phosphor particles. However, the problem of water resistance was not sufficiently solved. In addition, the phosphor particles are not mixed in a uniform amount in the phosphor particles here, and there is a problem that unevenness occurs in emission luminance for each particle. In addition, since the particles are formed by pulverization, there is a problem that the sizes of the particles are uneven, that is, the particle size distribution is large and the luminance unevenness is similarly generated. Therefore, the yield was low and the production cost was problematic.

本発明は、上記課題に鑑みてなされたものであり、その目的は、ガラスで蓄光性発光体粒子が実質的にほぼ全て被覆され、耐水性が格別に向上した蓄光性発光体粒子、並びに、発光体粒子の大きさが均一であり、かつ各粒子にほぼ均一に蓄光体を同一量含有するガラス被覆蓄光性発光体粒子を得ること、及び、その製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the purpose thereof is a phosphorescent phosphor particle in which substantially all phosphorescent phosphor particles are coated with glass and water resistance is significantly improved, and An object of the present invention is to obtain glass-coated phosphorescent phosphor particles having uniform phosphor particles and containing the same amount of phosphor in each particle almost uniformly and to provide a method for producing the same.

本発明では、同一径の穴が多数形成されたマスクを用いたスクリーン印刷を用いて、仮保持部材上に、ガラス微粒子及び樹脂接着材の混合物層を多数点形成し、その点上に、蓄光体粒子とガラス粒子を含有する蓄光体粒子層を形成し、更にその上に、前記マスクを使用して、ガラス微粒子及び樹脂接着材の混合物層を形成し、必要に応じて蓄光体粒子層と混合物層の形成を繰り返してさらに積層させ、その後、粒子状積層体を焼成することにより、粒径が均一で、かつ各粒子に蓄光体が均一量に配合され、かつ、実質的にガラスで蓄光性発光対粒子が被覆された蓄光性発光体粒子を製造することにより、前記課題を解決した。   In the present invention, a plurality of glass fine particle and resin adhesive mixture layers are formed on a temporary holding member using screen printing using a mask in which a large number of holes having the same diameter are formed. A phosphor particle layer containing body particles and glass particles is formed, and a mixture layer of glass fine particles and a resin adhesive is further formed thereon using the mask, and if necessary, a phosphor particle layer and By repeating the formation of the mixture layer and further laminating, and then firing the particulate laminate, the particle size is uniform, and the phosphor is blended in a uniform amount in each particle, and is substantially phosphorescent with glass. The above-mentioned problems have been solved by producing phosphorescent phosphor particles coated with phosphorescent particles.

すなわち、本発明の第1の要旨は、
(1)同一径を有する穴を多数形成したマスクを載せ、仮保持部材上に、ガラス微粒子及び樹脂接着剤の混合物をスクリーン印刷することにより混合物層(A)を多数点形成させ、
(2)前記混合物層(A)が固化する前に、前記混合物層(A)上に、蓄光体粒子及びガラス粒子の混合粒子を配置して前記混合物層(A)上に蓄光体層(B)を形成させ、
(3)(1)工程で用いたマスク板と仮保持部材の位置を合わせて載せ、前記蓄光体層(B)の上に、ガラス微粒子及び樹脂接着剤の混合物をスクリーン印刷して混合物層(A)を形成し、
(4)必要に応じて(2)工程及び(3)工程を繰り返すことにより、3層又は5層以上に混合物層(A)と蓄光体層(B)を交互に積層させた粒状積層体を仮保持部材上に多数点形成し、
(5)前記粒状積層体を仮保持部材を剥離し又は仮保持部材を剥離せずに前記粒状積層体を焼成することを特徴とする、ガラス被覆蓄光性発光体粒子の製造方法、に存する。
That is, the first gist of the present invention is as follows.
(1) A mask in which a large number of holes having the same diameter are formed is placed, and a plurality of mixture layers (A) are formed on a temporary holding member by screen printing a mixture of glass fine particles and a resin adhesive,
(2) Before the mixture layer (A) is solidified, the phosphor particles and glass particles are arranged on the mixture layer (A), and the phosphor layer (B) is placed on the mixture layer (A). )
(3) The mask plate used in the step (1) and the temporary holding member are aligned and placed on the phosphor layer (B) by screen printing a mixture of glass fine particles and a resin adhesive. A),
(4) A granular laminate in which the mixture layer (A) and the phosphor layer (B) are alternately laminated in three layers or five or more layers by repeating the steps (2) and (3) as necessary. Many points are formed on the temporary holding member,
(5) The present invention resides in a method for producing glass-coated luminous phosphor particles, wherein the granular laminate is fired without peeling the temporary holding member or without peeling the temporary holding member.

前記混合物層(A)に用いるガラス微粒子は、樹脂接着剤と混合してスクリーン印刷が可能な大きさのガラス粒子でいずれでもよいが、蓄光体をガラス被覆しやすくするため、軟化温度の低いものが好ましく、粒径5〜30μmのガラスフリットが特に好ましい。前記混合物層(A)に用いる樹脂接着剤は、スクリーン印刷が可能であればいずれでもよい。   The glass fine particles used for the mixture layer (A) may be any glass particles that can be mixed with a resin adhesive and screen-printed, but have a low softening temperature so that the phosphor can be easily coated with glass. A glass frit having a particle size of 5 to 30 μm is particularly preferable. The resin adhesive used for the mixture layer (A) may be any as long as screen printing is possible.

前記蓄光体層(B)に用いるガラス粒子と蓄光体粒子は、お互いの粒子の大きさが同程度であることが好ましく、通常、ガラス粒子の大きさが蓄光体粒子の大きさの0.5〜2倍の範囲となるようにガラス粒子と蓄光体粒子が選択される。蓄光体層(B)は、混合物層(A)が固化する前に、その上に配置して、混合物層(A)中の接着剤に接着することにより層形成されることから、ガラス粒子または蓄光体粒子の粒径が蓄光体層(B)の厚さとなる。このため、蓄光体粒子及びガラス粒子の大きさは、所望の蓄光体層(B)の厚さに合わせて適宜選択される。   The glass particles and the phosphor particles used in the phosphor layer (B) preferably have the same size as each other. Usually, the size of the glass particles is 0.5 that of the phosphor particles. Glass particles and phosphor particles are selected so as to be in the range of ˜2 times. Since the phosphor layer (B) is formed by adhering to the adhesive in the mixture layer (A) before the mixture layer (A) is solidified, it is formed into a layer. The particle diameter of the phosphor particles is the thickness of the phosphor layer (B). For this reason, the magnitude | size of the phosphor particle and the glass particle is suitably selected according to the thickness of the desired phosphor layer (B).

蓄光体層(B)中のガラス粒子と蓄光体粒子の重量比は、7:3〜9:1の範囲が好ましい。ガラス粒子の量が少ないと、焼成後の蓄光性発光体粒子において、蓄光体粒子が完全にガラスで被覆されず、好ましくない。他方、蓄光体粒子の相対量が少なすぎると、蓄光性発光体粒子の輝度が小さくなるので好ましくない。   The weight ratio of the glass particles and the phosphor particles in the phosphor layer (B) is preferably in the range of 7: 3 to 9: 1. If the amount of glass particles is small, the phosphor particles after firing are not preferable because the phosphor particles are not completely covered with glass. On the other hand, if the relative amount of the phosphor particles is too small, the luminance of the phosphor particles is decreased, which is not preferable.

混合物層(A)と蓄光体層(B)の積層を3層とするか5層以上とするかは、マスクの穴径に応じて決められる。得られる蓄光性発光体粒子をより球形に近づけるためには、焼成により混合物層中の樹脂接着剤が除去され、粒子状積層体の厚さ方向に縮むため、焼成前の粒子状積層体の合計厚さが、マスクの穴の直径の1.5〜3倍、好ましくは2倍前後とする。混合物層(A)の厚さは、スクリーン印刷に用いるマスクの板厚と概ね同じとなり、蓄光体層(B)の厚さは蓄光体粒子またはガラス粒子の粒径と概ね同じとなるから、使用するマスクの穴径と板厚並びに蓄光性発光体粒子の粒径が決まれば、必要な積層回数が決まることになる。   Whether the laminate of the mixture layer (A) and the phosphor layer (B) is 3 layers or 5 layers or more is determined according to the hole diameter of the mask. In order to make the obtained luminous phosphor particles closer to a spherical shape, the resin adhesive in the mixture layer is removed by firing and shrinks in the thickness direction of the particulate laminate, so the total of the particulate laminate before firing The thickness is 1.5 to 3 times, preferably around 2 times the diameter of the mask hole. The thickness of the mixture layer (A) is approximately the same as the thickness of the mask used for screen printing, and the thickness of the phosphor layer (B) is approximately the same as the particle size of the phosphor particles or glass particles. If the hole diameter and thickness of the mask to be masked and the particle diameter of the luminous phosphor particles are determined, the required number of laminations is determined.

前記粒状積層体の載置された仮保持部材の焼成は、焼成炉で300〜500℃で1時間以上加熱して、粒状積層体中の樹脂接着剤を炭化しないように焼いて除去し、次いで600〜800℃に焼成して各ガラス粒子を融着させて、ガラスで実質的にすべて被覆された蓄光性発光体粒子を形成させる。   Firing of the temporary holding member on which the granular laminate is placed is heated at 300 to 500 ° C. for 1 hour or longer in a firing furnace, and is removed by baking so as not to carbonize the resin adhesive in the granular laminate. The glass particles are fired at 600 to 800 ° C. to fuse the glass particles to form luminous phosphor particles that are substantially entirely covered with glass.

前記の焼成の際に、粒状積層体の間隔をあけて樹脂薄層上に形成させ、粒状積層体が樹脂薄層に付着したまま焼成すると、粒状積層体同士がくっつくことを防止できる。そこで、スクリーン印刷のマスクでは、形成された穴と穴の間隔を、穴の直径以上とするのが好ましいが、間隔を開けすぎると、一度のスクリーン印刷で形成される混合物層(A)の点数が少なくなるので、生産効率が落ちることになる。また、穴の配置は周期的にすることが、生産効率上、好ましい。   At the time of the firing, when the granular laminate is formed on the resin thin layer with an interval, and the granular laminate is fired while adhering to the resin thin layer, the granular laminates can be prevented from sticking to each other. Therefore, in the screen printing mask, it is preferable that the distance between the formed holes is equal to or larger than the diameter of the holes. However, if the distance is too large, the number of points of the mixture layer (A) formed by one screen printing is obtained. This reduces production efficiency. Further, it is preferable in terms of production efficiency that the holes are arranged periodically.

基材に水溶性表面を形成し、さらにその上に水不溶性樹脂薄層を形成した仮保持部材にスクリーン印刷し、仮保持部材を水に短時間浸漬することにより、粒状積層体が樹脂薄層に付着したものが容易に作製できる。 By forming a water-soluble surface on the base material and further screen-printing on a temporary holding member on which a water-insoluble resin thin layer is formed, and immersing the temporary holding member in water for a short time, the granular laminate becomes a resin thin layer. Can be easily produced.

また、本発明の第2の要旨は、蓄光性発光体粒子を水中に室温で48時間浸漬させた後の初期輝度が、水中に浸漬させる前の初期輝度の85%以上であることを特徴とするガラス被覆蓄光性発光体粒子にある。   The second gist of the present invention is characterized in that the initial luminance after the phosphorescent phosphor particles are immersed in water at room temperature for 48 hours is 85% or more of the initial luminance before being immersed in water. The glass-coated luminous phosphor particles are

本発明によれば、粒径が均一で、各粒子に蓄光体が均一に分布する、耐水性に優れたガラス被覆蓄光性発光体粒子が簡単に製造できる。また、マスクの穴の径を変更することによって、所望の粒径の蓄光性発光体粒子を得ることができる。また、本発明の蓄光性発光体粒子は粒径が揃っているため、篩い分けが不要となり、歩留まりが向上する。   According to the present invention, glass-coated phosphorescent phosphor particles having a uniform particle size and a uniform distribution of phosphorescent particles on each particle and excellent in water resistance can be easily produced. Moreover, the luminous phosphor particles having a desired particle diameter can be obtained by changing the hole diameter of the mask. Moreover, since the luminous phosphor particles of the present invention have a uniform particle size, sieving is not required, and the yield is improved.

本発明の製造方法の説明図Explanatory drawing of the manufacturing method of this invention

以下、図面を用いて、本発明の実施形態を説明するが、本発明はその要旨を超えない限り、これらの実施形態に限定されるものではない。
図1は、本発明の製造方法の実施形態の説明図である。
図1のように、仮保持部材の基材1(例えば厚紙)の表面に、水可溶性表面2(例えばデキストリン)を形成させ、さらにその上に樹脂薄層3(例えばアクリル樹脂接着剤を塗布し硬化させた薄層)を形成させたものを用意し(図1のI)、その樹脂薄層3上に、所望の大きさの穴(例えば直径1000μm)が周期的に空いているマスク4を置き、ガラス微粒子及び樹脂接着剤からなる混合物をスクリーン印刷することにより混合物層(A)を形成させる(図1のII)。
Hereinafter, although embodiment of this invention is described using drawing, this invention is not limited to these embodiment, unless the summary is exceeded.
FIG. 1 is an explanatory diagram of an embodiment of the manufacturing method of the present invention.
As shown in FIG. 1, a water-soluble surface 2 (for example, dextrin) is formed on the surface of a substrate 1 (for example, cardboard) of a temporary holding member, and a resin thin layer 3 (for example, an acrylic resin adhesive is applied thereon). A hardened layer is prepared (I in FIG. 1), and a mask 4 in which holes of a desired size (for example, a diameter of 1000 μm) are periodically vacated is formed on the resin thin layer 3. Then, the mixture layer (A) is formed by screen-printing the mixture composed of the glass fine particles and the resin adhesive (II in FIG. 1).

マスクの穴と穴相互の間隔は、マスク穴の直径より大きいことが望ましい。例えばマスク穴の直径が500μmの場合、穴と穴の間隔は500μm以上が好ましく、より好ましくは1〜1.5mmである。マスクの板厚は、特に限定されないが、マスクの穴の直径の半分程度が好ましい。例えば穴の直径が500μmの場合、マスクの板厚は200〜300μm程度が好ましい。混合物層(A)の層厚は、概ねマスクの板厚と同じになる。
マスク穴の形状は、円形に限定されず、楕円形や四角形や六角形などの多角形でもよいが、穴の形状が極端にいびつにすると、得られる蓄光性発光体ガラス粒子がいびつな形になるので好ましくない。マスク穴の形状が円形以外の場合、本明細書の「穴の直径」は、穴に内接される円の直径である。
The distance between the mask holes and the holes is preferably larger than the diameter of the mask holes. For example, when the diameter of the mask hole is 500 μm, the distance between the holes is preferably 500 μm or more, more preferably 1 to 1.5 mm. The thickness of the mask is not particularly limited, but is preferably about half the diameter of the mask hole. For example, when the hole diameter is 500 μm, the thickness of the mask is preferably about 200 to 300 μm. The layer thickness of the mixture layer (A) is approximately the same as the plate thickness of the mask.
The shape of the mask hole is not limited to a circle, but may be an ellipse, a polygon such as a rectangle or a hexagon, but if the hole shape is extremely distorted, the resulting phosphorescent phosphor glass particles become distorted. This is not preferable. When the shape of the mask hole is other than a circle, the “hole diameter” in this specification is the diameter of a circle inscribed in the hole.

ガラス微粒子の材質は、蓄光体の励起光および発光に対して透明な素材であればいずれでもよいが、焼成後に蓄光体を完全にガラス被覆するためには軟化温度が低いものが好ましい。ガラス微粒子の粒径は、樹脂接着剤と混合してスクリーン印刷が可能な粒径であればいずれでもよい。好ましいガラス微粒子として、粒径5〜30μmのガラスフリットが例示できる。   The material of the glass fine particles may be any material as long as it is transparent to the excitation light and light emission of the phosphor. However, a material having a low softening temperature is preferable in order to completely cover the phosphor with glass after firing. The particle size of the glass fine particles may be any particle size as long as it can be mixed with a resin adhesive and screen printed. Examples of preferable glass fine particles include glass frit having a particle size of 5 to 30 μm.

樹脂接着剤は、スクリーン印刷が可能な粘度に調節できるものであれば特に限定されず、例えばアクリル系樹脂と溶剤からなる接着剤が挙げられる。
ガラス微粒子と樹脂接着剤の混合比は、特に限定されないが、重量比で3:1〜1:3の範囲が好ましい。
The resin adhesive is not particularly limited as long as it can be adjusted to a viscosity capable of screen printing, and examples thereof include an adhesive made of an acrylic resin and a solvent.
The mixing ratio of the glass fine particles and the resin adhesive is not particularly limited, but is preferably in the range of 3: 1 to 1: 3 by weight.

次いで、混合物層(A)が固化する前に、混合物層(A)上に蓄光体粒子とガラス粒子の混合粒子を配置して蓄光体層(B)を形成する(図1のIII)。蓄光体層(B)は、砂絵を描く要領で形成される。すなわち、混合物層(A)上に載った蓄光材またはガラスの粒子は前記混合物層(A)中の樹脂接着剤によって混合物層(A)上に接着され、蓄光体層(B)を形成する。混合物層(A)相互の隙間に落ちた蓄光体粒子又はガラス粒子は、接着されていないので、仮保持部材を揺するなどの方法で除去できる。   Then, before the mixture layer (A) is solidified, the phosphor particles (B) are formed by arranging the phosphor particles and glass particles on the mixture layer (A) (III in FIG. 1). The phosphor layer (B) is formed in the manner of drawing a sand picture. That is, the phosphorescent material or glass particles placed on the mixture layer (A) are bonded onto the mixture layer (A) by the resin adhesive in the mixture layer (A), thereby forming the phosphor layer (B). Since the phosphor particles or glass particles that have fallen into the gaps between the mixture layers (A) are not adhered, they can be removed by a method such as shaking the temporary holding member.

蓄光体は、アルミン酸ストロンチウムにユーロピウム等のランタノイドで賦活した蓄光体のような酸化物系蓄光体、硫化カルシウムにバリウムをドープした蓄光体のような硫化物系蓄光体等の既知の蓄光体のいずれでもよい。   Phosphors are known phosphors such as oxide phosphors such as strontium aluminate activated by lanthanoids such as europium, and sulfide phosphors such as phosphors doped with barium calcium sulfide. Either is acceptable.

蓄光体粒子の粒径は、マスク穴の直径より小さいものであればよく、好ましくは平均粒径がマスク穴の直径の半分程度である。例えば、マスク穴の直径が500μmの場合、最大粒径が500μm以下で平均粒径が250μm前後の蓄光体粒子が好ましい。   The particle diameter of the phosphor particles may be smaller than the diameter of the mask hole, and the average particle diameter is preferably about half of the diameter of the mask hole. For example, when the mask hole has a diameter of 500 μm, phosphor particles having a maximum particle size of 500 μm or less and an average particle size of around 250 μm are preferable.

蓄光体粒子と共に蓄光体層を形成させるガラス粒子の粒径は、蓄光体粒子の粒径と同程度のものが好ましい。ガラス粒子の材質は、蓄光体の励起光および発光に対して透明な素材であればいずれでもよく、例えば硼珪酸ガラスなどが挙げられる。   The particle size of the glass particles that form the phosphor layer together with the phosphor particles is preferably the same as the particle size of the phosphor particles. The material of the glass particles may be any material as long as it is transparent to the excitation light and light emission of the phosphor, and examples thereof include borosilicate glass.

蓄光体粒子とガラス粒子の混合比は、ガラス:蓄光体の重量比で9:1〜7:3の範囲が好ましい。ガラス粒子の量が少ないと、焼成後のガラス被覆蓄光性発光体粒子において、蓄光体粒子が完全にガラスで覆われないので好ましくない。蓄光体粒子の量が少なすぎると、ガラス被覆蓄光性発光体粒子の輝度が小さくなるので好ましくない。   The mixing ratio of the phosphor particles and the glass particles is preferably in the range of 9: 1 to 7: 3 in terms of the weight ratio of glass: phosphor. If the amount of glass particles is small, the phosphor-coated phosphor particles after firing are not preferable because the phosphor particles are not completely covered with glass. If the amount of the phosphor particles is too small, the luminance of the glass-coated phosphor particles is reduced, which is not preferable.

蓄光体層(B)上に、さらにスクリーン印刷により混合物層(A)を形成させる。この際に、先の工程で用いたマスク板と仮保持部材の位置を合わせて置くことにより、蓄光体層(B)上に混合物層(A)を形成させることができる(図1のIV)。   A mixture layer (A) is further formed on the phosphor layer (B) by screen printing. At this time, the mixture layer (A) can be formed on the phosphor layer (B) by placing the mask plate used in the previous step and the temporary holding member in alignment (IV in FIG. 1). .

図1では粒状積層体が3層の例を示しているが、必要に応じて、さらに蓄光体層と混合物層を交互に積層させて5層以上にしてもよい。粒状積層体の層数は、粒状積層体の焼成前の合計厚さがマスク穴の直径の1〜3倍になるように設定するのが好ましい。混合物層(A)の厚さがマスク板厚とほぼ同じであり、蓄光体層(B)の厚さが蓄光体粒子の平均粒径と同程度であることから、粒状積層体のおおよその合計厚さを簡単に見積もることができ、好ましい層数を見積もることができる。例えば、マスクの板厚が200μm、蓄光材粒子の平均粒径が250μmの場合、3層では積層体厚さが合計約650μm、5層では約1100μm、7層では約1550μmになる。マスク穴の直径が500μmの場合には、焼成前の積層体厚さの合計が500〜1500μm程度が好ましいから、混合物層(A)と蓄光体層(B)は3層又は5層構造とするのが最適である。大きな蓄光性発光体ガラス粒子を製造するために、マスク穴を大きくした場合には、積層回数が多く成りすぎないようにするため、マスクの板厚を厚くするか、蓄光体粒子の粒径を大きくするのが好ましい。   Although FIG. 1 shows an example in which the granular laminated body has three layers, if necessary, the phosphor layer and the mixture layer may be alternately laminated to form five or more layers. The number of layers of the granular laminate is preferably set so that the total thickness of the granular laminate before firing is 1 to 3 times the diameter of the mask hole. Since the thickness of the mixture layer (A) is almost the same as the mask plate thickness and the thickness of the phosphor layer (B) is about the same as the average particle size of the phosphor particles, the approximate total of the granular laminates The thickness can be easily estimated and the preferred number of layers can be estimated. For example, when the mask plate thickness is 200 μm and the average particle diameter of the phosphorescent material particles is 250 μm, the total thickness of the three layers is about 650 μm, the five layers are about 1100 μm, and the seven layers are about 1550 μm. When the mask hole diameter is 500 μm, the total thickness of the laminate before firing is preferably about 500 to 1500 μm. Therefore, the mixture layer (A) and the phosphor layer (B) have a three-layer or five-layer structure. Is the best. In order to manufacture large phosphorescent phosphor glass particles, if the mask hole is enlarged, the mask thickness should be increased or the particle size of the phosphor particles should be increased so that the number of laminations does not become excessive. It is preferable to enlarge it.

粒状積層体の樹脂接着剤が固化した後、数秒間水に浸漬して水溶性表面2を溶解させ、仮保持部材の基材1から粒状積層体が載った樹脂薄層3を剥離させ、樹脂薄層3上に載せたまま粒状積層体を焼成する。焼成は、300〜500℃で1時間以上保持し、樹脂が炭化しないようにして樹脂薄層および混合物層(A)中の樹脂接着材を焼却して除去する。この工程では、300〜500℃のいずれかの温度で維持してもよいし、ゆっくり昇温させて、1時間以上300〜500℃の範囲内にあるようにしてもよい。
次いで600〜800℃で5〜30分間維持して、ガラス粒子を相互に融着させる。
After the resin adhesive of the granular laminate is solidified, it is immersed in water for several seconds to dissolve the water-soluble surface 2, and the resin thin layer 3 on which the granular laminate is placed is peeled from the substrate 1 of the temporary holding member, and the resin The granular laminate is fired while being placed on the thin layer 3. Baking is carried out at 300 to 500 ° C. for 1 hour or longer, and the resin adhesive in the resin thin layer and the mixture layer (A) is incinerated and removed so that the resin is not carbonized. In this step, the temperature may be maintained at any temperature of 300 to 500 ° C, or may be slowly raised to be in the range of 300 to 500 ° C for 1 hour or more.
The glass particles are then fused together by maintaining at 600-800 ° C. for 5-30 minutes.

上記の製造方法により製造されたガラス被覆蓄光体粒子は、粒径が均一で、各粒子中の蓄光体含有量も均一となるから、輝度ムラが少なくなる。また、蓄光体がほぼ完全にガラス被覆されるため、耐水性に優れ、蓄光性発光体粒子を水中に浸漬しても輝度の低下が少なく、48時間水中に浸漬しても、浸漬前の80%以上の初期輝度を維持することができる。   Since the glass-coated phosphor particles produced by the above production method have a uniform particle size and a uniform phosphor content in each particle, luminance unevenness is reduced. In addition, since the phosphor is almost completely covered with glass, it has excellent water resistance, and even when the phosphorescent phosphor particles are immersed in water, there is little decrease in luminance. % Or more of the initial luminance can be maintained.

以下、実施例により本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。
[実施例1]
厚紙(仮保持部材基材)の表面にデキストリン層(水可溶性層)を形成させ、さらに樹脂接着剤(フェロ・ジャパン製スクリーン・プリンティング・オイル)をベタ版でスクリーン印刷して仮保持部材とした。
この仮保持部材上に、直径1000μmの穴が、約1000μm間隔で周期的に空いている板厚約200μmのメタルマスクを載せ、粒径5〜10μmのガラスフリット(日本フリット社製)10重量部と前記樹脂接着剤8重量部とを混合した混合物をスクリーン印刷することにより、厚さ約200μmの混合物層(A)を形成させた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to an Example.
[Example 1]
A dextrin layer (water-soluble layer) is formed on the surface of the cardboard (temporary holding member base material), and a resin adhesive (screen printing oil manufactured by Ferro Japan) is screen-printed with a solid plate to obtain a temporary holding member. .
On this temporary holding member, a metal mask having a plate thickness of about 200 μm in which holes having a diameter of 1000 μm are periodically vacated at intervals of about 1000 μm is placed, and 10 parts by weight of a glass frit having a particle size of 5 to 10 μm (manufactured by Nippon Frit) A mixture layer (A) having a thickness of about 200 μm was formed by screen-printing a mixture obtained by mixing 8 parts by weight of the resin adhesive.

次いで、前記アクリル樹脂接着剤が固化する前に、平均粒径250μmの蓄光体粒子(根本特殊化学社製商品名G300L-−250N)2重量部と平均粒径250μmの硼珪酸ガラス粒子(ポッターズバロティーン社製)8重量部の混合した混合粒子を混合物層(A)上に配置して、蓄光材層(B)を形成させた。
その後、先の工程で用いたマスク板と仮保持部材の位置を合わせて載せ、スクリーン印刷により混合物層(A)を蓄光材層(B)上に形成させ、さらにこれらの工程を繰り返して、5層構造の粒状積層体を形成させた。
接着剤が乾燥固化した後、仮保持部材を数秒水に浸漬し、デキストリン層を溶解させ、樹脂フィルム上に粒状積層体が周期的に配置されているものを得た。
Next, before the acrylic resin adhesive solidifies, 2 parts by weight of phosphor particles having an average particle diameter of 250 μm (trade name G300L--250N manufactured by Nemoto Special Chemical Co., Ltd.) and borosilicate glass particles having an average particle diameter of 250 μm (Potters) 8 parts by weight of mixed particles (made by Ballotin Co., Ltd.) were placed on the mixture layer (A) to form a phosphorescent material layer (B).
Thereafter, the mask plate and the temporary holding member used in the previous step are aligned and placed, and the mixture layer (A) is formed on the phosphorescent material layer (B) by screen printing. A granular laminate having a layer structure was formed.
After the adhesive was dried and solidified, the temporary holding member was immersed in water for several seconds to dissolve the dextrin layer, and a granular laminate was periodically arranged on the resin film.

得られた粒状積層体は、樹脂フィルムごと焼成炉に入れて焼成した。焼成は、ゆっくり昇温させ、300〜500℃で1時間以上かけた後、約700℃で約15分維持し、その後ゆっくり室温まで冷却してガラス被覆蓄光性発光体粒子を得た。
得られたガラス被覆蓄光性発光体粒子は、おおよそ球形となっていた。JIS Z 8801標準ふるいを用いて、篩い分けをしたところ、表1のとおり、重量比で97%以上が、粒径1000μm〜1400μmの範囲内であり粒径が揃っていた。
The obtained granular laminate was baked in a baking furnace together with the resin film. Firing was performed by slowly raising the temperature, taking 1 hour or more at 300 to 500 ° C., then maintaining at about 700 ° C. for about 15 minutes, and then slowly cooling to room temperature to obtain glass-coated phosphorescent phosphor particles.
The obtained glass-coated luminous phosphor particles were approximately spherical. When sieving using a JIS Z 8801 standard sieve, as shown in Table 1, 97% or more by weight ratio was in the range of 1000 μm to 1400 μm, and the particle size was uniform.

Figure 2010180380
Figure 2010180380

得られたガラス被覆蓄光性発光体粒子を、室温で水中に48時間浸漬し、水中に浸漬する前後の初期輝度を測定したところ、水中に浸漬する前の初期輝度は66mcd/m、48時間水中に浸漬した後の初期輝度は60mcd/mであり、水中に浸漬する前の約91%の初期輝度が維持されていた。なお初期輝度は、蓄光体粒子に200LuxのD65蛍光ランプで20分間照射後、暗所に移動した際の蓄光性発光体粒子の輝度である。 The obtained glass-coated luminous phosphor particles were immersed in water at room temperature for 48 hours, and the initial luminance before and after being immersed in water was measured. The initial luminance before immersion in water was 66 mcd / m 2 , 48 hours. The initial luminance after being immersed in water was 60 mcd / m 2 , and the initial luminance of about 91% before being immersed in water was maintained. The initial luminance is the luminance of the luminous phosphor particles when the phosphor particles are irradiated with a 200 Lux D65 fluorescent lamp for 20 minutes and then moved to a dark place.

[比較例1]
蓄光体層(B)を形成させる蓄光体粒子と硼珪酸ガラス粒子の混合比率を変化させた他は実施例1と同様にし、得られたガラス被覆蓄光性発光体粒子の外観を観察した。結果を表1に示す。
[Comparative Example 1]
The external appearance of the obtained glass-coated phosphorescent phosphor particles was observed in the same manner as in Example 1 except that the mixing ratio of the phosphor particles and the borosilicate glass particles for forming the phosphor layer (B) was changed. The results are shown in Table 1.

Figure 2010180380
Figure 2010180380

この結果から、蓄光体層中のガラスと蓄光体の混合比は、重量比で9:1〜7:3が好ましいことがわかる。   From this result, it is understood that the mixing ratio of the glass and the phosphor in the phosphor layer is preferably 9: 1 to 7: 3 by weight.

[比較例2]
特開2007−112685号公報に記載されているのと同様な方法でガラス被覆蓄光性発光体粒子を製造した。すなわち、厚紙の表面にデキストリン層を形成させた仮保持部材上に、平均粒径約25μmの蓄光体粒子(60重量部)と粒径6〜8μmのガラスフリット(100重量部)とスキージオイル(80重量部)の混合物をベタ版を使ってスクリーン印刷して、厚さ150μmのガラス・蓄光体混合層を形成し、仮保持部材を剥離後、約800℃で焼成し、破砕、再焼成してガラス被覆蓄光性発光体粒子を得た。
得られた蓄光性発光体粒子の粒度分布は表3のとおりであり、粒径が不揃いであった。また、蓄光体を含まないガラス粒子が散見された。
[Comparative Example 2]
Glass-coated luminous phosphor particles were produced in the same manner as described in JP-A No. 2007-112585. That is, on a temporary holding member having a dextrin layer formed on the surface of cardboard, phosphor particles (60 parts by weight) having an average particle diameter of about 25 μm, glass frit (100 parts by weight) having a particle diameter of 6 to 8 μm, and squeegee oil ( 80 parts by weight of the mixture is screen-printed using a solid plate to form a 150 μm thick glass / phosphor mixture layer, the temporary holding member is peeled off, fired at about 800 ° C., crushed and refired. Thus, glass-coated luminous phosphor particles were obtained.
The particle size distribution of the obtained luminous phosphor particles was as shown in Table 3, and the particle sizes were uneven. Moreover, the glass particle which does not contain a phosphor is scattered.

Figure 2010180380
Figure 2010180380

また、得られた蓄光性発光体粒子を48時間水中に浸漬して、浸漬前後の輝度を測定したところ、水中に浸漬する前の初期輝度は61mcd/mであり、浸漬後の初期輝度は50mcd/mで、水中に浸漬する前の輝度の約82%しかなかった。 Moreover, when the obtained luminous phosphor particles were immersed in water for 48 hours and the luminance before and after immersion was measured, the initial luminance before immersion in water was 61 mcd / m 2 , and the initial luminance after immersion was At 50 mcd / m 2 , there was only about 82% of the brightness before immersion in water.

本発明により、耐水性に優れ、粒径および蓄光体の分布が均一に揃った蓄光性発光体粒子を得ることができ、屋内のみならず屋外での標識や誘導ライン、道路の白線等に蓄光体を用いることができる。   According to the present invention, phosphorescent phosphor particles having excellent water resistance and a uniform particle size and phosphorescent substance distribution can be obtained, and phosphorescent light can be stored not only indoors but also on outdoor signs, guide lines, road white lines, etc. The body can be used.

1:仮保持部材の基材
2:水溶性表面
3:水不溶性樹脂薄層
4:マスク
A:混合物層
B:蓄光体層
1: base material of temporary holding member 2: water-soluble surface 3: water-insoluble resin thin layer 4: mask A: mixture layer B: phosphorescent material layer

Claims (9)

(1)同一径を有する穴を多数形成したマスクを載せ、仮保持部材上に、ガラス微粒子及び樹脂接着剤の混合物をスクリーン印刷することにより混合物層(A)を多数点形成させ、
(2)前記混合物層(A)が固化する前に、前記混合物層(A)上に、蓄光体粒子及びガラス粒子の混合物を配置して前記混合物層(A)上に蓄光体層(B)を形成させ、
(3)(1)工程で用いたマスク板と仮保持部材の位置を合わせて載せ、前記蓄光体層(B)の上に、ガラス微粒子及び樹脂接着剤の混合物をスクリーン印刷して混合物層(A)を形成し、
(4)必要に応じて(2)工程及び(3)工程を繰り返すことにより、3層又は5層以上に混合物層(A)と蓄光体層(B)を交互に積層させた粒状積層体を仮保持部材上に多数点形成し、
(5)前記粒状積層体を仮保持部材を剥離し又は仮保持部材を剥離せずに前記粒状積層体を焼成することを特徴とする、ガラス被覆蓄光性発光体粒子の製造方法
(1) A mask in which a large number of holes having the same diameter are formed is placed, and a plurality of mixture layers (A) are formed on a temporary holding member by screen printing a mixture of glass fine particles and a resin adhesive,
(2) Before the mixture layer (A) is solidified, a mixture of phosphor particles and glass particles is placed on the mixture layer (A), and the phosphor layer (B) is placed on the mixture layer (A). Form
(3) The mask plate used in the step (1) and the temporary holding member are aligned and placed on the phosphor layer (B) by screen printing a mixture of glass fine particles and a resin adhesive. A),
(4) A granular laminate in which the mixture layer (A) and the phosphor layer (B) are alternately laminated in three layers or five or more layers by repeating the steps (2) and (3) as necessary. Many points are formed on the temporary holding member,
(5) The method for producing glass-coated luminous phosphor particles, wherein the granular laminate is fired without peeling the temporary holding member or without peeling the temporary holding member.
前記粒状積層体の焼成が、300〜500℃で1時間以上加熱した後、600〜800℃で5〜30分焼成することを特徴とする請求項1に記載のガラス被覆蓄光性発光体粒子の製造方法。   2. The glass-coated luminous phosphor particles according to claim 1, wherein the granular laminate is fired at 300 to 500 ° C. for 1 hour or more and then calcined at 600 to 800 ° C. for 5 to 30 minutes. Production method. 前記蓄光体層(B)に用いられるガラス粒子の平均粒径が、蓄光体粒子の平均粒径の0.5〜2倍であることを特徴とする請求項1または2に記載のガラス被覆蓄光性発光体粒子の製造方法。   The glass-coated phosphorescent material according to claim 1 or 2, wherein the average particle size of the glass particles used in the phosphor layer (B) is 0.5 to 2 times the average particle size of the phosphor particles. For producing fluorescent luminescent particles. 前記蓄光体層(B)に用いられるガラス粒子と蓄光体粒子の比率が、重量比で7:3〜9:1であることを特徴とする請求項1ないし3のいずれか1項に記載のガラス被覆蓄光性発光体粒子の製造方法。   4. The ratio of glass particles to phosphor particles used in the phosphor layer (B) is 7: 3 to 9: 1 in a weight ratio. 5. A method for producing glass-coated luminous phosphor particles. 前記粒状積層体の焼成前の厚さ(混合物層(A)の厚さと蓄光体層(B)の厚さの総計)が、マスクの穴の径の1.5〜3倍であることを特徴とする請求項1ないし4のいずれか1項に記載のガラス被覆蓄光性発光体粒子の製造方法。   The thickness before firing of the granular laminate (the total thickness of the mixture layer (A) and the phosphor layer (B)) is 1.5 to 3 times the diameter of the hole in the mask. The method for producing glass-coated luminous phosphor particles according to any one of claims 1 to 4. 仮保持部材が、基材上に水溶性表面を形成し、前記水溶性表面上に水不溶性樹脂薄層を形成させたものであり、水不溶性樹脂薄層上にスクリーン印刷することを特徴とする請求項1ないし5のいずれかに記載のガラス被覆蓄光性発光体粒子の製造方法。   The temporary holding member is formed by forming a water-soluble surface on a base material, and forming a water-insoluble resin thin layer on the water-soluble surface, and screen printing is performed on the water-insoluble resin thin layer. The manufacturing method of the glass covering luminous phosphor particle in any one of Claims 1 thru | or 5. 粒状積層体を焼成する前に、仮保持部材を水に浸漬して水溶性表面を溶解させ、粒状積層体が水不溶性樹脂薄層上に配置された状態で焼成することを特徴とする請求項6に記載のガラス被覆蓄光性発光体粒子の製造方法。ていいいう性に優れた   Before firing the granular laminate, the temporary holding member is immersed in water to dissolve the water-soluble surface, and the granular laminate is fired in a state of being disposed on the water-insoluble resin thin layer. 6. A method for producing glass-coated luminous phosphor particles according to 6. Excellent in nature 混合物層(A)をスクリーン印刷するためのマスクの穴が、前記穴の直径以上の間隔で周期的に配置されていることを特徴とする請求項1ないし7に記載のガラス被覆蓄光性発光体粒子の製造方法。   8. The glass-coated luminous phosphor according to claim 1, wherein the holes of the mask for screen-printing the mixture layer (A) are periodically arranged at intervals equal to or larger than the diameter of the holes. Particle production method. 蓄光性発光体粒子を水中に室温で48時間浸漬させた後の初期輝度が、水中に浸漬させる前の初期輝度の85%以上であることを特徴とするガラス被覆蓄光性発光体粒子。   Glass-coated phosphorescent phosphor particles, wherein the initial luminance after the phosphorescent phosphor particles are immersed in water at room temperature for 48 hours is 85% or more of the initial luminance before being immersed in water.
JP2009027694A 2009-02-09 2009-02-09 Glass-coated phosphorescent light emitter particle and method of manufacturing the same Pending JP2010180380A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009027694A JP2010180380A (en) 2009-02-09 2009-02-09 Glass-coated phosphorescent light emitter particle and method of manufacturing the same
PCT/JP2010/051788 WO2010090312A1 (en) 2009-02-09 2010-02-08 Method for manufacturing glass-covered phosphorescent light-emitting body particles
TW099103782A TW201036924A (en) 2009-02-09 2010-02-08 Method for manufacturing glass-covered phosphorescent light-emitting body particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027694A JP2010180380A (en) 2009-02-09 2009-02-09 Glass-coated phosphorescent light emitter particle and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010180380A true JP2010180380A (en) 2010-08-19

Family

ID=42542199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027694A Pending JP2010180380A (en) 2009-02-09 2009-02-09 Glass-coated phosphorescent light emitter particle and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP2010180380A (en)
TW (1) TW201036924A (en)
WO (1) WO2010090312A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053641A1 (en) * 2010-10-22 2012-04-26 Iwamoto Yasunori Process for production of light storage body, light storage body produced by the process, and stone for nails which comprises light storage body
JP2013200393A (en) * 2012-03-23 2013-10-03 National Institute Of Advanced Industrial & Technology Luminous member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176810B2 (en) * 2014-06-23 2017-08-16 コドモエナジー株式会社 Method for producing granular phosphor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081988A (en) * 2006-09-27 2008-04-10 Mkk:Kk Manufacturing method for luminous element
WO2008050612A1 (en) * 2006-10-25 2008-05-02 Sakai Silk Screen Co., Ltd. Method for manufacturing phosphorescent plate, and phosphorescent plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176933A (en) * 1984-02-20 1985-09-11 Shigaken Production of light storing fluorescent glass fiber and glass spherule
JPS62148330A (en) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd Production of rainbow-color bead
JPH08151219A (en) * 1994-11-28 1996-06-11 Nakashima:Kk Glass fine particle having metal luster and its production
JPH1143349A (en) * 1997-04-28 1999-02-16 Kurasutaa Technol Kk Luminous material and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081988A (en) * 2006-09-27 2008-04-10 Mkk:Kk Manufacturing method for luminous element
WO2008050612A1 (en) * 2006-10-25 2008-05-02 Sakai Silk Screen Co., Ltd. Method for manufacturing phosphorescent plate, and phosphorescent plate
JP2008132470A (en) * 2006-10-25 2008-06-12 Sakai Silk Screen:Kk Method for manufacturing luminous plate and luminous plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053641A1 (en) * 2010-10-22 2012-04-26 Iwamoto Yasunori Process for production of light storage body, light storage body produced by the process, and stone for nails which comprises light storage body
JP2012106918A (en) * 2010-10-22 2012-06-07 Taisuke Iwamoto Method for producing luminous body, luminous body produced by the same, and stone for nail using luminous body
US20130263872A1 (en) * 2010-10-22 2013-10-10 Yasunori Iwamoto Process for producing phosphorescent body and phosphorescent body produced by the process, and nail stone including phosphorescent body
KR101405069B1 (en) * 2010-10-22 2014-06-10 테츠야 시바노 Process for production of light storage body, light storage body produced by the process, and stone for nails which comprises light storage body
US9005760B2 (en) 2010-10-22 2015-04-14 Yasunori Iwamoto Process for producing phosphorescent body and phosphorescent body produced by the process, and nail stone including phosphorescent body
JP2013200393A (en) * 2012-03-23 2013-10-03 National Institute Of Advanced Industrial & Technology Luminous member

Also Published As

Publication number Publication date
TW201036924A (en) 2010-10-16
WO2010090312A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN103189326B (en) For the phosphor-containing frit material of LED illumination application
CN101443192B (en) Photoluminescent sheet
JP4765525B2 (en) Luminescent color conversion member
TW201545863A (en) Ceramic phosphor plate and lighting device including the same
JP2007048864A (en) Phosphor composite material
JP2007191702A (en) Light emission color converting material
KR100655945B1 (en) Manufacturing method of phosphor pattern for field emission display panel, photosensitive element for field emission display panel, phosphor pattern and field emission display panel for field emission display panel
JP2006511436A (en) Luminous tile and manufacturing method thereof
WO2010090312A1 (en) Method for manufacturing glass-covered phosphorescent light-emitting body particles
CN101684914B (en) Backlight source lamp group
JP6168542B2 (en) Phosphor with picture and evacuation guidance sign using the same
JP4623572B2 (en) Manufacturing method of fired product having phosphorescent function and display member for evacuation guidance comprising fired product having phosphorescent function
US9005760B2 (en) Process for producing phosphorescent body and phosphorescent body produced by the process, and nail stone including phosphorescent body
CN1485302A (en) Process for producing luminous ceramic products
KR200426648Y1 (en) Photoluminescent Tile
JP2006303030A (en) Electroluminescent element
KR101302696B1 (en) The Preparation Method of Transparent Red―Emitting Phosphor Layer and The Transparent Red―Emitting Phosphor Layer Prepared by The Same Method
CN1831908A (en) Self-luminous indicating plate and its manufacturing method
JP2008081988A (en) Manufacturing method for luminous element
CN115093249B (en) Self-luminous rock plate, preparation method thereof and application thereof in dining table
JP3223445U (en) Phosphorescent tile
CN113105209B (en) Long-afterglow white luminescent ceramic and preparation method thereof
JP2006040642A (en) Color conversion film and electroluminescent element using this
KR100860298B1 (en) A luminescent apparatus
JPS58108692A (en) Electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130807