JPS60176933A - Production of light storing fluorescent glass fiber and glass spherule - Google Patents

Production of light storing fluorescent glass fiber and glass spherule

Info

Publication number
JPS60176933A
JPS60176933A JP3112684A JP3112684A JPS60176933A JP S60176933 A JPS60176933 A JP S60176933A JP 3112684 A JP3112684 A JP 3112684A JP 3112684 A JP3112684 A JP 3112684A JP S60176933 A JPS60176933 A JP S60176933A
Authority
JP
Japan
Prior art keywords
glass
fibers
light storing
phosphorescent
storing fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3112684A
Other languages
Japanese (ja)
Inventor
Masao Miyashiro
宮代 雅夫
Ryuzo Takai
高井 隆三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIGAKEN
Shiga Prefectural Government.
Original Assignee
SHIGAKEN
Shiga Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIGAKEN, Shiga Prefectural Government. filed Critical SHIGAKEN
Priority to JP3112684A priority Critical patent/JPS60176933A/en
Publication of JPS60176933A publication Critical patent/JPS60176933A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/104Forming solid beads by rolling, e.g. using revolving cylinders, rotating discs, rolls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Abstract

PURPOSE:To obtain the titled glass spherules having improved weather, water and heat resistance and durability, etc., by hot-drawing a glass tube packed with a specific light storing fluorescent powder, cutting the resultant glass fibers, and keeping the fibers at a temperature above the melting point of glass. CONSTITUTION:A glass tube 1, having 3-10mm. outside diameter and 2-9mm. inside diameter, packed with a light storing fluorescent powder 3, e.g. ZnS, having 15-50mu particle diameter in the hollow part 2 thereof, and made of soda-lime glass (softening point: 550-650 deg.C) is drawn at 30-200cm/sec speed into fiber form while softening the end (a) thereof at a temperature of the softening point or above in a heating furnace to give light storing fluorescent glass fibers 5, which are cut to afford cut fibers 5' having 3-15mm. length. The resultant fibers 5' are placed in a charging vessel 8, dropped by small portions into a releasable cylindrical body 6, made of a material without sticking glass, and heated to 1,000-1,300 deg.C by an outer peripheral heating furnace 7 while shaking the vessel 8, and deformed into a spherical form for 0.5-10sec passing through the cylindrical body 6 to give the aimed light storing fluorescent glass spherules 9, which are then collected into a receiver 10.

Description

【発明の詳細な説明】 本発明は蓄光螢光性のガラス繊維及びガラス小球の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing luminescent fluorescent glass fibers and glass globules.

その目的は、ガラス繊維の中心に蓄光螢光体が封入され
ているという新規な蓄光螢光性ガラス繊維、及びガラス
小球中に同しく蓄光袢光体が封入されているという新大
卵な蓄光褐光性ガラス小球を提供することであり、これ
c−Nによって耐候性、耐熱性、耐水性、耐摩耗性等に
きわめてすぐれ、したがって捷だ屋外使用にも充分なる
耐久性を有するという各種蓄光螢光製品を得ようとする
ものである。
The purpose is to create a new phosphorescent glass fiber in which a phosphorescent phosphor is encapsulated in the center of the glass fiber, and a new phosphorescent glass fiber in which a phosphorescent phosphor is also encapsulated in a glass sphere. The purpose of the present invention is to provide luminescent brown glass beads, which have excellent weather resistance, heat resistance, water resistance, abrasion resistance, etc. due to c-N, and are therefore durable enough for outdoor use. The aim is to obtain various phosphorescent products.

従来、蓄光螢光体としては、 硫化亜鉛、硫化ガドミウ
ムなどが用いられているが、とわらはその粉末体のまま
塩化ビニル樹脂等のプラスチック材料中に混和して各種
製品に成形したり或いはプラスチック成形品に塗布した
りして利用されているものである。そしてその用途とし
ては夜間の標識、装飾、照明等が主としてあげられるが
、いずれも非富に寿命が短かく、その螢光による発光現
象が短期間で消滅してしまうという大きな欠点を有して
いるのである。
Conventionally, zinc sulfide, gadmium sulfide, etc. have been used as luminescent phosphors, but Towara is mixed in its powder form into plastic materials such as vinyl chloride resin and molded into various products, or made into plastics. It is used by coating molded products. Its main uses include nighttime signs, decorations, and lighting, but all of them have the major disadvantage that they have a very short lifespan and the luminescence phenomenon caused by the fluorescence disappears in a short period of time. There is.

その理由−−これら蓄光螢光体が耐候性に弱く1fii
4水1/ト、耐摩耗性等も決して良好ではないためであ
り、したがって交通標識、道路白線など屋外の使用に一
2〜3日位でその効果が消失し実用的利用は不可能とさ
れており、室内においても電溶の引手などに使用されて
いるものの約半年から1年位でその効果がなくなるとい
うきわめて耐久性の低いものと評価されている。
The reason is that these luminescent phosphors have poor weather resistance.
4 Water 1/T, abrasion resistance, etc. are not good at all, so when used outdoors such as traffic signs and road white lines, the effect disappears in about 12 to 3 days, making it impossible to use for practical purposes. Although it is used indoors for electric welding pulls, etc., it is considered extremely durable, as it loses its effectiveness within about six months to a year.

本発明者等に−F記の如き事情に鑑み、従来の蓄光螢光
体の欠点を改善するべく鉛量研究を重ねた結果、蓄光螢
光体をガラス体内に封入するという本発明方法に達した
のである、 すなわち、カラス管の中空部に蓄光螢光粉末を充填し、
核ガラス管の端部から順次連続してその端部を加セ(軟
化させながら延伸して繊維状とすることを特徴とする蓄
光螢光性のガラス繊維の製造方法という第1の発明と、
との第1の発明による蓄光螢光性ガラス繊維を適宜の長
さに切断してそのガラスの融点以上の温度条件下に所定
時間滞留させることにより表面張力にて球状とすること
を特徴とする蓄光漣光件のガラス小球の製造方法という
第2の発明とに到達したのである。
In view of the circumstances described in -F, the inventors conducted repeated research on lead content in order to improve the shortcomings of conventional phosphorescent phosphors, and as a result, they arrived at the method of the present invention in which phosphorescent phosphors are encapsulated within a glass body. In other words, the hollow part of the glass tube was filled with phosphorescent powder,
A first invention, which is a method for producing a luminescent and fluorescent glass fiber, characterized in that the end portions of a core glass tube are sequentially stretched from the end portion to form a fiber while being softened;
The phosphorescent glass fiber according to the first invention is cut into appropriate lengths and kept at a temperature equal to or higher than the melting point of the glass for a predetermined period of time to form a spherical shape due to surface tension. A second invention, a method for manufacturing phosphorescent glass spheres, was achieved.

まず、本発明における第1の発明を説明する。First, the first aspect of the present invention will be explained.

第1図は蓄光螢光性ガラス繊維の巾11浩方法の1実施
例を示した正面1析而略図である。
FIG. 1 is a schematic front view showing one embodiment of the method for increasing the width of luminous fluorescent glass fibers.

この図の様にガラス管(1)の中空部(2)に蓄光螢光
粉末(3)を充填して、そのガラス管(1)の端部(a
)を加熱炉(4)にてそのガラスの軟化意思」二の温度
に加熱し、その端部(a)を軟化させながら延伸してガ
ラス管(1)を引伸しガラス繊維(5)とするのである
As shown in this figure, the hollow part (2) of the glass tube (1) is filled with phosphorescent powder (3), and the end (a) of the glass tube (1) is
) is heated in a heating furnace (4) to a temperature equal to the softening temperature of the glass, and the end portion (a) is stretched while softening to form a glass tube (1) into a glass fiber (5). be.

この様にしてこの端部(a)から順次連続してガラス料
(維(5)を形成させ、カラス管(1)は少しづつ端部
(a)に向って送り出し、その端部(a、1の消耗を補
ないつつ連続してガラス繊維(5)を製造するのである
In this way, the glass material (fibers (5)) are formed sequentially and continuously from this end (a), and the glass tube (1) is sent out little by little toward the end (a). The glass fibers (5) are continuously manufactured while compensating for the consumption of the glass fibers (5).

その結果、このガラス繊維(5)の中心に蓄光螢光粉末
(3)が封入されているという新規な蓄光螢光性ガラス
繊維が得C1れるのである。換言すわば蓄光螢光体かガ
ラス体で保護さねた繊維状物となって得られるととにな
るのである。
As a result, a novel phosphorescent glass fiber C1 is obtained in which the phosphorescent powder (3) is encapsulated in the center of the glass fiber (5). In other words, it is obtained as a fibrous material that is not protected by a luminescent phosphor or glass material.

本発明において、ガラス管(])としては例えば軟化点
550〜65(1”C位のソータガラスが使用でき、そ
の久径は3〜10mm、内径は2〜9mnr位のものが
好適である。
In the present invention, as the glass tube ( ), for example, sorter glass having a softening point of 550 to 65 (1''C) can be used, and a diameter of 3 to 10 mm and an inner diameter of 2 to 9 mnr are suitable.

なお、このカラス管(1)はソーダガラスに限定される
ものではなく、その他のホウ珪酸カラスなど各抽のもの
が使用できることは勿論である。
Note that this glass tube (1) is not limited to soda glass, and it goes without saying that other types of glass such as borosilicate glass can be used.

を暗所で徐々に解放して螢光による発光現象を生じる物
′αのことであり、具体的には硫化亜鉛、硫化力1−ミ
ウムなどの硫化物蓄光螢光粉末がある粉末であって、し
たがって得られるガラス繊維(5)の太さは細いもので
約50μから太いものでは0.’iJmrn位の直径を
有するものである。
It is a substance that produces a light-emitting phenomenon due to fluorescence by gradually releasing it in a dark place. Specifically, it is a powder containing sulfide luminescent fluorescent powder such as zinc sulfide or 1-mium sulfide. Therefore, the thickness of the obtained glass fiber (5) ranges from about 50μ for a thin case to 0.5μ for a thick one. It has a diameter of about 'iJmrn.

なお、このガラス繊維(5)の大さ一目的により適宜選
定してやればよく、例えばガラス管(1)の直径や肉厚
、端部(a)の加夕(条件、ガラス管(1)の送り速度
、延伸時のスピードなどで任意に設面できることは勿論
である。この延伸スピードとしては通常30〜200r
In/秒の速さが好適な範囲である。
The size of the glass fiber (5) may be appropriately selected depending on the purpose, such as the diameter and wall thickness of the glass tube (1), the shape of the end (a) (conditions, and the feed of the glass tube (1)). Of course, the surface can be set arbitrarily by adjusting the speed, the speed at the time of stretching, etc. This stretching speed is usually 30 to 200 r.
A speed of In/sec is a preferred range.

次に本発明における第2の発明について偕明する。Next, the second aspect of the present invention will be explained.

第2図は蓄光螢光性ガラス小球の重1j借方法の1実施
例を示した正面断面略図である。
FIG. 2 is a schematic front cross-sectional view showing one embodiment of a method for using luminescent fluorescent glass beads.

この図の様に、例えば離型性筒体(6)を傾斜状に設訪
゛して、この1*1[バIJ性筒体(6)の外周に加夕
(炉(7)を設けてこ°の離型性筒体(6)の内部をガ
ラスのt%11点以上例えば1000〜】300”Cに
加熱してやるのである。
As shown in this figure, for example, a releasable cylinder (6) is installed in an inclined manner, and a furnace (7) is installed around the outer periphery of this 1*1 mold releasable cylinder (6). The inside of the releasable cylindrical body (6) of the lever is heated to 11 points or more of the glass at a temperature of, for example, 1000 to 300''C.

そして前述した第1の発明によシ得られた蓄光螢光性の
ガラス繊維(5)を適宜の長さに切断して、これを投入
容器(8)によって振動させながら少しづつとの加熱さ
れた離型性筒体(6)の中に落下してやるのである。
Then, the luminescent fluorescent glass fiber (5) obtained according to the first invention described above is cut into appropriate lengths, and heated little by little while being vibrated by the charging container (8). It falls into the releasable cylindrical body (6).

この様にするとガラス繊維(5)はその融点以上に加熱
され流動性を有するものとなり、その表面張力により自
然とII型性筒体(6)を通過する所定時間内に球状に
変形してガラス小球(9)となって受け器QQK収納さ
れるのである。
In this way, the glass fiber (5) is heated above its melting point and becomes fluid, and due to its surface tension, it naturally deforms into a spherical shape within a predetermined time while passing through the Type II cylindrical body (6). It becomes a small ball (9) and is stored in the receiver QQK.

この離パリ性筒体(6)は・溶融したガラスが付着しな
い物質で形成された筒であり、例えばカーボン製の筒体
などが好ましいものである。
The paris-repellent cylinder (6) is a cylinder made of a material to which molten glass does not adhere; for example, a cylinder made of carbon is preferable.

1だ、このガラス繊維(5)のカット長は目的により異
なるが通常3〜15門の範囲が好適なものである。
1. The cut length of this glass fiber (5) varies depending on the purpose, but it is usually suitable to have a length in the range of 3 to 15 pieces.

このガラスの融点以上の温度条件下に滞留させる時間、
つまり第2図の実施例では離型性筒体(6)内を通過さ
せる時間は、その加熱条件によっても異なるが0.5〜
10秒間の範囲が適当なものである。
The residence time under temperature conditions above the melting point of this glass,
In other words, in the embodiment shown in FIG. 2, the time for passing through the releasable cylinder (6) varies depending on the heating conditions, but the
A range of 10 seconds is suitable.

なお、この加#!装置自体に適当な振動を与えてやると
一層好捷・シい結果が得られるものである。
In addition, this addition #! Even better results can be obtained by applying appropriate vibrations to the device itself.

この様にして製造されたガラス小球fQ)H約0.3〜
2間位の直伜を有するもので、完全な球体のものも含ま
れるが多少変形した球体のものもかなり多く含捷れるこ
とは云う捷でもなく、そのほとんどけガラス繊維(5)
が複雑に絡んだ状態となって球形化したものとなってい
る。
Glass spheres manufactured in this way fQ)H approximately 0.3~
It has a straight line of about 2 degrees, and although it includes completely spherical shapes, it goes without saying that it also includes a considerable number of slightly deformed spherical shapes, and most of them are glass fibers (5)
are intricately intertwined, forming a spherical shape.

この加熱手段は第2図に示した実施例に限定されるもの
ではなく、要はガラス繊維(5)が溶融してその表面張
力により球状に変形する加熱と時間があればよく、例え
ば垂直状の加熱装置の中を仙のものに接触させることな
く落下させる方法などでもよく、ガラスの融点以上の渦
度条やれ・・ずよいのである。
This heating means is not limited to the embodiment shown in FIG. It is also possible to drop the glass through a heating device without making contact with other objects, and it would be better if the vorticity was higher than the melting point of glass.

以上、本発明における蓄光螢光性ガラス繊維、及び蓄光
螢光性ガラス小球の製造方法を説明したが、この様にし
て得られた蓄光螢光体はいずれもガラス体によって完全
に封入されることにより保強され、ており、その耐候性
、耐水性、耐摩耗性、耐熱性などが飛躍的に改善された
ものとなっているのである。
The method for producing the phosphorescent glass fiber and the phosphorescent glass globules of the present invention has been described above, and the phosphorescent material obtained in this way is completely encapsulated by the glass body. As a result, it is strengthened and strengthened, and its weather resistance, water resistance, abrasion resistance, heat resistance, etc. have been dramatically improved.

蓄光螢光性ガラス繊維の場合は、例えばFRP用のガラ
ス繊維として使用してやれば蓄光螢光性を有するFRP
が得られるし、粉砕してプラスチック原料に混和したり
、その他ガラス材や樹脂と複合させたり、伶料中に配合
することもif能であp1屋外用の各種用途にも使用で
きるものである、 また蓄光螢光性ガラス小球の場合は、タイル焼成と同時
にその表面部に一体に付着させて蓄光螢光性のタイルを
形成させることも可能で、前記のガラス#&′維と同様
樹脂やガラス材と複合させたり、道路標識の文字表面に
付着させた9、道路の白線等に混入して夜間にその走行
線を発光させて明確にすることも可能であり、その他種
々なる屋内・屋外の案内板、装飾、照り、表示などに応
用できるものである。
In the case of phosphorescent fluorescent glass fibers, if used as glass fibers for FRP, for example, FRP with phosphorescent fluorescent properties can be used.
It can also be crushed and mixed with plastic raw materials, combined with other glass materials and resins, or mixed into liquid materials, and can be used for various outdoor purposes. In addition, in the case of phosphorescent glass beads, it is possible to form a phosphorescent tile by attaching them to the surface of the tile at the same time as firing the tile. It is also possible to combine it with glass materials, attach it to the surface of the letters on road signs, mix it with white lines on roads, etc. to make the driving lines clear at night by emitting light, and use it for various indoor and other purposes. It can be applied to outdoor information boards, decorations, lights, displays, etc.

実施例 1 ガラス管の中9部に、蓄光螢光粉末として硫化亜鉛の粉
末を使用して充填した。なお、このガラス管は外径5闘
、内径3騎で軟化点的F190”Cのソーダガラス製の
ものを使用した。
Example 1 Nine parts of the inside of a glass tube were filled with zinc sulfide powder as a luminescent fluorescent powder. Note that this glass tube was made of soda glass with an outer diameter of 5 mm, an inner diameter of 3 mm, and a softening point of F190''C.

この粉末を充填したガラス管の一端11111をニクロ
ム線による筒状の電気炉内に挿入して約65(1″Cに
加熱した。やがてこの端部が軟化して来たのでビンセッ
トでその先端を引出し毎秒75(、〕aの速さで引張る
延伸装置に連結し、ガラス繊維を連続的に形成させた。
One end of the glass tube 11111 filled with this powder was inserted into a cylindrical electric furnace made of nichrome wire and heated to about 65 (1"C). Eventually, this end became soft, so use a bottle set to remove the tip. The glass fibers were connected to a drawing device that pulled the glass fibers at a drawing speed of 75 (a) per second to form glass fibers continuously.

この場合ガラス管を毎分約5(7)の速度で先端へ向っ
て送り出すことにより連続的製造が可能となった。
In this case, continuous production was possible by feeding the glass tube toward the tip at a rate of about 5 (7) minutes per minute.

この結果、直径約Q、15mmのガラス繊維が得らJl
その中心部には硫化亜鉛が封入された状態できっちりと
詰っていた。
As a result, glass fibers with a diameter of approximately Q, 15 mm were obtained.
The center was tightly packed with zinc sulfide.

このものの初期螢光輝度、残光時間等は原料である硫化
11鉛そのものと全く変らず、しかも屋夕1bQ を肖
6ケ月峰過後も、この状態を完全に維1−fシており、
その耐久性が非常にすぐれていることが判明した。
The initial fluorescence brightness, afterglow time, etc. of this product are completely the same as those of the raw material 11 lead sulfide itself, and even after 6 months of use, it has completely maintained this state.
It has been found that its durability is extremely excellent.

なお、この屋外放置試]倹d現在継続中でありその耐久
性の最終結果は不明であるが、少くとも(li )7−
月間のテストでは何らの劣化も認められなかったのでほ
ぼ半永久的と云えるものと判断された。
This outdoor test] is currently ongoing and the final results of its durability are unknown, but at least (li)7-
Since no deterioration was observed during monthly tests, it was determined that it was almost semi-permanent.

ちなみに硫化亜鉛粉末を真夏の直射日光下でそのせ捷屋
外放置したものは2日半つ寸り約60時間で黒化し始め
その蓄光螢光性に劣化を牛していたのである。
By the way, when zinc sulfide powder was left outdoors under direct sunlight in midsummer, it began to turn black in about 60 hours, or about two and a half days, and its phosphorescent properties deteriorated.

実施例 2 第2図の如き装置であってカーボン製筒体の長さが6(
IDnでその傾斜角度が45度のものを準備し、このカ
ーボン製筒体の外周に設けた電気炉でこのカーボン製筒
体の内部を約] 10 (1〜1200°Cに加熱した
Example 2 A device as shown in Fig. 2, in which the length of the carbon cylinder is 6 (
IDn with an inclination angle of 45 degrees was prepared, and the inside of this carbon cylinder was heated to about 10 to 1200°C in an electric furnace provided around the outer periphery of the carbon cylinder.

そして実施例1で得られた蓄光螢光性ガラス繊維を5〜
8mm(平均5.6mm)の長さに切断し、−1−記の
カーボン製筒体内に少しっつ落下して投入した。
Then, the luminescent fluorescent glass fiber obtained in Example 1 was
It was cut into a length of 8 mm (5.6 mm on average) and dropped into the carbon cylinder described in -1-.

このガラス繊維の筒体内での滞留時間は約1〜3秒であ
り、筒体の下端部からは表面張力により」〕R状に絡1
つだガラス小球が落下して、空中で冷却されながら受け
器内に収納された。
The residence time of this glass fiber in the cylinder is about 1 to 3 seconds, and the glass fibers are entangled in an R-shape from the bottom end of the cylinder due to surface tension.
A small glass ball fell and was stored in a receiver while being cooled in the air.

この結果、直径約0.4〜1.(’1mmのガラス小球
か多数製造でき、その小球内にに硫化亜鉛が完全に封入
された状態で存在していた。
As a result, the diameter is about 0.4 to 1. (A large number of 1 mm glass globules were manufactured, and zinc sulfide existed in the spherules in a completely encapsulated state.

との蓄光螢光性ガラス小球も、原料の硫化亜鉛と全く同
様な蓄光螢光性を示し、しかもその耐久性は実施例1の
ガラス繊維と同様に屋外放置6ケ月経過後も最初の蓄光
螢光性をその1.ま矛(1持しており、はぼ半永久的な
蓄光螢光性を有するものと半]1断された。
The phosphorescent glass spherules with phosphorescence exhibit the same phosphorescent properties as the raw material zinc sulfide, and, like the glass fibers of Example 1, their durability remains unchanged even after being left outdoors for 6 months. Fluorescence is the first. It has been determined that it has a semi-permanent phosphorescent property.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蓄光螢光性ガラス繊維の製造方法の1実)J0
Σ例を示した正面断面略図である。 第2図に蓄光螢光性ガラス小球の製造方法の1実brl
百IA1を示した正面断面略図である。 (1)カラス管、(2)・・・中空部、(3)・・蓄光
螢光粉末、(4) 加熱炉、(5)・・・ガラス繊維、
(6)・離型性筒体、(7)・加夕(炉、(8)・・・
投入容器、(9)・・・ガラス小球、(10)・・・受
は器 図 面 第1図 一
Figure 1 is an example of the manufacturing method of luminescent fluorescent glass fiber) J0
It is a schematic front cross-sectional view showing a Σ example. Figure 2 shows an example of the method for producing luminous fluorescent glass spheres.
It is a front sectional schematic diagram showing 100 IA1. (1) Glass tube, (2) Hollow part, (3) Luminescent fluorescent powder, (4) Heating furnace, (5) Glass fiber,
(6)・Releasable cylindrical body, (7)・Kayu (furnace), (8)...
Insertion container, (9)...Glass sphere, (10)...Receptacle Figure 1

Claims (1)

【特許請求の範囲】 1、 ガラス管の中空部に蓄光螢光粉末を充填し、該ガ
ラス管の端部から順次連続してその端部を加熱軟化させ
ながら延伸して繊維状とすることを特徴とする蓄光螢光
性のガラス繊維の製造方法。 2 ガラス管の中空部に蓄光螢光粉末を充填し、該ガラ
ス管の端部から順次連続してその端部を加熱軟化させな
がら延伸して繊維状カラスとし、ついでこの繊維状ガラ
スを適宜の同さに切断してそのガラスの融点以上のl黒
度条件下に所定時間滞留きせることにより表面張力にて
球状とすることを特徴とする蓄光螢光性のガラス小球の
製造方法。
[Scope of Claims] 1. Filling the hollow part of a glass tube with luminescent fluorescent powder, and stretching the glass tube successively from the end thereof while heating and softening the end part to form a fiber-like powder. A method for producing characteristic luminescent fluorescent glass fibers. 2 Fill the hollow part of a glass tube with phosphorescent powder, and draw the end of the glass tube successively while heating and softening the end to form a fibrous glass. Then, this fibrous glass is A method for producing phosphorescent glass spherules, which comprises cutting the phosphorescent glass spherules into spherical shapes by surface tension by holding the spherules in the same shape for a predetermined period of time under conditions of a blackness higher than the melting point of the glass.
JP3112684A 1984-02-20 1984-02-20 Production of light storing fluorescent glass fiber and glass spherule Pending JPS60176933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3112684A JPS60176933A (en) 1984-02-20 1984-02-20 Production of light storing fluorescent glass fiber and glass spherule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112684A JPS60176933A (en) 1984-02-20 1984-02-20 Production of light storing fluorescent glass fiber and glass spherule

Publications (1)

Publication Number Publication Date
JPS60176933A true JPS60176933A (en) 1985-09-11

Family

ID=12322727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112684A Pending JPS60176933A (en) 1984-02-20 1984-02-20 Production of light storing fluorescent glass fiber and glass spherule

Country Status (1)

Country Link
JP (1) JPS60176933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472943A (en) * 1987-09-11 1989-03-17 Nippon Sheet Glass Co Ltd Inorganic body having fibrous substance with lustrous surface and its production
WO2008024647A1 (en) * 2006-08-21 2008-02-28 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
WO2010090312A1 (en) * 2009-02-09 2010-08-12 アライズ・コーポレート株式会社 Method for manufacturing glass-covered phosphorescent light-emitting body particles
JP2013032239A (en) * 2011-08-01 2013-02-14 Hoya Corp Feedstock-melting furnace
US9005760B2 (en) 2010-10-22 2015-04-14 Yasunori Iwamoto Process for producing phosphorescent body and phosphorescent body produced by the process, and nail stone including phosphorescent body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472943A (en) * 1987-09-11 1989-03-17 Nippon Sheet Glass Co Ltd Inorganic body having fibrous substance with lustrous surface and its production
WO2008024647A1 (en) * 2006-08-21 2008-02-28 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
US8701441B2 (en) 2006-08-21 2014-04-22 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
US9108874B2 (en) 2006-08-21 2015-08-18 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
US9527768B2 (en) 2006-08-21 2016-12-27 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
WO2010090312A1 (en) * 2009-02-09 2010-08-12 アライズ・コーポレート株式会社 Method for manufacturing glass-covered phosphorescent light-emitting body particles
US9005760B2 (en) 2010-10-22 2015-04-14 Yasunori Iwamoto Process for producing phosphorescent body and phosphorescent body produced by the process, and nail stone including phosphorescent body
JP2013032239A (en) * 2011-08-01 2013-02-14 Hoya Corp Feedstock-melting furnace

Similar Documents

Publication Publication Date Title
US4810431A (en) Method of manufacturing plastic particles for a particle display
JPS60176933A (en) Production of light storing fluorescent glass fiber and glass spherule
CN106674935A (en) Luminous PLA (Polylactic Acid) wire rod for 3D (Three Dimensional) printing and preparation method thereof
US5116533A (en) Phosphorescent marking material
CN201032086Y (en) Flexible optical fiber LED lamp strip
CN104927461A (en) Luminescent coating
CN2583757Y (en) LED advertising lamps and lanterns
CN201093205Y (en) Electronic luminous rod
CN107880874A (en) A kind of long-persistence luminous covering material, its preparation method and application
CN203215558U (en) LED lamp shade capable of improving lighting uniformity
CN108395886A (en) A kind of fluorescence liquid metal and preparation method thereof
CN2346075Y (en) Light-emitting diode
CN204454881U (en) With the overlength afterglow fluorescent glass particle of luminous paint layer
CN2636067Y (en) Lighting lamp decoration structure
JPH1143349A (en) Luminous material and its production
CN206907413U (en) The road direction board of luminescent powder combination reflective membrane
CN205331862U (en) Children are taste LED ball bubble lamp for room
CN207367970U (en) A kind of 360 degree of emitting led lamp beads
AU642837B2 (en) Phosphorescent marking material
CN2548167Y (en) Foamed plastic light conductor
JPH0977533A (en) Luminous glass formed article
Henly et al. XLI. An account of some new experiments in Electricity, containing, 1. An enquiry whether vapour be a conductor of electricity. 2. Some experiments, to ascertain the direction of the electric matter, in the discharge of the leyden bottle: with a new analysis of the leyden bottle. 3. Experiments on the lateral explosion, in the discharge of the leyden bottle. 4. The description, and use, of a new prime-conductor. 5. Miscellaneous Experiments, made principally in the Year 1771 and 1772. 6. Experiments and obs
JP2004010409A (en) Luminous glassblowing formed article and method of producing the same
JPH01221494A (en) Candle having light-storing fluorescence and production of the same
JP2007084622A (en) Light-accumulating color synthetic resin