JP2010174078A - Composition for sealing semiconductor element - Google Patents

Composition for sealing semiconductor element Download PDF

Info

Publication number
JP2010174078A
JP2010174078A JP2009015995A JP2009015995A JP2010174078A JP 2010174078 A JP2010174078 A JP 2010174078A JP 2009015995 A JP2009015995 A JP 2009015995A JP 2009015995 A JP2009015995 A JP 2009015995A JP 2010174078 A JP2010174078 A JP 2010174078A
Authority
JP
Japan
Prior art keywords
group
integer
composition
carbon atoms
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009015995A
Other languages
Japanese (ja)
Other versions
JP5099850B2 (en
Inventor
Kazumasa Sumida
和昌 隅田
Kazutoshi Tomiyoshi
和俊 富吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009015995A priority Critical patent/JP5099850B2/en
Publication of JP2010174078A publication Critical patent/JP2010174078A/en
Application granted granted Critical
Publication of JP5099850B2 publication Critical patent/JP5099850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat resistance of a silicone-modified epoxy resin composition by compounding a compound having an adamantane skeleton, and to obtain a cured product having an extremely high toughness value. <P>SOLUTION: The liquid epoxy resin composition for a semiconductor element contains (A) an adamantane derivative, (B) an aromatic amine-based curing agent, (C) a silicone-modified epoxy resin and (D) an inorganic filler. The semiconductor device is sealed with the cured product of the composition. The composition provides the cured product having strong toughness, excellent adhesion to the semiconductor element and a substrate, and excellent thermal shock resistance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子封止用組成物に関し、詳細には、アダマンタン骨格とシリコーン骨格を含み、耐熱衝撃性が高く、半導体素子の表面との密着性、耐湿性に優れた硬化物を与える組成物に関する。   The present invention relates to a composition for encapsulating a semiconductor element, and in particular, a composition that includes an adamantane skeleton and a silicone skeleton, has a high thermal shock resistance, and provides a cured product having excellent adhesion to the surface of the semiconductor element and excellent moisture resistance. Related to things.

電気機器の小型化、軽量化、高機能化に伴い、実装方法もピン挿入タイプから表面実装が主流になっている。また、半導体素子の高集積化に伴い、ダイサイズの一辺が10mmを超えるものもあり、ダイサイズの大型化が進んできている。このような大型ダイを用いた半導体装置では、半田リフロー時にダイと封止材にかかる応力が増大し、封止材とダイ及び基板の界面での剥離が生じ、また、基板実装時にパッケージにクラックが入るという問題がある。   As electrical devices become smaller, lighter, and more functional, mounting methods from pin insertion type to surface mounting have become mainstream. In addition, along with the high integration of semiconductor elements, there are cases in which one side of the die size exceeds 10 mm, and the die size is increasing. In a semiconductor device using such a large die, the stress applied to the die and the sealing material increases during solder reflow, peeling occurs at the interface between the sealing material and the die and the substrate, and the package is cracked when mounted on the substrate. There is a problem of entering.

更に、近い将来に鉛含有半田が使用できなくなることから、鉛代替半田が多数開発されている。この種の半田は、溶融温度が鉛含有の半田より高くなることから、リフローの温度も260〜270℃で検討されており、従来の液状エポキシ樹脂組成物の封止材では、より一層の不良が予想される。このようにリフローの温度が高くなると、従来何ら問題のなかったパッケージもリフロー時にクラックが発生したり、チップ界面、基板界面との剥離が発生したり、その後の冷熱サイクルが数百回以上経過すると樹脂又は基板、チップ、バンプ部にクラックが発生するという問題が起こるようになった。   Furthermore, since lead-containing solder cannot be used in the near future, a number of lead substitute solders have been developed. Since this type of solder has a melting temperature higher than that of lead-containing solder, the reflow temperature is also examined at 260 to 270 ° C., and the conventional liquid epoxy resin composition sealing material is even more defective. Is expected. When the reflow temperature is increased in this way, a package that has not had any problems in the past may crack during reflow, or may be peeled off from the chip interface or the substrate interface. There has been a problem that cracks occur in the resin, the substrate, the chip, and the bump portion.

上記問題を解決するものとして、シリコーン変性エポキシ樹脂を配合した樹脂組成物が知られている(例えば特許文献1)。該組成物は耐熱衝撃性に優れるが、耐熱性の点で、さらなる向上が求められている。   As a solution to the above problem, a resin composition containing a silicone-modified epoxy resin is known (for example, Patent Document 1). Although the composition is excellent in thermal shock resistance, further improvement is required in terms of heat resistance.

耐熱性に優れた樹脂組成物として、アダマンタン骨格を有する化合物とエポキシ樹脂を含み、透明性等にも優れた硬化物を与え、光学素子の封止剤として有用である組成物が知られている(特許文献2、3)。   As a resin composition excellent in heat resistance, a composition containing a compound having an adamantane skeleton and an epoxy resin, giving a cured product excellent in transparency and the like and useful as a sealant for optical elements is known. (Patent Documents 2 and 3).

特開2005−146104号公報JP-A-2005-146104 特開2006−307062号公報JP 2006-307062 A 特開2007−70407号公報JP 2007-70407 A

本発明者は、アダマンタン骨格を有する化合物を配合することによって、シリコーン変性エポキシ樹脂組成物の耐熱性を向上すべく、種々検討したところ、該化合物と所定の硬化剤の組合せを含むことによって、高い耐熱性だけでなく、著しく強靭性値の高い硬化物が得られることを見出し、本発明に至った。   The present inventor has made various studies to improve the heat resistance of the silicone-modified epoxy resin composition by blending a compound having an adamantane skeleton. As a result of including a combination of the compound and a predetermined curing agent, the inventors have increased the heat resistance. It has been found that a cured product having not only heat resistance but also extremely high toughness can be obtained, and the present invention has been achieved.

即ち、本発明は下記のものである。
下記(A)〜(D)を含む組成物
(A)下記式(1)で示されるアダマンタン誘導体

Figure 2010174078
[式中、R1は水素原子、ハロゲン原子、炭化水素基、ハロゲン置換炭化水素基、環式炭化水素基、ハロゲン置換環式炭化水素基、水素基、カルボキシル基、及び2つのRが結合して形成された−O−から選ばれる基、mは0〜15の整数、nは1〜16の整数、但し、m+n=16であり、Xは下記式(2)で表される基であり、
Figure 2010174078
(式中、R2は水素原子、炭素数1〜4のアルキル基であり、aは1〜5の整数、bは0〜4の整数、但し、1≦a+b≦5である)
Yは下記の基から選ばれる基であり、
−CO2
−O−
−N(R3)−
(R3は水素原子又は炭素数1〜4のアルキル基である)
−N(Z)−
Zは下記式(3)で表される基である。
Figure 2010174078

(B)芳香族アミン系硬化剤を、(A)成分中のエポキシ基の総モル量に対して、該芳香族アミン系硬化剤中のアミノ基のモル量が0.7〜1.2になる量、
(C)下記平均組成式(7)で示されるシリコーン変性エポキシ樹脂を、(A)成分と(B)成分の合計100質量部に対して、0.1〜50質量部
Figure 2010174078
(上記式中、R6は炭素数1〜4のアルキル基、R5は水素原子又は炭素数1〜4のアルキル基、Qは炭素数3〜6のアルキレン基、オキシアルキレン基、又はヒドロキシオキシアルキレン基であり、rは4〜199の整数、pは1〜10の整数、qは1〜10の整数である。)
(D)無機充填剤を、(A)成分と(B)成分の合計100質量部に対して50〜600質量部。 That is, the present invention is as follows.
A composition comprising the following (A) to (D) (A) an adamantane derivative represented by the following formula (1)
Figure 2010174078
[In the formula, R 1 is a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-substituted hydrocarbon group, a cyclic hydrocarbon group, a halogen-substituted cyclic hydrocarbon group, a hydrogen group, a carboxyl group, and two R 1 bonds. A group selected from —O—, m is an integer of 0 to 15, n is an integer of 1 to 16, provided that m + n = 16, and X is a group represented by the following formula (2). Yes,
Figure 2010174078
(Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a is an integer of 1 to 5, b is an integer of 0 to 4, provided that 1 ≦ a + b ≦ 5)
Y is a group selected from the following groups:
−CO 2
-O-
-N (R 3 )-
(R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
-N (Z)-
Z is a group represented by the following formula (3).
Figure 2010174078
]
(B) The aromatic amine-based curing agent has a molar amount of amino groups in the aromatic amine-based curing agent of 0.7 to 1.2 with respect to the total molar amount of epoxy groups in the component (A). The amount of
(C) The silicone modified epoxy resin represented by the following average composition formula (7) is 0.1 to 50 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
Figure 2010174078
(In the above formula, R 6 is an alkyl group having 1 to 4 carbon atoms, R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Q is an alkylene group having 3 to 6 carbon atoms, an oxyalkylene group, or hydroxyoxy An alkylene group, r is an integer of 4 to 199, p is an integer of 1 to 10, and q is an integer of 1 to 10.)
(D) 50-600 mass parts inorganic filler with respect to a total of 100 mass parts of (A) component and (B) component.

本発明の半導体装置用液状エポキシ樹脂組成物は、強靭性値が高く、半導体素子、基盤との密着性に優れ、耐熱衝撃性に優れた硬化物を与える。   The liquid epoxy resin composition for a semiconductor device of the present invention has a high toughness value, excellent adhesion to a semiconductor element and a substrate, and gives a cured product excellent in thermal shock resistance.

以下各成分、組成物の製法、組成物の硬化法の順に説明する。
(A)アダマンタン誘導体
上記式(1)において、Rは、水素原子、ハロゲン原子、炭化水素基、ハロゲン置換炭化水素基、環式炭化水素基、ハロゲン置換環式炭化水素基、水酸基、カルボキシル基、及び2つのRが結合して形成された−O−から選ばれる基を示す。炭化水素基としては、炭素数1〜10の、アルキル基及びアルコキシ基が好ましく、例えばメチル基、エチル基、プロピル基、ブチル、メトキシ基及びエトキシ基などが挙げられる。ハロゲン置換炭化水素基としては、上記炭化水素基の水素原子が1個以上ハロゲン原子で置換された基、例えばトリフルオロメチル基などが挙げられる。環式炭化水素基としては、炭素数5〜10のシクロアルキル基、例えばシクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基及びエチルシクロヘキシル基などが挙げられる。また、ハロゲン置換環式炭化水素基としては、上記環式炭化水素基の水素原子が1個以上ハロゲン原子で置換された基、例えばフルオロシクロペンチル基、フルオロシクロヘキシル基、トリフルオロメチルシクロペンチル基及びトリフルオロメチルシクロヘキシル基などが挙げられる。
Hereinafter, each component, the production method of the composition, and the curing method of the composition will be described in this order.
(A) Adamantane derivative In the above formula (1), R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-substituted hydrocarbon group, a cyclic hydrocarbon group, a halogen-substituted cyclic hydrocarbon group, a hydroxyl group, or a carboxyl group. And a group selected from -O- formed by bonding two R 1 's. As a hydrocarbon group, a C1-C10 alkyl group and an alkoxy group are preferable, for example, a methyl group, an ethyl group, a propyl group, a butyl, a methoxy group, an ethoxy group etc. are mentioned. Examples of the halogen-substituted hydrocarbon group include a group in which one or more hydrogen atoms of the hydrocarbon group are substituted with a halogen atom, such as a trifluoromethyl group. Examples of the cyclic hydrocarbon group include a cycloalkyl group having 5 to 10 carbon atoms, such as a cyclopentyl group, a methylcyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, and an ethylcyclohexyl group. Examples of the halogen-substituted cyclic hydrocarbon group include groups in which one or more hydrogen atoms of the cyclic hydrocarbon group are substituted with halogen atoms, such as a fluorocyclopentyl group, a fluorocyclohexyl group, a trifluoromethylcyclopentyl group, and a trifluoro group. Examples thereof include a methylcyclohexyl group.

式(1)において、mは0〜14の整数、nは2〜16の整数であり、かつm+n=16である。 In Formula (1), m is an integer of 0 to 14, n is an integer of 2 to 16, and m + n = 16.

式(2)において、R2は炭素数1〜4のアルキル基であり、例えばメチル基、エチル基プロピル基である。複数のR2は同一であっても異なっていてもよい。また、kは0〜10の整数である。 In the formula (2), R 2 is an alkyl group having 1 to 4 carbon atoms, such as methyl group, ethyl group a propyl group. A plurality of R 2 may be the same or different. K is an integer of 0 to 10.

Yは、−CO2−、−O−、−N(R3)−及び−N(Z)−から選ばれる基を示す。R3は水素原子又は炭素数1〜4のアルキル基であり、Rについて例示したものであってよい。Zは、下記式(3)又は(4)で表される基を示す。式(4)において、Rはメチル基又はエチル基を示す。 Y represents a group selected from —CO 2 —, —O—, —N (R 3 ) —, and —N (Z) —. R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms and may be exemplified for R 2 . Z represents a group represented by the following formula (3) or (4). In the formula (4), R 4 represents a methyl group or an ethyl group.

好ましくは、アダマンタン誘導体は常温で液状のものであり、例えば、下記のものが上げられる。

Figure 2010174078
Preferably, the adamantane derivative is liquid at room temperature, and examples thereof include the following.
Figure 2010174078

(B)アミン系硬化剤
本発明の組成物は、アミン系硬化剤を用いる。上記、特許文献3にはアミン系硬化剤も使用できる旨が記載されている。しかし、酸無水物系が好ましいと記載されているとおり、実際上、(A)成分と、アミン系硬化剤の組合せだけでは、耐熱性の高い硬化物は得られないことが分った。該アミン系硬化剤(B)としては、芳香族ジアミノジフェニルメタン化合物、例えば、3,3’−ジエチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノフェニルメタン、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等の芳香族アミンであることが好ましい。これらは1種を単独で又は2種以上を混合して用いても差し支えない。
(B) Amine-based curing agent The composition of the present invention uses an amine-based curing agent. Patent Document 3 discloses that an amine-based curing agent can also be used. However, as it is described that an acid anhydride system is preferable, it has been found that a cured product having high heat resistance cannot be obtained only by combining the component (A) and an amine curing agent. Examples of the amine curing agent (B) include aromatic diaminodiphenylmethane compounds such as 3,3′-diethyl-4,4′-diaminophenylmethane, 3,3 ′, 5,5′-tetramethyl-4, 4′-diaminophenylmethane, 3,3 ′, 5,5′-tetraethyl-4,4′-diaminophenylmethane, 2,4-diaminotoluene, 1,4-diaminobenzene, 1,3-diaminobenzene, etc. An aromatic amine is preferred. These may be used alone or in combination of two or more.

上記芳香族アミン系硬化剤の中で、常温で液体のものはそのまま配合しても問題ないが、固体のものはそのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、予めエポキシ樹脂と溶融混合することが好ましく、後述する指定の配合割合で、70〜150℃の温度範囲で1〜2時間溶融混合することが望ましい。混合温度が70℃未満であるとアミン系硬化剤が十分に相溶しないおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であるとアミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。   Of the above aromatic amine curing agents, those that are liquid at room temperature can be blended as they are, but if they are blended as they are, the viscosity of the resin will increase and workability will be significantly reduced. It is preferable to melt and mix in a temperature range of 70 to 150 ° C. for 1 to 2 hours at a specified blending ratio described later. If the mixing temperature is less than 70 ° C, the amine curing agent may not be sufficiently compatible, and if the mixing temperature is higher than 150 ° C, it may react with the epoxy resin and increase the viscosity. Further, if the mixing time is less than 1 hour, the amine curing agent is not sufficiently compatible and may increase the viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase the viscosity.

なお、本発明に用いられるアミン系硬化剤の総配合量は、(A)成分中のエポキシ基もしくはオキセタン基の総モル量に対して、該芳香族アミン系硬化剤中のアミノ基のモル量が、0.7〜1.2、好ましくは0.7〜1.1、更に好ましくは0.85〜1.05である。配合モル比が前記下限値未満では未反応のアミノ基が残存し、ガラス転移温度が低下、あるいは密着性が低下するおそれがある。一方、前記上限値を超えると硬化物が硬く脆くなり、リフロー時又は温度サイクル時にクラックが発生するおそれがある。   The total amount of the amine curing agent used in the present invention is the molar amount of the amino group in the aromatic amine curing agent with respect to the total molar amount of the epoxy group or oxetane group in the component (A). Is 0.7 to 1.2, preferably 0.7 to 1.1, and more preferably 0.85 to 1.05. If the blending molar ratio is less than the lower limit, unreacted amino groups remain, and the glass transition temperature may be lowered or the adhesion may be lowered. On the other hand, if the upper limit is exceeded, the cured product becomes hard and brittle, and cracks may occur during reflow or temperature cycling.

(C)シリコーン変性エポキシ樹脂
本発明の液状エポキシ樹脂組成物は、(C)下記式(7)で示されるシリコーン変性エポキシ樹脂を含む。

Figure 2010174078
上記式中、上記式中、R6は炭素数1〜4のアルキル基、好ましくはメチル基、R5は水素原子又は炭素数1〜4のアルキル基、好ましくは水素原子またはメチル基である。Qは炭素数3〜6のアルキレン基、オキシアルキレン基、又はヒドロキシオキシアルキレン基であり、例えば、−CH2CH2CH2−、−OCH2−CH(OH)−CH2−O−CH2CH2CH2−又は−O−CH2CH2CH2−である。rは4〜199の整数、好ましくは19〜130、より好ましくは70〜109の整数であり、pは1〜10の整数、qは1〜10の整数、好ましくは2〜5の整数である。 (C) Silicone-modified epoxy resin The liquid epoxy resin composition of the present invention includes (C) a silicone-modified epoxy resin represented by the following formula (7).
Figure 2010174078
In the above formula, R 6 is an alkyl group having 1 to 4 carbon atoms, preferably a methyl group, and R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom or a methyl group. Q is an alkylene group having 3 to 6 carbon atoms, an oxyalkylene group, or a hydroxyoxyalkylene group. For example, —CH 2 CH 2 CH 2 —, —OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2 — or —O—CH 2 CH 2 CH 2 —. r is an integer of 4 to 199, preferably 19 to 130, more preferably an integer of 70 to 109, p is an integer of 1 to 10, q is an integer of 1 to 10, preferably 2 to 5. .

該シリコーン変性エポキシ樹脂を配合する場合には、(A)エポキシ樹脂100重量部に対して、ジオルガノシロキサン単位が1〜20質量部、特に2〜15質量部含まれるように配合することが好ましく、これにより、硬化物の応力を低下し及び基板への密着性も向上することができる。ここで、ジオルガノポリシロキサン量は、下記式で示される。
ポリシロキサン量=(ポリシロキサン部分の分子量/シリコーン変性エポキシ樹脂の分子量)×添加量
When blending the silicone-modified epoxy resin, it is preferable to blend the diorganosiloxane unit in an amount of 1 to 20 parts by weight, particularly 2 to 15 parts by weight, based on 100 parts by weight of the epoxy resin (A). Thereby, the stress of hardened | cured material can be reduced and the adhesiveness to a board | substrate can also be improved. Here, the amount of diorganopolysiloxane is represented by the following formula.
Polysiloxane amount = (molecular weight of polysiloxane portion / molecular weight of silicone-modified epoxy resin) × added amount

(D)無機充填剤
本発明のエポキシ樹脂組成物中に配合される(D)無機質充填剤としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、ガラス繊維等が挙げられる。
(D) Inorganic filler As (D) inorganic filler mix | blended in the epoxy resin composition of this invention, what is normally mix | blended with an epoxy resin composition can be used. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, glass fiber and the like.

無機質充填剤(D)の配合量としては、(A)成分、(B)成分、(C)成分の総量100質量部に対して、50〜400質量部とすることが好ましく、より好ましくは150〜300質量部の範囲である。前記下限値未満では、硬化物の膨張係数が大きく、熱衝撃性試験においてクラックの発生を誘発させるおそれがある。一方、前記上限値を超えると、粘度が高くなる。   As a compounding quantity of an inorganic filler (D), it is preferable to set it as 50-400 mass parts with respect to 100 mass parts of total amounts of (A) component, (B) component, and (C) component, More preferably, it is 150. It is the range of -300 mass parts. If it is less than the said lower limit, the expansion coefficient of hardened | cured material is large and there exists a possibility of inducing the generation | occurrence | production of a crack in a thermal shock test. On the other hand, when the upper limit is exceeded, the viscosity increases.

無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   In order to increase the bond strength between the resin and the inorganic filler, the inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane cups such as aminosilanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilanes such as γ-mercaptosilane It is preferable to use a ring agent. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

その他
本発明の組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば、(A)及び(C)以外のエポキシ化合物またはエポキシ樹脂、溶剤、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、カルナバワックス、高級脂肪酸、合成ワックス等のワックス類、カーボンブラック等の着色剤、ハロゲントラップ剤等の添加剤を添加配合することができる。
In addition, various additives can be further blended in the composition of the present invention as necessary. For example, epoxy compounds or epoxy resins other than (A) and (C), solvents, thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, silicone-based low stress agents, carnauba waxes, higher fatty acids, synthetic waxes, etc. In addition, colorants such as carbon black and additives such as halogen trapping agents can be added and blended.

(A)及び(C)以外のエポキシ化合物またはエポキシ樹脂としては、ビスフェノールF型エポキシ樹脂、下記構造式で示されるエポキシ化合物及びその重合体を含むエポキシ樹脂が挙げられる。

Figure 2010174078
ここで、Rは水素原子、又は炭素数1〜20、好ましくは1〜10、更に好ましくは1〜3の一価炭化水素基であり、一価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基等が挙げられる。また、xは1〜4の整数、特に1又は2である。 Examples of the epoxy compound or epoxy resin other than (A) and (C) include a bisphenol F type epoxy resin, an epoxy compound represented by the following structural formula, and an epoxy resin containing a polymer thereof.
Figure 2010174078
Here, R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20, preferably 1 to 10, and more preferably 1 to 3 carbon atoms, and examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, Examples thereof include alkyl groups such as propyl group, alkenyl groups such as vinyl group and allyl group. X is an integer of 1 to 4, particularly 1 or 2.

また、溶剤としては、メチルエチルケトン及びカルビトールアセテート等を使用することができる。   As the solvent, methyl ethyl ketone, carbitol acetate, or the like can be used.

組成物の製造法
本発明の組成物は、(A)〜(D)成分、必要に応じてその他の添加剤等を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー、ビーズミル等を用いることができる。またこれら装置を適宜組み合わせて使用してもよい。
Production method of the composition The composition of the present invention comprises the components (A) to (D), as necessary, other additives or the like simultaneously or separately, with stirring, dissolution, mixing, and heating treatment as necessary. It can be obtained by dispersing. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a lykai machine, a three roll, a ball mill, a planetary mixer, a bead mill and the like equipped with a stirring and heating device can be used. Moreover, you may use combining these apparatuses suitably.

組成物の硬化法
本発明の組成物の成形方法は、公知の方法であってよいが、好ましくは、先に100〜120℃、0.5時間以上、特に0.5〜2時間、その後130〜250℃、0.5時間以上、特に0.5〜5時間の条件で熱オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また130〜250℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。
Curing Method of Composition The molding method of the composition of the present invention may be a known method, but preferably 100 to 120 ° C., 0.5 hour or more, particularly 0.5 to 2 hours, and then 130 Heat oven cure is performed under conditions of ˜250 ° C. and 0.5 hours or more, particularly 0.5 to 5 hours. When heating at 100 to 120 ° C. is less than 0.5 hour, voids may occur after curing. Further, if the heating at 130 to 250 ° C. is less than 0.5 hour, sufficient cured product characteristics may not be obtained.

以下に、本発明を実施例により説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

[実施例1〜4、比較例1〜5]
下記に示す各成分を、表1記載の配合量(質量部)で、3本ロールを用いて均一に混練することにより、各樹脂組成物を得た。
(A)アダマンタン誘導体
(i)ARS-EPO(出光興産(株)製)
(ii)BRS-EPO(出光興産(株)製)
(iii)BP13-EPO(出光興産(株)製)
(iv)BP22-EPO(出光興産(株)製)

Figure 2010174078
Figure 2010174078
Figure 2010174078
Figure 2010174078
(B)アミン系硬化剤 :4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン(日本化薬(株)製)
(C)シリコーン変性エポキシ樹脂
共重合体:
Figure 2010174078

Figure 2010174078
との付加反応生成物
(D)無機質充填剤 :最大粒径53μm、平均粒径10μmの球状シリカ((株)龍森製)
(E)溶剤 :メチルエチルケトン
その他の成分
シランカップリング剤:KBM403、γ−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製)
カーボンブラック:デンカブラック(電気化学工業(株)製)
比較例で使用の樹脂等
YDF8170:ビスフェノールF型エポキシ樹脂(東都化成(株)製)
酸無水硬化剤 :MH700 (東海理化社製) [Examples 1 to 4, Comparative Examples 1 to 5]
Each resin composition was obtained by kneading the components shown below uniformly in a blending amount (parts by mass) shown in Table 1 using three rolls.
(A) Adamantane derivative (i) ARS-EPO (manufactured by Idemitsu Kosan Co., Ltd.)
(Ii) BRS-EPO (made by Idemitsu Kosan Co., Ltd.)
(Iii) BP13-EPO (made by Idemitsu Kosan Co., Ltd.)
(Iv) BP22-EPO (made by Idemitsu Kosan Co., Ltd.)
Figure 2010174078
Figure 2010174078
Figure 2010174078
Figure 2010174078
(B) Amine-based curing agent: 4,4′-diamino-3,3′-diethyldiphenylmethane (manufactured by Nippon Kayaku Co., Ltd.)
(C) Silicone-modified epoxy resin copolymer:
Figure 2010174078
When
Figure 2010174078
Reaction product with (D) inorganic filler: spherical silica having a maximum particle size of 53 μm and an average particle size of 10 μm (manufactured by Tatsumori)
(E) Solvent: Methyl ethyl ketone
Other components Silane coupling agent: KBM403, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Resin used in comparative example YDF8170: Bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd.)
Acid anhydride curing agent: MH700 (manufactured by Tokai Rika Co., Ltd.)

Figure 2010174078
Figure 2010174078

得られた各樹脂組成物について、以下に示す試験を行った。その結果を表2に示す。
(1)粘度
BH型回転粘度計を用いて4rpmの回転数で25℃における粘度を測定した。
The test shown below was done about each obtained resin composition. The results are shown in Table 2.
(1) Viscosity Viscosity at 25 ° C. was measured at a rotation speed of 4 rpm using a BH type rotational viscometer.

(2)Tg(ガラス転移温度)、CTE1(膨張係数)、CTE2(膨張係数)
各組成物を、120℃/0.5時間+165℃/3時間硬化し、5mm×5mm×15mmの硬化物試験片を作成した。該試験片を用いて、TMA(熱機械分析装置)により毎分5℃の速さで昇温した時のTgを測定した。また、以下の温度範囲の膨張係数を測定した。CTE1の温度範囲は50〜80℃、CTE2の温度範囲は200〜230℃である。
(2) Tg (glass transition temperature), CTE1 (expansion coefficient), CTE2 (expansion coefficient)
Each composition was cured at 120 ° C./0.5 hours + 165 ° C./3 hours to prepare a cured product test piece of 5 mm × 5 mm × 15 mm. Using this test piece, Tg when the temperature was raised at a rate of 5 ° C. per minute by TMA (thermomechanical analyzer) was measured. Moreover, the expansion coefficient in the following temperature range was measured. The temperature range of CTE1 is 50 to 80 ° C, and the temperature range of CTE2 is 200 to 230 ° C.

(3)強靭性値K1c
各樹脂組成物を120℃/0.5時間+165℃/3時間硬化し、得られた硬化物について、ASTM#D5045に基づき、常温の強靭性値K1cを測定した。
(3) Toughness value K 1c
Each resin composition was cured at 120 ° C./0.5 hours + 165 ° C./3 hours, and the toughness value K 1c at room temperature was measured based on ASTM # D5045 for the obtained cured product.

(4)プレッシャークッカーテスト
下記方法で得られた試験用半導体装置を、30℃/65%RHの条件下に192時間(JEDECレベル3の条件)置いた後に、最高温度265℃に設定したIRリフロー炉を5回通した後の、クラックの有無を、超音波映像診断機、C−SAM、SONIX社製、を用いて調べた。次いで、プレッシャークッカー中、121℃/2.1atmの環境下に336時間置いた後の剥離の有無を、上記同様に調べた。
(4) Pressure cooker test IR reflow set to a maximum temperature of 265 ° C after placing the test semiconductor device obtained by the following method under the condition of 30 ° C / 65% RH for 192 hours (condition of JEDEC level 3) The presence or absence of cracks after passing through the furnace five times was examined using an ultrasonic diagnostic imaging machine, C-SAM, manufactured by SONIX. Next, the presence or absence of peeling after being placed in a pressure cooker in an environment of 121 ° C./2.1 atm for 336 hours was examined in the same manner as described above.

半導体装置の作成
厚さ32x32mmx0.4mmのBT樹脂基板上に、10x10x0.3mmのシリコンチップを市販のダイボンド剤で固定し、チップの上に樹脂を塗布した後、120℃/0.5時間+165℃/3時間の条件で硬化させ、COB型半導体パッケージを作った。
Fabrication of a semiconductor device A 10 × 10 × 0.3 mm silicon chip is fixed on a BT resin substrate having a thickness of 32 × 32 mm × 0.4 mm with a commercially available die bond agent, and the resin is applied on the chip, and then 120 ° C./0.5 hours + 165 ° C. For 3 hours to make a COB type semiconductor package.

(5)熱衝撃テスト
上記方法で得られた試験用半導体装置を、30℃/65%RHの条件下に192時間置いて、最高温度265℃に設定したIRリフロー炉を5回通した後、−65℃で30分、150℃で30分を1サイクルとし、250、500、750、及び1000サイクル後のクラックを、上記同様に調べ、クラックが観察されたチップの割合(%)を求めた。
(5) Thermal shock test The test semiconductor device obtained by the above method was placed in a condition of 30 ° C./65% RH for 192 hours and passed through an IR reflow furnace set at a maximum temperature of 265 ° C. five times. A cycle of −65 ° C. for 30 minutes and 150 ° C. for 30 minutes was examined for cracks after 250, 500, 750, and 1000 cycles in the same manner as described above, and the ratio (%) of chips in which cracks were observed was obtained. .

Figure 2010174078
Figure 2010174078

上表から分るように、実施例の硬化物は、耐熱性に優れると共に、強靭性値(K1c)が、比較例に比べて13%以上も高い。 As can be seen from the above table, the cured products of the examples are excellent in heat resistance, and the toughness value (K 1c ) is 13% or more higher than that in the comparative example.

本発明の組成物は、耐熱衝撃性、靭性に優れた硬化物を与え、半導体装置の封止に好適である。   The composition of the present invention provides a cured product excellent in thermal shock resistance and toughness, and is suitable for sealing a semiconductor device.

Claims (5)

下記(A)〜(D)を含む組成物
(A)下記式(1)で示されるアダマンタン誘導体
Figure 2010174078

[式中、R1は水素原子、ハロゲン原子、炭化水素基、ハロゲン置換炭化水素基、環式炭化水素基、ハロゲン置換環式炭化水素基、水素基、カルボキシル基、及び2つのRが結合して形成された−O−から選ばれる基、mは0〜15の整数、nは1〜16の整数、但し、m+n=16であり、
Xは下記式(2)で表される基であり、
Figure 2010174078

(式中、R2は水素原子、炭素数1〜4のアルキル基であり、aは1〜5の整数、bは0〜4の整数、但し、1≦a+b≦5である)
Yは下記の基から選ばれる基であり、
−CO2
−O−
−N(R3)−
(R3は水素原子又は炭素数1〜4のアルキル基である)
−N(Z)−
Zは下記式(3)で表される基である
Figure 2010174078


(B)芳香族アミン系硬化剤を、(A)成分中のエポキシ基の総モル量に対して、該芳香族アミン系硬化剤中のアミノ基のモル量が0.7〜1.2になる量、
(C)下記平均組成式(7)で示されるシリコーン変性エポキシ樹脂を、(A)成分と(B)成分の合計100質量部に対して、0.1〜50質量部
Figure 2010174078
(上記式中、R6は炭素数1〜4のアルキル基、R5は水素原子又は炭素数1〜4のアルキル基、Qは炭素数3〜6のアルキレン基、オキシアルキレン基、又はヒドロキシオキシアルキレン基であり、rは4〜199の整数、pは1〜10の整数、qは1〜10の整数である。)
(D)無機充填剤を、(A)成分と(B)成分の合計100質量部に対して50〜600質量部。
A composition comprising the following (A) to (D) (A) an adamantane derivative represented by the following formula (1)
Figure 2010174078

[In the formula, R 1 is a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-substituted hydrocarbon group, a cyclic hydrocarbon group, a halogen-substituted cyclic hydrocarbon group, a hydrogen group, a carboxyl group, and two R 1 bonds. A group selected from -O- formed as above, m is an integer of 0-15, n is an integer of 1-16, provided that m + n = 16;
X is a group represented by the following formula (2),
Figure 2010174078

(Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a is an integer of 1 to 5, b is an integer of 0 to 4, provided that 1 ≦ a + b ≦ 5)
Y is a group selected from the following groups:
−CO 2
-O-
-N (R 3 )-
(R 3 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
-N (Z)-
Z is a group represented by the following formula (3)
Figure 2010174078
]

(B) The aromatic amine-based curing agent has a molar amount of amino groups in the aromatic amine-based curing agent of 0.7 to 1.2 with respect to the total molar amount of epoxy groups in the component (A). The amount of
(C) The silicone modified epoxy resin represented by the following average composition formula (7) is 0.1 to 50 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
Figure 2010174078
(In the above formula, R 6 is an alkyl group having 1 to 4 carbon atoms, R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Q is an alkylene group having 3 to 6 carbon atoms, an oxyalkylene group, or hydroxyoxy An alkylene group, r is an integer of 4 to 199, p is an integer of 1 to 10, and q is an integer of 1 to 10.)
(D) 50-600 mass parts inorganic filler with respect to a total of 100 mass parts of (A) component and (B) component.
式(7)において、Rがメチル基、Rが水素原子、rが70〜109の整数、p及びqが2〜5の整数、Qが−OCH2−CH(OH)−CH2−O−CH2CH2CH2−である、請求項1記載の組成物。 In the formula (7), R 6 is a methyl group, R 5 is a hydrogen atom, r is an integer of 70 to 109, p and q are integers of 2 to 5, and Q is —OCH 2 —CH (OH) —CH 2 —. The composition of claim 1, which is O—CH 2 CH 2 CH 2 —. (B)芳香族アミン系硬化剤が、下記式(8)、(9)、(10)又は(11)で表される、請求項1または2記載の組成物。
Figure 2010174078
Figure 2010174078
Figure 2010174078
Figure 2010174078
(式中、R〜R11は、互いに独立に、炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である。)
(B) The composition of Claim 1 or 2 with which an aromatic amine type hardening | curing agent is represented by following formula (8), (9), (10) or (11).
Figure 2010174078
Figure 2010174078
Figure 2010174078
Figure 2010174078
(In the formula, R 8 to R 11 are each independently a group selected from a monovalent hydrocarbon group having 1 to 6 carbon atoms, CH 3 S— and C 2 H 5 S—.)
(E)溶剤をさらに含む請求項1〜3のいずれか1項記載の組成物。   (E) The composition according to any one of claims 1 to 3, further comprising a solvent. 請求項1〜4のいずれか1項記載の液状エポキシ樹脂組成物の硬化物で封止された半導体装置。   The semiconductor device sealed with the hardened | cured material of the liquid epoxy resin composition of any one of Claims 1-4.
JP2009015995A 2009-01-27 2009-01-27 Semiconductor element sealing composition Expired - Fee Related JP5099850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015995A JP5099850B2 (en) 2009-01-27 2009-01-27 Semiconductor element sealing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015995A JP5099850B2 (en) 2009-01-27 2009-01-27 Semiconductor element sealing composition

Publications (2)

Publication Number Publication Date
JP2010174078A true JP2010174078A (en) 2010-08-12
JP5099850B2 JP5099850B2 (en) 2012-12-19

Family

ID=42705362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015995A Expired - Fee Related JP5099850B2 (en) 2009-01-27 2009-01-27 Semiconductor element sealing composition

Country Status (1)

Country Link
JP (1) JP5099850B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382421A (en) * 2011-09-16 2012-03-21 汕头市骏码凯撒有限公司 Liquid epoxy resin packaging material and preparation method thereof
JP2017524698A (en) * 2014-07-22 2017-08-31 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ High heat-resistant monomer and method of using the same
JP2018154776A (en) * 2017-03-21 2018-10-04 国立大学法人広島大学 Silicone modified epoxy resin, and composition and cured product thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194502A (en) * 2003-12-12 2005-07-21 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006348064A (en) * 2005-06-13 2006-12-28 Nippon Steel Chem Co Ltd Epoxy resin, method for producing the same, epoxy resin composition using the same and its cured material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194502A (en) * 2003-12-12 2005-07-21 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2006348064A (en) * 2005-06-13 2006-12-28 Nippon Steel Chem Co Ltd Epoxy resin, method for producing the same, epoxy resin composition using the same and its cured material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382421A (en) * 2011-09-16 2012-03-21 汕头市骏码凯撒有限公司 Liquid epoxy resin packaging material and preparation method thereof
JP2017524698A (en) * 2014-07-22 2017-08-31 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ High heat-resistant monomer and method of using the same
US10870724B2 (en) 2014-07-22 2020-12-22 Sabic Global Technologies B.V. High heat monomers and methods of use thereof
JP2018154776A (en) * 2017-03-21 2018-10-04 国立大学法人広島大学 Silicone modified epoxy resin, and composition and cured product thereof

Also Published As

Publication number Publication date
JP5099850B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5598343B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5502268B2 (en) Resin composition set for system-in-package semiconductor devices
JP5228426B2 (en) Liquid resin composition for electronic component sealing and electronic component device using the same
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP2007182562A (en) Liquid resin composition for electronic element and electronic element device
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP2009173744A (en) Underfill agent composition
JP3716237B2 (en) Sealant resin composition
JP5099850B2 (en) Semiconductor element sealing composition
JP2004292725A (en) Liquid epoxy resin composition and semiconductor device
JP2010111747A (en) Underfill agent composition
JP4557148B2 (en) Liquid epoxy resin composition and semiconductor device
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP4697476B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP5074814B2 (en) Adhesive composition and method of using the same
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP5354721B2 (en) Underfill agent composition
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP2005146104A (en) Liquid epoxy resin composition and semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees