JP2010166927A - Fish culture system using artificial rearing water - Google Patents

Fish culture system using artificial rearing water Download PDF

Info

Publication number
JP2010166927A
JP2010166927A JP2010068849A JP2010068849A JP2010166927A JP 2010166927 A JP2010166927 A JP 2010166927A JP 2010068849 A JP2010068849 A JP 2010068849A JP 2010068849 A JP2010068849 A JP 2010068849A JP 2010166927 A JP2010166927 A JP 2010166927A
Authority
JP
Japan
Prior art keywords
water
breeding
artificial
breeding water
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010068849A
Other languages
Japanese (ja)
Other versions
JP2010166927A5 (en
JP4665258B2 (en
Inventor
Toshimasa Yamamoto
俊政 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K2LIFE LAB CO Ltd
Kake Educational Institution
Original Assignee
K2LIFE LAB CO Ltd
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K2LIFE LAB CO Ltd, Kake Educational Institution filed Critical K2LIFE LAB CO Ltd
Priority to JP2010068849A priority Critical patent/JP4665258B2/en
Publication of JP2010166927A publication Critical patent/JP2010166927A/en
Publication of JP2010166927A5 publication Critical patent/JP2010166927A5/ja
Application granted granted Critical
Publication of JP4665258B2 publication Critical patent/JP4665258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fish culture system capable of culture in an inland area at a saved cost. <P>SOLUTION: The fish culture system includes: a rearing tank 1 set to a space in the underground; artificial rearing water 6 filled in the rearing tank 1 and prepared by adding sodium, calcium and potassium to rearing water to have a specific gravity of not less than 1.004 and equal to or below that of natural seawater, wherein the existence ratio of potassium to calcium is 0.93 to that in natural seawater, and the existence ratio of sodium to calcium and potassium is 55 to that in the natural seawater; a rearing water-circulating device 7 for circulating the artificial rearing water 6 filled in the rearing tank 1; and a filtration device 4 for filtering the artificial rearing water 6 filled in the rearing tank 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、海水魚を内陸部において養殖するシステムにかかり、詳細には、坑道や洞窟、あるいは、地下等において畜養槽内に人工飼育水を満たして海水魚、淡水魚、あるいはこれらの魚の飼育に用いる植物性や動物性のプランクトンを養殖する養殖システムに関する。  The present invention relates to a system for aquaculture of saltwater fish inland, and more specifically, to fill artificial breeding water in livestock tanks in tunnels, caves or underground, etc., for saltwater fish, freshwater fish, or breeding of these fish The present invention relates to an aquaculture system for cultivating plant and animal plankton used.

魚の養殖は古くから行われているが、従来一般に行われてきた養殖は、海に生息する海水性の魚であれば、湾内に網を巡らして海水をそのまま利用した閉塞環境となる生簀を構築し養殖を行い、川魚であれば河川を堰き止める等してやはり閉塞環境を構築し養殖を行っていた。
また、海に生息する魚を陸上で飼育する場合もあったが、海水魚の飼育においては海水が必須と考えられ、内陸部での飼育では大量の海水が必要となるため安価な飼育ができずにいた。
Fish farming has been practiced for a long time, but traditionally farmed is a seawater fish that inhabits the sea, and builds a ginger that becomes a closed environment using seawater as it is around the bay. In the case of river fish, if it was a river fish, it was still cultivated by building a closed environment by blocking the river.
In addition, fish that inhabit the sea were sometimes bred on land, but seawater is considered essential for breeding saltwater fish, and a large amount of seawater is required for breeding inland, so inexpensive breeding is not possible. I was in

そこで、少しでも養殖にかかる費用を抑えるために、天然海水の輸送コストよりも安価な人工海水を開発し、陸上においても、海から海水を運ぶことなく、水道水等の淡水から生成した人工海水を水槽に満たして養殖を行うようになった。
この人工海水では、天然海水の状態に近づけるため、一般的に、天然海水に含有する塩類と同等の塩類を同量となるように含有させていた。
即ち、天然海水では、一般に最も多く含有している塩化ナトリウムが比重1.02〜1.03の海水1(kg)中に約23〜28(g)である。また、天然海水中の他の塩類としては、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、硫酸カリウム、塩化カリウム、炭酸カルシウム、臭化マグネシウムなどが挙げられ、これら塩化ナトリウムを含む全塩類の含有量は、通常海水1(kg)中35(g)前後、即ち重量比で35(‰)である。そこで人工海水も原則として、このような天然海水の成分組成に準拠して調合していた。
また、従来の人工海水を用いた人工的な海棲生物の受精では、経時段階的な異常卵が高頻度で出現し、例えば、天然海水以外の人工海水に過敏に反応するウニ卵では、極めて微量の生理的有害成分に対しても鋭敏に反応するので、正常な受精・発生率が得られ難く、所定時間内にプルテウス幼生期に到達する率が低く、また同じ条件にて行う天然海水での実験と比較して発生段階に遅延がみられる等、天然海水に比した人工海水独自の問題点を有していた。
Therefore, in order to reduce the cost of aquaculture as much as possible, we developed artificial seawater that is cheaper than the transportation cost of natural seawater, and even on land, artificial seawater generated from fresh water such as tap water without transporting seawater from the sea. The aquarium was filled with aquaculture.
In this artificial seawater, in order to approximate the state of natural seawater, generally, the same amount of salt as that contained in natural seawater has been contained.
That is, in natural seawater, the most common sodium chloride is about 23 to 28 (g) in seawater 1 (kg) having a specific gravity of 1.02 to 1.03. Other salts in natural seawater include magnesium chloride, magnesium sulfate, calcium sulfate, potassium sulfate, potassium chloride, calcium carbonate, magnesium bromide, etc. Usually, it is around 35 (g) in 1 kg of seawater, that is, 35 (‰) in weight ratio. Therefore, in principle, artificial seawater was prepared in accordance with the composition of such natural seawater.
In addition, in the fertilization of artificial marine organisms using conventional artificial seawater, abnormal eggs over time appear frequently, and for example, in sea urchin eggs that react sensitively to artificial seawater other than natural seawater, Because it reacts sensitively to a small amount of physiologically harmful components, normal fertilization / occurrence rate is difficult to obtain, the rate of reaching Pluteus larvae within a predetermined time is low, and natural seawater performed under the same conditions Compared to natural seawater, it had problems unique to artificial seawater, such as a delay in the development stage compared to the previous experiment.

また海水魚の養殖では、1年を通じて安定した養殖が求められ、しかも陸上部で人工孵化から稚魚の飼育を経て食用あるいは観賞用の成魚を養殖できることが好ましい。これを実現するには、飼育水を、1年を通して常に快適な温度(20℃前後)に保つことが必要である。  Further, in the cultivation of saltwater fish, stable aquaculture is required throughout the year, and it is preferable that edible or ornamental adult fish can be cultivated through artificial hatching and rearing of fry on the land. To achieve this, it is necessary to keep the breeding water at a comfortable temperature (around 20 ° C.) throughout the year.

しかしながら、従来同様に内陸部で例えば100(t)以上となるような大規模な中間育成場を建設して養殖を行う場合には、海水の確保あるいは人工海水の製造が絶対条件となるが、天然海水の輸送コストあるいは人工海水を製造するためにかかるコストは膨大となり生産コストが高価となってしまった。これにより内陸部で養殖される魚類の価格も高価となってしまった。
また、人工海水の温度を、1年を通して快適な温度(20℃前後)に保つためには、冬場は加温機によって人工海水を温め、夏場の暑い時期には人工海水の温度が上昇しすぎるので冷却装置により人工海水を冷やさなければならなず、人工海水の温度を調節するために必要な灯油や電気等のエネルギーが必須となり、養殖にかかるコストを抑えることがなかなかできないという問題点を有した。
However, when constructing a large-scale intermediate breeding ground that is, for example, 100 (t) or more in the inland area as in the past, securing seawater or manufacturing artificial seawater is an absolute condition. The cost of transporting natural seawater or the cost of manufacturing artificial seawater has become enormous and production costs have become expensive. As a result, the price of fish cultivated inland has become expensive.
In addition, in order to keep the temperature of the artificial seawater at a comfortable temperature (around 20 ° C) throughout the year, the artificial seawater is warmed by a warming machine in the winter, and the temperature of the artificial seawater rises too much during the hot summer season. Therefore, the artificial seawater must be cooled by a cooling device, and energy such as kerosene and electricity necessary to adjust the temperature of the artificial seawater is essential, and it is difficult to reduce the cost of aquaculture. did.

そこで発明者は、上記問題点を解決するため思考を重ねた結果、まず、飼育水のコストを低く抑えるために、まずは天然海水を希釈して用いることができないかとの思いに至った。
しかしながら、天然海水を希釈して用いるとしても、少量ではあっても陸路により天然海水を運搬するための輸送コストが必須となり、また、天然海水の輸送コストを抑えるためには、飼育槽を設置する場所は交通の利便の良いところにする必要が生じ、養殖所を設置する場所に制限が出来てしまうという問題点を有する。更に、希釈するための水道水等も必要となり、更には、希釈槽の設備化や防疫上の問題は避けて通れない。
そこで更に思考を加え、内陸部でも容易に確保できる水道水や河川水あるいは地下水に活性塩類を添加し、しかも低比重を実現できれば、低コスト型飼育水を得ることができるのではないかとの思いに至った。
そこで、海水では放射性同位元素を除き約60種有る組成の中から、魚類の浸透圧にかかわるものを割り出し、必要最低限の成分を加えることが最良との思いに至り、種々の実験を重ねた。
また、一方では、飼育水の温度管理を快適な温度付近で1年を通して一定にすることに思い至った。
Therefore, as a result of repeated thoughts to solve the above problems, the inventor first came up with the idea that natural seawater could be diluted and used in order to keep the cost of breeding water low.
However, even if natural seawater is diluted and used, the transportation cost for transporting natural seawater by land is essential even if the amount is small, and a breeding tank is installed to reduce the transportation cost of natural seawater. It is necessary to make the place convenient for transportation, and there is a problem that the place where the farm is installed can be restricted. Furthermore, tap water and the like for dilution are also required, and further, the problem of establishment of a dilution tank and prevention of epidemics cannot be avoided.
Therefore, if we add more thought and add active salts to tap water, river water, or groundwater that can be easily secured even inland, and realize low specific gravity, we think that low-cost breeding water can be obtained. It came to.
Therefore, in seawater, there are about 60 types of compositions except for radioisotopes, and those related to the osmotic pressure of fish are determined, and it is thought that it is best to add the minimum necessary components, and various experiments were repeated. .
On the other hand, I came up with the idea of keeping the temperature of breeding water constant throughout the year near a comfortable temperature.

この発明は、上記問題点に鑑み、人工海水として、水道水や河川水あるいは地下水に天然海水中に含有される塩類より少ない種類の塩類を添加すると共に、人工海水中の該塩類の含有量を充分に減少して単位人工海水当りに使用する塩類の種類及び使用量を充分に少なくして低コストで製造できる人工海水を提供することを課題とすると共に、飼育環境を、人工海水が1年を通して快適な温度付近で少ない温度変化となるような環境を整えることを課題とする。  In view of the above problems, the present invention, as artificial seawater, adds fewer types of salts than those contained in natural seawater to tap water, river water or groundwater, and the content of the salts in artificial seawater. The objective is to provide artificial seawater that can be manufactured at a low cost by reducing the types and amounts of salts used per unit artificial seawater, which is sufficiently reduced. The objective is to create an environment where there is little temperature change near a comfortable temperature.

そこで、発明者が種々行った実験から得られたこの発明の提供する人工飼育水は、極少ない種類の塩類のみを使用すると共に、これら塩類の人工飼育水における含有濃度を極力少なくしたものとし、また、飼育環境を人工飼育水が1年を通して快適な温度付近の少ない温度変化で推移できる環境として飼育できるように、  Therefore, the artificial breeding water provided by the present invention obtained from various experiments conducted by the inventor uses only a very small amount of salts, and the concentration of these salts in the artificial breeding water is minimized. In addition, so that the breeding environment can be raised as an environment where artificial breeding water can change with a small temperature change around a comfortable temperature throughout the year,

地表内部であって周囲温度が15℃から30℃の空間に設置する飼育槽と、飼育槽内に満たされ海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、比重が1.004以上天然海水以下となるように飼育水中にナトリウム、カルシウム、カリウムを添加し、カルシウムに対するカリウムの存在比が0.93乃至天然海水中の存在比であり、カルシウムとカリウムに対するナトリウムの存在比が55乃至天然海水中の存在比となるように含有する人工飼育水と、飼育槽内に満たされた人工飼育水を循環させる飼育水循環装置と、飼育槽内に満たされた人工飼育水を濾過する濾過装置とを備えることを特徴とする人工飼育水による養殖システム、  A breeding tank installed in a space within the surface of the earth and having an ambient temperature of 15 ° C. to 30 ° C., and a breeding water filled in the breeding tank and used for artificial breeding of seawater and freshwater organisms, having a specific gravity of 1. Sodium, calcium, potassium is added to the breeding water so that it is 004 or more and natural seawater or less, the abundance ratio of potassium to calcium is 0.93 to abundance ratio in natural seawater, and the abundance ratio of sodium to calcium and potassium is Artificial breeding water contained so as to have an abundance ratio in 55 to natural seawater, breeding water circulation device for circulating artificial breeding water filled in the breeding tank, and filtering artificial breeding water filled in the breeding tank An aquaculture system using artificial breeding water, comprising a filtration device;

及び、  as well as,

地表内部であって周囲温度が15℃から30℃の空間に設置する飼育槽と、
飼育槽内に満たされ海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、飼育水中にカルシウムを0.1002(g/l)以上、カリウムを0.09419(g/l)以上の割合で含有すると共に、比重が1.004以上天然海水比重以下となるようにカルシウム、カリウムに加えナトリウムを含有する人工飼育水と、
飼育槽内に満たされた人工飼育水を循環させる飼育水循環装置と、
飼育槽内に満たされた人工飼育水を濾過する濾過装置とを備えることを特徴とする人工飼育水による養殖システム、
A breeding tank installed in a space within the surface of the earth and having an ambient temperature of 15 ° C to 30 ° C;
A breeding water filled in a breeding tank and used for artificial breeding of seawater organisms and freshwater organisms, wherein calcium is at least 0.1002 (g / l) and potassium is at least 0.09419 (g / l) in the breeding water In addition to calcium, potassium and artificial breeding water so that the specific gravity is 1.004 or more and natural seawater specific gravity or less,
A breeding water circulation device for circulating artificial breeding water filled in the breeding tank;
An aquaculture system using artificial breeding water, comprising a filtration device for filtering the artificial breeding water filled in the breeding tank;

を提供する。この人工飼育水による養殖システムは、飼育水が安価に且つ容易に人工飼育水を製造するために、海水中に存在する各種塩類から必要最小限な塩類が何なのかを特定する作業を行った結果得られたものである。即ち、海水中の種々有る塩類を組合わせ、且つ、飼育水の比重を小さくしていき、飼育魚が良好に成長できる人工飼育水の最小比重及び最小構成塩類を特定する実験の結果、塩類として添加する際に最小限必要な要素はナトリウム、カルシウム、カリウムであり、カルシウムに対するナトリウムの存在比が0.93程度で魚の飼育に最も良い値を示し、1.004まで比重を小さくしても(塩分濃度を薄くしても)魚の飼育に影響を与えないことを知見するに至った。I will provide a. This aquaculture system using artificial breeding water was used to identify what is the minimum necessary amount of salt from various salts present in seawater in order to produce artificial breeding water at low cost and easily. The result is obtained. That is, as a result of an experiment to combine the various salts in seawater and reduce the specific gravity of the breeding water and specify the minimum specific gravity and minimum constituent salts of artificial breeding water that allows the breeding fish to grow well, The minimum elements required for addition are sodium, calcium and potassium. The abundance ratio of sodium to calcium is about 0.93, which is the best value for fish breeding. Even if the specific gravity is reduced to 1.004 ( It came to know that even if the salinity was reduced, it did not affect fish breeding.

この値は、人工飼育水中の各要素の含有比で表すと、カルシウムに対するカリウムの存在比が0.93であり、最小含有量はカルシウム及びカリウムがそれぞれ0.1002(g/l)、0.09419(g/l)である。そしてカルシウム及びカリウムのみをそれぞれ0.1002(g/l)、0.09419(g/l)添加しただけでは比重が1.004に満たないため、ナトリウムを1.004となるまで添加すると、ナトリウムの含有量がカルシウムとカリウムとの大凡55倍、即ち10.69145(g/l)となる。これら知見に基づいて、カルシウムとカリウムの人工飼育水の含有量を天然海水と同等となるまで変化させた結果、人工飼育水中の魚の飼育に影響を与えないことを知見した。更に、ナトリウムも人工飼育水中に添加し、天然海水の濃度となるまで変化させた結果、やはり魚の飼育に影響を与えないことを知見するに至った。
そして、これらを成分とする人工飼育水は、地下、廃坑となった坑道、あるいは、洞窟等地表から3(m)入った地表内部に設けた飼育槽内に満たされて養殖魚の飼育が行われる。地表から3(m)入った内部では、好ましくは5(m)ほど内部へ入った地表内部では、地熱等の影響および地表の断熱効果により外気の影響を余り受けず、周囲温度が通年を通して略18℃程度の一定に保たれる。勿論、地中内部の深さは、飼育槽を設置する地域・土地等によって様々であるが周囲温度が15℃から30℃であれば良好な環境である。
更にまたこの発明では、天然海水中に多く含まれるマグネシウムを添加し天然海水の成分に近づけた人工飼育水として、
When this value is expressed by the content ratio of each element in the artificial breeding water, the abundance ratio of potassium to calcium is 0.93, and the minimum content is 0.1002 (g / l) for calcium and potassium, respectively. 09419 (g / l). And when only calcium and potassium are added at 0.1002 (g / l) and 0.09419 (g / l) respectively, the specific gravity is less than 1.004. Is about 55 times that of calcium and potassium, that is, 10.69145 (g / l). Based on these findings, it was found that the content of artificial breeding water of calcium and potassium was changed to the same level as natural seawater, so that it did not affect the breeding of fish in artificial breeding water. Furthermore, as a result of adding sodium to artificial breeding water and changing it to the concentration of natural seawater, it has been found that it does not affect fish breeding.
The artificial breeding water containing these components is filled in a breeding tank provided in the ground, 3 m from the ground such as underground, abandoned mine, or cave, and the cultured fish is raised. . Inside the surface that is 3 m from the ground surface, preferably inside the surface that is about 5 m, the ambient temperature is not affected by outside air due to the effects of geothermal heat and the heat insulation effect of the surface, and the ambient temperature is reduced throughout the year. It is kept constant at about 18 ° C. Of course, the depth inside the ground varies depending on the region / land where the breeding tank is installed, but it is a good environment if the ambient temperature is 15 ° C. to 30 ° C.
Furthermore, in the present invention, as artificial breeding water added with a large amount of magnesium contained in natural seawater and brought close to the components of natural seawater,

硫酸マグネシウム7水和塩を1.6897(g/l)乃至天然海水の存在量となるように添加し、比重が1.004以上天然海水比重以下である人工飼育水、  Magnesium sulfate heptahydrate is added to 1.6897 (g / l) to abundance of natural seawater, and artificial breeding water having a specific gravity of 1.004 or more and natural seawater or less,

を飼育槽内に満たして飼育するシステムを提供する。この人工飼育水では、天然海水中にカリウム及びカルシウムより存在比が大きく、魚類の浸透圧にはこれらより関わりの少ないマグネシウムを天然海水中における成分と存在比と同等となるように添加するので、更に天然海水環境に近付けることができ、人工飼育水が魚類に対する好適な環境水となる。
同様に、発明者は各成分の存在比を調整して様々な魚種について好適な環境水を試作して実験を行った結果、魚種によっては、とりわけトラフグにおいては更に比重が軽く、各成分の含有量が少なくても飼育に影響を与えないことを知見するに至ったので、
A system is provided to keep the animal in the breeding tank. In this artificial breeding water, the abundance ratio is larger than potassium and calcium in natural seawater, and magnesium, which is less related to the osmotic pressure of fish, is added so as to be equivalent to the abundance ratio in the natural seawater, Furthermore, it can be brought close to a natural seawater environment, and artificial breeding water is a suitable environmental water for fish.
Similarly, the inventor adjusted the abundance ratio of each component and experimented by producing suitable environmental waters for various fish species. As a result, depending on the fish species, the specific gravity of trough puffer was particularly lighter. Because it came to know that even if the content of is low, it does not affect the breeding,

前記人工飼育水において、前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した、  In the artificial breeding water, the content of each component is 0.25 to 1 times the breeding water and suitable for breeding pufferfish having the same ratio of each component.

人工飼育水を飼育槽内に満たし、地表から内部に入り通年で周囲温度の変化の少ない環境で養殖する養殖システムを提供するに至った。We have provided an aquaculture system that fills artificial breeding water in the breeding tank and cultivates it in an environment where the ambient temperature changes little year round.

上記のように、人工飼育水中のカルシウム、カリウム、ナトリウムの各要素を調整することで、天然海水に比し極少量の塩類を添加するだけで良好な飼育が可能となる。即ち、従来の人工海水では、天然海水に近づけるために20(g/l)以上という大量の塩化ナトリウムを添加していたのに比し、7.0587(g/l)と略1/3程度の添加量で実施可能となるので、低コストで人工飼育水を提供できるというこの発明特有の効果を有する。
また、観賞魚である海水性熱帯魚を飼育する際に利用することで、塩類の濃度の濃い天然海水あるいは人工海水では濾過装置の回り等に大量に付着する固形塩類の付着を少なくでき、飼育時の固化した塩類による錆びを低減できる等の効果を有すると共に、水槽回りの外観を損ねることが無いというこの発明特有の効果を奏する。
そして、地下空洞や廃坑となった坑道あるいは洞窟内に養殖用の飼育槽を設置して該人工飼育水を満たして養殖を行うので、該人工飼育水の温度を1年を通して適度な温度に保ち養殖が可能となるので、養殖魚の発育が良好となる本願特有の効果を有する。
As described above, by adjusting each element of calcium, potassium, and sodium in the artificial breeding water, it is possible to breed with good quality just by adding a very small amount of salts compared to natural seawater. In other words, in the conventional artificial seawater, a large amount of sodium chloride of 20 (g / l) or more was added in order to approximate natural seawater, which is 7.087 (g / l), about 1/3. Therefore, it has an effect peculiar to the present invention that artificial breeding water can be provided at low cost.
In addition, when used in breeding marine tropical fish, which is an ornamental fish, natural seawater or artificial seawater with a high concentration of salt can reduce the amount of solid salts adhering in large quantities around the filtration device, etc. This has the effect of reducing the rust caused by the solidified salt, and has the effect unique to the present invention in that the appearance around the water tank is not impaired.
And, since aquaculture tanks are installed in underground caverns, abandoned tunnels or caves, and the artificial breeding water is filled and cultured, the temperature of the artificial breeding water is kept at an appropriate temperature throughout the year. Since aquaculture is possible, it has the effect peculiar to this application that the growth of cultured fish becomes favorable.

また、この発明にかかる人工飼育水で飼育した実験に於ける全ての飼育魚において魚病の発生がなかった。このことから、人工飼育水ではpHや各塩類の濃度などが海水と淡水の中間であり、且つ、必要のない塩類等の添加がないので、細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される一般的な魚病性疾患の原因や、さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される魚病性疾患の根源となる原生動物や病原体にとって経験したことのない天然の海水でもない淡水でもない未知の水質であるためと推測ができ、これら魚病性疾患の原因となる外敵の侵入に対し高い抵抗力を有する人工飼育水を得ることが可能である。これにより飼育する際に、抗生物質等を飼育水に与える必要がなく更に低コスト化を図れるばかりでなく、安全な食用養殖魚の提供が可能であるという本願特有の効果を有する。  Moreover, there was no occurrence of fish disease in all the reared fish in the experiment reared with the artificial rearing water according to the present invention. For this reason, in artificial breeding water, the pH and the concentration of each salt are between seawater and fresh water, and there is no addition of unnecessary salts, etc., so there is no need for protozoa such as bacterial, viral, and ciliates. Causes of common fish pathological diseases classified as parasitic arthropods, as well as protozoa that are the source of fish pathogenic diseases that are broadly classified into seawater and freshwater, with some exceptions such as Vibrio parahaemolyticus Artificial breeding water with high resistance to the invasion of foreign enemies that cause these fish disease, which can be assumed to be unknown water quality that is neither natural seawater nor fresh water that has never been experienced for animals and pathogens It is possible to obtain Thus, when breeding, it is not necessary to give antibiotics to the breeding water, so that the cost can be further reduced, and it is possible to provide a safe edible cultured fish.

更にまた、実施例記載の如く、飼育魚の成長状況を天然海水と本願にかかる人工飼育水とで約1ヶ月間に渡り飼育した結果を比較したところ、天然海水による飼育では81.46(%)の重量増加が認められたのに対し、本願にかかる人工飼育水では119.07(%)の重量増加が認められたように、天然海水に対し飼育魚の早期育成が可能となるという本願特有の効果を有する。  Furthermore, as described in the examples, the growth status of the domestic fish was compared between the natural seawater and the artificial breeding water according to the present application for about one month. The artificial breeding water according to the present application has an increase in weight of 119.07 (%), and as shown in FIG. Has an effect.

更にまた、飼育魚を飼育する際にはアンモニアが発生するが、このアンモニアは、図3に表すように、魚類に影響を与えない解離のアンモニウムイオン(NH4+)と有毒なアンモニア(NH3)とが平衡状態にある。そして、アンモニアの平行定数が高温、高塩、高pHの場合に有毒な非解離アンモニアに変化しやすいため、天然海水に比べpHの低い人工飼育水では、有毒なアンモニアの発生が抑えられるので、天然海水による飼育に比べ小さな濾過装置の設置のみで飼育が可能となり、設備費用が低減できるという本願特有の効果を有する。  Furthermore, ammonia is generated when rearing a domestic fish, and as shown in FIG. 3, this ammonia contains dissociated ammonium ions (NH4 +) and toxic ammonia (NH3) that do not affect fish. It is in equilibrium. And since the parallel constant of ammonia is likely to change to toxic non-dissociated ammonia when the temperature is high, high salt, and high pH, in artificial breeding water having a lower pH than natural seawater, the generation of toxic ammonia can be suppressed. Compared to breeding with natural seawater, breeding is possible only by installing a small filtration device, and the present invention has an effect specific to the present application that equipment costs can be reduced.

更にまた、海水の確保ができない内陸部で、種苗生産から中間育成まで一貫した生産体制を構築するため、天然新魚であるトラフグの受精卵を用いこの発明の人工飼育水による飼育と天然海水による飼育における孵化率を調査したところ、天然海水では孵化率30(%)であったのに対し、天然海水を10(%)混合した人工飼育水では孵化率が60(%)であり、高い孵化率を確保可能であり、孵化から育成までの効率よく一貫した種苗生産体制を確立することが可能となる本願特有の効果を有する。  Furthermore, in the inland areas where seawater cannot be secured, in order to build a consistent production system from seed production to intermediate breeding, fertilized eggs of trough pufferfish, a natural new fish, are used for breeding with artificial breeding water and natural seawater. As a result of examining the hatching rate in breeding, the hatching rate was 30 (%) in natural seawater, whereas the hatching rate was 60 (%) in artificial breeding water mixed with 10 (%) natural seawater. It is possible to secure the rate, and it has an effect peculiar to the present application that makes it possible to establish an efficient and consistent seed production system from hatching to breeding.

更にまた、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスは、天然海水100(%)に施肥を行なう一般的な培養方法では、場所、時期、海水の品質などの条件によって培養密度が大きく変化するので安定した培養管理には熟練を要し、これに伴ってワムシの培養にも熟練を要することとなっていたが、この発明によれば、天然海水に比し比重が低くワムシの増殖に好適な条件となり、ワムシの効率的な培養が可能となった。尚、植物性プランクトンも、ナンノクロロプシス同様良好な培養が可能である。  Furthermore, marine Nannochloropsis, which is indispensable for cultivating the rotifer, widely used as the initial feed for hatchling larvae, is a general culture method for fertilizing 100% natural seawater. However, the culture density greatly changes depending on conditions such as location, time, seawater quality, etc., so stable culture management requires skill, and accordingly, rotifer culture also requires skill, According to this invention, the specific gravity is lower than that of natural seawater and the conditions are suitable for the growth of rotifers, and rotifers can be efficiently cultured. Phytoplankton can be cultured as well as Nannochloropsis.

従って、大規模水槽(畜養槽)等による陸上に於ける海水性魚類の養殖に際し、この発明による人工飼育水によって孵化仔魚の飼育から成長魚類の出荷までを陸上において良好に行うことが可能となるという本願特有の作用効果を奏する。  Therefore, when cultivating seawater fish on land using a large-scale water tank (livestock tank) or the like, it is possible to perform well from the breeding of hatchling larva to the shipment of growing fish on the land by artificial breeding water according to the present invention. There is an effect specific to the present application.

河川の水、地下水、あるいは、水道水に、塩化ナトリウムを7.0587(g/l)、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)、となるように溶解させ人工飼育水を作成する。この時、人工飼育水は略1.004の比重となっている。
特にトラフグを飼育するための人工飼育水では、更に塩類の濃度を下げても実施でき、溶解させる塩化ナトリウムを1.781(g/l)、同塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)として実施できる。
上記実施する人工飼育水を、容量約4800(t)の飼育槽(畜養水槽)に満たす。
また、飼育槽(畜養水槽)の水を循環させるための飼育循環装置を備える。この飼育循環装置は、飼育槽(畜養水槽)の一部から循環路を分岐して再び飼育槽(畜養水槽)に戻すように構成し、更に該循環路途中に循環ポンプ等の動力部を備えて強制的に飼育槽(畜養水槽)内の人工飼育水を再び飼育槽(畜養水槽)に戻して循環させる。
そして、該循環路の途中に濾過装置を設け、循環させた際の人工飼育水を濾過して魚粉や食い残しの餌の分離除去を可能とし、更に、pH調整等を行えるように、濾過装置内に粒状のサンゴ等からなるpH調整剤を通過させることで、人工飼育水のpHを整えて養殖に適した環境を構築する。
In river water, groundwater or tap water, sodium chloride 7.0587 (g / l), calcium chloride dihydrate 0.3641 (g / l), potassium chloride 0.18125 (g / l) ), And make artificial breeding water by dissolving. At this time, the artificial breeding water has a specific gravity of about 1.004.
In particular, artificial breeding water for breeding trough puffer can be carried out even if the concentration of the salt is further reduced. 1.781 (g / l) of sodium chloride to be dissolved and 0.092 (g of calcium chloride dihydrate) / L) and potassium chloride as 0.045 (g / l).
The artificial breeding water to be implemented is filled in a breeding tank (livestock breeding tank) having a capacity of about 4800 (t).
In addition, a breeding and circulating device for circulating the water in the breeding tank (livestock breeding tank) is provided. This breeding and circulating apparatus is configured to branch the circulation path from a part of the breeding tank (livestock aquaculture tank) and return to the breeding tank (livestock aquaculture tank) again, and further includes a power unit such as a circulation pump in the middle of the circulation path. The artificial breeding water in the breeding tank (livestock breeding tank) is forcibly returned to the breeding tank (livestock breeding tank) and circulated.
Then, a filtration device is provided in the middle of the circulation path, and the artificial breeding water when it is circulated is filtered to enable separation and removal of fish meal and leftover food, and further, pH adjustment and the like can be performed. An environment suitable for aquaculture is constructed by adjusting the pH of artificial breeding water by passing a pH adjusting agent made of granular coral or the like inside.

以下にこの発明の実施例を図面に基づき説明する。
図1は観察実験に使用する水槽及び濾過装置の模式図を表し(a)は側面説明図、(b)は平面説明図であり、図2は成長率を比較した説明図であり、図3はアンモニアの平衡状態を表す説明図であり、図4は人工飼育水による養殖システムを表し(a)は同システムの側面説明図であり(b)同システムの平面説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
1A and 1B are schematic views of a water tank and a filtration device used for an observation experiment. FIG. 1A is a side explanatory view, FIG. 1B is a plane explanatory view, and FIG. 2 is an explanatory view comparing growth rates. FIG. 4 is an explanatory view showing an equilibrium state of ammonia, FIG. 4 shows an aquaculture system using artificial breeding water, (a) is a side view of the system, and (b) is a plan view of the system.

海から離れた内陸部で100(t)以上有るような大規模な中間育成場を建設して効率よく海水魚を飼育することを想定した場合には、一般的には潤沢な海水の確保が絶対条件であり魚類飼育の生命線であると考えられる。しかし、潤沢な海水確保には海水を輸送する費用が多大にかかるため、人工海水を考えざるを得ない。
しかしながら、人工海水も、従来天然海水に少しでも近づけることで飼育に良好な環境が得られると考えられていたので、天然海水と同等な複数の塩類を天然海水と同じ濃度となるように溶解させるため、人工海水にかかわるコストもやはり膨大となっていた。
そこで発明者は、人工海水を天然海水に近づけるのではなく、マダイやハマチなど食用海水魚を天然海水とは異なる低塩類低濃度の環境で飼育(養殖)できないかを試みることに思い至った
When it is assumed that a large-scale intermediate breeding ground that is 100 (t) or more in the inland area away from the sea is to be bred efficiently, it is generally necessary to secure abundant seawater. It is an absolute requirement and is considered a lifeline for fish breeding. However, securing abundant seawater requires a lot of cost to transport seawater, so artificial seawater must be considered.
However, artificial seawater has been thought to provide a good environment for breeding by bringing it close to natural seawater as much as possible, so several salts equivalent to natural seawater are dissolved to the same concentration as natural seawater. As a result, the costs associated with artificial seawater were enormous.
Therefore, the inventor came up with an attempt to breed (cultivate) edible marine fish such as red sea bream and sea bream in a low-salt, low-concentration environment different from natural seawater, rather than bringing artificial seawater close to natural seawater.

そこで発明者は、放射性同位元素を除き約60種である天然海水中の塩類から、魚類の浸透圧にかかわる組成を割り出して必要最低限の成分を加えることが最良と考えた。
尚、以下に表す各実験では、図1に表すように、100(l)程度の水槽に密閉式濾過槽からなる濾過フィルターを使用して実験を行った。そして、濾過フィルター中にはセラミックを加え調整長期に亙り飼育水のpH調整が可能とした。尚、図1には、泡沫分離装置4が記載されているが、泡沫分離装置4は飼育水を長期に亙り使用するために飼育水中の魚糞や余剰餌等の浮遊物を除去するためのものであり、短期間の実験では使用していない。また、飼育水冷却装置5も記載されているが、これは夏場の屋外に設置した水槽では飼育水の温度が上昇しすぎるため、飼育水温度を実験環境に合わせて一定に保つために設置したものである。
Therefore, the inventor considered that it was best to calculate the composition related to the osmotic pressure of fish from the salts of about 60 kinds of natural seawater except for radioisotopes and add the minimum necessary components.
In addition, in each experiment shown below, as shown in FIG. 1, it experimented using the filtration filter which consists of a sealed filtration tank in a water tank of about 100 (l). Then, ceramic was added to the filtration filter to adjust the pH of the breeding water over a long period of adjustment. In addition, although the foam separation apparatus 4 is described in FIG. 1, the foam separation apparatus 4 is used for removing floating substances such as fish droppings and surplus food in the breeding water in order to use the breeding water for a long time. It is not used in short-term experiments. Also, although the breeding water cooling device 5 is also described, this is installed in order to keep the breeding water temperature constant according to the experimental environment because the temperature of the breeding water rises too much in the water tank installed outdoors in summer. Is.

発明者は人工飼育水(好適環境水)として必要な要素の特定及びその存在度を特定する実験を試みた。
そこで発明者は必須成分の割り出しに際して、哺乳類及び魚類の体液と天然海水の成分とを比較することに思い至った。そして、更に添加する塩類の種類を減少させるべく、更に添加する塩類の種類を減少させるべく、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。
哺乳類や魚類の体液は、塩化ナトリウム、カリウム、リン酸を主体としていることが既知である。また、また希釈天然海水の組成にもこれらの成分が有り、主に存在する成分がナトリウム(2.625(g/l))、塩素(4.750(g/l))、カリウム(0.0998(g/l))、カルシウム(0.103(g/l))、マグネシウム(0.320(g/l))、硫酸塩(0.674(g/l))であることが解った。発明者は、これら成分から、魚類が生存するのに適するためには魚類の浸透圧に拘る成分を調整して人工飼育水を作ることに思い至った。
The inventor tried an experiment to identify a necessary element as artificial breeding water (preferred environmental water) and its abundance.
Therefore, the inventor came up with the idea of comparing the body fluids of mammals and fish with the components of natural seawater when determining the essential components. In order to further reduce the types of salts to be added and further reduce the types of salts to be added, an experiment was conducted to identify the essential elements of fish and their abundance from the six elements.
It is known that body fluids of mammals and fish are mainly composed of sodium chloride, potassium and phosphoric acid. In addition, these components are also present in the composition of diluted natural seawater, and the main components are sodium (2.625 (g / l)), chlorine (4.750 (g / l)), potassium (0. 0998 (g / l)), calcium (0.103 (g / l)), magnesium (0.320 (g / l)), sulfate (0.674 (g / l)). . The inventor has come up with the idea of preparing artificial breeding water from these components by adjusting the components related to the osmotic pressure of the fish so that the fish can survive.

そこで、人工飼育水(好適環境水)の作成に当って、ナトリウムを2.625(g/l)、塩素を4.750(g/l)、カリウムを0.0998(g/l)、カルシウムを0.103(g/l)、マグネシウムを0.320(g/l)、硫酸塩を0.674(g/l)をそれぞれ含有するように、塩化ナトリウム(工業塩)、塩化マグネシウム(工業塩)、塩化カルシウム(一級試薬)、硫酸マグネシウム(工業塩)、塩化カリウム(一級試薬)の5試薬を河川水に加え塩素を含む6元素5試薬による試薬調整を行い、この飼育水中に体長10(cm)のマダイ5(尾)を放し約50日にわたる飼育実験を行った。
なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
その結果、該マダイは斃死することもなく異常が認められず、良好な飼育が行えた。
Therefore, in preparing artificial breeding water (preferred environmental water), sodium was 2.625 (g / l), chlorine was 4.750 (g / l), potassium was 0.0998 (g / l), calcium Of sodium chloride (industrial salt) and magnesium chloride (industrial industry) so that 0.103 (g / l) of magnesium, 0.320 (g / l) of magnesium, and 0.674 (g / l) of sulfate are contained. Salt), calcium chloride (primary reagent), magnesium sulfate (industrial salt), and potassium chloride (primary reagent) are added to river water and adjusted with 6 elements and 5 reagents containing chlorine. (Cm) red sea bream 5 (tail) was released and a breeding experiment was conducted for about 50 days.
In addition, it was thought that phosphoric acid was replenished from the metabolism of fish by feeding, and it was not added.
As a result, the red sea bream was not drowned and no abnormalities were observed, and it was possible to rear it well.

前記実験を受け、更に添加する成分の減少を図るため、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。即ち、前記6元素中マグネシウムイオンとして重複する塩化マグマグネシウムの添加をとりやめ、4試薬による5元素の成分添加を行った飼育水を製造し、体長10(cm)のマダイ及びヒラメを各5(尾)を放して3週間飼育を試みた結果、斃死もなく順調に生育し体色も良好で、良好な環境での飼育であった。この塩化マグネシウムを添加していない人工飼育水の比重は1.006である。
なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
そして、該人工飼育水中に体長10(cm)のマダイ5(尾)を放し飼育を実施した結果、約3週間斃死等の問題が認められず体色も良好で順調に生育しており、良好な飼育環境であることが確認できた。
In order to reduce the components to be added after the experiment, an experiment was conducted to identify the essential elements of fish and their abundance from the six elements. That is, the addition of magmagnesium chloride overlapping as magnesium ions in the above 6 elements was stopped, and breeding water was prepared by adding 5 elements with 4 reagents. ) Was released and tried to breed for 3 weeks. As a result, it grew smoothly without dying, had good body color, and was kept in a good environment. The specific gravity of the artificial breeding water not added with magnesium chloride is 1.006.
In addition, it was thought that phosphoric acid was replenished from the metabolism of fish by feeding, and it was not added.
And, as a result of carrying out rearing by releasing a red sea bream 5 (tail) with a body length of 10 (cm) in the artificial breeding water, there was no problem such as drowning for about 3 weeks, and the body color was good and it grew smoothly. It was confirmed that it was a safe breeding environment.

発明者は、更に塩類の種類を減少させるべく、前記6元素4試薬による飼育水から、魚類の必須元素及びその存在度を特定する実験を試みた。そして種々の成分を希釈天然海水中のこれら成分相互の存在比で添加し実験を重ねた結果、
塩化ナトリウム 7.0587(g/l)
塩化カルシウム2水和塩 0.3641(g/l)
塩化カリウム 0.18125(g/l)
のみを添加して飼育を試みた。この時の飼育水のpHは6.45、比重は1.004であった。
その結果、飼育した体長12(cm)の3(尾)のマダイは、餌食いは良好であったが、約2週間目から頭皮の欠損症状が現れ、3週間目に斃死した。
The inventor tried an experiment to identify the essential elements of fish and their abundance from the breeding water using the six elements and four reagents in order to further reduce the types of salts. And as a result of adding various components at the abundance ratio of these components in diluted natural seawater and repeating experiments,
Sodium chloride 7.0588 (g / l)
Calcium chloride dihydrate 0.3641 (g / l)
Potassium chloride 0.18125 (g / l)
Breeding was attempted by adding only. At this time, the pH of the breeding water was 6.45, and the specific gravity was 1.004.
As a result, the 3 (tail) red sea bream with a body length of 12 (cm) was good in prey, but the scalp was deficient from about 2 weeks and drowned in 3 weeks.

次いで発明者は、マグネシウムを含まない人工飼育水では飼育できない環境であったため、他の成分の減少が図れないかを思索した。そこで発明者は、海産魚類の細胞液中には、主に塩化カリウム、リン酸が存在しており、塩化ナトリウムは僅かにしか存在していないことに着目した。即ち、海産魚類では、魚類にとって必須であるカリウムイオンを選択的に海水から取込むと同時に細胞内ナトリウムポンプの働きにより有害と思われるナトリウムイオンを鰓弁塩類細胞及び腎臓から排出し、細胞内の塩分濃度上昇を抑制し水分調整を行っている。
そこで、塩化ナトリウムが体内から排出されてしまうのであるから、予め塩化ナトリウムを添加せずに飼育水を作成し海水魚を飼育することを試みた。これによれば、前記6元素4試薬の飼育水中最も添加量の多い(人工飼育水作成費用が嵩む)塩化ナトリウムを必要とせずに人工飼育水が開発できるものと予想した。
即ち、塩化ナトリウム、硫酸マグネシウムを全く添加せず、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)のみ添加し、人工飼育水を作成して12(cm)のマダイ3(尾)を飼育した。
その結果、即座に平衡感覚を失い仰向けとなり、1時間後には斃死してしまった。
Next, the inventor wondered whether other components could be reduced because it was an environment that could not be raised with artificial breeding water not containing magnesium. Therefore, the inventor paid attention to the fact that mainly potassium chloride and phosphoric acid are present in the cell fluid of marine fish, and only a small amount of sodium chloride is present. In other words, in marine fish, potassium ions, which are essential for fish, are selectively taken from seawater, and at the same time, sodium ions that are thought to be harmful by the action of the intracellular sodium pump are excreted from the salmon valve salt cells and kidneys. The water concentration is adjusted by suppressing the increase in salt concentration.
Then, since sodium chloride will be discharged | emitted from a body, it tried to produce breeding water and breed saltwater fish without adding sodium chloride beforehand. According to this, it was predicted that artificial breeding water could be developed without the need for sodium chloride having the largest amount of the six elements and four reagents in the breeding water (the cost for creating artificial breeding water increased).
That is, sodium chloride and magnesium sulfate were not added at all, and calcium chloride dihydrate 0.3641 (g / l) and potassium chloride 0.18125 (g / l) were added to prepare artificial breeding water. 12 (cm) red sea bream 3 (tail) was reared.
As a result, he immediately lost his sense of balance and became supine.

これらの結果から、人工飼育水に添加する成分は、上記6元素4試薬より減少させることができないものと考えたが、先に行った4元素3試薬による実験、即ち、
塩化ナトリウムを 7.0587(g/l)
塩化カルシウム2水和塩を 0.3641(g/l)
塩化カリウムを 0.18125(g/l)
添加した人工飼育水(以後、3試薬による人工飼育水という。)での飼育が、当初良好であり2週目以降に悪化し3週間に斃死した状況であり、塩化ナトリウム及び硫酸マグネシウムを全く加えない人工飼育水による飼育して直ぐに斃死してしまった結果とは異なっていることに着目し、3週間飼育した後の3試薬による人工飼育水を詳しく調べてみたところ、飼育前には6.45であったpHが、3週間後のマダイ斃死時には4.8にまで減少していた。
これを受け、マダイが生存できるpHを実験した結果、pH5.0乃至pH8.4程度であることが判明し、先の3試薬による人工飼育水を用いた実験を再び行った。その際に、使用した濾過装置に用いた棒状セラミックスに加え、小豆台の天然サンゴ砂も加えて濾過装置とし、サンゴの主成分である炭酸カルシウムが徐々に人工飼育水中に溶け出してpH調節が可能な状態(pH調整剤としての働きを行う状態)で飼育実験を行った。被検体は、体長15(cm)のマダイ2(尾)と、体長10(cm)のヒラメ10(尾)をそれぞれ別水槽に収容した。
その結果、マダイ、ヒラメ共に2ヶ月以上の長期に亙り斃死等の発生もなく順調に飼育でき、約2ヶ月間でマダイの体長が25(cm)、ヒラメの体長が15(cm)となり良好な発育が見られた。
From these results, it was considered that the component added to the artificial breeding water could not be reduced more than the above 6 element 4 reagent.
Sodium chloride 7.0587 (g / l)
0.3641 (g / l) of calcium chloride dihydrate
Potassium chloride 0.18125 (g / l)
Breeding with added artificial breeding water (hereinafter referred to as artificial breeding water with 3 reagents) is good at first, deteriorated after 2 weeks, and drowned in 3 weeks. Sodium chloride and magnesium sulfate were added at all. Paying attention to the fact that it was different from the result of dying immediately after breeding with no artificial breeding water, we examined in detail the artificial breeding water with three reagents after breeding for 3 weeks. The pH, which was 45, was reduced to 4.8 when red sea bream died 3 weeks later.
In response to this, the pH at which red sea bream can survive was tested and found to be about pH 5.0 to pH 8.4, and the experiment using artificial breeding water with the above three reagents was performed again. At that time, in addition to the rod-shaped ceramics used in the filtration device used, natural red coral sand was added to make the filtration device, and the calcium carbonate, the main component of the coral, gradually melted into the artificial breeding water to adjust the pH. The breeding experiment was performed in a possible state (a state in which it functions as a pH adjusting agent). The subject housed red sea bream 2 (tail) having a body length of 15 (cm) and flounder 10 (tail) having a body length of 10 (cm) in separate water tanks.
As a result, both red sea bream and Japanese flounder can be bred smoothly for 2 months or longer without the occurrence of drowning, etc. The body length of red sea bream is 25 (cm) and that of flounder is 15 (cm) in about 2 months. Growth was seen.

上記実験の結果、
塩化ナトリウムを 7.0587(g/l)
塩化カルシウム2水和塩を 0.3641(g/l)
塩化カリウムを 0.18125(g/l)
を添加した比重1.004の人工飼育水中で海水魚の良好な飼育が可能であることが突き止められたので、飼育用の水槽を1000(l)の大型とし、濾過装置を重力落下式として通常用いる濾過フィルターに棒状セラミックス25(l)と前記サンゴ砂5(l)を加えて構成し、更に長期に亙る飼育実験を行うために泡沫分離装置を加えて人工飼育水を濾過しながらオゾンを添加して長期飼育を試みた。
As a result of the above experiment,
Sodium chloride 7.0587 (g / l)
0.3641 (g / l) of calcium chloride dihydrate
Potassium chloride 0.18125 (g / l)
It was determined that seawater fish can be bred well in artificial breeding water with a specific gravity of 1.004, so that the breeding aquarium has a large size of 1000 (l) and the filtration device is normally used as a gravity drop type. Constructed by adding rod-shaped ceramics 25 (l) and the coral sand 5 (l) to the filter, and adding ozone while filtering artificial breeding water by adding a foam separation device to conduct breeding experiments over a long period of time. I tried long-term breeding.

その結果、斃死等の問題のない良好な飼育が行われ順調に生育したので、長期に亙る飼育が可能であることが知見された。そこで、他の魚類について3試薬による人工飼育水での飼育を試みた結果、
海水魚では、マダイ、イシダイ、イシガキダイ、サラサハタ、ヒラメ、トラフグ、オニオコゼ、カクレクマノミ、チョウチョウウオ科5種、スズメダイ4種、ゴマハギ、モンガラカワハギ、ルリヤッコ、ハリセンボン、ハコフグ、クダゴンベ、マハゼであり、
甲殻類では、イシガニであり、
淡水魚では、コイ、金魚(ランチュウ、子赤)、ネオンテトラ、ブラックテトラ、アーリーシクリット、スジシマドジョウである。
このように3試薬による人工飼育水では、淡水魚から海水魚まであらゆる環境の魚類の飼育が可能であることが解り、しかも淡水魚及び海水魚を同一の水槽にて飼育しても問題ないことが知見された。
特にトラフグに関しては、塩化ナトリウムを1.781(g/l)、硫酸マグネシウム7水和塩を0.426(g/l)、塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)添加した3.5(‰)(比重 1.002)の低濃度人工飼育水でも飼育が可能であることが実験から確認でき、更には硫酸マグネシウム7水和塩を添加しなくとも飼育可能であることも実験から知見された。
As a result, it was found that good breeding without problems such as drowning was performed and grew smoothly, so that breeding over a long period of time was possible. Therefore, as a result of trying to breed other artificial fish in artificial breeding water with 3 reagents,
In the case of saltwater fish, there are red sea bream, sea bream, sea bream, flatfish, tiger pufferfish, sea lionfish, clownfish, five species of butterflyfish, four species of damselfish, scorpionfish, kingfisherfish, luryacco, horsetailed bonnet, kudagonbe, mahaze,
In crustaceans, it is a crab,
Among freshwater fish, carp, goldfish (runchu, baby red), neon tetra, black tetra, early cyclit, and sujishimadojo.
In this way, it has been found that artificial breeding water using three reagents can breed fish of any environment, from freshwater fish to saltwater fish, and that it is safe to breed freshwater fish and saltwater fish in the same tank. It was done.
In particular, regarding trough puffers, sodium chloride is 1.781 (g / l), magnesium sulfate heptahydrate is 0.426 (g / l), calcium chloride dihydrate is 0.092 (g / l), chloride It has been confirmed from experiments that it is possible to breed even with low concentration artificial breeding water of 3.5 (‰) (specific gravity 1.002) to which 0.045 (g / l) of potassium has been added. Furthermore, magnesium sulfate heptahydrate Experiments have also shown that breeding is possible without the addition of salt.

また、3試薬による人工飼育水での飼育では以下に表すような作用が認められた。
即ち、
1.3試薬による人工飼育水(トラフグ飼育用の更に希釈された飼育水も含む)による飼育では、すべての魚において、魚病の発生がない。
一般的に魚病性疾患の原因は細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される。さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される。
そこで、マダイ蓄用槽の人工飼育水における一般細菌数(標準平板菌数)を測定したが、細菌の検出は認められなかった。
また、夏場、海面養殖で問題となる単生類ベネデニア症(Benedenia)に感染しているキイロハギを前記3試薬による人工飼育水に収容して飼育すると、一瞬にして体表から寄生しているベネデニアが剥がれ落ち完全に治癒した。これは急激な浸透圧の変化による寄生虫へのダメージと推察される。
また、ウーディニウム症(Oodinium ocellatum)トリコディナ症(Trichodina)に感染しているカクレクマノミを前記3試薬による人工飼育水に収容して飼育し経過を観察したところ、2週間で完治した。この現象は単生類ベネデニア症と同様に急激な浸透圧の変化によるこれら繊毛虫へのダメージと推察される。
更に、尾柄部が大きく欠損して真皮が露出しているトラフグ10(尾)を前記同様3試薬による人工飼育水中に収容して2ヶ月間飼育したが、ビブリオ感染が見られず生存を続けた。この結果から外傷性ビブリオ感染が発症しないことが知見される。そして、これと対比すべく外洋水を直接補給する開放式飼育法によって同様に尾柄部が大きく欠損して真皮が露出しているトラフグを飼育して経過観察を行ったところ、該外傷性ビブリオ感染は避けられなかった。
In addition, the following effects were observed in breeding with artificial breeding water using three reagents.
That is,
1.3 In the case of breeding with artificial breeding water using reagents (including further diluted breeding water for breeding trough puffer fish), there is no outbreak of fish disease in all fish.
In general, the causes of fish diseases are classified into protozoa such as bacterial, viral and ciliate and parasitic arthropods. Furthermore, with some exceptions such as Vibrio parahaemolyticus, it is roughly divided into seawater and freshwater.
Therefore, the number of general bacteria (standard plate number) in the artificial rearing water of the red sea bream storage tank was measured, but no bacteria were detected.
In addition, in the summer, when a golden white hare infected with a monopod Benedenia, which is a problem in sea farming, is housed and raised in artificial breeding water using the three reagents, Benedenia parasitizing from the body surface is instantaneously Peeled off and healed completely. This is presumed to be a damage to the parasite due to a sudden change in osmotic pressure.
In addition, when clownfish infected with oodinium disease (Trichodina) were housed in artificial breeding water using the three reagents and observed, the course was completely cured. This phenomenon is presumed to be a damage to these ciliates due to a rapid change in osmotic pressure, similar to the monopod Benedenosis.
Furthermore, trough pufferfish 10 (tail), which has a large caudal defect and exposed dermis, was housed in artificial breeding water with 3 reagents as described above and raised for 2 months, but continued to survive without vibrio infection. It was. This result indicates that traumatic Vibrio infection does not develop. Then, in contrast to this, the traumatic pufferfish where the caudal portion was greatly lost and the dermis was exposed was observed by the open-type rearing method in which the open sea water was directly replenished. Infection was inevitable.

上記のように、3試薬による人工飼育水では、寄生虫及び菌類に起因する発病が無いことが知見された。そして、これらの結果から、人工飼育水が海水でもない淡水でもない自然界には一般に存在しない含有成分およびpHの水なので、これら原生動物、病原体そのものが経験したことのない水質であり、原生動物、病原体が死滅するあるいは活動できない環境となっているのではないかと推察できる。  As described above, it has been found that the artificial breeding water using the three reagents has no disease caused by parasites and fungi. And, from these results, artificial breeding water is water that is not contained in seawater or fresh water, and is a component and pH water that does not generally exist in nature, so these protozoa, water quality that pathogens themselves have not experienced, protozoa, It can be inferred that the pathogen is killed or unable to act.

2.天然海水に比し成長率が良いことが知見された。
即ち、図2に表すように、前記100(l)の水槽において、体長5(cm)のマダイ5(尾)を天然海水環境で、体長6(cm)のマダイ5(尾)を人工飼育水環境で、それぞれ飼育し、マダイの成長を経過観察し、経過1週間毎に総重量を測定して比較した。
その結果、天然海水環境のマダイは4週間経過後81.46(%)の重量増加率であったのに比し、人工飼育水環境のマダイは、119.07(%)の重量増加率であった。
この現象は天然海水中での飼育ではエネルギー代謝の30(%)が浸透圧調整に消費されているのに比べ、人工飼育水では低浸透圧なため浸透圧に拘るエネルギー代謝が低減されることが示唆され、これに伴い成長ホルモンの分泌が促進されていることが推察される。
尚、前記した各人工飼育水において、実験では極力少ない塩類(元素)でしかも極力少ない量の添加によってに天然海水に代る人工飼育水を得ようと試みているので、3乃至4種類の塩類の添加実験しか行っていないが、これらが添加してあれば海水魚の飼育には適正であり、これに他の塩類を適宜量添加してもその作用に影響を及ぼさずに人工飼育水として利用可能であれば、従来行われていた人工海水に添加していた他の塩類や例えばビタミン等の栄養素等を上記各人工飼育水に添加しても何ら差し支えなく、本願の人工飼育水と同等である。
2. It was found that the growth rate was better than that of natural seawater.
That is, as shown in FIG. 2, in the 100 (l) tank, the red sea bream 5 (cm) with a body length of 5 (cm) is placed in a natural seawater environment, and the red sea bream 5 (tail) with a body length of 6 (cm) is artificially raised. The animals were reared in the environment, and the growth of red sea bream was followed up. The total weight was measured and compared every week.
As a result, the red sea bream in the natural seawater environment had a weight increase rate of 81.46 (%) after 4 weeks, while the red sea bream in the artificial breeding water environment had a weight increase rate of 119.07 (%). there were.
Compared to the fact that 30% of energy metabolism is consumed for osmotic pressure adjustment in breeding in natural seawater, this phenomenon reduces the energy metabolism associated with osmotic pressure in artificial breeding water because of low osmotic pressure. This suggests that the secretion of growth hormone is promoted.
In addition, in each of the artificial breeding waters described above, the experiment tries to obtain artificial breeding water that replaces natural seawater by adding as little salt (elements) as possible and adding as little amount as possible. However, if these are added, they are suitable for breeding seawater fish and can be used as artificial breeding water without affecting the action even if other salts are added in an appropriate amount. If possible, other conventional salts added to artificial seawater and nutrients such as vitamins may be added to each of the artificial breeding waters. is there.

上記のように構成する人工飼育水6を飼育槽である畜養水槽1に満たして養殖を行うに当たり、廃坑となった坑道の奥深くに4800(t)の畜養水槽1を構築する。このような地表から奥に入った地中では、周囲を覆う土や岩盤による断熱効果と地熱等により1年を通して略18℃程度の気温となっている。このような環境に畜養水槽1を構築して前記人工飼育水6を満たすことで、人工飼育水の温度を通年で略一定と保つことが可能となる。
畜養水槽1は、この実施例では縦横略40(m)・高さ3(m)からなり、一側端には給水循環部8を設ける。給水循環部8は、畜養水槽1との間に通水可能なスリット81を設け、畜養水槽1内部の人工飼育水6との循環を可能としてある。尚、この実施例では畜養水槽1を4800(t)としたが、畜養水槽1の容積あるいは形状は特に特定されるものではなく、一般家庭で用いる程度の極小さな水槽から、例えば東京ドーム並みの極大きな畜養水槽でも実施可能であり、地中空間の大きさに合わせる等して適宜選択すれば足りる。
更に、給水循環部8には循環路7を設ける。循環路71の一端を開口し、他端は畜養水槽1の中央底部を稍下方へ下げた該中央に開口し、循環可能とさせる。更に、別途給水循環部8からは、一端を該給水循環部8に開口すると共に該開口から濾過装置2および泡沫分離装置4を経由して再び畜養水槽1の他部へ開口して人工飼育水6を循環可能とする濾過循環路72を設ける。また、該濾過循環路72は濾過装置2および泡沫分離装置4による人工飼育水6の浄化を効率よく行うために、給水循環部8においては畜養水槽1に満たされた人工飼育水6の上ずみ部分が該循環路72内に入り込むように吸水口を上方へ上げて設けてある。これにより、人工飼育水6中で浮遊して上方へ移動した魚フンや不純物あるいはゴミ等が効率的に濾過循環路72内に循環可能となる。
When the artificial breeding water 6 configured as described above is filled into the breeding tank 1 for breeding, the 4800 (t) breeding tank 1 is constructed deep inside the mine that has become an abandoned mine. In the ground that goes into the depths from such a ground surface, the temperature is about 18 ° C. throughout the year due to the heat insulating effect of the surrounding soil and bedrock and geothermal heat. By constructing the livestock breeding tank 1 in such an environment and filling the artificial breeding water 6, the temperature of the artificial breeding water can be kept almost constant throughout the year.
In this embodiment, the animal water tank 1 is approximately 40 (m) in length and 3 (m) in height, and a water supply circulation section 8 is provided at one end. The water supply / circulation unit 8 is provided with a slit 81 through which water can be passed between the water supply tank 1 and the artificial breeding water 6 inside the animal water tank 1. In this embodiment, the livestock aquaculture tank 1 is 4800 (t), but the volume or shape of the livestock aquaculture tank 1 is not particularly specified. It can be carried out even in extremely large animal water tanks, and it is sufficient to select appropriately according to the size of the underground space.
Furthermore, a circulation path 7 is provided in the water supply circulation section 8. One end of the circulation path 71 is opened, and the other end is opened to the center where the center bottom of the animal culturing water tank 1 is lowered to the bottom of the cage so that the circulation is possible. Furthermore, from the separate water supply circulation section 8, one end is opened to the water supply circulation section 8 and from the opening to the other portion of the livestock aquaculture tank 1 again through the filtration device 2 and the foam separation device 4, artificial breeding water A filtration circulation path 72 that enables circulation of 6 is provided. Further, in order to efficiently purify the artificial breeding water 6 by the filtration device 2 and the foam separating device 4, the filtration circulation path 72 has an upper portion of the artificial breeding water 6 filled in the livestock breeding tank 1 in the water supply circulation section 8. The water inlet is provided upward so that the portion enters the circulation path 72. As a result, fish dung, impurities, dust, etc. floating in the artificial breeding water 6 and moving upward can be efficiently circulated in the filtration circuit 72.

濾過循環路72の途中に設ける濾過装置2は、図1に表す濾過装置1を大きくしたものであり、その濾過材3や作用は前記同様である。また、濾過循環路72の途中に設ける泡沫分離装置4も、図1に表す泡沫分離装置4を大型化したものであり、その作用は前記したとおりである。
また、この養殖システムでは、濾過装置2からは温調循環路73を分岐して予備加温装置である水温調整装置9を経由して再び畜養水槽1の他部へと循環可能としている。水温調整装置9は濾過装置2と水温調整装置9との間に設けるポンプ91によって強制的に人工飼育水6を循環させ、水温調整装置9によって人工飼育水6の温度を調節可能である。この水温調整装置9は、例えば、畜養水槽1に新たに補充する人工飼育水6の水温が既に畜養水槽1内に有る人工飼育水6の温度と差があった場合等に水温を調節するためのものであり、加温および冷却の両方が可能に構成する。
The filtration device 2 provided in the middle of the filtration circuit 72 is obtained by enlarging the filtration device 1 shown in FIG. 1, and the filtering material 3 and the operation thereof are the same as described above. Moreover, the foam separation apparatus 4 provided in the middle of the filtration circuit 72 is also an enlargement of the foam separation apparatus 4 shown in FIG. 1, and the operation thereof is as described above.
Further, in this aquaculture system, the temperature control circuit 73 is branched from the filtering device 2 and can be circulated again to the other part of the livestock aquaculture tank 1 via the water temperature adjusting device 9 which is a preliminary heating device. The water temperature adjusting device 9 can forcibly circulate the artificial breeding water 6 by a pump 91 provided between the filtering device 2 and the water temperature adjusting device 9, and the water temperature adjusting device 9 can adjust the temperature of the artificial breeding water 6. This water temperature adjusting device 9 is for adjusting the water temperature when, for example, the temperature of the artificial breeding water 6 newly replenished to the livestock breeding tank 1 is different from the temperature of the artificial breeding water 6 already in the livestock breeding tank 1. It is configured so that both heating and cooling are possible.

74は給水循環路である。給水循環路74は、やはり濾過装置2から分岐されて設け、一方が濾過装置2に開口し、他方が補助タンク10に開口させる。
補助タンク10は、畜養水槽1へ人工飼育水6を補給あるいは交換するための新しい人工飼育水6を蓄水しておくタンクである。この補助タンク10には、地下水や河川水を利用できるように地下水や河川水を引き込んで供給可能に引き込み路(図示せず)およびバルブ(図示せず)が設けてある。
74 is a water supply circuit. The water supply circulation path 74 is also branched from the filtration device 2, and one is opened to the filtration device 2 and the other is opened to the auxiliary tank 10.
The auxiliary tank 10 is a tank for storing new artificial breeding water 6 for replenishing or exchanging the artificial breeding water 6 to the animal breeding water tank 1. The auxiliary tank 10 is provided with a lead-in path (not shown) and a valve (not shown) so that the ground water and river water can be drawn and supplied so that the ground water and river water can be used.

上記のように設ける各循環路7が飼育水循環装置を構成し、必要に応じて適宜各循環路7に強制循環をさせるための循環ポンプ91を設けても良く、人工飼育水6が循環するように構成されればよい。また、特に図示しないが、畜養水槽1内にも人工飼育水6を畜養水槽1内部で循環させる循環ポンプ等を設けて人工飼育水6の循環を行っている。
従って、人工飼育水6を製造するに当たり地下水や河川水を利用可能となるので、更に人工飼育水6の製造コストを抑えることが可能となる。
11は、モニタリング室である。モニタリング室11は、畜養水槽1、濾過装置2、泡沫分離装置4、飼育水冷却装置5、各循環路7、水温調整装置9、循環ポンプ91、補助タンク10のそれぞれに設けた水位センサや温度センサ、電圧計、電流計、電力計等の監視を行う。これら各装置の監視は、一般に行われている水位や水温の管理、供給電力の管理等なので特に詳説しない。
12はソーラー発電装置である。ソーラー発電装置12は、太陽熱発電を行うソーラーパネルと電力を蓄える蓄電装置と供給する際の電力を制御する制御部とからなるが通常設置されるものと何ら変わりは無いので説明は省略する。ソーラー発電装置12はソーラーパネルを地上の日当たりの良好な場所に設け、電力供給線によって電力を使用する水温調整装置9や循環ポンプ91等に供給する。また、特に説明はしていないが、養殖システムを設置している場所が地中であるため、明かりを採る必要があるので、各所に設置した蛍光灯等へも電力の供給を行っている。勿論養殖魚へも光を当てる必要があるので、適宜量の光が供給できるように畜養水槽1の外部あるいは内部に畜養水槽1内の養殖魚に光が当たるよう光源を設置する。
Each circulation path 7 provided as described above constitutes a breeding water circulation device, and if necessary, a circulation pump 91 for forced circulation of each circulation path 7 may be provided, so that the artificial breeding water 6 circulates. What is necessary is just to be comprised. Although not shown in particular, the artificial breeding water 6 is circulated by providing a circulation pump or the like that circulates the artificial breeding water 6 in the breeding tank 1 in the breeding tank 1.
Accordingly, since the groundwater and river water can be used for producing the artificial breeding water 6, the production cost of the artificial breeding water 6 can be further reduced.
11 is a monitoring room. The monitoring room 11 includes a water level sensor and a temperature provided in each of the livestock aquarium 1, the filtration device 2, the foam separation device 4, the breeding water cooling device 5, each circulation path 7, the water temperature adjustment device 9, the circulation pump 91, and the auxiliary tank 10. Monitors sensors, voltmeters, ammeters, wattmeters, etc. Since monitoring of each of these devices is generally performed, such as water level and water temperature management, supply power management, etc., it will not be described in detail.
Reference numeral 12 denotes a solar power generator. The solar power generation device 12 is composed of a solar panel that performs solar thermal power generation, a power storage device that stores electric power, and a control unit that controls electric power at the time of supply. The solar power generation device 12 is provided with a solar panel in a sunny place on the ground, and is supplied to the water temperature adjustment device 9 and the circulation pump 91 that use electric power through a power supply line. Although not specifically explained, since the place where the aquaculture system is installed is underground, it is necessary to take light, so power is also supplied to fluorescent lamps and the like installed at various places. Of course, since it is necessary to irradiate the cultured fish with light, a light source is installed outside or inside the livestock aquaculture tank 1 so that the farmed fish in the livestock aquaculture tank 1 is exposed so that an appropriate amount of light can be supplied.

このようにソーラー発電装置12を設けることで、養殖システムへの電力供給も、太陽光によりまかなうことができるので、養殖にかかるコストを更に低減させることが可能となる。
また、必要に応じ、孵化専用の水槽(図示せず)や、畜養水槽1で飼育可能な大きさになるまで稚魚を飼育するのに用いる稚魚飼育槽(図示せず)を別途設け、これらの水槽で孵化や稚魚飼育を行うことで、孵化から市場への提供が可能な成魚までの一貫した養殖を内陸部で行うことができるようにしても良い。
また、廃鉱となった鉱山や坑道、洞窟等の地中においては、酸素濃度が地表より低い場合が有るので、畜養水槽1内の人工飼育水6の溶存酸素濃度を上げるために通常の気泡発生装置による酸素供給装置や純酸素による酸素供給装置を循環路7の中間部に設けるか畜養水槽1内に直接設けて溶存酸素濃度を上昇させても良い。この場合には、地上に於ける養殖同様に養殖魚を過密養殖することも可能となる。
By providing the solar power generation device 12 in this way, the power supply to the aquaculture system can also be provided by sunlight, so that it is possible to further reduce the cost for aquaculture.
In addition, if necessary, a tank dedicated to hatching (not shown) and a fry rearing tank (not shown) used for rearing fry until it is large enough to be raised in the livestock aquarium 1 are provided. By performing hatching and fry rearing in the aquarium, it may be possible to carry out consistent aquaculture inland from hatching to adult fish that can be provided to the market.
In addition, in the ground of abandoned mines, tunnels, caves, etc., oxygen concentration may be lower than the surface of the earth, so normal bubbles are generated to increase the dissolved oxygen concentration of artificial breeding water 6 in the livestock aquarium 1 An oxygen supply device using an apparatus or an oxygen supply device using pure oxygen may be provided in the middle portion of the circulation path 7 or directly provided in the animal feed water tank 1 to increase the dissolved oxygen concentration. In this case, it is possible to overculture aquacultured fish as well as on the ground.

上記の通り、この発明にかかる人工飼育水による養殖システムは、種々の海水魚の飼育・養殖に利用可能であり内陸部による養殖に用いることができることは勿論、淡水魚の飼育・養殖にも利用可能である。従って、大量に飼育水を要する各種魚類の養殖に利用できるのは勿論、海水魚と淡水魚とを共存させて飼育することも可能である。  As described above, the aquaculture system using artificial breeding water according to the present invention can be used for breeding and aquaculture of various seawater fish and can be used for aquaculture of inland areas, as well as for breeding and aquaculture of freshwater fish. is there. Therefore, it can be used for aquaculture of various fishes that require a large amount of breeding water, and it is also possible to breed a saltwater fish and a freshwater fish together.

更にまた、大規模な水槽(畜養槽)による陸上飼育では、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスを培養することで行うワムシの培養の培養に利用可能である。  Furthermore, in land-based breeding in large-scale water tanks (livestock breeding tanks), marine Nannochloropsis, which is indispensable for cultivating rotifers widely used as the initial feed for hatchling larvae, should be cultured. It can be used for cultivating rotifer culture in (1).

(a)は観察実験に使用する水槽及び濾過装置の側面説明図、(b)は同平面説明図(A) is side explanatory drawing of the water tank and filtration apparatus used for observation experiment, (b) is the same plane explanatory drawing. 成長率を比較した説明図Explanatory diagram comparing growth rates アンモニアの平衡状態を表す説明図Explanatory diagram showing the equilibrium state of ammonia (a)人工飼育水による養殖システムの側面説明図 (b)人工飼育水による養殖システムの平面説明図(A) Side view of the aquaculture system using artificial breeding water (b) Plan view of the aquaculture system using artificial breeding water

1 水槽(畜養水槽)
2 濾過装置
3 濾過材
4 泡沫分離装置
5 飼育水冷却装置
6 人工飼育水
7 循環路
71 自然循環路
72 濾過循環路
73 温調循環路
74 給水循環路
8 給水循環部
9 水温調整装置
1 water tank (livestock water tank)
2 Filtration device 3 Filter medium 4 Foam separation device 5 Breeding water cooling device 6 Artificial breeding water 7 Circulation route 71 Natural circulation route 72 Filtration circulation route 73 Temperature control circulation route 74 Water supply circulation route 8 Water supply circulation unit 9 Water temperature adjustment device

Claims (4)

地表内部であって周囲温度が15℃から30℃の空間に設置する飼育槽と、
飼育槽内に満たされ海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、比重が1.004以上天然海水以下となるように飼育水中にナトリウム、カルシウム、カリウムを添加し、カルシウムに対するカリウムの存在比が0.93乃至天然海水中の存在比であり、カルシウムとカリウムに対するナトリウムの存在比が55乃至天然海水中の存在比となるように含有する人工飼育水と、
飼育槽内に満たされた人工飼育水を濾過する濾過装置とを備えることを特徴とする人工飼育水による養殖システム。
A breeding tank installed in a space within the surface of the earth and having an ambient temperature of 15 ° C to 30 ° C;
It is a breeding water filled in the breeding tank and used for artificial breeding of seawater organisms and freshwater organisms, and sodium, calcium, potassium is added to the breeding water so that the specific gravity is 1.004 or more and natural seawater or less. An artificial breeding water containing such that the abundance ratio of potassium to 0.93 is an abundance ratio in natural seawater, and an abundance ratio of sodium to calcium and potassium is 55 to an abundance ratio in natural seawater;
An aquaculture system using artificial breeding water, comprising: a filtration device for filtering artificial breeding water filled in the breeding tank.
地表内部であって周囲温度が15℃から30℃の空間に設置する飼育槽と、
飼育槽内に満たされ海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、飼育水中にカルシウムを0.1002(g/l)以上、カリウムを0.09419(g/l)以上の割合で含有すると共に、比重が1.004以上天然海水比重以下となるようにカルシウム、カリウムに加えナトリウムを含有する人工飼育水と、
飼育槽内に満たされた人工飼育水を濾過する濾過装置とを備えることを特徴とする人工飼育水による養殖システム。
A breeding tank installed in a space within the surface of the earth and having an ambient temperature of 15 ° C to 30 ° C;
A breeding water filled in a breeding tank and used for artificial breeding of seawater organisms and freshwater organisms, wherein calcium is at least 0.1002 (g / l) and potassium is at least 0.09419 (g / l) in the breeding water In addition to calcium, potassium and artificial breeding water so that the specific gravity is 1.004 or more and natural seawater specific gravity or less,
An aquaculture system using artificial breeding water, comprising: a filtration device for filtering artificial breeding water filled in the breeding tank.
前記人工飼育水による養殖システムにおいて、人工飼育水が硫酸マグネシウム7水和塩を1.6897(g/l)乃至天然海水の存在量となるように添加し、比重が1.004以上天然海水比重以下である請求項1または請求項2に記載の人工飼育水による養殖システム。  In the aquaculture system using artificial breeding water, the artificial breeding water is added with magnesium sulfate heptahydrate in an amount of 1.68897 (g / l) to natural seawater, and the specific gravity is 1.004 or more. The aquaculture system using artificial breeding water according to claim 1 or 2, wherein: 前記人工飼育水による養殖システムにおいて、人工飼育水に含有する前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した請求項1乃至請求項3の何れかに記載の人工飼育水による養殖システム。  In the aquaculture system using artificial breeding water, breeding of pufferfish whose content of each component contained in the artificial breeding water is 0.25 to 1 times of the breeding water and the abundance ratio of each component is equivalent An aquaculture system using artificially breeding water according to any one of claims 1 to 3, which is suitable for the above.
JP2010068849A 2010-03-04 2010-03-04 Aquaculture system with artificial breeding water Active JP4665258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068849A JP4665258B2 (en) 2010-03-04 2010-03-04 Aquaculture system with artificial breeding water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068849A JP4665258B2 (en) 2010-03-04 2010-03-04 Aquaculture system with artificial breeding water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006354868A Division JP4665252B2 (en) 2006-12-05 2006-12-28 Aquaculture system with artificial breeding water

Publications (3)

Publication Number Publication Date
JP2010166927A true JP2010166927A (en) 2010-08-05
JP2010166927A5 JP2010166927A5 (en) 2010-09-16
JP4665258B2 JP4665258B2 (en) 2011-04-06

Family

ID=42699612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068849A Active JP4665258B2 (en) 2010-03-04 2010-03-04 Aquaculture system with artificial breeding water

Country Status (1)

Country Link
JP (1) JP4665258B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142039B1 (en) * 2011-11-24 2012-06-27 대한민국 Incubation method of multi-embryo egg capsule in fish
KR101142038B1 (en) 2011-11-24 2012-06-27 대한민국 Incubation device of multi-embryo egg capsule in fish
JP2015165825A (en) * 2015-07-01 2015-09-24 広島県 Marine fish treated by life prolongation and/or trauma recovery method of marine fish
US9212586B2 (en) 2012-05-29 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
WO2019031970A1 (en) * 2017-08-11 2019-02-14 Steinsvik As System for delousing fish by means of heated water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123497A (en) * 1978-03-20 1979-09-25 Ichigorou Sekine Warmth keeping method of breeding tank
JPS6137042A (en) * 1984-07-30 1986-02-21 出水 昇 Hatching of "onitenaga" shrimp
JPS61231924A (en) * 1985-04-09 1986-10-16 阪神港湾工業株式会社 Greenhouse for breeding fishes and shellfishes and culturingvegetable and its equipment
JPH04207136A (en) * 1990-11-30 1992-07-29 Senju Pharmaceut Co Ltd Artificial seawater
JPH05111684A (en) * 1991-09-30 1993-05-07 Kiyoshi Matsumoto Artificial sea water preparing agent
JP2002017188A (en) * 2000-07-03 2002-01-22 Yamari Seisakusho:Kk Method for rearing poultry, livestock or the like, and installation for rearing
JP2006288234A (en) * 2005-04-07 2006-10-26 Hiroshima Pref Gov Disease-resistant rearing method for fry of marine fish

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123497A (en) * 1978-03-20 1979-09-25 Ichigorou Sekine Warmth keeping method of breeding tank
JPS6137042A (en) * 1984-07-30 1986-02-21 出水 昇 Hatching of "onitenaga" shrimp
JPS61231924A (en) * 1985-04-09 1986-10-16 阪神港湾工業株式会社 Greenhouse for breeding fishes and shellfishes and culturingvegetable and its equipment
JPH04207136A (en) * 1990-11-30 1992-07-29 Senju Pharmaceut Co Ltd Artificial seawater
JPH05111684A (en) * 1991-09-30 1993-05-07 Kiyoshi Matsumoto Artificial sea water preparing agent
JP2002017188A (en) * 2000-07-03 2002-01-22 Yamari Seisakusho:Kk Method for rearing poultry, livestock or the like, and installation for rearing
JP2006288234A (en) * 2005-04-07 2006-10-26 Hiroshima Pref Gov Disease-resistant rearing method for fry of marine fish

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142039B1 (en) * 2011-11-24 2012-06-27 대한민국 Incubation method of multi-embryo egg capsule in fish
KR101142038B1 (en) 2011-11-24 2012-06-27 대한민국 Incubation device of multi-embryo egg capsule in fish
US9212586B2 (en) 2012-05-29 2015-12-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2015165825A (en) * 2015-07-01 2015-09-24 広島県 Marine fish treated by life prolongation and/or trauma recovery method of marine fish
WO2019031970A1 (en) * 2017-08-11 2019-02-14 Steinsvik As System for delousing fish by means of heated water
GB2579749A (en) * 2017-08-11 2020-07-01 Steinsvik As System for delousing fish by means of heated water
GB2579749B (en) * 2017-08-11 2022-05-11 Steinsvik As System for delousing fish by means of heated water

Also Published As

Publication number Publication date
JP4665258B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
CN100577002C (en) Production method for summer offspring of Songjiang blue pickerel
CN101411311B (en) Method for producing fingerling of Trachidermus fasciatus
BR112014031658B1 (en) MIXOTROPHIC AQUACULTURE METHOD
KR101489660B1 (en) METHOD FOR CULTUERING CATADROMOUS FISH(Anguilla marmorata) BY USING RECIRCULATING AQUACULTUER SYSTEM AND SEAWATER ACCLIMATION
JP4665258B2 (en) Aquaculture system with artificial breeding water
JP5062550B2 (en) Artificial breeding water
CN103651216A (en) Method for cultivating glyptosternum maculatum fries and fingerlings through artificial feed
WO2009153954A1 (en) Water for artificial feeding and material for preparing water for artificial feeding
CN104396809A (en) Grass carp culturing method
CN106172136B (en) A kind of fugu obscurus winter artificial fecundation method
CN104782557B (en) Gentle-slope type circulates intensive aquaculture system
JPS60120928A (en) Breeding apparatus of ear shell
KR102037627B1 (en) Device for aqua-culture of Echinoidea.
CN102919186B (en) Artificial breeding method for sillago sihama
JP2010193902A (en) Water for artificial rearing
JP4665252B2 (en) Aquaculture system with artificial breeding water
WO2008069261A1 (en) Water for artificial breeding and aquaculture system using the same
JP5487377B2 (en) Aquaculture system with artificial breeding water
Aride et al. Tambaqui growth and survival when exposed to different photoperiods
JP5364874B2 (en) Artificial breeding water
JP5487378B2 (en) Artificial breeding water
CN105961249A (en) Mullet breeding process and breeding feed
JP2010166933A (en) Artificial rearing water
CN105613367B (en) A kind of factory culturing method of zander fingerling
McGinty et al. Hybrid striped bass: hatchery phase

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250