JP5487378B2 - Artificial breeding water - Google Patents

Artificial breeding water Download PDF

Info

Publication number
JP5487378B2
JP5487378B2 JP2010068850A JP2010068850A JP5487378B2 JP 5487378 B2 JP5487378 B2 JP 5487378B2 JP 2010068850 A JP2010068850 A JP 2010068850A JP 2010068850 A JP2010068850 A JP 2010068850A JP 5487378 B2 JP5487378 B2 JP 5487378B2
Authority
JP
Japan
Prior art keywords
seawater
water
artificial
breeding
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010068850A
Other languages
Japanese (ja)
Other versions
JP2010162044A (en
Inventor
俊政 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kake Educational Institution
Original Assignee
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kake Educational Institution filed Critical Kake Educational Institution
Priority to JP2010068850A priority Critical patent/JP5487378B2/en
Publication of JP2010162044A publication Critical patent/JP2010162044A/en
Application granted granted Critical
Publication of JP5487378B2 publication Critical patent/JP5487378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

この発明は、海水魚及び淡水魚を閉鎖環境において養殖や飼育する際に用いる飼育水にかかり、詳細には、内陸部で水槽等の飼育槽に海水魚や淡水魚を生息させて飼育する際に用いるのに好適な人工飼育水に関する。  The present invention is related to breeding water used when cultivating and breeding saltwater fish and freshwater fish in a closed environment, and more specifically, used when breeding saltwater fish and freshwater fish in a breeding tank such as an aquarium inland. It is related with the artificial breeding water suitable for.

魚の養殖は古くから行われているが、従来一般に行われてきた養殖は、海に生息する海水性の魚であれば、湾内に網を巡らして海水をそのまま利用した閉塞環境となる生簀を構築し養殖を行い、川魚であれば河川を堰き止める等してやはり閉塞環境を構築し養殖を行っていた。
また、海に生息する魚を陸上で飼育する場合もあったが、海水魚の飼育においては海水が必須と考えられ、内陸部での飼育では大量の海水が必要となるため安価な飼育ができずにいた。
一方、海水魚の需要は食用に限られるものだけではなく、観賞用の熱帯魚なども有った。しかしながら、熱帯魚においても、小型なので食用のハマチなどに比べれば陸上での飼育は比較的行いやすいが、やはり海水を必要とするためコスト高となってしまっていた。更には、海水中に大量に含有する塩類が水槽やその附帯装置の回りに付着して見栄えを悪くしてしまい観賞用とするにはその処理が大変であった。
Fish farming has been practiced for a long time, but traditionally farmed is a seawater fish that inhabits the sea, and builds a ginger that becomes a closed environment using seawater as it is around the bay. In the case of river fish, if it was a river fish, it was still cultivated by building a closed environment by blocking the river.
In addition, fish that inhabit the sea were sometimes bred on land, but seawater is considered essential for breeding saltwater fish, and a large amount of seawater is required for breeding inland, so inexpensive breeding is not possible. I was in
On the other hand, the demand for saltwater fish was not limited to food use, but there were also tropical fish for ornamental use. However, tropical fish are relatively small, so they are relatively easy to breed on land compared to edible hamachi, but they still require seawater, which is expensive. Furthermore, the salt contained in a large amount in seawater adheres around the aquarium and its ancillary equipment and deteriorates its appearance, so that it is difficult to treat it for ornamental use.

そこで、昨今では、海水に代る人工水として人工海水が開発され、陸上においても、海から海水を運ぶことなく、人工海水を水道水等の淡水から生成し、水槽等での飼育に用いるようになった。
この人工海水では、天然海水の状態に近づけるため、一般的に、天然海水に含有する塩類と同等の塩類を同量となるように含有させていた。
即ち、天然海水では、一般に最も多く含有している塩化ナトリウムが比重1.02〜1.03の海水1(kg)中に約23〜28(g)である。また、天然海水中の他の塩類としては、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、硫酸カリウム、塩化カリウム、炭酸カルシウム、臭化マグネシウムなどが挙げられ、これら塩化ナトリウムを含む全塩類の含有量は、通常海水1(kg)中35(g)前後、即ち重量比で35(‰)である。そこで人工海水も原則として、このような天然海水の成分組成に準拠して調合していた。
また、従来の人工海水を用いた人工的な海棲生物の受精では、経時段階的な異常卵が高頻度で出現し、例えば、天然海水以外の人工海水に過敏に反応するウニ卵では、極めて微量の生理的有害成分に対しても鋭敏に反応するので、正常な受精・発生率が得られ難く、所定時間内にプルテウス幼生期に到達する率が低く、また同じ条件にて行う天然海水での実験と比較して発生段階に遅延がみられる等、天然海水に比した人工海水独自の問題点を有していた。
Therefore, artificial seawater has been developed as an artificial water to replace seawater in recent years, and artificial seawater is generated from fresh water such as tap water without being transported from the sea and used for rearing in aquariums. Became.
In this artificial seawater, in order to approximate the state of natural seawater, generally, the same amount of salt as that contained in natural seawater has been contained.
That is, in natural seawater, the most common sodium chloride is about 23 to 28 (g) in seawater 1 (kg) having a specific gravity of 1.02 to 1.03. Other salts in natural seawater include magnesium chloride, magnesium sulfate, calcium sulfate, potassium sulfate, potassium chloride, calcium carbonate, magnesium bromide, etc. Usually, it is around 35 (g) in 1 kg of seawater, that is, 35 (‰) in weight ratio. Therefore, in principle, artificial seawater was prepared in accordance with the composition of such natural seawater.
In addition, in the fertilization of artificial marine organisms using conventional artificial seawater, abnormal eggs over time appear frequently, and for example, in sea urchin eggs that react sensitively to artificial seawater other than natural seawater, Because it reacts sensitively to a small amount of physiologically harmful components, normal fertilization / occurrence rate is difficult to obtain, the rate of reaching Pluteus larvae within a predetermined time is low, and natural seawater performed under the same conditions Compared to natural seawater, it had problems unique to artificial seawater, such as a delay in the development stage compared to the previous experiment.

そこで、上記のような問題点を考慮した発明には、例えば、『人工海水』(特開平08−37988号)がある。この『人工海水』(以下、特許文献1という。)では、
『(請求項1)天然海水の主要構成成分であるナトリウム、カリウム、マグネシウム、カルシウムなどの各種塩類を含む人工海水中に、ヨウ化カリウムを0.001〜0.01重量%添加してなる人工海水。
(請求項2)請求項1記載の人工海水において、さらに四ホウ酸ナトリウム0.08〜0.09重量%、ホウ酸0.07〜0.08重量%および臭化カリウム0.07〜0.08重量%を添加したことを特徴とする人工海水。』を提供し、海水に近い成分とするためにナトリウム、カリウム、マグネシウム、カルシウムなどの各種塩類、即ち相当数の塩類を人工海水中に含有させ、更に四ホウ酸ナトリウム0.08〜0.09重量%、ホウ酸0.07〜0.08重量%および臭化カリウム0.07〜0.08重量%の各物質を添加して人工海水を構成していた。
In view of the above problems, for example, there is “artificial seawater” (Japanese Patent Laid-Open No. 08-37988). In this “artificial seawater” (hereinafter referred to as Patent Document 1),
[(Claim 1) Artificial seawater obtained by adding 0.001 to 0.01% by weight of potassium iodide into artificial seawater containing various salts such as sodium, potassium, magnesium and calcium, which are the main components of natural seawater. Seawater.
(Claim 2) In the artificial seawater according to claim 1, 0.08 to 0.09% by weight of sodium tetraborate, 0.07 to 0.08% by weight of boric acid, and 0.07 to 0.08% of potassium bromide. Artificial seawater characterized by adding 08% by weight. In order to make it a component close to seawater, various salts such as sodium, potassium, magnesium and calcium, that is, a considerable number of salts are contained in artificial seawater, and sodium tetraborate 0.08 to 0.09 Artificial seawater was constituted by adding the respective substances of wt%, boric acid 0.07 to 0.08 wt% and potassium bromide 0.07 to 0.08 wt%.

そして、特許文献1に表される人工海水では、問題点を解決する手段の欄に
『これら塩類の配合割合は、天然の海水の組成に近似するほど好ましいが、天然海水の組成そのものが場所、水深、季節、天候などにより変動するので、一概には規定できないが、下記の数値を目安にすることができる。
NaCl 68.0〜85.0(重量部)
MgCl2 9.8〜12.1 〃MgSO4 4.2〜6.6 〃CaSO4 3.2〜4.4 〃K2 SO4 2.2〜2.7 〃CaCO3 0.3〜0.4 〃MgBr2 0.1〜0.3 〃なお、上記の塩類組成のK2 SO4の代わりに、KCl、NaSO4など、また、CaCO3、NaCO3、NaHCO3などを用いてもよく、さらに、0.1重量部未満の微量のその他の塩類を添加しても、この発明の効果を阻害することはない。』と記載され、天然海水に近い範囲の塩類配合割合を人工海水に規定している。また、その実施例中には塩化ナトリウムが約23〜28重量%となるように人工海水に溶解し、天然海水に類似の各塩類を含む人工海水を得るとしている。そして更に、通常の天然海水に類似の各種塩類を含む人工海水とした上で、更に、ヨウ化カリウムを0.001〜0.01重量%添加し、上記範囲以内で、ウニ類の受精、発生過程に所期の目的を達成する顕著な効果が現れるようにしている。
And, in the artificial seawater represented in Patent Document 1, in the column of means for solving the problem, “the blending ratio of these salts is preferable so as to approximate the composition of natural seawater, but the composition of natural seawater itself is the place, Since it fluctuates depending on the water depth, season, weather, etc., it cannot be specified unconditionally, but the following numerical values can be used as a guide.
NaCl 68.0-85.0 (parts by weight)
MgCl2 9.8 to 12.1 〃 MgSO4 4.2 to 6.6 〃 CaSO4 3.2 to 4.4 〃 K2 SO4 2.2 to 2.7 〃 CaCO3 0.3 to 0.4 〃 MgBr2 0.1 In addition, KCl, NaSO4, etc., CaCO3, NaCO3, NaHCO3, etc. may be used in place of K2 SO4 having the above-mentioned salt composition. Even if salts are added, the effect of the present invention is not inhibited. ”And the proportion of salt in the range close to natural seawater is defined as artificial seawater. Further, in the examples, sodium chloride is dissolved in artificial seawater so as to be about 23 to 28% by weight to obtain artificial seawater containing salts similar to natural seawater. Furthermore, after making artificial seawater containing various salts similar to ordinary natural seawater, 0.001 to 0.01% by weight of potassium iodide is further added, and fertilization and generation of sea urchins are within the above range. The process has a remarkable effect of achieving the intended purpose.

従って、特許文献1にも記載されるように、従来の人工海水は、含有する塩類の種類及び塩類の有比率を天然海水に近づけることで、良好な飼育環境となる人工海水を得ていた。
特開平08−37988号公報
Therefore, as described in Patent Document 1, the conventional artificial seawater has obtained artificial seawater that provides a good breeding environment by bringing the kind of salts contained and the proportion of the salts close to those of natural seawater.
Japanese Patent Laid-Open No. 08-37988

しかしながら、従来同様に内陸部で例えば100(t)以上となるような大規模な中間育成場を建設して養殖を行う場合には、海水の確保あるいは人工海水の製造が絶対条件となるが、天然海水の輸送コストあるいは人工海水を製造するためにかかるコストば膨大となり生産コストが高価となってしまった。これにより内陸部で養殖される魚類の価格も高価となってしまった。  However, when constructing a large-scale intermediate breeding ground that is, for example, 100 (t) or more in the inland area as in the past, securing seawater or manufacturing artificial seawater is an absolute condition. The cost of transporting natural seawater or the cost of producing artificial seawater has become enormous and the production cost has become expensive. As a result, the price of fish cultivated inland has become expensive.

そこで発明者は、上記問題点を解決するため思考を重ねた結果、天然海水を希釈して用いることができないかとの思いに至った。
しかしながら、天然海水を希釈して用いるとしても、水道費、輸送コスト、希釈槽の設備化や防疫上の問題は避けて通れない。そこで更に思考を加え、内陸部でも容易に確保できる水道水や河川水あるいは地下水に活性塩類を添加し、しかも低比重を実現できれば、低コスト型飼育水を得ることができるのではないかとの思いに至った。
そこで、海水では放射性同位元素を除き約60種有る組成の中から、魚類の浸透圧にかかわるものを割り出し、必要最低限の成分を加えることが最良との思いに至り、種々の実験を重ねた。
Then, the inventor came up with the idea that natural seawater could be diluted and used as a result of repeated thoughts to solve the above problems.
However, even if natural seawater is diluted and used, there are inevitable problems with water costs, transportation costs, installation of dilution tanks and prevention of epidemics. Therefore, if we add more thought and add active salts to tap water, river water, or groundwater that can be easily secured even inland, and realize low specific gravity, we think that low-cost breeding water can be obtained. It came to.
Therefore, in seawater, there are about 60 types of compositions except for radioisotopes, and those related to the osmotic pressure of fish are determined, and it is thought that it is best to add the minimum necessary components, and various experiments were repeated. .

この発明は、上記問題点に鑑み、人工海水として、水道水や河川水あるいは地下水に天然海水中に含有される塩類より少ない種類の塩類を添加すると共に、人工海水中の該塩類の含有量を充分に減少して単位人工海水当りに使用する塩類の種類及び使用量を充分に少なくして低コストで製造できる人工海水を提供することを課題とする。  In view of the above problems, the present invention, as artificial seawater, adds fewer types of salts than those contained in natural seawater to tap water, river water or groundwater, and the content of the salts in artificial seawater. It is an object of the present invention to provide artificial seawater that can be produced at a low cost by sufficiently reducing the number and amount of salts used per unit artificial seawater.

そこで、発明者が種々行った実験から得られたこの発明の提供する人工飼育水は、極少ない種類の塩類のみを使用すると共に、これら塩類の人工飼育水における含有濃度を極力少なくしたものとして、  Therefore, the artificial breeding water provided by the present invention obtained from various experiments conducted by the inventor uses only a very small number of salts, and the concentration of these salts in the artificial breeding water is minimized.

海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、
比重が1.004以上天然海水以下となるように飼育水中にナトリウム、カルシウム、カリウムを添加し、カルシウムに対するカリウムの存在比が0.93乃至天然海水中の存在比であり、カルシウムとカリウムに対するナトリウムの存在比が55乃至天然海水中の存在比となるように含有することを特徴とする人工飼育水、
Breeding water used for artificial breeding of marine and freshwater organisms,
Sodium, calcium, and potassium are added to the breeding water so that the specific gravity is not less than 1.004 and not more than natural seawater. The abundance ratio of potassium to calcium is 0.93 to the abundance ratio in natural seawater, and sodium to calcium and potassium. Artificial breeding water, wherein the abundance ratio is 55 to natural abundance in natural seawater,

及び、  as well as,

海水性生物及び淡水性生物の人工飼育に用いる飼育水であって、
飼育水中にカルシウムを0.1002(g/l)以上、カリウムを0.09419(g/l)以上の割合で含有すると共に、比重が1.004以上天然海水比重以下となるようにカルシウム、カリウムに加えナトリウムを含有することを特徴とする人工飼育水、
Breeding water used for artificial breeding of marine and freshwater organisms,
Calcium and potassium are contained in the breeding water at a rate of not less than 0.1002 (g / l) and potassium not less than 0.09419 (g / l) and a specific gravity of not less than 1.004 and not more than natural seawater. Artificial breeding water characterized by containing sodium in addition to

を提供する。この人工飼育水は、安価に且つ容易に人工飼育水を製造するために、海水中に存在する各種塩類から必要最小限な塩類が何なのかを特定する作業を行った結果得られたものである。即ち、海水中の種々有る塩類を組合わせ、且つ、飼育水の比重を小さくしていき、飼育魚が良好に成長できる人工飼育水の最小比重及び最小構成塩類を特定する実験の結果、塩類として添加する際に最小限必要な要素はナトリウム、カルシウム、カリウムであり、カルシウムに対するカリウムの存在比が0.93程度で魚の飼育に最も良い値を示し、1.004まで比重を小さくしても(塩分濃度を薄くしても)魚の飼育に影響を与えないことを知見するに至った。I will provide a. This artificial breeding water was obtained as a result of work to identify the minimum necessary salt from various salts present in seawater in order to produce artificial breeding water inexpensively and easily. is there. That is, as a result of an experiment to combine the various salts in seawater and reduce the specific gravity of the breeding water and specify the minimum specific gravity and minimum constituent salts of artificial breeding water that allows the breeding fish to grow well, The minimum elements required for addition are sodium, calcium, and potassium. The abundance ratio of potassium to calcium is about 0.93, which is the best value for fish breeding. Even if the specific gravity is reduced to 1.004 ( It came to know that even if the salinity was reduced, it did not affect fish breeding.

この値は、人工飼育水中の各要素の含有比で表すと、カルシウムに対するカリウムの存在比が0.93であり、最小含有量はカルシウム及びカリウムがそれぞれ0.1002(g/l)、0.09419(g/l)で有る。そしてカルシウム及びカリウムのみをそれぞれ0.1002(g/l)、0.09419(g/l)添加しただけでは比重が1.004に満たないため、ナトリウムを1.004となるまで添加する。これら知見に基づいて、カルシウムとカリウムの人工飼育水の含有量を天然海水と同等となるまで変化させた結果、人工飼育水中の魚の飼育に影響を与えないことを知見した。更に、ナトリウムも人工飼育水中に添加し、天然海水の濃度となるまで変化させた結果、やはり魚の飼育に影響を与えないことを知見するに至った。
更にまたこの発明では、天然海水中に多く含まれるマグネシウムを添加し天然海水の成分に近づけた人工飼育水として、
When this value is expressed by the content ratio of each element in the artificial breeding water, the abundance ratio of potassium to calcium is 0.93, and the minimum content is 0.1002 (g / l) for calcium and potassium, respectively. 09419 (g / l). Then 0.1002 calcium and potassium respectively only (g / l), since only the addition 0.09419 (g / l) less than the specific gravity is 1.004, it added until the sodium becomes 1.004 to. Based on these findings, The content of the artificial breeding water of calcium and potassium was changed to becomes equal to natural seawater was found that that does not affect the breeding of artificial rearing water fish. Furthermore, as a result of adding sodium to artificial breeding water and changing it to the concentration of natural seawater, it has been found that it does not affect fish breeding.
Furthermore, in the present invention, as artificial breeding water added with a large amount of magnesium contained in natural seawater and brought close to the components of natural seawater,

硫酸マグネシウム7水和塩を1.6897(g/l)乃至天然海水の存在量となるように添加し、比重が1.004以上天然海水比重以下である人工飼育水、  Magnesium sulfate heptahydrate is added to 1.6897 (g / l) to abundance of natural seawater, artificial breeding water having a specific gravity of 1.004 or more and natural seawater or less,

を提供する。この人工海水では、天然海水中にカリウム及びカルシウムより存在比が大きく、魚類の浸透圧にはこれらより関わりの少ないマグネシウムを天然海水中における成分ど存在比と同等となるように添加するので、更に天然海水環境に近付けることができ、人工飼育水が魚類に対する好適な環境水となる。
同様に、発明者は各成分の存在比を調整して様々な魚種について好適な環境水を試作して実験を行った結果、魚種によっては、とりわけトラフグおいては更に比重が軽く、各成分の含有量が少なくても飼育に影響を与えないことを知見するに至ったので、
I will provide a. In this artificial seawater, the abundance ratio in natural seawater is larger than potassium and calcium, and magnesium, which is less related to the osmotic pressure of fish, is added so as to be equivalent to the abundance ratio of components in natural seawater. It can be brought close to the natural seawater environment, and artificial breeding water is a suitable environmental water for fish.
Similarly, the inventor adjusted the abundance ratio of each component and experimented by producing environmental water suitable for various fish species, and as a result, depending on the fish species, the specific gravity was particularly light in the trough, Because it came to know that even if the content of ingredients is small, it does not affect the breeding,

前記人工飼育水において、前記各成分の含有量が前記飼育水の0.25倍乃至1倍であると共に前記各成分の存在比率が同等であるフグ類の飼育に適した、  In the artificial breeding water, the content of each component is 0.25 to 1 times the breeding water and suitable for breeding pufferfish with the same ratio of each component.

人工飼育水を提供するに至った。It came to provide artificial breeding water.

上記のように、人工飼育水中のカルシウム、カリウム、ナトリウムの各要素を調整することで、天然海水に比し極少量の塩類を添加するだけで良好な飼育が可能となる。即ち、従来の人工海水では、天然海水に近づけるために20(g/l)以上という大量の塩化ナトリウムを添加していたのに比し、7.0587(g/l)と略1/3程度の添加量で実施可能となるので、低コストで人工飼育水を提供できるというこの発明特有の効果を有する。
また、観賞魚である海水性熱帯魚を飼育する際に利用することで、塩類の濃度の濃い天然海水あるいは人工海水では濾過装置の回り等に大量に付着する固形塩類の付着を少なくでき、飼育時の固化した塩類による錆びを低減できる等の効果を有すると共に、水槽回りの外観を損ねることが無いというこの発明特有の効果を奏する。
As described above, by adjusting each element of calcium, potassium, and sodium in the artificial breeding water, it is possible to breed with good quality just by adding a very small amount of salts compared to natural seawater. In other words, in the conventional artificial seawater, a large amount of sodium chloride of 20 (g / l) or more was added in order to approximate natural seawater, which is 7.087 (g / l), about 1/3. Therefore, it has an effect peculiar to the present invention that artificial breeding water can be provided at low cost.
In addition, when used in breeding marine tropical fish, which is an ornamental fish, natural seawater or artificial seawater with a high concentration of salt can reduce the amount of solid salts adhering in large quantities around the filtration device, etc. This has the effect of reducing the rust caused by the solidified salt, and has the effect unique to the present invention in that the appearance around the water tank is not impaired.

また、この発明にかかる人工飼育水で飼育した実験に於ける全ての飼育魚において魚病の発生がなかった。このことから、人工飼育水ではpHや各塩類の濃度などが海水と淡水の中間であり、且つ、必要のない塩類等の添加がないので、細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される一般的な魚病性疾患の原因や、さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される魚病性疾患の根源となる原生動物や病原体にとって経験したことのない天然の海水でもない淡水でもない未知の水質であるためと推測ができ、これら魚病性疾患の原因となる外敵の侵入に対し高い抵抗力を有する人工飼育水を得ることが可能である。これにより飼育する際に、抗生物質等を飼育水に与える必要がなく更に低コスト化を図れるばかりでなく、安全な食用養殖魚の提供が可能であるという本願特有の効果を有する。  Moreover, there was no occurrence of fish disease in all the reared fish in the experiment reared with the artificial rearing water according to the present invention. For this reason, in artificial breeding water, the pH and the concentration of each salt are between seawater and fresh water, and there is no addition of unnecessary salts, etc., so there is no need for protozoa such as bacterial, viral, and ciliates. Causes of common fish pathological diseases classified as parasitic arthropods, as well as protozoa that are the source of fish pathogenic diseases that are broadly classified into seawater and freshwater, with some exceptions such as Vibrio parahaemolyticus Artificial breeding water with high resistance to the invasion of foreign enemies that cause these fish disease, which can be assumed to be unknown water quality that is neither natural seawater nor fresh water that has never been experienced for animals and pathogens It is possible to obtain Thus, when breeding, it is not necessary to give antibiotics to the breeding water, so that the cost can be further reduced, and it is possible to provide a safe edible cultured fish.

更にまた、実施例記載の如く、飼育魚の成長状況を天然海水と本願にかかる人工飼育水とで約1ヶ月間に渡り飼育した結果を比較したところ、天然海水による飼育では81.46(%)の重量増加が認められたのに対し、本願にかかる人工飼育水では119.07(%)の重量増加が認められたように、天然海水に対し飼育魚の早期育成が可能となるという本願特有の効果を有する。  Furthermore, as described in the examples, the results of rearing the breeding fish with natural seawater and the artificial breeding water according to the present application for about one month were compared. The artificial breeding water according to the present application has an increase in weight of 119.07 (%), and as shown in FIG. Has an effect.

更にまた、飼育魚を飼育する際にはアンモニアが発生するが、このアンモニアは、図3に表すように、魚類に影響を与えない解離のアンモニウムイオン(NH4+)と有毒なアンモニア(NH3)とが平衡状態にある。そして、アンモニアの平行定数が高温、高塩、高pHの場合に有毒な非解離アンモニアに変化しやすいため、天然海水に比べpHの低い人工飼育水では、有毒なアンモニアの発生が抑えられるので、天然海水による飼育に比べ小さな濾過装置の設置のみで飼育が可能となり、設備費用が低減できるという本願特有の効果を有する。  Furthermore, ammonia is generated when rearing a domestic fish. As shown in FIG. 3, this ammonia contains dissociated ammonium ions (NH4 +) and toxic ammonia (NH3) that do not affect fish. It is in equilibrium. And since the parallel constant of ammonia is likely to change to toxic non-dissociated ammonia when the temperature is high, high salt, and high pH, in artificial breeding water having a lower pH than natural seawater, the generation of toxic ammonia can be suppressed. Compared to breeding with natural seawater, breeding is possible only by installing a small filtering device, and the present invention has an effect specific to the present application that equipment costs can be reduced.

更にまた、海水の確保ができない内陸部で、種苗生産から中間育成まで一貫した生産体制を構築するため、天然新魚であるトラフグの受精卵を用いこの発明の人工飼育水による飼育と天然海水による飼育における孵化率を調査したところ、天然海水では孵化率30(%)であったのに対し、天然海水を10(%)混合した人工飼育水では孵化率が60(%)であり、高い孵化率を確保可能であり、孵化から育成までの効率よく一貫した種苗生産体制を確立することが可能となる本願特有の効果を有する。  Furthermore, in the inland area where seawater cannot be secured, in order to build a consistent production system from seed production to intermediate breeding, fertilized eggs of trough pufferfish, a natural new fish, are used for breeding with artificial breeding water and natural seawater. As a result of examining the hatching rate in breeding, the hatching rate was 30 (%) in natural seawater, whereas the hatching rate was 60 (%) in artificial breeding water mixed with 10 (%) natural seawater. It is possible to secure the rate, and it has an effect peculiar to the present application that makes it possible to establish an efficient and consistent seed production system from hatching to breeding.

更にまた、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスは、天然海水100(%)に施肥を行なう一般的な培養方法では、場所、時期、海水の品質などの条件によって培養密度が大きく変化するので安定した培養管理には熟練を要し、これに伴ってワムシの培養にも熟練を要することとなっていたが、この発明によれば、天然海水に比し比重が低くワムシの増殖に好適な条件となり、ワムシの効率的な培養が可能となった。  Furthermore, marine Nannochloropsis, which is indispensable for the cultivation of rotifers widely used as an initial feed for hatchling larvae, is a general culture method for fertilizing 100% natural seawater. However, the culture density greatly changes depending on conditions such as location, time, seawater quality, etc., so stable culture management requires skill, and accordingly, rotifer culture also requires skill, According to the present invention, the specific gravity is lower than that of natural seawater and suitable conditions for the propagation of rotifers, and rotifers can be efficiently cultured.

従って、大規模水槽(畜養槽)等による陸上に於ける海水性魚類の養殖に際し、この発明による人工飼育水によって孵化仔魚の飼育から成長魚類の出荷までを陸上において良好に行うことが可能となるという本願特有の作用効果を奏する。  Therefore, when cultivating seawater fish on land using a large-scale water tank (livestock tank) or the like, it is possible to perform well from the breeding larva breeding to the shipment of the growing fish on land by artificial breeding water according to the present invention. There is an effect specific to the present application.

河川の水、地下水、あるいは、水道水に、塩化ナトリウムを7.0587(g/l)、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)、となるように溶解させ人工飼育水を作成する。この時、人工飼育水は略1.004の比重となっている。
特にトラフグを飼育するための人工飼育水では、更に塩類の濃度を下げても実施でき、溶解させる塩化ナトリウムを1.781(g/l)、同塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)として実施できる。
In river water, groundwater or tap water, sodium chloride 7.0587 (g / l), calcium chloride dihydrate 0.3641 (g / l), potassium chloride 0.18125 (g / l) ), And make artificial breeding water by dissolving. At this time, the artificial breeding water has a specific gravity of about 1.004.
In particular, artificial breeding water for breeding trough puffer can be carried out even if the concentration of the salt is further reduced. 1.781 (g / l) of sodium chloride to be dissolved and 0.092 (g of calcium chloride dihydrate) / L) and potassium chloride as 0.045 (g / l).

以下にこの発明の実施例を図面に基づき説明する。
図1は観察実験に使用する水槽及び濾過装置の模式図を表し(a)は側面説明図、(b)は平面説明図であり、図2は成長率を比較した説明図であり、図3はアンモニアの平衡状態を表す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
1A and 1B are schematic views of a water tank and a filtration device used for an observation experiment. FIG. 1A is a side explanatory view, FIG. 1B is a plane explanatory view, and FIG. 2 is an explanatory view comparing growth rates. These are explanatory drawings showing the equilibrium state of ammonia.

海から離れた内陸部で100(t)以上有るような大規模な中間育成場を建設して効率よく海水魚を飼育することを想定した場合には、一般的には潤沢な海水の確保が絶対条件であり魚類飼育の生命線であると考えられる。しかし、潤沢な海水確保には海水を輸送する費用が多大にかかるため、人工海水を考えざるを得ない。
しかしながら、人工海水も、従来天然海水に少しでも近づけることで飼育に良好な環境が得られると考えられていたので、天然海水と同等な複数の塩類を天然海水と同じ濃度となるように溶解させるため、人工海水にかかわるコストもやはり膨大となっていた。
そこで発明者は、人工海水を天然海水に近づけるのではなく、マダイやハマチなど食用海水魚を天然海水とは異なる低塩類低濃度の環境で飼育(養殖)できないかを試みることに思い至った。
そこで発明者は、放射性同位元素を除き約60種である天然海水中の塩類から、魚類の浸透圧にかかわる組成を割り出して必要最低限の成分を加えることが最良と考えた。
尚、以下に表す各実験では、図1に表すように、100(l)程度の水槽に密閉式濾過槽からなる濾過フィルターを使用して実験を行った。そして、濾過フィルター中にはセラミックを加え調整長期に亙り飼育水のpH調整が可能とした。尚、図1には、泡沫分離装置4が記載されているが、泡沫分離装置4は飼育水を長期に亙り使用するために飼育水中の魚糞や余剰餌等の浮遊物を除去するためのものであり、短期間の実験では使用していない。また、飼育水冷却装置5も記載されているが、これは夏場の屋外に設置した水槽では飼育水の温度が上昇しすぎるため、飼育水温度を実験環境に合わせて一定に保つために設置したものである。
When it is assumed that a large-scale intermediate breeding ground that is 100 (t) or more in the inland area away from the sea is to be bred efficiently, it is generally necessary to secure abundant seawater. It is an absolute requirement and is considered a lifeline for fish breeding. However, securing abundant seawater requires a lot of cost to transport seawater, so artificial seawater must be considered.
However, artificial seawater has been thought to provide a good environment for breeding by bringing it close to natural seawater as much as possible, so several salts equivalent to natural seawater are dissolved to the same concentration as natural seawater. As a result, the costs associated with artificial seawater were enormous.
Therefore, the inventor has come up with an attempt to breed (cultivate) edible seawater fish such as red sea bream and yellowtail in an environment of low salt and low concentration different from natural seawater, instead of bringing artificial seawater close to natural seawater.
Therefore, the inventor considered that it was best to calculate the composition related to the osmotic pressure of fish from the salts of about 60 kinds of natural seawater except for radioisotopes and add the minimum necessary components.
In addition, in each experiment shown below, as shown in FIG. 1, it experimented using the filtration filter which consists of a sealed filtration tank in a water tank of about 100 (l). Then, ceramic was added to the filtration filter to adjust the pH of the breeding water over a long period of adjustment. In addition, although the foam separation apparatus 4 is described in FIG. 1, the foam separation apparatus 4 is used for removing floating substances such as fish droppings and surplus food in the breeding water in order to use the breeding water for a long time. It is not used in short-term experiments. Also, although the breeding water cooling device 5 is also described, this is installed in order to keep the breeding water temperature constant according to the experimental environment because the temperature of the breeding water rises too much in the water tank installed outdoors in summer. Is.

これに先立ち、天然海水を真水で希釈した希釈天然海水中でどの程度の比重までカクレクマノミが耐えられるかの実験を試みた。この実験に先立ち、カクレクマノミへのストレスを考慮して約1ヶ月間の訓化期間を設けた。その結果、カクレクマノミは約8.8(‰)即ち比重1.006(pH7.0)が限界であり、希釈天然海水環境では比重1.005以下で斃死することを知見した。
これに続けて、訓化なしでマタイ(体長5cmを5匹)を約8.8(‰)(比重1.006)の希釈天然海水中に放したところ、横臥現象が見られたものの約5分後には正常に泳ぎだし、数時間後には餌をとるまでに回復した。
そして、該環境においてマダイを3ヶ月間にわたり飼育観察を行った結果、マダイの斃死はなく約5(%)の体重増加を伴って順調に飼育できた。
この結果から、煩雑な訓化を行わなくても希釈天然海水で飼育可能であることが知見された。また、カクレクマノミ、マダイは、それぞれ観賞魚、養殖魚の中から無作為に入手しやすいものを選択したに過ぎないので、他の海水魚でも同様の結果となることが予想された。
Prior to this, an experiment was conducted to determine how much specific gravity can be tolerated in diluted natural seawater obtained by diluting natural seawater with fresh water. Prior to this experiment, a training period of about one month was set up in consideration of stress on the clown fish. As a result, the clownfish was found to have a limit of about 8.8 (‰), that is, a specific gravity of 1.006 (pH 7.0), and drowned at a specific gravity of 1.005 or less in a diluted natural seawater environment.
Subsequent to this, Matai (5 animals 5cm in length) was released into diluted natural seawater of about 8.8 (‰) (specific gravity 1.006) without habituation. After a minute, it began to swim normally, and after a few hours, it recovered by feeding.
And, as a result of breeding observation of the red sea bream for 3 months in this environment, the red sea bream was not drowned and was able to be bred smoothly with an increase in weight of about 5%.
From this result, it was found that the animal can be bred with diluted natural seawater without complicated training. In addition, clownfish and red sea bream were only selected randomly from among ornamental fish and farmed fish, so it was expected that other seawater fish would have the same result.

これら希釈天然海水による実験から、少なくとも比重1.006で飼育が可能であろうことが知見されたので、次いで発明者は人工飼育水(好適環境水)として必要な要素の特定及びその存在度を特定する実験を試みた。
そこで発明者は必須成分の割り出しに際して、哺乳類及び魚類の体液と天然海水の成分とを比較することに思い至った。そして、更に添加する塩類の種類を減少させるべく、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。
哺乳類や魚類の体液は、塩化ナトリウム、カリウム、リン酸を主体としていることが既知である。また、また希釈天然海水の組成にもこれらの成分が有り、主に存在する成分がナトリウム(2.625(g/l))、塩素(4.750(g/l))、カリウム(0.0998(g/l))、カルシウム(0.103(g/l))、マグネシウム(0.320(g/l))、硫酸塩(0.674(g/l))であることが解った。発明者は、これら成分から、魚類が生存するのに適するためには魚類の浸透圧に拘る成分を調整して人工飼育水を作ることに思い至った。
These experiments with diluted natural seawater have revealed that breeding will be possible at least with a specific gravity of 1.006. The inventors then identified the elements necessary for artificial breeding water (preferred environmental water) and their abundance. An experiment to identify was attempted.
Therefore, the inventor came up with the idea of comparing the body fluids of mammals and fish with the components of natural seawater when determining the essential components. In order to further reduce the types of salts to be added, an experiment was conducted to identify the essential elements of fish and their abundances from the six elements.
It is known that body fluids of mammals and fish are mainly composed of sodium chloride, potassium and phosphoric acid. In addition, these components are also present in the composition of diluted natural seawater, and the main components are sodium (2.625 (g / l)), chlorine (4.750 (g / l)), potassium (0. 0998 (g / l)), calcium (0.103 (g / l)), magnesium (0.320 (g / l)), sulfate (0.674 (g / l)). . The inventor has come up with the idea of preparing artificial breeding water from these components by adjusting the components related to the osmotic pressure of the fish so that the fish can survive.

そこで、人工飼育水(好適環境水)の作成に当って、ナトリウムを2.625(g/l)、塩素を4.750(g/l)、カリウムを0.0998(g/l)、カルシウムを0.103(g/l)、マグネシウムを0.320(g/l)、硫酸塩を0.674(g/l)をそれぞれ含有するように、塩化ナトリウム(工業塩)、塩化マグネシウム(工業塩)、塩化カルシウム(一級試薬)、硫酸マグネシウム(工業塩)、塩化カリウム(一級試薬)の5試薬を河川水に加え塩素を含む6元素5試薬による試薬調整を行い、この飼育水中に体長10(cm)のマダイ5(尾)を放し約50日にわたる飼育実験を行った。
なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
その結果、該マダイは斃死することもなく異常が認められず、良好な飼育が行えた。
Therefore, in preparing artificial breeding water (preferred environmental water), sodium was 2.625 (g / l), chlorine was 4.750 (g / l), potassium was 0.0998 (g / l), calcium Of sodium chloride (industrial salt) and magnesium chloride (industrial industry) so that 0.103 (g / l) of magnesium, 0.320 (g / l) of magnesium, and 0.674 (g / l) of sulfate are contained. Salt), calcium chloride (primary reagent), magnesium sulfate (industrial salt), and potassium chloride (primary reagent) are added to river water and adjusted with 6 elements and 5 reagents containing chlorine. (Cm) red sea bream 5 (tail) was released and a breeding experiment was conducted for about 50 days.
In addition, it was thought that phosphoric acid was replenished from the metabolism of fish by feeding, and it was not added.
As a result, the red sea bream was not drowned and no abnormalities were observed, and it was possible to rear it well.

前記実験を受け、更に添加する成分の減少を図るため、前記6元素から魚類の必須元素及びその存在度を特定する実験を試みた。即ち、前記6元素中マグネシウムイオンとして重複する塩化マグマグネシウムの添加をとりやめ、4試薬による5元素の成分添加を行った飼育水を製造し、体長10(cm)のマダイ及びヒラメを各5(尾)を放して3週間飼育を試みた結果、斃死もなく順調に生育し体色も良好で、良好な環境での飼育であった。この塩化マグネシウムを添加していない人工飼育水の比重は1.006である。
なお、リン酸は給餌による魚類の代謝から補給されると考え、添加は行なわなかった。
そして、該人工飼育水中に体長10(cm)のマダイ5(尾)を放し飼育を実施した結果、約3週間斃死等の問題が認められず体色も良好で順調に生育しており、良好な飼育環境であることが確認できた。
In order to reduce the components to be added after the experiment, an experiment was conducted to identify the essential elements of fish and their abundance from the six elements. That is, the addition of magmagnesium chloride overlapping as magnesium ions in the above 6 elements was stopped, and breeding water was prepared by adding 5 elements with 4 reagents. ) Was released and tried to breed for 3 weeks. As a result, it grew smoothly without dying, had good body color, and was kept in a good environment. The specific gravity of the artificial breeding water not added with magnesium chloride is 1.006.
In addition, it was thought that phosphoric acid was replenished from the metabolism of fish by feeding, and it was not added.
And, as a result of carrying out rearing by releasing a red sea bream 5 (tail) with a body length of 10 (cm) in the artificial breeding water, there was no problem such as drowning for about 3 weeks, and the body color was good and it grew smoothly. It was confirmed that it was a safe breeding environment.

発明者は、更に塩類の種類を減少させるべく、前記6元素4試薬による飼育水から、魚類の必須元素及びその存在度を特定する実験を試みた。そして種々の成分を希釈天然海水中のこれら成分相互の存在比で添加し実験を重ねた結果、
塩化ナトリウム 7.0587(g/l)
塩化カルシウム2水和塩 0.3641(g/l)
塩化カリウム 0.18125(g/l)
のみを添加して飼育を試みた。この時の飼育水のpHは6.45、比重は1.004であった。
その結果、飼育した体長12(cm)の3(尾)のマダイは、餌食いは良好であったが、約2週間目から頭皮の欠損症状が現れ、3週間目に斃死した。
The inventor tried an experiment to identify the essential elements of fish and their abundance from the breeding water using the six elements and four reagents in order to further reduce the types of salts. And as a result of adding various components at the abundance ratio of these components in diluted natural seawater and repeating experiments,
Sodium chloride 7.0588 (g / l)
Calcium chloride dihydrate 0.3641 (g / l)
Potassium chloride 0.18125 (g / l)
Breeding was attempted by adding only. At this time, the pH of the breeding water was 6.45, and the specific gravity was 1.004.
As a result, the 3 (tail) red sea bream with a body length of 12 (cm) was good in prey, but the scalp was deficient from about 2 weeks and drowned in 3 weeks.

次いで発明者は、マグネシウムを含まない人工飼育水では飼育できない環境であったため、他の成分の減少が図れないかを思索した。そこで発明者は、海産魚類の細胞液中には、主に塩化カリウム、リン酸が存在しており、塩化ナトリウムは僅かにしか存在していないことに着目した。即ち、海産魚類では、魚類にとって必須であるカリウムイオンを選択的に海水から取込むと同時に細胞内ナトリウムポンプの働きにより有害と思われるナトリウムイオンを鰓弁塩類細胞及び腎臓から排出し、細胞内の塩分濃度上昇を抑制し水分調整を行っている。
そこで、塩化ナトリウムが体内から排出されてしまうのでるから、予め塩化ナトリウムを添加せずに飼育水を作成し海水魚を飼育することを試みた。これによれば、前記6元素4試薬の飼育水中最も添加量の多い(人工飼育水作成費用が嵩む)塩化ナトリウムを必要とせずに人工飼育水が開発できるものと予想した。
即ち、塩化ナトリウム、硫酸マグネシウムを全く添加せず、塩化カルシウム2水和塩を0.3641(g/l)、塩化カリウムを0.18125(g/l)のみ添加し、人工飼育水を作成して12(cm)のマダイ3(尾)を飼育した。
その結果、即座に平衡感覚を失い仰向けとなり、1時間後には斃死してしまった。
Next, the inventor wondered whether other components could be reduced because it was an environment that could not be raised with artificial breeding water not containing magnesium. Therefore, the inventor paid attention to the fact that mainly potassium chloride and phosphoric acid are present in the cell fluid of marine fish, and only a small amount of sodium chloride is present. In other words, in marine fish, potassium ions, which are essential for fish, are selectively taken from seawater, and at the same time, sodium ions that are thought to be harmful by the action of the intracellular sodium pump are excreted from the salmon valve salt cells and kidneys. The water concentration is adjusted by suppressing the increase in salt concentration.
Then, since sodium chloride will be discharged | emitted from a body, it tried to breed breeding water without adding sodium chloride beforehand and breeding saltwater fish. According to this, it was predicted that artificial breeding water could be developed without the need for sodium chloride having the largest amount of the six elements and four reagents in the breeding water (the cost for creating artificial breeding water increased).
That is, sodium chloride and magnesium sulfate were not added at all, and calcium chloride dihydrate 0.3641 (g / l) and potassium chloride 0.18125 (g / l) were added to prepare artificial breeding water. 12 (cm) red sea bream 3 (tail) was reared.
As a result, he immediately lost his sense of balance and became supine.

これらの結果から、人工飼育水に添加する成分は、上記6元素4試薬より減少させることができないものと考えたが、先に行った4元素3試薬による実験、即ち、
塩化ナトリウムを 7.0587(g/l)
塩化カルシウム2水和塩を 0.3641(g/l)
塩化カリウムを 0.18125(g/l)
添加した人工飼育水(以後、3試薬による人工飼育水という。)での飼育が、当初良好であり2週目以降に悪化し3週間に斃死した状況であり、塩化ナトリウム及び硫酸マグネシウムを全く加えない人工飼育水による飼育して直ぐに斃死してしまった結果とは異なっていることに着目し、3週間飼育した後の3試薬による人工飼育水を詳しく調べてみたところ、飼育前には6.45であったpHが、3週間後のマダイ斃死時には4.8にまで減少していた。
これを受け、マダイが生存できるpHを実験した結果、pH5.0乃至pH8.4程度であることが判明し、先の3試薬による人工飼育水を用いた実験を再び行った。その際に、使用した濾過装置に用いた棒状セラミックスに加え、小豆台の天然サンゴ砂も加えて濾過装置とし、サンゴの主成分である炭酸カルシウムが徐々に人工飼育水中に溶け出してpH調節が可能な状態(pH調整剤としての働きを行う状態)で飼育実験を行った。被検体は、体長15(cm)のマダイ2(尾)と、体長10(cm)のヒラメ10(尾)をそれぞれ別水槽に収容した。
その結果、マダイ、ヒラメ共に2ヶ月以上の長期に亙り斃死等の発生もなく順調に飼育でき、約2ヶ月間でマダイの体長が25(cm)、ヒラメの体長が15(cm)となり良好な発育が見られた。
From these results, it was considered that the component added to the artificial breeding water could not be reduced more than the above 6 element 4 reagent.
Sodium chloride 7.0587 (g / l)
0.3641 (g / l) of calcium chloride dihydrate
Potassium chloride 0.18125 (g / l)
Breeding with added artificial breeding water (hereinafter referred to as artificial breeding water with 3 reagents) is good at first, deteriorated after 2 weeks, and drowned in 3 weeks. Sodium chloride and magnesium sulfate were added at all. Paying attention to the fact that it was different from the result of dying immediately after breeding with no artificial breeding water, we examined in detail the artificial breeding water with three reagents after breeding for 3 weeks. The pH, which was 45, was reduced to 4.8 when red sea bream died 3 weeks later.
In response to this, the pH at which red sea bream can survive was tested and found to be about pH 5.0 to pH 8.4, and the experiment using artificial breeding water with the above three reagents was performed again. At that time, in addition to the rod-shaped ceramics used in the filtration device used, natural red coral sand was added to make the filtration device, and the calcium carbonate, the main component of the coral, gradually melted into the artificial breeding water to adjust the pH. The breeding experiment was performed in a possible state (a state in which it functions as a pH adjusting agent). The subject housed red sea bream 2 (tail) having a body length of 15 (cm) and flounder 10 (tail) having a body length of 10 (cm) in separate water tanks.
As a result, both red sea bream and Japanese flounder can be bred smoothly for 2 months or longer without the occurrence of drowning, etc. The body length of red sea bream is 25 (cm) and that of flounder is 15 (cm) in about 2 months. Growth was seen.

上記実験の結果、
塩化ナトリウムを 7.0587(g/l)
塩化カルシウム2水和塩を 0.3641(g/l)
塩化カリウムを 0.18125(g/l)
を添加した比重1.004の人工飼育水中で海水魚の良好な飼育が可能であることが突き止められたので、飼育用の水槽を1000(l)の大型とし、濾過装置を重力落下式として通常用いる濾過フィルターに棒状セラミックス25(l)と前記サンゴ砂5(l)を加えて構成し、更に長期に亙る飼育実験を行うために泡沫分離装置を加えて人工飼育水を濾過しながらオゾンを添加して長期飼育を試みた。
As a result of the above experiment,
Sodium chloride 7.0587 (g / l)
0.3641 (g / l) of calcium chloride dihydrate
Potassium chloride 0.18125 (g / l)
It was determined that seawater fish can be bred well in artificial breeding water with a specific gravity of 1.004, so that the breeding aquarium has a large size of 1000 (l) and the filtration device is normally used as a gravity drop type. Constructed by adding rod-shaped ceramics 25 (l) and the coral sand 5 (l) to the filter, and adding ozone while filtering artificial breeding water by adding a foam separation device to conduct breeding experiments over a long period of time. I tried long-term breeding.

その結果、斃死等の問題のない良好な飼育が行われ順調に成育したので、長期に亙る飼育が可能であることが知見された。そこで、他の魚類について3試薬による人工飼育水での飼育を試みた結果、
海水魚では、マダイ、イシダイ、イシガキダイ、サラサハタ、ヒラメ、トラフグ、オニオコゼ、カクレクマノミ、チョウチョウウオ科5種、スズメダイ4種、ゴマハギ、モンガラカワハギ、ルリヤッコ、ハリセンボン、ハコフグ、クダゴンベ、マハゼであり、
甲殻類では、イシガニであり、
淡水魚では、コイ、金魚(ランチュウ、子赤)、ネオンテトラ、ブラックテトラ、アーリーシクリット、スジシマドジョウである。
このように3試薬による人工飼育水では、淡水魚から海水魚まであらゆる環境の魚類の飼育が可能であることが解り、しかも淡水魚及び海水魚を同一の水槽にて飼育しても問題ないことが知見された。
特にトラフグに関しては、塩化ナトリウムを1.781(g/l)、硫酸マグネシウム7水和塩を0.426(g/l)、塩化カルシウム2水和塩を0.092(g/l)、塩化カリウムを0.045(g/l)添加した3.5(低濃度人工飼育水でも飼育が可能であることが実験から確認でき、更には硫酸マグネシウム7水和塩を添加しなくとも飼育可能であることも実験から知見された。
As a result, it was found that good breeding without problems such as drowning was performed and it grew smoothly, so that breeding over a long period of time was possible. Therefore, as a result of trying to breed other artificial fish in artificial breeding water with 3 reagents,
In the case of saltwater fish, there are red sea bream, sea bream, sea bream, flatfish, tiger pufferfish, sea lionfish, clownfish, five species of butterflyfish, four species of damselfish, scorpionfish, kingfisherfish, luryacco, horsetailed bonnet, kudagonbe, mahaze,
In crustaceans, it is a crab,
Among freshwater fish, carp, goldfish (runchu, baby red), neon tetra, black tetra, early cyclit, and sujishimadojo.
In this way, it has been found that artificial breeding water using three reagents can breed fish of any environment, from freshwater fish to saltwater fish, and that it is safe to breed freshwater fish and saltwater fish in the same tank. It was done.
In particular, regarding trough puffers, sodium chloride is 1.781 (g / l), magnesium sulfate heptahydrate is 0.426 (g / l), calcium chloride dihydrate is 0.092 (g / l), chloride It was confirmed from experiments that it was possible to breed even with low concentration artificial breeding water of 3.5 ( ) to which 0.045 (g / l) potassium was added, and even without adding magnesium sulfate heptahydrate. Experiments have also shown that they can be reared.

また、3試薬による人工飼育水での飼育では以下に表すような作用が認められた。
即ち、
1.3試薬による人工飼育水(トラフグ飼育用の更に希釈された飼育水も含む)による飼育では、すべての魚において、魚病の発生がない。
一般的に魚病性疾患の原因は細菌性、ウイルス性、繊毛類等の原生動物と寄生節足動物に分類される。さらには、腸炎ビブリオ等の一部例外を除き海水性と淡水性に大別される。
そこで、マダイ蓄用槽の人工飼育水における一般細菌数(標準平板菌数)を測定したが、細菌の検出は認められなかった。
また、夏場、海面養殖で問題となる単生類ベネデニア症(Benedenia)に感染しているキイロハギを前記3試薬による人工飼育水に収容して飼育すると、一瞬にして体表から寄生しているベネデニアが剥がれ落ち完全に治癒した。これは急激な浸透圧の変化による寄生虫へのダメージと推察される。
また、ウーディニウム症(Oodinium ocellatum)トリコディナ症(Trichodina)に感染しているカクレクマノミを前記3試薬による人工飼育水に収容して飼育し経過を観察したところ、2週間で完治した。この現象は単生類ベネデニア症と同様に急激な浸透圧の変化によるこれら繊毛虫へのダメージと推察される。
更に、尾柄部が大きく欠損して真皮が露出しているトラフグ10(尾)を前記同様3試薬による人工飼育水中に収容して2ヶ月間飼育したが、ビブリオ感染が見られず生存を続けた。この結果から外傷性ビブリオ感染が発症しないことが知見される。そして、これと対比すべく外洋水を直接補給する開放式飼育法によって同様に尾柄部が大きく欠損して真皮が露出しているトラフグを飼育して経過観察を行ったところ、該外傷性ビブリオ感染は避けられなかった。
In addition, the following effects were observed in breeding with artificial breeding water using three reagents.
That is,
In the case of breeding with artificial breeding water using 1.3 reagents (including further diluted breeding water for breeding trough puffer fish), there is no outbreak of fish disease in all fish.
In general, the causes of fish diseases are classified into protozoa such as bacterial, viral and ciliate and parasitic arthropods. Furthermore, with some exceptions such as Vibrio parahaemolyticus, it is roughly divided into seawater and freshwater.
Therefore, the number of general bacteria (standard plate number) in the artificial rearing water of the red sea bream storage tank was measured, but no bacteria were detected.
In addition, in the summer, when a golden white hare infected with monopod Benedenia, which is a problem in sea farming, is housed and raised in artificial breeding water using the three reagents, Benedenia that is parasitic from the body surface is instantly seen. Peeled off and healed completely. This is presumed to be a damage to the parasite due to a sudden change in osmotic pressure.
In addition, when clownfish infected with oodinium disease (Trichodina) were housed in artificial breeding water using the three reagents and observed, the course was completely cured. This phenomenon is presumed to be a damage to these ciliates due to a rapid change in osmotic pressure, similar to the monopod Benedenosis.
Furthermore, trough pufferfish 10 (tail) with a large caudal portion and exposed dermis was housed in artificial breeding water with the same three reagents as described above and reared for 2 months, but continued to survive without vibrio infection. It was. This result indicates that traumatic Vibrio infection does not develop. Then, in contrast to this, the traumatic pufferfish where the caudal portion was greatly lost and the dermis was exposed was observed by the open-type rearing method in which the open sea water was directly replenished. Infection was inevitable.

上記のように、3試薬による人工飼育水では、寄生虫及び菌類に起因する発病が無いことが知見された。そして、これらの結果から、人工飼育水が海水でもない淡水でもない自然界には一般に存在しない含有成分およびpHの水なので、これら原生動物、病原体そのものが経験したことのない水質であり、原生動物、病原体が死滅するあるいは活動できない環境となっているのではないかと推察できる。  As described above, it has been found that the artificial breeding water using the three reagents has no disease caused by parasites and fungi. And, from these results, artificial breeding water is water that is not contained in seawater or fresh water and is not contained in nature in general and pH water, so these protozoa, water quality that pathogens themselves have not experienced, protozoa, It can be inferred that the pathogen is killed or unable to act.

2.天然海水に比し成長率が良いことが知見された。
即ち、図2に表すように、前記100(1)の水槽において、体長5(cm)のマダイ5(尾)を天然海水環境で、体長6(cm)のマダイ5(尾)を人工飼育水環境で、それぞれ飼育し、マダイの成長を経過観察し、経過1週間毎に総重量を測定して比較した。
その結果、天然海水環境のマダイは4週間経過後81.46(%)の重量増加率であったのに比し、人工飼育水環境のマダイは、119.07(%)の重量増加率であった。
この現象は天然海水中での飼育ではエネルギー代謝の30(%)が浸透圧調整に消費されているのに比べ、人工飼育水では低浸透圧なため浸透圧に拘るエネルギー代謝が低減されることが示唆され、これに伴い成長ホルモンの分泌が促進されていることが推察される。
2. It was found that the growth rate was better than that of natural seawater.
That is, as shown in FIG. 2, in the 100 (1) aquarium, a red sea bream 5 (cm) with a body length of 5 (cm) is placed in a natural seawater environment and a red sea bream 5 (tail) with a body length of 6 (cm) is artificially raised. The animals were reared in the environment, and the growth of red sea bream was followed up. The total weight was measured and compared every week.
As a result, the red sea bream in the natural seawater environment had a weight increase rate of 81.46 (%) after 4 weeks, while the red sea bream in the artificial breeding water environment had a weight increase rate of 119.07 (%). there were.
Compared to the fact that 30% of energy metabolism is consumed for osmotic pressure adjustment in breeding in natural seawater, this phenomenon reduces the energy metabolism associated with osmotic pressure in artificial breeding water because of low osmotic pressure. This suggests that the secretion of growth hormone is promoted.

尚、前記した各人工飼育水において、実験では極力少ない塩類(元素)でしかも極力少ない量の添加によって天然海水に代る人工飼育水を得ようと試みているので、3乃至4種類の塩類の添加実験しか行っていないが、これらが添加してあれば海水魚の飼育には適正であり、これに他の塩類を適宜量添加してもその作用に影響を及ぼさずに人工飼育水として利用可能であれば、従来行われていた人工海水に添加していた他の塩類や例えばビタミン等の栄養素等を上記各人工飼育水に添加しても何ら差し支えなく、本願の人工飼育水と同等である。  In addition, in each of the artificial breeding waters described above, an attempt is made to obtain artificial breeding water that replaces natural seawater by adding as little salt (elements) as possible in the experiment, and as little as possible. Although only addition experiments have been conducted, if these are added, it is appropriate for breeding seawater fish, and even if an appropriate amount of other salts is added to this, it can be used as artificial breeding water without affecting its action If so, it is possible to add other salts, such as vitamins, which have been conventionally added to artificial seawater to the above artificial breeding water, and it is equivalent to the artificial breeding water of the present application. .

上記の通り、この発明にかかる人工飼育水は、種々の海水魚の飼育に利用可能であることは勿論、淡水魚の飼育にも利用可能である。従って、大量に飼育水を要する各種魚類の養殖に利用できると共に、一般家庭等で海水熱帯魚の飼育及び淡水熱帯魚の飼育に用いる飼育水として利用することが可能であるのは勿論、海水魚と淡水魚とを共存させて飼育することも可能である。  As described above, the artificial breeding water according to the present invention can be used not only for breeding various seawater fish but also for breeding freshwater fish. Therefore, it can be used for aquaculture of various fish that require breeding water in large quantities, and it can be used as breeding water for breeding seawater tropical fish and freshwater tropical fish in ordinary households. It is also possible to rear them together.

更にまた、大規模な水槽(畜養槽)による陸上飼育では、孵化仔魚の初期餌料として広く利用されるシオミズツボワムシの培養には欠かせない存在である海産性のナンノクロロプシスを培養することで行うワムシの培養の培養に利用可能である。  Furthermore, in land-based breeding in large-scale water tanks (livestock breeding tanks), marine Nannochloropsis, which is indispensable for cultivating rotifers widely used as initial food for hatching larvae, should be cultured. It can be used for cultivating rotifer culture in (1).

(a)は観察実験に使用する水槽及び濾過装置の側面説明図、(b)は同平面説明図(A) is side explanatory drawing of the water tank and filtration apparatus used for observation experiment, (b) is the same plane explanatory drawing. 成長率を比較した説明図Explanatory diagram comparing growth rates アンモニアの平衡状態を表す説明図Explanatory diagram showing the equilibrium state of ammonia

1 水槽(畜養槽)
2 濾過装置
3 濾過材
4 泡沫分離装置
5 飼育水冷却装置
1 Water tank (Livestock raising tank)
2 Filtration device 3 Filter material 4 Foam separation device 5 Breeding water cooling device

Claims (2)

カルシウムと、カリウムと、ナトリウムの塩化物の3種類のみを水道水や河川水あるいは地下水に添加し、水中にカルシウムを0.1002(g/l)以上天然海水中の濃度以下、カリウムを0.09419(g/l)以上天然海水中の濃度以下、残りのナトリウムは水溶液の比重が1.004になる濃度であるような水溶液乃至は、この水溶液の前記成分量を0.25倍まで薄めてなるフグ類の人工飼育に用いる飼育水。 Only three kinds of calcium, potassium, and sodium chloride are added to tap water, river water, or ground water, and calcium is contained in water at a concentration of 0.1002 (g / l) or more and below the concentration in natural seawater , and potassium is set at 0.0. 09419 (g / l) or more and below the concentration in natural seawater, the remaining sodium is a concentration that makes the specific gravity of the aqueous solution 1.004 , or dilute the component amount of this aqueous solution to 0.25 times breeding water to be used for artificial breeding of fugu class made. カルシウムと、カリウムと、ナトリウムの塩化物を水道水や河川水あるいは地下水に添加してなり、塩化ナトリウム7.0587(g/l)、塩化カルシウム2水和塩0.3641(g/l)、塩化カリウム0.18125(g/l)を溶解させて得られる略1.004の比重の水溶液の濃度から、塩化ナトリウム1.781(g/l)、塩化カルシウム2水和塩0.092(g/l)、塩化カリウム0.045(g/l)を溶解させた時の水溶液の濃度の範囲で用いられるフグ類の人工飼育に用いる飼育水。  Calcium, potassium and sodium chloride are added to tap water, river water or groundwater, sodium chloride 7.0588 (g / l), calcium chloride dihydrate 0.3641 (g / l), From the concentration of an aqueous solution having a specific gravity of about 1.004 obtained by dissolving potassium chloride 0.18125 (g / l), sodium chloride 1.781 (g / l), calcium chloride dihydrate 0.092 (g / L), breeding water used for artificial breeding of pufferfish used in the range of the concentration of the aqueous solution when potassium chloride 0.045 (g / l) is dissolved.
JP2010068850A 2010-03-04 2010-03-04 Artificial breeding water Active JP5487378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010068850A JP5487378B2 (en) 2010-03-04 2010-03-04 Artificial breeding water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068850A JP5487378B2 (en) 2010-03-04 2010-03-04 Artificial breeding water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006328673A Division JP5062550B2 (en) 2006-12-05 2006-12-05 Artificial breeding water

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010109674A Division JP2010166933A (en) 2010-04-19 2010-04-19 Artificial rearing water
JP2010109673A Division JP2010193902A (en) 2010-04-19 2010-04-19 Water for artificial rearing

Publications (2)

Publication Number Publication Date
JP2010162044A JP2010162044A (en) 2010-07-29
JP5487378B2 true JP5487378B2 (en) 2014-05-07

Family

ID=42578748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068850A Active JP5487378B2 (en) 2010-03-04 2010-03-04 Artificial breeding water

Country Status (1)

Country Link
JP (1) JP5487378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103452B2 (en) * 2015-07-01 2017-03-29 広島県 Saltwater fish that have been treated with a method to prolong the life of saltwater fish and / or recover from trauma

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794035B2 (en) * 1991-09-30 1995-10-11 松本 淨 Artificial seawater preparation
JP2006288234A (en) * 2005-04-07 2006-10-26 Hiroshima Pref Gov Disease-resistant rearing method for fry of marine fish

Also Published As

Publication number Publication date
JP2010162044A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5062550B2 (en) Artificial breeding water
WO2009153954A1 (en) Water for artificial feeding and material for preparing water for artificial feeding
Swain et al. Significance of water pH and hardness on fish biological processes: A review
JP2010193902A (en) Water for artificial rearing
Thomas et al. Effects of salinity amendments on the embryonic and larval development of a tropical brackishwater ornamental silver moony fish, Monodactylus argenteus (Linnaeus, 1758)
Townsend et al. Survival of silver catfish fingerlings exposed to acute changes of water pH and hardness
JP4665258B2 (en) Aquaculture system with artificial breeding water
JP5487378B2 (en) Artificial breeding water
JP5364874B2 (en) Artificial breeding water
WO2008069261A1 (en) Water for artificial breeding and aquaculture system using the same
JP4665252B2 (en) Aquaculture system with artificial breeding water
Reyes Management of the interaction and cannibalism of postlarvae and adults of the freshwater shrimp Cryphiops caementarius (Molina, 1782)
Nurcahyono et al. The effect of a recirculation aquaculture system on the reproductive performance of female mud crabs (Scylla serrata)
JP2010166933A (en) Artificial rearing water
Nur et al. Reproductive performance of seahorse, Hippocampus barbouri (Jordan and Richardson 1908) in control condition
Chabot et al. Physiology of water breathers: effects of temperature, dissolved oxygen, salinity and pH
Oniam et al. Effect of feeding frequency and various shelter of blue swimming crab larvae, Portunus pelagicus (Linnaeus, 1758).
JP5487377B2 (en) Aquaculture system with artificial breeding water
Wright pH Control in recirculating aquaculture systems for pāua (Haliotis iris)
Unit Ecology of Lake Bardawil: a preliminary review
Hasbullah et al. Physiological performance of osmotic work, survival, and growth rate of hybridized brackish Nile tilapia (Oreochromis niloticus) juveniles at various salinities
WO2006056570A1 (en) Method for producing live food water organisms in the presence of an antibacterial
Glover Evaluating the potential use of saltwater quarries in the florida keys for the semi-wild mariculture of Caribbean King Crab (Maguimithrax spinosissimus)
JP4222559B2 (en) Clownfish breeding method
Ayoola et al. Monoculture of freshwater shrimps (Macrobrachium species)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5487378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250