JP2010165951A - Reactor and molded coil body - Google Patents

Reactor and molded coil body Download PDF

Info

Publication number
JP2010165951A
JP2010165951A JP2009008206A JP2009008206A JP2010165951A JP 2010165951 A JP2010165951 A JP 2010165951A JP 2009008206 A JP2009008206 A JP 2009008206A JP 2009008206 A JP2009008206 A JP 2009008206A JP 2010165951 A JP2010165951 A JP 2010165951A
Authority
JP
Japan
Prior art keywords
coil
resin
reactor
heat sink
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009008206A
Other languages
Japanese (ja)
Other versions
JP4973890B2 (en
Inventor
Kohaku Yamada
幸伯 山田
Yasushi Nomura
康 野村
Mutsumi Ito
睦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009008206A priority Critical patent/JP4973890B2/en
Publication of JP2010165951A publication Critical patent/JP2010165951A/en
Application granted granted Critical
Publication of JP4973890B2 publication Critical patent/JP4973890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact reactor excellent in heat radiation, and also a molded coil body suitable as a constituent component in the reactor. <P>SOLUTION: A molded coil body 1 includes coil 3 obtained by spirally winding a wire 3w, a molded resin 4c covering an outer periphery of the coil 3, and a heat radiating plate 5 located at the outer periphery of the coil 3 and fixed by the molded resin 4c. The heat radiating plate 5, which is rectangular, includes a buried surface 51 not exposed in the molded resin 4c, an exposed surface 52 opposed to the buried surface 51 and exposed from the molded resin 4c, and four end faces. Two end faces 5e are formed in a trapezoidal shape becoming narrow from the buried surface 51 toward the exposed surface 52. The remaining two end faces includes a tilted rectangular surface 53. A triangular part formed by the buried surface 51 and the tilted surface 53 functions as an engagement for preventing falling off of the heat radiating plate 5. The reactor including the molded coil body 1 is excellent in heat radiation due to provision of the heat radiating plate 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイブリッド自動車などの車載用DC-DCコンバータの構成部品などに利用されるリアクトル、及びこのリアクトルの構成部品に利用されるコイル成形体に関する。特に、小型で、放熱性に優れるリアクトルに関する。   The present invention relates to a reactor used for a component of an in-vehicle DC-DC converter such as a hybrid vehicle, and a coil molded body used for a component of the reactor. In particular, the present invention relates to a small reactor having excellent heat dissipation.

従来、磁性コアの外周にコイルが配置されたリアクトルが知られている。代表的な構造として、磁性コアとコイルとの組合体をアルミニウムといった金属製ケース内に収納し、このケース内を樹脂により封止した構造(特許文献1)が挙げられる。このリアクトルは、通電時に発熱するコイルや磁性コアを効率よく冷却できるように、冷媒を内蔵する架台に上記ケースを固定して利用される。   Conventionally, a reactor in which a coil is arranged on the outer periphery of a magnetic core is known. A typical structure is a structure (Patent Document 1) in which a combination of a magnetic core and a coil is housed in a metal case such as aluminum and the inside of the case is sealed with resin. This reactor is used by fixing the case to a frame containing a refrigerant so that the coil and the magnetic core that generate heat when energized can be efficiently cooled.

特開2008-098204号公報Japanese Patent Laid-Open No. 2008-098204

自動車などの車両に配置される車載部品では、小型、軽量であることが望まれる。しかし、従来のリアクトルは、ケースを具えることで、小型化、軽量化が難しい。ケースを省略することが考えられるが、その場合、放熱性の低下が懸念される。   In-vehicle components arranged in vehicles such as automobiles are desired to be small and lightweight. However, it is difficult to reduce the size and weight of a conventional reactor by providing a case. It is conceivable to omit the case, but in that case, there is a concern about a decrease in heat dissipation.

そこで、本発明の目的の一つは、小型でありながら、放熱性に優れるリアクトルを提供することにある。また、本発明の他の目的は、上記リアクトルの構成部品に適したコイル成形体を提供することにある。   Then, one of the objectives of this invention is providing the reactor which is excellent in heat dissipation, although it is small. Moreover, the other objective of this invention is to provide the coil molded object suitable for the component of the said reactor.

本発明者らは、ケースを省略すると共に、コイルの外周において架台側に放熱板を配置する構成を検討した。また、コイルの外周や、磁性コアとコイルとの組合体の外周を樹脂で覆い、この樹脂により、放熱板をコイルの外周に固定する構成を検討した。放熱板の形状を一般的な矩形板、即ち、対向する二つの矩形面と、この二面の間を繋ぎ、この二面に直交する四つの長方形状の端面とから構成される形状とし、この放熱板がコイルの下方に配置されたリアクトルを作製した場合、リアクトルを持ち上げて移動などする際、放熱板の端面が落下方向に平行になることで、放熱板が抜け落ちて落下することが懸念される。放熱板の落下を防止するために、ボルトなどの固定部材を別途用いて放熱板を固定すると、部品点数や作業工程の増加を招く。そこで、本発明は、放熱板が存在することによる放熱性の向上効果を十分に得られるように、放熱板を抜け落ち難い形状として放熱板の落下を抑制する。   The inventors have studied a configuration in which the case is omitted and a heat radiating plate is disposed on the gantry side on the outer periphery of the coil. Moreover, the structure which fixes the outer periphery of a coil and the outer periphery of the combination of a magnetic core and a coil with resin, and fixes a heat sink to the outer periphery of a coil with this resin was examined. The shape of the heat radiating plate is a general rectangular plate, that is, a shape composed of two rectangular surfaces facing each other and four rectangular end surfaces that are connected between the two surfaces and orthogonal to the two surfaces. When manufacturing a reactor with a heat sink placed under the coil, when the reactor is lifted and moved, the end face of the heat sink becomes parallel to the drop direction, causing the heat sink to fall off and fall. The In order to prevent the heat sink from falling, if the heat sink is fixed by using a fixing member such as a bolt separately, the number of parts and work processes are increased. Therefore, the present invention suppresses the falling of the heat radiating plate by making it difficult to come off the heat radiating plate so that the effect of improving the heat radiating property due to the presence of the heat radiating plate can be sufficiently obtained.

本発明のコイル成形体は、磁性コアの外周に、巻線を螺旋状に巻回してなるコイルが配置されたリアクトルに用いられる部材であり、上記コイルをその自由長よりも圧縮した状態に保持する樹脂成形部と、上記コイルの外周に配置されて、上記樹脂成形部の構成樹脂により固定された後述の放熱板とを具える。本発明のリアクトルは、このコイル成形体と、上記コイルの内周に配置された磁性コアとを具える。   The coil molded body of the present invention is a member used for a reactor in which a coil formed by spirally winding a coil is disposed on the outer periphery of a magnetic core, and the coil is held in a compressed state rather than its free length. A resin molded part that is disposed on the outer periphery of the coil, and a heat-dissipating plate that will be described later fixed by a resin component of the resin molded part. The reactor of the present invention includes this coil molded body and a magnetic core disposed on the inner periphery of the coil.

上記コイル成形体を具えたリアクトルとは別に、コイル成形体を具えていないリアクトルを提案する。この本発明のリアクトルは、磁性コアと、このコアの外周に配置されたコイルと、これら磁性コアとコイルとの組合体の外周を覆う樹脂被覆部と、上記コイルの外周に配置されて、上記樹脂被覆部の構成樹脂により固定された下記の放熱板とを具える。   A reactor that does not include a coil molded body is proposed separately from the reactor that includes the coil molded body. The reactor according to the present invention includes a magnetic core, a coil disposed on the outer periphery of the core, a resin coating that covers the outer periphery of the combination of the magnetic core and the coil, and an outer periphery of the coil. The following heat radiating plate fixed by the constituent resin of the resin coating portion is provided.

上記本発明コイル成形体や本発明リアクトルに具える放熱板は、埋設面と露出面とを具える。上記埋設面は、上記コイル側に配置され、上記樹脂成形部又は上記樹脂被覆部から露出されない面であり、上記露出面は、この埋設面に対向し、上記樹脂成形部又は上記樹脂被覆部から露出される面である。また、この放熱板において上記埋設面と上記露出面との間の端面領域に、上記樹脂成形部又は上記樹脂被覆部の構成樹脂に引っ掛かることで放熱板の脱落を防止する掛止部を有する。   The heat dissipation plate provided in the above-described coil molded body of the present invention and the reactor of the present invention includes an embedded surface and an exposed surface. The embedded surface is a surface that is disposed on the coil side and is not exposed from the resin molded portion or the resin coating portion, and the exposed surface is opposed to the embedded surface and from the resin molded portion or the resin coating portion. The exposed surface. Further, in the heat radiating plate, an end surface region between the embedded surface and the exposed surface has a latching portion that prevents the heat radiating plate from falling off by being caught by the resin forming portion or the resin constituting the resin coating portion.

上記構成によれば、放熱板の端面領域に設けられた掛止部が樹脂成形部や樹脂被覆部の構成樹脂に引っ掛かった状態で放熱板が樹脂成形部や樹脂被覆部に固定される。そのため、リアクトルの組立時や搬送の際などで放熱板の露出面が下方となるように本発明コイル成形体や本発明リアクトルを持ち上げたり、移動させたりしても、上記掛止部が樹脂に引っ掛かることで、放熱板が落下することを効果的に防止することができる。この放熱板の存在により本発明リアクトルは放熱性に優れることから、例えば、金属製のケースを省略した構成とすることができ、小型にできる上に、部品点数や作業工程の削減を図ることができる。   According to the said structure, a heat sink is fixed to a resin molding part or a resin coating part in the state which the latching part provided in the end surface area | region of the heat sink was hooked by the resin of the resin molding part or the resin coating part. Therefore, even if the coil molded body of the present invention or the reactor of the present invention is lifted or moved so that the exposed surface of the heat radiating plate becomes downward during assembly or transportation of the reactor, the above-mentioned latching portion is not attached to the resin. By being caught, it can prevent effectively that a heat sink falls. Since the reactor of the present invention is excellent in heat dissipation due to the presence of this heat sink, for example, it is possible to adopt a configuration in which a metal case is omitted, and the size can be reduced, and the number of parts and work processes can be reduced. it can.

また、上記放熱板を具える本発明コイル成形体を利用してリアクトルを組み立てると、組立時にコイルが伸縮しないことから、コイルを取り扱い易く、リアクトルの組立作業性に優れる。   In addition, when the reactor is assembled using the coil molded body of the present invention having the heat radiating plate, since the coil does not expand and contract during assembly, the coil is easy to handle and the reactor is easy to assemble.

本発明において放熱板の掛止部の形状は、特に問わない。例えば、端部領域の少なくとも一部を、埋設面から露出面に向かって先細りするテーパ状の面とし、埋設面(露出面)に対して非直交な傾斜面を有する形状とすることが挙げられる。このとき、埋設面と傾斜面とがつくる三角形状の部分を掛止部として機能させることができる。上記傾斜面と露出面の延長面とがつくる三角形状の部分に樹脂成形部や樹脂被覆部の構成樹脂が入り込む(存在する)ことで、上記掛止部がこの樹脂に引っ掛かる。或いは、端部領域の少なくとも一部を、埋設面から露出面に向かって板幅が狭くなるような段差、即ち、逆さピラミッド状の段差を有する形状とすることで、掛止部を有することができる。上記傾斜面を有する構成は、上記段差を有する構成よりも放熱板を成形し易く、放熱板の製造性に優れる。上記段差を有する構成は、樹脂成形部や樹脂被覆部の構成樹脂が段差部分の隅まで行き渡り易く、放熱板と樹脂成形部や樹脂被覆部との間に隙間が生じ難い。また、傾斜面が少ないと放熱板の成形性に優れ、多いと、脱落の防止効果を高められる。   In the present invention, the shape of the latching portion of the heat sink is not particularly limited. For example, at least a part of the end region is a tapered surface that tapers from the embedded surface toward the exposed surface, and has a shape having an inclined surface that is not orthogonal to the embedded surface (exposed surface). . At this time, a triangular portion formed by the embedded surface and the inclined surface can be caused to function as a latching portion. When the constituent resin of the resin molded portion or the resin coating portion enters (exists) the triangular portion formed by the inclined surface and the extended surface of the exposed surface, the hook portion is caught by the resin. Alternatively, at least a part of the end region may have a latching portion by forming a step having a plate width that narrows from the embedded surface toward the exposed surface, that is, a shape having an inverted pyramid-shaped step. it can. The structure having the inclined surface is easier to mold the heat sink than the structure having the step, and is excellent in manufacturability of the heat sink. In the configuration having the step, the constituent resin of the resin molded portion or the resin coating portion easily reaches the corner of the step portion, and a gap is hardly generated between the heat sink and the resin molded portion or the resin coating portion. Moreover, when there are few inclined surfaces, it is excellent in the moldability of a heat sink, and when many, the fall prevention effect can be improved.

より具体的な放熱板としては、矩形板であり、この矩形板の端面のうち、対向する二つの端面が埋設面から露出面に向かって先細るテーパ状の面であり、残り二つの端面が埋設面に対して傾斜した傾斜面であるものが挙げられる。上記テーパ状の面は、例えば、台形状とすることが挙げられる。この放熱板は矩形板であり、二つの端面のみが傾斜面であることで、放熱板の製造性に優れる上に、放熱板の脱落を効果的に防止することができる。   More specifically, the heat radiating plate is a rectangular plate, and among the end surfaces of the rectangular plate, two opposing end surfaces are tapered surfaces that taper from the embedded surface toward the exposed surface, and the remaining two end surfaces are The thing which is an inclined surface inclined with respect to the embedding surface is mentioned. An example of the tapered surface is a trapezoidal shape. Since the heat radiating plate is a rectangular plate and only two end surfaces are inclined surfaces, the heat radiating plate is excellent in manufacturability and can effectively prevent the heat radiating plate from falling off.

放熱板の構成材料は、熱伝導率α(W/m・K)が3W/m・K超、特に20W/m・K以上、更に30W/m・K以上の材料が好ましい。この放熱板は、コイルに接して、又は近接して配置されるため、磁気特性を考慮すると、全体が非磁性材料で構成されていることが好ましい。このような特性を満たす材料は、非磁性の無機材料が好適である。非磁性の無機材料には、導電性のものと絶縁性のものとがある。放熱板においてコイル側に配置される埋設面の構成材料は、コイルとの間で電気的に絶縁されることが望ましく、絶縁性材料とすることが好ましい。従って、放熱板は、その全体が絶縁性の無機材料から構成されていてもよいし、導電性の無機材料からなる板状基板の表面に絶縁性の無機材料からなる層を具える積層構造のものでもよい。なお、「絶縁性」とは、コイルとの間で電気的絶縁が確保できる程度の絶縁特性を有するものとする。上記絶縁性の無機材料は、セラミックスが好適に利用でき、上記導電性の無機材料は、アルミニウムなどの金属が好適に利用できる。セラミックスを用いた放熱板は、軽量であり、金属材料を用いた放熱板は、放熱性が高い。セラミックスを用いる場合、所定の形状の金型を用いて成形したり、素材板を適宜研削やレーザー加工などの切断を施すことで、特定の形状の放熱板が得られる。金属材料を用いる場合、素材板を適宜切削したり、所定の金型を用いて成形することで、特定の形状の放熱板が得られる。或いは、複数の素材を用意して接着剤などで接合することで、所定の形状の放熱板が得られる。   The constituent material of the heat sink is preferably a material having a thermal conductivity α (W / m · K) of more than 3 W / m · K, particularly 20 W / m · K or more, and more preferably 30 W / m · K or more. Since this heat radiating plate is disposed in contact with or close to the coil, it is preferable that the whole is made of a nonmagnetic material in consideration of magnetic characteristics. The material satisfying such characteristics is preferably a nonmagnetic inorganic material. Nonmagnetic inorganic materials include conductive materials and insulating materials. The constituent material of the embedded surface disposed on the coil side in the heat radiating plate is desirably electrically insulated from the coil, and is preferably an insulating material. Therefore, the heat dissipation plate may be composed entirely of an insulating inorganic material, or may have a laminated structure including a layer made of an insulating inorganic material on the surface of a plate-like substrate made of a conductive inorganic material. It may be a thing. Note that “insulating” has an insulating property that can ensure electrical insulation with the coil. Ceramics can be preferably used as the insulating inorganic material, and metals such as aluminum can be preferably used as the conductive inorganic material. A heat sink using ceramics is lightweight, and a heat sink using a metal material has high heat dissipation. In the case of using ceramics, a heat sink having a specific shape can be obtained by molding using a mold having a predetermined shape or by appropriately cutting the material plate by grinding or laser processing. When using a metal material, a heat sink with a specific shape can be obtained by appropriately cutting the material plate or forming it using a predetermined mold. Alternatively, a heat sink having a predetermined shape can be obtained by preparing a plurality of materials and bonding them with an adhesive or the like.

本発明リアクトルは、その外周に金属製ケースを有していない構成とすることができる。ケースを省略したことで、このリアクトルは、部品点数が少ない上に、小型、軽量である。   This invention reactor can be set as the structure which does not have metal cases in the outer periphery. By omitting the case, this reactor has a small number of parts and is small and lightweight.

本発明コイル成形体を具えるリアクトルにおいて、コイル成形体と磁性コアとの組合体の外周が樹脂により覆われていない構成とすることができる。このリアクトルは、組合体の外周を樹脂により被覆する工程が不要であることから、組立作業性に優れる。   In the reactor including the coil molded body of the present invention, the outer periphery of the combined body of the coil molded body and the magnetic core can be configured not to be covered with resin. Since this reactor does not require a step of coating the outer periphery of the assembly with a resin, it is excellent in assembling workability.

本発明リアクトルは、小型でありながら、放熱性に優れる。本発明コイル成形体を利用することで、小型で放熱性に優れるリアクトルを容易に製造することができる。   The reactor of the present invention is excellent in heat dissipation while being small. By using the coil molded body of the present invention, a small reactor having excellent heat dissipation can be easily manufactured.

(A)は、実施形態1のコイル成形体の概略斜視図、(B)は、このコイル成形体の正面図である。(A) is a schematic perspective view of the coil molded body of Embodiment 1, and (B) is a front view of the coil molded body. 実施形態1のコイル成形体を具えるリアクトルの製造手順を説明する分解斜視図である。FIG. 3 is an exploded perspective view for explaining a manufacturing procedure of a reactor including the coil molded body according to the first embodiment. (A)は、端面領域に段差を有する放熱板を具えるコイル成形体の正面図、(B)〜(D)は、コイル成形体において放熱板部分を拡大して示す部分断面図であり、(B)は、端面領域に曲面を有する放熱板、(C)は、端面領域に突起を有する放熱板、(D)は、平行四辺形状の端面を有する放熱板を示す。(A) is a front view of a coil molded body having a heat sink having a step in the end surface region, (B) to (D) are partial cross-sectional views showing an enlarged heat sink portion in the coil molded body, (B) is a heat radiating plate having a curved surface in the end surface region, (C) is a heat radiating plate having a protrusion in the end surface region, and (D) is a heat radiating plate having a parallelogram-shaped end surface. 実施形態2のリアクトルの概略斜視図である。5 is a schematic perspective view of a reactor according to Embodiment 2. FIG. 実施形態2のリアクトルの正面図である。6 is a front view of a reactor according to Embodiment 2. FIG. 変形例2-1のリアクトルの正面図である。It is a front view of the reactor of the modification 2-1.

以下に、図面を参照して、本発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

(実施形態1)
図1(A)は、本発明コイル成形体の概略を示す斜視図、図1(B)は、このコイル成形体の正面図、図2は、このコイル成形体を具えるリアクトルの分解斜視図である。以下、図において同一符号は同一物を示す。コイル成形体1は、巻線3wを螺旋状に巻回してなるコイル3と、このコイル3の外周を覆う樹脂成形部4cと、コイル3の外周に配置されて、樹脂成形部4cの構成樹脂により固定された放熱板5とを具える。リアクトル10は、コイル成形体1と、コイル成形体1のコイル3の内周に挿入配置された磁性コア2(コイル巻回部2c)とを具える。これらコイル成形体1及びリアクトル10の最も特徴とするところは、放熱板5の端面の形状にある。以下、各構成をより詳細に説明する。
(Embodiment 1)
FIG. 1 (A) is a perspective view showing an outline of the coil molded body of the present invention, FIG. 1 (B) is a front view of the coil molded body, and FIG. 2 is an exploded perspective view of a reactor including the coil molded body. It is. In the drawings, the same reference numerals denote the same items. The coil molded body 1 includes a coil 3 formed by winding a winding 3w in a spiral shape, a resin molded portion 4c that covers the outer periphery of the coil 3, and a resin that forms the resin molded portion 4c. And a heat sink 5 fixed by the The reactor 10 includes a coil molded body 1 and a magnetic core 2 (coil winding portion 2c) that is inserted and arranged on the inner periphery of the coil 3 of the coil molded body 1. The most characteristic feature of the coil molded body 1 and the reactor 10 is the shape of the end face of the heat sink 5. Hereinafter, each configuration will be described in more detail.

<コイル成形体>
[コイル]
コイル3は、1本の連続する巻線3wを螺旋状に巻回してなり、並列状態に配置された一対のコイル素子を具える。巻線3wは、導体の外周に絶縁被覆層を具える被覆線が好適である。ここでは、導体が銅製の平角線からなり、絶縁被覆層がエナメルからなる被覆平角線を利用している。両コイル素子は、この被覆平角線をエッジワイズ巻きにして形成されており、巻返し部3rにより連結されている。巻線は、導体が平角線からなるもの以外に、断面が円形状、多角形状などの種々の形状のものを利用できる。また、各コイル素子を別々に作製し、各コイル素子を形成する巻線の端部を溶接などにより接合して一体のコイルとしてもよい。
<Coil molding>
[coil]
The coil 3 includes a pair of coil elements that are formed by spirally winding one continuous winding 3w and arranged in parallel. The winding 3w is preferably a coated wire having an insulating coating layer on the outer periphery of the conductor. Here, a coated rectangular wire is used in which the conductor is made of a copper rectangular wire and the insulating coating layer is made of enamel. Both coil elements are formed by edgewise winding the covered rectangular wire, and are connected by a winding portion 3r. The windings can be used in various shapes such as a circular shape and a polygonal shape in addition to the conductor made of a flat wire. Alternatively, each coil element may be manufactured separately, and the ends of the windings forming each coil element may be joined by welding or the like to form an integral coil.

コイル3を形成する巻線3wの両端部は、ターン形成部分から適宜引き延ばされて樹脂成形部4cの外部に引き出され、絶縁被覆層が剥がされて露出された導体部部に、導電材料からなる端子部材(図示せず)が接続される。この端子部材を介して、コイル3に電力供給を行う電源などの外部装置(図示せず)が接続される。巻線3wの導体部分と端子部材との接続には、TIG溶接などの溶接が利用できる。   Both end portions of the winding 3w forming the coil 3 are appropriately extended from the turn forming portion and drawn to the outside of the resin molding portion 4c, and the conductive material is exposed to the conductor portion exposed by peeling off the insulating coating layer. A terminal member (not shown) made of is connected. An external device (not shown) such as a power source for supplying power is connected to the coil 3 through this terminal member. For connection between the conductor portion of the winding 3w and the terminal member, welding such as TIG welding can be used.

[樹脂成形部]
上記コイル3の外周には、各コイル素子をそれぞれ圧縮状態に保持するように樹脂成形部4cが形成されている。ここでは、樹脂成形部4cは、巻線3wの両端部を除き、コイル3の全体をコイル3の形状に沿って覆っている。樹脂成形部4cにおいて両コイル素子のターン形成部分を覆う箇所の厚さは、実質的に均一であり、巻返し部3rを覆う箇所は、コイルの軸方向にせり出した形状である。
[Resin molding part]
A resin molded portion 4c is formed on the outer periphery of the coil 3 so as to hold each coil element in a compressed state. Here, the resin molded portion 4c covers the entire coil 3 along the shape of the coil 3 except for both ends of the winding 3w. The thickness of the portion covering the turn forming portions of both coil elements in the resin molded portion 4c is substantially uniform, and the portion covering the winding portion 3r has a shape protruding in the axial direction of the coil.

各コイル素子の内周も樹脂成形部4cの構成樹脂により覆われており、この構成樹脂により形成される中空孔4hを有する。各中空孔4hにはそれぞれ、磁性コア2(図2)のコイル巻回部2c(図2)が挿通配置される。各コイル巻回部2cがコイル素子の内周の適切な位置に配置されるように構成樹脂の厚さを調整すると共に、中空孔4hの形状をコイル巻回部2cの外形(ここでは直方体状)に合わせている。そのため、各コイル素子の内周に存在する構成樹脂は、コイル巻回部2cの位置決め部として機能する。   The inner periphery of each coil element is also covered with the constituent resin of the resin molded portion 4c, and has a hollow hole 4h formed of the constituent resin. A coil winding portion 2c (FIG. 2) of the magnetic core 2 (FIG. 2) is inserted and disposed in each hollow hole 4h. The thickness of the constituent resin is adjusted so that each coil winding portion 2c is arranged at an appropriate position on the inner periphery of the coil element, and the shape of the hollow hole 4h is changed to the outer shape of the coil winding portion 2c (here, a rectangular parallelepiped shape). ). Therefore, the constituent resin present on the inner periphery of each coil element functions as a positioning portion for the coil winding portion 2c.

なお、図1に示す例では、各コイル素子の内周の全面を構成樹脂により覆う構成としているが、磁性コア2とコイル3との間の絶縁距離を確保でき、かつ上述のように位置決めできるように構成樹脂が存在すれば、図1に示す例のように各コイル素子の内周の全面を構成樹脂により覆っていなくてもよい。   In the example shown in FIG. 1, the entire inner circumference of each coil element is covered with the constituent resin. However, the insulation distance between the magnetic core 2 and the coil 3 can be secured, and positioning can be performed as described above. If the constituent resin is present, the entire inner circumference of each coil element may not be covered with the constituent resin as in the example shown in FIG.

樹脂成形部4cの構成樹脂は、コイル成形体1をリアクトルとして使用した際に、コイルやコアの最高到達温度に対して軟化しない程度の耐熱性を有し、トランスファー成形や射出成形が可能な材料が好適に利用できる。特に、絶縁性に優れる材料が好ましい。具体的には、エポキシなどの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、液晶ポリマー(LCP)などの熱可塑性樹脂が好適に利用できる。ここでは、エポキシ樹脂を利用している。   The resin component of the resin molded part 4c is a material that has heat resistance that does not soften against the maximum temperature of the coil or core when the coil molded body 1 is used as a reactor, and that can be transfer molded or injection molded. Can be suitably used. In particular, a material having excellent insulating properties is preferable. Specifically, thermosetting resins such as epoxy, thermoplastic resins such as polyphenylene sulfide (PPS) resin and liquid crystal polymer (LCP) can be suitably used. Here, an epoxy resin is used.

[放熱板]
コイル成形体1は、両コイル素子が横並びするように配置されて、架台(図示せず)に取り付けられる。各コイル素子において架台に取り付けられる面(コイル素子の設置面)に接するように放熱板5が配置されている。この放熱板5は、樹脂成形部4cの構成樹脂によりコイル3に固定されている。
[Heatsink]
The coil molded body 1 is arranged so that both coil elements are arranged side by side and attached to a gantry (not shown). In each coil element, the heat radiating plate 5 is arranged so as to be in contact with the surface (coil element installation surface) attached to the gantry. The heat radiating plate 5 is fixed to the coil 3 with the constituent resin of the resin molded portion 4c.

放熱板5は、矩形板であり、両コイル素子の設置面に接するように配置される。より具体的には、放熱板5は、樹脂成形部4cから露出されない埋設面51と、この埋設面51に対向し、樹脂成形部4cから露出される露出面52と、これら埋設面51と露出面52との間を繋ぐ四つの端面とで構成される。ここでは、埋設面51は、両コイル素子の設置面と十分に接触可能な大きさを有するものとしている。放熱板を二枚として、各放熱板のそれぞれを各コイル素子の設置面に接するように配置した構成としてもよい。   The heat radiating plate 5 is a rectangular plate and is disposed so as to be in contact with the installation surfaces of both coil elements. More specifically, the heat radiating plate 5 includes an embedded surface 51 that is not exposed from the resin molded portion 4c, an exposed surface 52 that faces the embedded surface 51 and is exposed from the resin molded portion 4c, and the embedded surface 51 is exposed. It is composed of four end faces that connect the face 52. Here, the embedding surface 51 is assumed to have a size capable of sufficiently contacting with the installation surfaces of both coil elements. It is good also as a structure which has arrange | positioned so that it may be in contact with the installation surface of each coil element by using two heat sinks.

放熱板5の四つの端面のうち、対向する二つの端面5eは、テーパー状、より具体的には、図1に示すように埋設面51から露出面52に向かって先細る台形状である。そのため、埋設面51が露出面52よりも大きい。また、台形状の端面5eは、埋設面51及び露出面52に直交している。一方、残りの二つの端面は、長方形状であり、埋設面51及び露出面52に対して非直交であり、放熱板5の厚さ方向に交差した傾斜面53である。ここでは、台形状の端面5eがコイル3の軸方向に向くように放熱板5を配置している。   Of the four end surfaces of the heat sink 5, the two opposite end surfaces 5e are tapered, more specifically, trapezoidal that tapers from the embedded surface 51 toward the exposed surface 52 as shown in FIG. Therefore, the embedded surface 51 is larger than the exposed surface 52. The trapezoidal end surface 5e is orthogonal to the embedded surface 51 and the exposed surface 52. On the other hand, the remaining two end surfaces are rectangular and are inclined surfaces 53 that are non-orthogonal to the embedded surface 51 and the exposed surface 52 and intersect the thickness direction of the heat sink 5. Here, the heat radiating plate 5 is arranged so that the trapezoidal end face 5 e faces the axial direction of the coil 3.

上記特定の形状の放熱板5は、窒化珪素(Si3N4):20〜150W/m・K程度により構成されている。ここでは、上記構成材料(Si3N4)を所定の形状に成形することで放熱板5を形成している。 Radiating plate 5 of the specific shape, silicon nitride (Si 3 N 4): it is composed of about 20~150W / m · K. Here, the heat sink 5 is formed by molding the constituent material (Si 3 N 4 ) into a predetermined shape.

この放熱板5は、埋設面51と傾斜面53とによりつくられる三角形状の部分が放熱板5の脱落を防止する掛止部として機能する。また、露出面52の延長面と傾斜面53とによりつくられる三角形状の空間に入り込んだ樹脂成形部4cの構成樹脂により構成される三角形状の部分(受け部4n)によって、放熱板5は、樹脂成形部4cに強固に固定される。そして、図1(B)に示すように露出面52が下方となるようにコイル成形体1を配置した状態で、コイル成形体1を上方に持ち上げたり移動させたりする際、放熱板5が下方に落下しようとしても、上述した掛止部が受け部4nに引っ掛かるため、放熱板5が落下し難い。なお、この例では、放熱板5の角部が鋭利な形状としているが、角部を丸めた形状とすると、放熱板5の角部での割れなどを防止することができる。   In the heat sink 5, a triangular portion formed by the embedded surface 51 and the inclined surface 53 functions as a latching portion that prevents the heat sink 5 from falling off. Further, by means of a triangular portion (receiving portion 4n) constituted by the resin of the resin molded portion 4c that has entered the triangular space formed by the extended surface of the exposed surface 52 and the inclined surface 53, the heat sink 5 is It is firmly fixed to the resin molded part 4c. When the coil molded body 1 is lifted or moved upward in a state where the coil molded body 1 is arranged so that the exposed surface 52 is downward as shown in FIG. Even if it is about to fall, the above-mentioned latching part is caught by the receiving part 4n, and the heat sink 5 is difficult to fall. In this example, the corners of the heat radiating plate 5 have a sharp shape, but if the corners are rounded, cracks at the corners of the heat radiating plate 5 can be prevented.

[コイル成形体の製造]
上記放熱板5を具えるコイル成形体1は、以下のような成形金型を利用して製造することができる。成形金型は、開閉可能な一対の第一金型及び第二金型から構成されるものが利用できる。第一金型は、コイル3の一端側(図1において巻線3wの端部を引き出している側)に位置する端板と、各コイル素子の内周に挿入される中子とを具え、第二金型は、コイルの他端側(図1において巻返し部3r側)に位置する端板と、コイル3の周囲を覆う周側壁とを具える。また、これら第一、第二金型は、駆動機構により金型内部において進退可能な複数の棒状体を具え、これらの棒状体により、各コイル素子の端面(ターン形成部分が環状に見える面)を適宜押圧してコイル素子を圧縮する。上記棒状体は、コイル3の圧縮に対する十分な強度と、樹脂成形部4cの成形時の熱などに対する耐熱性とを具えており、かつコイル3において樹脂成形部4cで被覆されない箇所を少なくするために、極力細くしている。
[Manufacture of coil compacts]
The coil molded body 1 including the heat radiating plate 5 can be manufactured by using a molding die as described below. As the molding die, one constituted by a pair of first and second molds that can be opened and closed can be used. The first mold comprises an end plate located on one end side of the coil 3 (the side from which the end of the winding 3w is pulled out in FIG. 1), and a core inserted into the inner periphery of each coil element, The second mold includes an end plate located on the other end side of the coil (on the winding portion 3r side in FIG. 1) and a peripheral side wall covering the periphery of the coil 3. Further, the first and second molds include a plurality of rod-like bodies that can be advanced and retracted inside the mold by a drive mechanism, and these rod-like bodies allow end faces of the coil elements (surfaces in which the turn forming portions look annular). Is suitably pressed to compress the coil element. The rod-shaped body has sufficient strength against compression of the coil 3 and heat resistance against heat during molding of the resin molded portion 4c, and reduces the number of portions of the coil 3 that are not covered with the resin molded portion 4c. In addition, it is as thin as possible.

上記成形金型の表面とコイル3との間に一定の隙間が形成されるように成形金型内にコイル3を配置する。また、成形金型の内周とコイル3の外周との間の所定の位置に放熱板5を配置する。このとき、コイル3は未だ圧縮されていない。   The coil 3 is arranged in the molding die so that a certain gap is formed between the surface of the molding die and the coil 3. Further, the heat sink 5 is disposed at a predetermined position between the inner periphery of the molding die and the outer periphery of the coil 3. At this time, the coil 3 is not yet compressed.

次に、成形金型を閉じて、各コイル素子の内周に、第一金型の中子を挿入する。このとき、中子とコイル素子の内周の間隔は、中子の全周に亘ってほぼ均一となるようにする。   Next, the molding die is closed, and the core of the first die is inserted into the inner periphery of each coil element. At this time, the interval between the inner periphery of the core and the coil element is made substantially uniform over the entire periphery of the core.

続いて、棒状体を成形金型内に進出して各コイル素子を圧縮する。この圧縮により、各コイル素子を構成する隣接するターン同士が接触され、各ターン間に隙間のない状態となる。また、放熱板5の埋設面は、圧縮されたコイル3に接するように配置された状態となる。   Subsequently, the rod-shaped body is advanced into the molding die to compress each coil element. By this compression, adjacent turns constituting each coil element are brought into contact with each other, and there is no gap between the turns. In addition, the embedded surface of the heat sink 5 is placed in contact with the compressed coil 3.

その後、樹脂注入口から成形金型内に樹脂を注入して固化した後、成形金型を開いて、コイル3を圧縮状態に保持すると共に、コイル3の外周に放熱板5が固定されたコイル成形体1を取り出す。なお、棒状体で押圧されていた箇所に形成された複数の小穴は、適宜な絶縁材などで充填してもよいし、そのまま放置しておいてもよい。   Then, after injecting resin into the molding die from the resin injection port and solidifying, the molding die is opened, the coil 3 is held in a compressed state, and the heat sink 5 is fixed to the outer periphery of the coil 3 The molded body 1 is taken out. Note that the plurality of small holes formed in the portion pressed by the rod-shaped body may be filled with an appropriate insulating material or the like, or may be left as it is.

また、上記製造方法では、コイル成形体の樹脂成形部の形成と同時に放熱板の固定を行う方法を説明したが、コイル成形体の樹脂成形部に放熱板が嵌め込まれる嵌合溝を形成しておき、この嵌合溝に、放熱板を差し入れる構成としてもよい。嵌合溝は、放熱板を差し入れられるように、例えば、コイルの軸方向の一端側から他端側に向かって貫通し、両端が開口するように設ける。このようなコイル成形体は、上記成形金型に、更に嵌合溝を形成するための中子を具えるものを利用するとよい。この構成では、例えば、コイル素子の設置面を樹脂で覆い、コイル素子の設置面と放熱板との間に樹脂成形部の構成樹脂を存在させて、絶縁性を高めた構成とすることができる。この構成は、放熱板が差し入れ可能な形状であれば、後述する変形例や実施形態2にも適用することができる。   In the above manufacturing method, the method of fixing the heat sink at the same time as the formation of the resin molded portion of the coil molded body has been described, but a fitting groove into which the heat sink is fitted into the resin molded portion of the coil molded body is formed. Alternatively, the heat sink may be inserted into the fitting groove. The fitting groove is provided, for example, so as to pass through from one end side to the other end side in the axial direction of the coil and open at both ends so that the heat sink can be inserted. As such a coil molded body, it is preferable to use one having a core for further forming a fitting groove in the molding die. In this configuration, for example, the installation surface of the coil element is covered with a resin, and the constituent resin of the resin molded portion is present between the installation surface of the coil element and the heat radiating plate, so that the insulation can be improved. . This configuration can be applied to a later-described modified example or Embodiment 2 as long as the heat sink can be inserted.

<リアクトル>
[磁性コア]
磁性コア2は、図2に示すように各コイル素子がそれぞれ配置される一対の直方体状のコイル巻回部2cと、コイル3が配置されない一対の端部コア2eとを有し、離間して配置されるコイル巻回部2cを挟むように端部コア2eが配置されて閉ループ状(環状)に形成される。コイル巻回部2cは、鉄や鋼などの鉄を含有する軟磁性材料からなるコア片2mと、アルミナなどの非磁性材料からなるギャップ材2gとを交互に積層して構成され、端部コア2eは、上記軟磁性材料からなるコア片である。各コア片は、軟磁性粉末の圧粉成形体や、複数の電磁鋼板を積層した積層体が利用できる。ギャップ材2gは、インダクタンスの調整のためにコア片2m間に設けられる隙間に配置される部材である。これらコア片及びギャップ材は、接着剤などで一体に接合される。コア片の分割数やギャップ材の個数は、リアクトル10が所望のインダクタンスとなるように適宜選択することができる。
<Reactor>
[Magnetic core]
As shown in FIG. 2, the magnetic core 2 has a pair of rectangular parallelepiped coil winding portions 2c in which the respective coil elements are respectively disposed, and a pair of end cores 2e in which the coils 3 are not disposed, and are separated from each other. The end core 2e is disposed so as to sandwich the coil winding portion 2c to be disposed, and is formed in a closed loop shape (annular shape). The coil winding portion 2c is configured by alternately laminating core pieces 2m made of a soft magnetic material containing iron such as iron or steel and gap members 2g made of a nonmagnetic material such as alumina, and an end core 2e is a core piece made of the soft magnetic material. Each core piece can be a soft magnetic powder compact or a laminate of a plurality of electromagnetic steel plates. The gap material 2g is a member disposed in a gap provided between the core pieces 2m for adjusting the inductance. The core piece and the gap material are integrally joined with an adhesive or the like. The number of core pieces divided and the number of gap members can be appropriately selected so that the reactor 10 has a desired inductance.

[リアクトルの製造]
上記コイル成形体1の中空孔4hに磁性コア2(コイル巻回部2c)を挿入配置させ、磁性コア2を組み立てることで、リアクトル10が形成される。より具体的には、コア片2mやギャップ材2gを接着剤などで固定してコイル巻回部2cを形成し、このコイル巻回部2cを中空孔4hに挿入配置する。このとき、各コイル巻回部2cはそれぞれ、コイル成形体1の樹脂成形部4cの構成樹脂により所定の厚さに形成された中空孔4hに挿入させることで、各コイル素子に対してそれぞれ適切な位置に配置される。次に、コイル成形体1のコイル素子の両端面が一対の端部コア2eに挟まれるように端部コア2eを配置して、接着剤などで端部コア2eとコイル巻回部2cとを接合することで、リアクトル10が得られる。
[Manufacture of reactors]
Reactor 10 is formed by inserting magnetic core 2 (coil winding part 2c) into hollow hole 4h of coil molded body 1 and assembling magnetic core 2. More specifically, the coil piece 2c is formed by fixing the core piece 2m and the gap material 2g with an adhesive or the like, and this coil winding part 2c is inserted and disposed in the hollow hole 4h. At this time, each coil winding portion 2c is inserted into a hollow hole 4h formed in a predetermined thickness by a resin component of the resin molded portion 4c of the coil molded body 1 so that each coil element is appropriate. It is arranged in the position. Next, the end core 2e is arranged so that both end faces of the coil element of the coil molded body 1 are sandwiched between the pair of end cores 2e, and the end core 2e and the coil winding portion 2c are bonded with an adhesive or the like. By joining, the reactor 10 is obtained.

なお、リアクトル10はこのままでもよいが、上記コイル成形体1と磁性コア2との組合体の外周を覆うように、更に樹脂部を設けてもよい。この樹脂部を設けることで、当該組合体を一体物として取り扱えてハンドリング性に優れる上に、磁性コアの機械的保護や環境からの保護を図ることができる。樹脂部を設ける場合、放熱板5の露出面52をこの樹脂部から露出させると、放熱板5を直接架台に接触させられるため、放熱効率がよい。この樹脂部は、例えば、エポキシ樹脂やウレタン樹脂、PPS樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが利用できる。これらの樹脂は、後述する実施形態2の樹脂被覆部の構成樹脂にも利用できる。   Although the reactor 10 may be left as it is, a resin portion may be further provided so as to cover the outer periphery of the combined body of the coil molded body 1 and the magnetic core 2. By providing this resin part, the combined body can be handled as an integrated object, and the handleability is excellent, and the magnetic core can be mechanically protected and protected from the environment. When the resin portion is provided, if the exposed surface 52 of the heat sink 5 is exposed from the resin portion, the heat sink 5 can be brought into direct contact with the gantry, so that the heat dissipation efficiency is good. As this resin portion, for example, epoxy resin, urethane resin, PPS resin, polybutylene terephthalate (PBT) resin, acrylonitrile-butadiene-styrene (ABS) resin, or the like can be used. These resins can also be used for the constituent resin of the resin coating portion of Embodiment 2 described later.

<効果>
上記コイル成形体1を具えるリアクトル10は、放熱板5を具えることで、アルミニウムといった金属からなるケースを省略した構成としても、放熱性に優れる。特に、コイル成形体1は、放熱板5に掛止部を具え、この掛止部が樹脂成形部4cの構成樹脂(受け部4n)に引っ掛かる構成である。そのため、コイル成形体1の搬送や、リアクトル10の組立にあたりコイル成形体1を持ち上げたり移動させたりする場合、また、コイル成形体1を具えるリアクトル10を搬送したり、架台に取り付ける際などで持ち上げたり移動させる場合でも、放熱板5が落下し難い。従って、リアクトル10は、放熱板5の存在による優れた放熱性を十分に活用することができると期待される。また、放熱板5は、コイル3において架台に設置される側の設置面に接して配置されているため、コイル3の熱を架台に効率よく伝達することができる。
<Effect>
The reactor 10 including the coil molded body 1 includes the heat radiating plate 5 and thus has excellent heat dissipation even when the case made of a metal such as aluminum is omitted. In particular, the coil molded body 1 has a configuration in which the heat radiating plate 5 is provided with a latching portion, and this latching portion is hooked on the constituent resin (receiving portion 4n) of the resin molded portion 4c. Therefore, when the coil molded body 1 is transported, when the coil molded body 1 is lifted or moved when the reactor 10 is assembled, and when the reactor 10 including the coil molded body 1 is transported or attached to the gantry, etc. Even when lifted or moved, the heat sink 5 is difficult to drop. Therefore, it is expected that the reactor 10 can fully utilize the excellent heat dissipation due to the presence of the heat sink 5. Further, since the heat radiating plate 5 is disposed in contact with the installation surface on the side where the coil 3 is installed on the gantry, the heat of the coil 3 can be efficiently transmitted to the gantry.

更に、コイル成形体1は、樹脂成形部4cの構成樹脂により、コイル3の外周に放熱板5を固定する構成である上に、放熱板5が掛止部を有することで強固に固定されることから、放熱板を固定するためのボルトなどの固定部材が不要であり、部品点数や作業工程の削減を図ることができる。特に、放熱板5の固定作業は、上述のように樹脂成形部4cを形成する際に同時に行われるため、複雑な形状の放熱板5であっても、コイル成形体1に簡単に一体にすることができる。   Furthermore, the coil molded body 1 has a structure in which the heat radiating plate 5 is fixed to the outer periphery of the coil 3 by the constituent resin of the resin molded portion 4c, and the heat radiating plate 5 is firmly fixed by having a latching portion. Therefore, a fixing member such as a bolt for fixing the heat radiating plate is unnecessary, and the number of parts and work processes can be reduced. In particular, since the fixing operation of the heat sink 5 is performed simultaneously with the formation of the resin molding portion 4c as described above, even the heat sink 5 having a complicated shape is easily integrated with the coil molded body 1. be able to.

更に、コイル成形体1は、樹脂成形部4cの構成樹脂により各コイル素子の内周も覆い、この構成樹脂を所定の厚さ及び形状とすることで磁性コア2(コイル巻回部2c)の位置決めに利用することができる。そのため、コイル成形体1は、ボビンなどの位置決め用の部材が不要でありながら、磁性コア2の位置決めを容易に行え、部品点数や作業工程の削減を図ることができる。加えて、樹脂成形部4cの構成樹脂を絶縁性樹脂とすることで、コイル素子の内周を被覆する構成樹脂により磁性コア2とコイル3との間を絶縁することができることから、インシュレータなどの絶縁部材が不要であり、部品点数や作業工程の削減を図ることができる。その他、この例に示す放熱板5は、四つの端面がいずれも平面であり、二つの端面53のみが傾斜面であるため、製造し易い。このようにコイル成形体1を用いることで、部品点数が少なく小型で、放熱性に優れるリアクトル10が得られる。また、リアクトル10は、コイル成形体1と磁性コア2との組合体の外周を別途樹脂により覆っていないため、この樹脂の被覆工程が不要であり、組立作業性に優れる。   Furthermore, the coil molded body 1 also covers the inner periphery of each coil element with the constituent resin of the resin molded portion 4c, and by making the constituent resin into a predetermined thickness and shape, the magnetic core 2 (coil winding portion 2c) It can be used for positioning. Therefore, the coil molded body 1 can easily position the magnetic core 2 without using a positioning member such as a bobbin, and can reduce the number of parts and work processes. In addition, since the constituent resin of the resin molding portion 4c is an insulating resin, the magnetic core 2 and the coil 3 can be insulated by the constituent resin that covers the inner periphery of the coil element. An insulating member is unnecessary, and the number of parts and work processes can be reduced. In addition, the heat sink 5 shown in this example is easy to manufacture because all of the four end surfaces are flat surfaces and only the two end surfaces 53 are inclined surfaces. By using the coil molded body 1 in this manner, the reactor 10 having a small number of parts and a small size and excellent heat dissipation can be obtained. Further, since the reactor 10 does not separately cover the outer periphery of the combined body of the coil molded body 1 and the magnetic core 2 with a resin, this resin coating step is unnecessary, and the assembly workability is excellent.

(変形例1-1)
上記実施形態1では、矩形板からなり、二つの端面が台形状であり、この台形状の端面が埋設面及び露出面に直交する放熱板を説明した。放熱板を以下のように変形してもよい。以下の(1),(2)の構成は、後述する各変形例や実施形態2にも適用することができる。
(1) 四つの端面を台形状として、全ての端面が埋設面及び露出面に対して傾斜した形状とする。この放熱板は、埋設面と、四つのテーパ状の端面とによりつくられる三角形状の部分、即ち、掛止部が多くなることから、樹脂成形部の構成樹脂に更に引っ掛かり易くなり、放熱板の脱落をより効果的に防止することができる。
(2) 埋設面及び露出面を多角形状とする。この放熱板は、端面が多く、これらの端面を傾斜面にして、掛止部を多くすることで、樹脂成形部の構成樹脂に更に引っ掛かり易くなり、放熱板の脱落をより効果的に防止することができる。
(Modification 1-1)
In the first embodiment, the heat radiating plate is described which is made of a rectangular plate, the two end surfaces are trapezoidal, and the trapezoidal end surfaces are orthogonal to the embedded surface and the exposed surface. You may deform | transform a heat sink as follows. The following configurations (1) and (2) can also be applied to each modified example and Embodiment 2 described later.
(1) The four end surfaces are trapezoidal, and all end surfaces are inclined with respect to the buried surface and the exposed surface. This heat sink has a triangular portion formed by the embedded surface and the four tapered end faces, i.e., the number of hooks increases. Dropout can be prevented more effectively.
(2) The buried surface and exposed surface shall be polygonal. This heat radiating plate has many end surfaces, and these end surfaces are inclined to increase the number of latching portions, thereby making it easier to catch on the constituent resin of the resin molded portion and more effectively preventing the heat radiating plate from falling off. be able to.

(変形例1-2)
図3は、実施形態1とは別の形状の放熱板を具えるコイル成形体を示し、(A)は、端面領域に段差を有する放熱板を具えるコイル成形体の正面図、(B)〜(D)は、コイル成形体において放熱板部分を拡大して示す部分断面図であり、(B)は、端面領域に曲面を有する放熱板、(C)は、端面領域に突起を有する放熱板、(D)は、平行四辺形状の端面を有する放熱板を示す。この変形例1-2の構成は、後述する各変形例、実施形態2にも適用することができる。
(Modification 1-2)
FIG. 3 shows a coil molded body having a heat radiating plate having a shape different from that of Embodiment 1, (A) is a front view of the coil molded body having a heat radiating plate having a step in the end surface region, and (B). (D) is a partial cross-sectional view showing an enlarged heat dissipation plate part in the coil molded body, (B) is a heat dissipation plate having a curved surface in the end surface region, and (C) is a heat dissipation having a protrusion in the end surface region. A plate, (D), shows a heat radiating plate having a parallelogram-shaped end surface. The configuration of the modified example 1-2 can also be applied to modified examples described later and the second embodiment.

(A) 上記実施形態1では、対向する二つの端面5eが埋設面から露出面に向かって先細りするテーパ状である放熱板、即ち、埋設面と平行な仮想面をとったとき、埋設面から露出面に向かって当該仮想面が連続的に小さくなる形状の放熱板を説明した。図3(A)に示す放熱板5Aのように、対向する二つの端面は、上記仮想面をとったとき、埋設面51Aから露出面52Aに向かって当該仮想面が断続的に小さくなる形状としてもよい。この例に示す放熱板5Aは、矩形板であり、対向する二つの端面領域を図3(A)に示すように1段の段差形状としている。つまり、放熱板5Aは、上記仮想面をとったとき、埋設面51Aから厚さ方向の所定の範囲までは、埋設面51Aと等しい面積の仮想面がとれ、上記所定の位置から露出面52Aまでは、露出面52Aと等しい面積の仮想面がとれ、埋設面51A側が露出面52A側よりも突出した形状である。この突出した埋設面51A側の領域が掛止部として機能し、露出面52A側の凹んだ矩形状の空間に入り込んだ樹脂成形部4cの構成樹脂により構成される矩形状の受け部4Anに引っ掛かることで、放熱板5Aは、実施形態1と同様に落下し難い。なお、全ての端面領域をこのような段差形状とすると、落下防止の効果を高められる。また、放熱板5Aは、上記露出面52A側の凹んだ矩形状の空間の隅々に樹脂成形部4cの構成樹脂が行き渡り易く、放熱板5Aが当該構成樹脂により、強固に固定され易い。   (A) In Embodiment 1 above, when the two opposite end surfaces 5e are tapered from the embedded surface toward the exposed surface, the heat sink is a tapered shape, i.e., a virtual plane parallel to the embedded surface is taken. A heat sink having a shape in which the virtual surface continuously decreases toward the exposed surface has been described. Like the heat radiating plate 5A shown in FIG. 3 (A), when the two opposing end surfaces take the above virtual surface, the virtual surface is gradually reduced from the embedded surface 51A toward the exposed surface 52A. Also good. The heat radiating plate 5A shown in this example is a rectangular plate, and two end face regions facing each other have a single stepped shape as shown in FIG. 3 (A). That is, when the heat sink 5A takes the virtual surface, a virtual surface having the same area as the embedded surface 51A can be taken from the embedded surface 51A to a predetermined range in the thickness direction, and from the predetermined position to the exposed surface 52A. Is a shape in which a virtual surface having the same area as the exposed surface 52A is taken, and the embedded surface 51A side protrudes from the exposed surface 52A side. The protruding embedded surface 51A side region functions as a latching portion, and is hooked by the rectangular receiving portion 4An configured by the resin of the resin molded portion 4c that has entered the recessed rectangular space on the exposed surface 52A side. Thus, the heat sink 5A is unlikely to drop as in the first embodiment. If all the end surface regions have such a step shape, the effect of preventing the fall can be enhanced. Further, in the heat sink 5A, the constituent resin of the resin molded portion 4c is likely to spread to every corner of the recessed rectangular space on the exposed surface 52A side, and the heat sink 5A is easily fixed firmly by the constituent resin.

(B) 上記実施形態1では、傾斜面53が平面である放熱板を説明した。図3(B)に示す放熱板5Bのように、傾斜面53Bを曲面としてもよい。この放熱板5Bは、埋設面51Bと傾斜面53Bとによりつくられる曲面を持つ部分が掛止部として機能し、樹脂成形部4cの構成樹脂により構成される受け部4Bnにより樹脂成形部4cに強固に固定され、落下し難い。なお、全ての端面領域をこのような曲面形状としてもよいし、曲面と平面とを組み合わせた形状としてもよい。   (B) In the first embodiment, the heat radiating plate in which the inclined surface 53 is a flat surface has been described. The inclined surface 53B may be a curved surface as in the heat radiating plate 5B shown in FIG. In this heat sink 5B, the curved portion formed by the embedded surface 51B and the inclined surface 53B functions as a latching portion, and the resin molded portion 4c is firmly attached to the resin molded portion 4c by the receiving portion 4Bn configured by the resin constituting the resin molded portion 4c. It is fixed to and difficult to fall. Note that all the end surface regions may have such a curved surface shape, or a combination of a curved surface and a flat surface.

(C) 上記実施形態1の放熱板は、上記(A)で述べたように、埋設面と平行な仮想面をとったとき、埋設面から露出面に向かって当該仮想面が連続的に小さくなる形状である。図3(C)に示す放熱板5Cのように、上記仮想面をとったとき、埋設面51Cと露出面52Cとの間で、露出面52Cよりも面積が大きな仮想面がとれる形状、即ち、埋設面51Cと露出面52Cとの間に突起54を有する形状としてもよい。この突起54は、直方体状であり、掛止部として機能する。放熱板5Cは、樹脂成形体4cの構成樹脂により構成される]状の受け部4Cnに上記掛止部(突起54)が引っ掛かることで樹脂成形部4cに強固に固定され、落下し難い。対向する二つの端面領域だけでなく、全ての端面領域に突起54を存在させると、放熱板の落下防止の効果を高められる。なお、この例に示す放熱板5Cは、埋設面51Cと露出面52Cとを等面積としているが、実施形態1の放熱板5と同様に、露出面を埋設面よりも小さくしてもよい。また、突起54の形状は特に問わない。このような放熱板5Cは、成形により製造することもできるが、複数の薄板を接合すると簡単に形成することができる。   (C) As described in (A) above, when the heat sink of Embodiment 1 takes a virtual surface parallel to the embedded surface, the virtual surface continuously decreases from the embedded surface toward the exposed surface. This is the shape. Like the heat sink 5C shown in FIG. 3 (C), when taking the virtual surface, a shape that can take a virtual surface having a larger area than the exposed surface 52C between the embedded surface 51C and the exposed surface 52C, that is, A shape having a protrusion 54 between the embedded surface 51C and the exposed surface 52C may be used. The protrusion 54 has a rectangular parallelepiped shape and functions as a hooking portion. The heat radiating plate 5C is firmly fixed to the resin molded portion 4c by the hook portion (protrusion 54) being hooked on the receiving portion 4Cn of the shape formed of the constituent resin of the resin molded body 4c, and hardly falls. If the protrusions 54 are present not only in the two opposing end face areas but also in all the end face areas, the effect of preventing the heat sink from falling can be enhanced. In the heat sink 5C shown in this example, the embedded surface 51C and the exposed surface 52C have the same area, but the exposed surface may be smaller than the embedded surface as in the heat sink 5 of the first embodiment. Further, the shape of the protrusion 54 is not particularly limited. Such a heat sink 5C can be manufactured by molding, but can be easily formed by joining a plurality of thin plates.

(D) 上記実施形態1の放熱板は、露出面が埋設面よりも小さい形状である。図3(D)に示す放熱板5Dのように、埋設面51Dと露出面52Dとを等面積としてもよい。このとき、放熱板5Dの四つの端面のうち、対向する二つの端面5Deを平行四辺形状とし、残りの対向する二つの端面を傾斜面53Dとする。この放熱板5Dも実施形態1の放熱板5と同様に、埋設面51Dと一方の傾斜面53Dとによりつくられる三角形状の部分が掛止部として機能し、樹脂成形部4cの構成樹脂により構成される三角形状の受け部4Dnに引っ掛かることで、樹脂構成部4cに強固に固定され、落下し難い。特に、三角形状の掛止部が受け部4Dnに十分に引っ掛かるように大きさを調整することで、より落下し難くすることができる。また、放熱板5Dは、埋設面51Dと露出面52Dとが同面積であることで、コイルからの熱を効率よく架台に伝達できるため、この放熱板5Dを具えるリアクトルは、放熱性に更に優れる。なお、落下防止の効果を十分に高めるためには、実施形態1のように掛止部を複数有することが好ましい。 (D) The radiator plate of Embodiment 1 has a shape in which the exposed surface is smaller than the embedded surface. Like the heat sink 5D shown in FIG. 3D, the embedded surface 51D and the exposed surface 52D may have the same area. At this time, of the four end surfaces of the heat sink 5D, the two opposing end surfaces 5De are in a parallelogram shape, and the remaining two opposing end surfaces are the inclined surfaces 53D. Similarly to the heat sink 5 of the first embodiment, this heat sink 5D also functions as a hook portion formed by the embedded surface 51D and one inclined surface 53D, and is made of a resin component of the resin molded portion 4c. By being hooked on the triangular receiving portion 4Dn, it is firmly fixed to the resin component 4c and hardly falls. In particular, by adjusting the manner magnitude caught enough to triangular engaging portion receiving portions 4D n, can be more difficult to drop. In addition, since the heat sink 5D has an embedded surface 51D and an exposed surface 52D of the same area, heat from the coil can be efficiently transferred to the gantry, so the reactor including the heat sink 5D Excellent. In order to sufficiently enhance the effect of preventing the fall, it is preferable to have a plurality of latching portions as in the first embodiment.

その他、埋設面及び露出面の形状は、矩形状、多角形状以外の形状、例えば、円形状、楕円状などでもよく、両面が同一形状或いは相似形状でも、異なる形状でもよい。例えば、放熱板を多層構造とし、形状の異なる板材を接合することで、埋設面の形状と露出面の形状とを容易に異ならせることができる。或いは、埋設面の形状と露出面の形状とが異なるように放熱板を成形したり、素材板を切削などして放熱板を形成したりしてもよい。   In addition, the shape of the embedded surface and the exposed surface may be a shape other than a rectangular shape or a polygonal shape, for example, a circular shape or an elliptical shape, and both surfaces may be the same shape, similar shape, or different shapes. For example, the shape of the embedded surface and the shape of the exposed surface can be easily made different by forming the heat radiating plate with a multilayer structure and joining plate materials having different shapes. Or you may shape | mold a heat sink so that the shape of an embedding surface and the shape of an exposed surface may differ, or may form a heat sink by cutting a raw material board.

(変形例1-3)
上記実施形態1の放熱板は、窒化珪素からなるものを説明した。その他、放熱板の構成材料として、例えば、アルミニウム、アルミニウム合金、銅、銅合金、銀、銀合金、鉄やオーステナイト系ステンレス鋼といった金属材料、アルミナ(Al2O3):20〜30W/m・K程度、窒化アルミニウム(AlN):200〜250W/m・K程度、窒化ほう素(BN):50〜65W/m・K程度、炭化珪素(SiC):50〜130W/m・K程度などのセラミックスといった非金属材料(数値は熱伝導率)を利用することができる。セラミックスを用いた放熱板は、軽量であり、金属材料を用いた放熱板は、放熱性が高い。
(Modification 1-3)
The heat radiating plate of the first embodiment has been described as being made of silicon nitride. In addition, as a constituent material of the heat sink, for example, aluminum, aluminum alloy, copper, copper alloy, silver, silver alloy, metal materials such as iron and austenitic stainless steel, alumina (Al 2 O 3 ): 20-30 W / m About K, Aluminum nitride (AlN): 200-250W / m ・ K, Boron nitride (BN): 50-65W / m ・ K, Silicon carbide (SiC): 50-130W / m ・ K, etc. Non-metallic materials such as ceramics (numerical values are thermal conductivity) can be used. A heat sink using ceramics is lightweight, and a heat sink using a metal material has high heat dissipation.

金属材料からなる放熱板の場合、コイルに近接して配置される面に絶縁性に優れるセラミックス薄膜を設けた構成とすると、コイルと放熱板との間の絶縁性を高められる。このとき、放熱板は、埋設面が上記セラミックス薄膜で構成され、露出面が金属材料から構成される。セラミックス薄膜は、例えば、Si3N4,Al2O3,AlN,BN,SiCなどが挙げられ、PVD法やCVD法などで形成できる。或いは、コイルと放熱板との間に樹脂成形部4cの構成樹脂が介在するように放熱板を固定することで、コイルと放熱板との間の絶縁性を高められる。この変形例1-3に関する事項は、後述する各変形例や実施形態2にも適用することができる。 In the case of a heat radiating plate made of a metal material, the insulating property between the coil and the heat radiating plate can be enhanced by providing a ceramic thin film having excellent insulating properties on the surface arranged close to the coil. At this time, the heat sink has an embedded surface made of the ceramic thin film and an exposed surface made of a metal material. Examples of the ceramic thin film include Si 3 N 4 , Al 2 O 3 , AlN, BN, SiC, and the like, and can be formed by a PVD method, a CVD method, or the like. Alternatively, the insulation between the coil and the heat radiating plate can be improved by fixing the heat radiating plate so that the constituent resin of the resin molded portion 4c is interposed between the coil and the heat radiating plate. The matters related to the modified example 1-3 can be applied to modified examples described later and the second embodiment.

(変形例1-4)
上記実施形態1では、コイル3において架台側に配置される設置面に接して放熱板5が配置される構成を説明した。その他、コイル3の外周を覆うように、コイル3において上記設置面以外の面、具体的には、上面(図1(A)のコイル3において巻線3wの端部が引き出された面)や側面(図1(A)のコイル3において左右側の面)に接して又は近接させて別途放熱板が配置された構成とすると、更に放熱性に優れるリアクトルが得られる。別途用意する放熱板も、樹脂成形部4cの構成樹脂により固定するとよく、また、放熱板5と同様の形状とすることで脱落し難い。
(Modification 1-4)
In the first embodiment, the configuration in which the heat radiating plate 5 is disposed in contact with the installation surface disposed on the gantry side in the coil 3 has been described. In addition, to cover the outer periphery of the coil 3, a surface other than the installation surface in the coil 3, specifically, an upper surface (a surface from which the end of the winding 3w is pulled out in the coil 3 in FIG. If a configuration in which a separate heat sink is disposed in contact with or close to the side surface (the left and right surfaces in the coil 3 in FIG. 1A), a reactor having further excellent heat dissipation can be obtained. A separately prepared heat sink may also be fixed with the constituent resin of the resin molded portion 4c, and it is difficult to drop off because it has the same shape as the heat sink 5.

(実施形態2)
次に、コイル成形体を具えていないリアクトルを説明する。図4は、本発明リアクトルの概略斜視図、図5は、このリアクトルの正面図である。リアクトル20は、内部に冷媒が充填された架台100に直接取り付けられて利用されるものであり、磁性コア2と、このコア2の外周に配置されるコイル3と、これらコア2とコイル3との組合体の外周を覆う樹脂被覆部4lと、コイル3の外周に配置されて、樹脂被覆部4lの構成樹脂に固定された放熱板5とを具える。このリアクトル20の特徴とするところは、上述した実施形態1と同様に特定の形状を有する放熱板5を具える点にある。以下、実施形態1との相違点を中心に説明する。
(Embodiment 2)
Next, a reactor that does not include a coil molded body will be described. FIG. 4 is a schematic perspective view of the reactor of the present invention, and FIG. 5 is a front view of the reactor. The reactor 20 is used by being directly attached to the gantry 100 filled with a refrigerant therein, the magnetic core 2, the coil 3 disposed on the outer periphery of the core 2, the core 2 and the coil 3 The resin cover part 4l which covers the outer periphery of this combination, and the heat sink 5 which is disposed on the outer periphery of the coil 3 and is fixed to the constituent resin of the resin cover part 4l. The feature of the reactor 20 is that it includes a heat radiating plate 5 having a specific shape as in the first embodiment. Hereinafter, a description will be given focusing on differences from the first embodiment.

[磁性コア]
磁性コア2は、実施形態1のリアクトル10に具える磁性コアと同様であり、一対のコイル巻回部(図示せず)と一対の端部コア2eとにより環状に形成される。ここでは、端部コア2eの架台100側の面(図5において下面、以下、設置面2bと呼ぶ)、及び設置面2bに対向する面(図5において上面)の双方の面は、コイル巻回部の架台100側の面及びその対向面のそれぞれよりも突出しており、コイル巻回部と面一になっていない。
[Magnetic core]
The magnetic core 2 is the same as the magnetic core provided in the reactor 10 of the first embodiment, and is formed in an annular shape by a pair of coil winding portions (not shown) and a pair of end cores 2e. Here, both the surface on the gantry 100 side of the end core 2e (the lower surface in FIG. 5, hereinafter referred to as the installation surface 2b) and the surface facing the installation surface 2b (the upper surface in FIG. 5) are coil windings. It protrudes from the surface of the turn part on the side of the gantry 100 and its opposite face, and is not flush with the coil winding part.

[コイル]
コイル3は、実施形態1と同様に被覆平角線をエッジワイズ巻きにして形成した一対のコイル素子を具える。ここでは、各コイル素子を別々の被覆平角線にて作製し、各コイル素子を形成する巻線3wの端部を溶接などにより接合して一体のコイルとしている。
[coil]
The coil 3 includes a pair of coil elements formed by edgewise winding a covered flat wire as in the first embodiment. Here, each coil element is produced by a separate covered rectangular wire, and the end of the winding 3w forming each coil element is joined by welding or the like to form an integral coil.

[インシュレータ]
磁性コア2とコイル3の組立体は、インシュレータ6も設けられている。インシュレータ6は、コイル巻回部の外周を覆う筒状部(図示せず)と、コイル3の端面に当接される一対の枠状部6fとを具える。筒状部は、半割れの角筒片同士を係合する構成とすると、コイル巻回部の外周を容易に覆うことができる。各枠状部6fは、筒状部の一端部に配置される矩形枠である。インシュレータには、PPS樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、LCPなどの絶縁性樹脂が利用できる。
[Insulator]
The assembly of the magnetic core 2 and the coil 3 is also provided with an insulator 6. The insulator 6 includes a cylindrical portion (not shown) that covers the outer periphery of the coil winding portion, and a pair of frame-like portions 6f that are in contact with the end face of the coil 3. If the cylindrical portion is configured to engage half-cut square tube pieces, the outer periphery of the coil winding portion can be easily covered. Each frame-like part 6f is a rectangular frame arranged at one end of the cylindrical part. Insulators such as PPS resin, polytetrafluoroethylene (PTFE) resin, and LCP can be used for the insulator.

[樹脂被覆部]
上記組合体は、その外周を覆うように樹脂被覆部4lを具える。ここでは、樹脂被覆部4lは、上記組立体を作製した後、コイル3の巻線3wの端部が露出されるように、エポキシ樹脂を注型成形することで形成している。この樹脂被覆部4lは、直方体状であり、磁性コア2及びコイル3を覆う箇所の平均厚さを1〜2mmと均一的にしており、四隅を比較的厚くし、各隅にそれぞれ、架台100にリアクトル20を固定するためのボルト7が挿通される挿通孔4b(図5)を具える。樹脂被覆部4lの形状や樹脂の厚さは適宜選択することができる。
[Resin coating part]
The combined body includes a resin coating portion 4l so as to cover the outer periphery thereof. Here, the resin coating portion 4l is formed by casting an epoxy resin so that the end of the winding 3w of the coil 3 is exposed after the assembly is manufactured. This resin coating portion 4l is a rectangular parallelepiped shape, the average thickness of the portion covering the magnetic core 2 and the coil 3 is uniform as 1 to 2 mm, the four corners are relatively thick, and the base 100 And an insertion hole 4b (FIG. 5) through which a bolt 7 for fixing the reactor 20 is inserted. The shape of the resin coating portion 4l and the thickness of the resin can be appropriately selected.

[放熱板]
そして、リアクトル20は、実施形態1と同様に放熱板5を具える。放熱板5の形状、構成材料は、実施形態1と同様であり、樹脂被覆部4lの構成樹脂により、コイル3の設置面に接するように固定されている。ここでは、図5に示すように長方形状の傾斜面53がコイル3の軸方向に向くように放熱板5を配置している。つまり、実施形態1の放熱板の配置位置に対して、放熱板をその端面の向きが変わるように水平に90°回転させた配置としている。この放熱板5は、埋設面51と傾斜面53とによりつくられる三角形状の部分が掛止部として機能し、樹脂被覆部4lの構成樹脂により構成される三角形状の受け部4nにより樹脂被覆部4lに強固に固定され、脱落し難い。
[Heatsink]
The reactor 20 includes the heat radiating plate 5 as in the first embodiment. The shape and the constituent material of the heat sink 5 are the same as those of the first embodiment, and are fixed so as to be in contact with the installation surface of the coil 3 by the constituent resin of the resin coating portion 4l. Here, as shown in FIG. 5, the heat sink 5 is arranged so that the rectangular inclined surface 53 faces the axial direction of the coil 3. That is, the heat radiating plate is horizontally rotated by 90 ° with respect to the arrangement position of the heat radiating plate according to the first embodiment so that the direction of the end face is changed. The heat sink 5 has a triangular portion formed by the embedded surface 51 and the inclined surface 53 functioning as a latching portion, and the resin-coated portion is formed by the triangular-shaped receiving portion 4n composed of the resin of the resin-coated portion 4l. It is firmly fixed to 4l and hard to fall off.

[リアクトルの製造]
上記構成を具えるリアクトル20は、以下のようにして形成することができる。
[Manufacture of reactors]
The reactor 20 having the above configuration can be formed as follows.

まず、コア片やギャップ材を接着剤などで固定してコイル巻回部を形成し、この外周にインシュレータの筒状部を配置する。別途、作製しておいたコイル3を筒状部が配されたコイル巻回部に配置し、コイル3の両端面に、インシュレータ6の枠状部6f及び端部コア2eを当接させ、コイル3を挟むように枠状部6f及び端部コア2eを配置して、接着剤などで端部コア2eとコイル巻回部とを接合する。この工程により、磁性コア2とコイル3との組合体が得られる。   First, the core piece and the gap material are fixed with an adhesive or the like to form a coil winding portion, and the tubular portion of the insulator is disposed on the outer periphery. Separately, the prepared coil 3 is placed in the coil winding portion where the cylindrical portion is arranged, and the frame-like portion 6f of the insulator 6 and the end core 2e are brought into contact with both end faces of the coil 3, so that the coil The frame-like portion 6f and the end core 2e are arranged so as to sandwich 3 and the end core 2e and the coil winding portion are joined with an adhesive or the like. Through this step, a combination of the magnetic core 2 and the coil 3 is obtained.

得られた組合体の外周を覆うように樹脂被覆部4lを形成すると共に、組合体と放熱板5とを樹脂被覆部4lの構成樹脂により一体にする。放熱板5の露出面52及び巻線3wの端部は、樹脂被覆部4lから露出させる。上記工程により、リアクトル20が組み立てられる。   The resin covering portion 4l is formed so as to cover the outer periphery of the obtained combined body, and the combined body and the heat sink 5 are integrated with the constituent resin of the resin covering portion 4l. The exposed surface 52 of the heat sink 5 and the end of the winding 3w are exposed from the resin coating 4l. The reactor 20 is assembled by the above process.

得られたリアクトル20は、端部コア2eの設置面2b及び放熱板5の露出面52を架台100に接するように配置し、ボルト7を締め付けることで、架台100に取り付けられる。上記設置面2bや露出面52にグリスなどを極薄く(数十μm程度)塗っておくと、端部コア2eや放熱板5を架台100に密着させ易い。   The obtained reactor 20 is attached to the gantry 100 by placing the installation surface 2b of the end core 2e and the exposed surface 52 of the heat sink 5 in contact with the gantry 100 and tightening the bolts 7. If grease or the like is applied to the installation surface 2b or the exposed surface 52 very thinly (several tens of μm), the end core 2e and the heat sink 5 are easily brought into close contact with the gantry 100.

[効果]
上記構成を具えるリアクトル20は、実施形態1のリアクトル10と同様に、放熱板5を具えることで、ケースを省略した構成としても放熱性に優れる。特に、放熱板5の掛止部が樹脂被覆部4lの構成樹脂(受け部4n)に引っ掛かることで放熱板5が落下し難く、リアクトル20は、放熱板5の存在による優れた放熱性を十分に活用することができると期待される。また、樹脂被覆部4lの成形の際、この構成樹脂により、磁性コア2とコイル3との組合体に放熱板5が固定されるため固定作業が容易であり、リアクトルの組立作業性に優れる。更に、リアクトル20は、放熱板5を固定するためにボルトといった固定用部材が不要であり、部品点数や作業工程の削減を図ることができる。
[effect]
Similarly to the reactor 10 of the first embodiment, the reactor 20 having the above configuration is provided with the heat radiating plate 5 and thus has excellent heat dissipation even when the case is omitted. In particular, the heat sink 5 is not easily dropped because the hook of the heat sink 5 is hooked on the constituent resin (receiving part 4n) of the resin coating part 4l. It is expected that it can be utilized for. Further, when the resin coating portion 4l is molded, the heat sink 5 is fixed to the combined body of the magnetic core 2 and the coil 3 by this constituent resin, so that the fixing work is easy and the assembly workability of the reactor is excellent. Furthermore, the reactor 20 does not require a fixing member such as a bolt for fixing the heat radiating plate 5, and the number of parts and work processes can be reduced.

加えて、リアクトル20は、磁性コア2の端部コア2e及び放熱板5を架台100に直接接触させる構成であるため、磁性コア2やコイル3の熱を架台100に効率よく伝えられ、放熱性に更に優れる。また、端部コア2eをコイル巻回部よりも突出させた形状とすることで、端部コアの外周面とコイル巻回部の外周面とが面一である従来のリアクトルにおける端部コアの断面積と、端部コア2eの断面積とを等しくすると、リアクトル20は、従来のリアクトルよりも磁性コアの長さ(コイルの軸方向の長さ)を短くできる。従って、リアクトル10は、架台100に対する載置面積が従来のリアクトルよりも小さく、小型である。   In addition, the reactor 20 has a configuration in which the end core 2e of the magnetic core 2 and the heat sink 5 are in direct contact with the gantry 100, so that the heat of the magnetic core 2 and the coil 3 can be efficiently transmitted to the gantry 100, and the heat dissipation Even better. Further, by forming the end core 2e so as to protrude from the coil winding portion, the end core of the conventional reactor in which the outer peripheral surface of the end core and the outer peripheral surface of the coil winding portion are flush with each other is provided. If the cross-sectional area is equal to the cross-sectional area of the end core 2e, the reactor 20 can make the length of the magnetic core (the length in the axial direction of the coil) shorter than the conventional reactor. Therefore, the reactor 10 has a smaller mounting area with respect to the gantry 100 and is smaller than the conventional reactor.

その他、リアクトル20は、絶縁性の樹脂からなる樹脂被覆部4lを具えることで、(1)磁性コア2とコイル3の組合体を一体に取り扱える、(2)磁性コア2を補強できる、(3)外部環境から磁性コア2やコイル3を保護できる、(4)周囲の部材との間で絶縁を確保できる、といった種々の効果を奏することができる。   In addition, the reactor 20 includes a resin coating portion 4l made of an insulating resin, so that (1) the magnetic core 2 and the coil 3 can be handled integrally, and (2) the magnetic core 2 can be reinforced. 3) The magnetic core 2 and the coil 3 can be protected from the external environment, and (4) insulation with surrounding members can be secured.

また、リアクトル20は、樹脂被覆部4lにボルト7が挿通される挿通孔4bを具えることで、架台100に簡単に取り付けられる。特に、リアクトル20では、挿通孔4bが設けられる箇所の樹脂を厚くしており、ボルト7を締め付けた際の応力により樹脂被覆部4lに割れなどが生じ難い。なお、挿通孔4bを設けている箇所は、組合体が存在しない箇所であるため、肉厚な樹脂部分が存在することによる放熱性の低下を低減することができる。   Further, the reactor 20 can be easily attached to the gantry 100 by providing the insertion hole 4b through which the bolt 7 is inserted into the resin coating portion 4l. In particular, in the reactor 20, the resin in the portion where the insertion hole 4b is provided is thickened, and the resin coating portion 4l is not easily cracked by the stress when the bolt 7 is tightened. In addition, since the location where the insertion hole 4b is provided is a location where no combination exists, it is possible to reduce a decrease in heat dissipation due to the presence of a thick resin portion.

(変形例2-1)
上記実施形態2の放熱板5は、対向する二つの端面5eが、埋設面51から露出面52に向かって先細りするテーパ状の面である。その他の放熱板として、図6に示すリアクトル30のように、端面領域に段差を有する放熱板5A(変形例1-2(図3(A))で説明したもの)や図3(B)〜(D)に示す放熱板5B〜5Dを適宜利用することができる。
(Modification 2-1)
The heat radiating plate 5 of the second embodiment is a tapered surface in which two opposing end surfaces 5e taper from the embedded surface 51 toward the exposed surface 52. As other heat sinks, like the reactor 30 shown in FIG. 6, the heat sink 5A having a step in the end face region (as described in Modification 1-2 (FIG. 3 (A))) and FIGS. The heat sinks 5B to 5D shown in (D) can be used as appropriate.

なお、上述した実施形態及び変形例は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。   Note that the above-described embodiments and modifications can be appropriately changed without departing from the gist of the present invention, and are not limited to the above-described configuration.

本発明のリアクトルは、放熱性に優れ、小型であるため、例えば、ハイブリッド自動車や電気自動車、燃料電池車などの車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品に好適に利用することができる。本発明のコイル成形体は、上記リアクトルの構成部品に好適に利用することができる。   Since the reactor of the present invention has excellent heat dissipation and is small, it is suitable for a component part of a power conversion device such as an in-vehicle DC-DC converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. Can be used. The coil molded object of this invention can be utilized suitably for the component of the said reactor.

1 コイル成形体 2 磁性コア 2e 端部コア 2c コイル巻回部
2m コア片 2g ギャップ材 2b 設置面 3 コイル 3w 巻線
3r 巻返し部 4c 樹脂成形部 4l 樹脂被覆部 4h 中空孔 4b 挿通孔
4n,4An,4Bn,4Cn,4Dn 受け部 5,5A,5B,5C,5D 放熱板 5e,5De 端面
51,51A,51B,51C,51D 埋設面 52,52A,52C,52D 露出面
53,53B,53D 傾斜面 54 突起 6 インシュレータ 6f 枠状部
7 ボルト 10,20,30 リアクトル 100 架台
1 Coil compact 2 Magnetic core 2e End core 2c Coil winding part
2m Core piece 2g Gap material 2b Installation surface 3 Coil 3w Winding
3r Unwinding part 4c Resin molding part 4l Resin coating part 4h Hollow hole 4b Insertion hole
4n, 4An, 4Bn, 4Cn, 4Dn Receiver 5,5A, 5B, 5C, 5D Heat sink 5e, 5De End face
51,51A, 51B, 51C, 51D Buried surface 52,52A, 52C, 52D Exposed surface
53,53B, 53D Inclined surface 54 Protrusion 6 Insulator 6f Frame
7 bolt 10,20,30 reactor 100 mount

Claims (6)

磁性コアの外周に、巻線を螺旋状に巻回してなるコイルが配置されたリアクトルに用いられるコイル成形体であって、
前記コイルを、その自由長よりも圧縮した状態に保持する樹脂成形部と、
前記コイルの外周に配置されて、前記樹脂成形部の構成樹脂により固定された放熱板とを具え、
前記放熱板は、埋設面と露出面とを具え、前記埋設面は、前記コイル側に配置され、前記樹脂成形部から露出されない面であり、前記露出面は、この埋設面に対向し、前記樹脂成形部から露出される面であり、
前記放熱板において前記埋設面と前記露出面との間の端面領域に、前記樹脂成形部の構成樹脂に引っ掛かることで放熱板の脱落を防止する掛止部を有することを特徴とするコイル成形体。
A coil molded body used for a reactor in which a coil formed by spirally winding a winding is disposed on the outer periphery of a magnetic core,
A resin molded part for holding the coil in a compressed state than its free length;
A heat sink disposed on the outer periphery of the coil and fixed by a resin component of the resin molded portion;
The heat dissipation plate includes an embedded surface and an exposed surface, the embedded surface is a surface that is disposed on the coil side and is not exposed from the resin molding portion, and the exposed surface is opposed to the embedded surface, and It is the surface exposed from the resin molded part,
In the heat sink, a coil molded body having a hook portion that prevents the heat sink from falling off by being caught by a constituent resin of the resin molding portion in an end surface region between the embedded surface and the exposed surface. .
請求項1に記載のコイル成形体と、
前記コイルの内周に配置された磁性コアとを具えることを特徴とするリアクトル。
The coil molded body according to claim 1,
A reactor comprising a magnetic core disposed on an inner periphery of the coil.
磁性コアと、このコアの外周に配置されたコイルとを具えるリアクトルであって、
前記磁性コアと前記コイルとの組合体の外周を覆う樹脂被覆部と、
前記コイルの外周に配置されて、前記樹脂被覆部の構成樹脂により固定された放熱板とを具え、
前記放熱板は、埋設面と露出面とを具え、前記埋設面は、前記コイル側に配置され、前記樹脂被覆部から露出されない面であり、前記露出面は、この埋設面に対向し、前記樹脂被覆部から露出される面であり、
前記放熱板において前記埋設面と前記露出面との間の端面領域に、前記樹脂被覆部の構成樹脂に引っ掛かることで放熱板の脱落を防止する掛止部を有することを特徴とするリアクトル。
A reactor comprising a magnetic core and a coil disposed on the outer periphery of the core,
A resin coating covering the outer periphery of the combination of the magnetic core and the coil;
A heat sink disposed on the outer periphery of the coil and fixed by a constituent resin of the resin coating portion;
The heat radiating plate includes an embedded surface and an exposed surface, the embedded surface is disposed on the coil side and is a surface that is not exposed from the resin coating portion, and the exposed surface is opposed to the embedded surface, The surface exposed from the resin coating,
The reactor, wherein the heat sink has a hook portion that prevents a heat sink from falling off by being caught by a constituent resin of the resin coating portion in an end surface region between the embedded surface and the exposed surface.
前記放熱板は、矩形板であり、この矩形板の端面のうち、対向する二つの端面は、前記埋設面から前記露出面に向かって先細るテーパ状の面であり、残りの二つの端面は、前記埋設面に対して傾斜した傾斜面であり、
前記掛止部は、前記埋設面と、前記傾斜面とによりつくられる部分であることを特徴とする請求項2又は3に記載のリアクトル。
The heat radiating plate is a rectangular plate, and of the end surfaces of the rectangular plate, two opposing end surfaces are tapered surfaces that taper from the embedded surface toward the exposed surface, and the remaining two end surfaces are , An inclined surface inclined with respect to the buried surface,
4. The reactor according to claim 2, wherein the hooking portion is a portion formed by the embedded surface and the inclined surface.
前記コイル成形体と磁性コアとの組合体の外周が樹脂により覆われていないことを特徴とする請求項2に記載のリアクトル。   3. The reactor according to claim 2, wherein an outer periphery of a combination of the coil molded body and the magnetic core is not covered with a resin. 前記リアクトルの外周に金属製のケースを有していないことを特徴とする請求項2〜5のいずれか1項に記載のリアクトル。   6. The reactor according to any one of claims 2 to 5, wherein a metal case is not provided on an outer periphery of the reactor.
JP2009008206A 2009-01-16 2009-01-16 Reactor and coil molding Expired - Fee Related JP4973890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008206A JP4973890B2 (en) 2009-01-16 2009-01-16 Reactor and coil molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008206A JP4973890B2 (en) 2009-01-16 2009-01-16 Reactor and coil molding

Publications (2)

Publication Number Publication Date
JP2010165951A true JP2010165951A (en) 2010-07-29
JP4973890B2 JP4973890B2 (en) 2012-07-11

Family

ID=42581878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008206A Expired - Fee Related JP4973890B2 (en) 2009-01-16 2009-01-16 Reactor and coil molding

Country Status (1)

Country Link
JP (1) JP4973890B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238659A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Ind Ltd Reactor and manufacturing method of the same
JP2013098253A (en) * 2011-10-28 2013-05-20 Tamura Seisakusho Co Ltd Method for manufacturing insert molded core for coil device, method for manufacturing ring core unit for coil device, method for manufacturing coil device, and coil device
JP2013179186A (en) * 2012-02-28 2013-09-09 Sumitomo Electric Ind Ltd Reactor, component for reactor, converter, and power conversion device
WO2014034335A1 (en) * 2012-08-29 2014-03-06 株式会社村田製作所 Coil component and method for manufacturing same
JP2014096530A (en) * 2012-11-12 2014-05-22 Toyota Motor Corp Reactor and method of manufacturing the same, and electric power conversion device with reactor and method of manufacturing the same
JP2014146657A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Guidance system
CN110310804A (en) * 2019-06-18 2019-10-08 深圳市中电熊猫磁通电子有限公司 A kind of new structural high-frequency high-power transformer
CN112805797A (en) * 2018-10-26 2021-05-14 株式会社自动网络技术研究所 Electric reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534551B2 (en) * 2009-05-07 2014-07-02 住友電気工業株式会社 Reactor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134919A (en) * 1979-04-09 1980-10-21 Toshiba Corp Synthetic resin mold electromagnetic winding
JPS59195726U (en) * 1983-06-15 1984-12-26 株式会社東芝 Insulating resin casting reactor
JPH0263142A (en) * 1988-08-29 1990-03-02 Fujitsu Ltd Molded package and its manufacture
JPH0343096U (en) * 1989-09-06 1991-04-23
JPH0487607U (en) * 1990-11-30 1992-07-30
JPH05114669A (en) * 1991-10-23 1993-05-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06334091A (en) * 1993-05-25 1994-12-02 Seiko Epson Corp Semiconductor device
JPH0714726A (en) * 1993-06-25 1995-01-17 Toshiba Corp Molded coil
JPH08172145A (en) * 1994-12-16 1996-07-02 Texas Instr Japan Ltd Semiconductor device and heat dissipating parts
JP2004193215A (en) * 2002-12-09 2004-07-08 Kitagawa Ind Co Ltd Electronic component and method of manufacturing the same
JP2004236429A (en) * 2003-01-30 2004-08-19 Toyoda Mach Works Ltd Electrical apparatus for vehicle
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit
JP2008198870A (en) * 2007-02-14 2008-08-28 Toyota Motor Corp Housing for accommodating electronic components

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134919A (en) * 1979-04-09 1980-10-21 Toshiba Corp Synthetic resin mold electromagnetic winding
JPS59195726U (en) * 1983-06-15 1984-12-26 株式会社東芝 Insulating resin casting reactor
JPH0263142A (en) * 1988-08-29 1990-03-02 Fujitsu Ltd Molded package and its manufacture
JPH0343096U (en) * 1989-09-06 1991-04-23
JPH0487607U (en) * 1990-11-30 1992-07-30
JPH05114669A (en) * 1991-10-23 1993-05-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06334091A (en) * 1993-05-25 1994-12-02 Seiko Epson Corp Semiconductor device
JPH0714726A (en) * 1993-06-25 1995-01-17 Toshiba Corp Molded coil
JPH08172145A (en) * 1994-12-16 1996-07-02 Texas Instr Japan Ltd Semiconductor device and heat dissipating parts
JP2004193215A (en) * 2002-12-09 2004-07-08 Kitagawa Ind Co Ltd Electronic component and method of manufacturing the same
JP2004236429A (en) * 2003-01-30 2004-08-19 Toyoda Mach Works Ltd Electrical apparatus for vehicle
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit
JP2008198870A (en) * 2007-02-14 2008-08-28 Toyota Motor Corp Housing for accommodating electronic components

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238659A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Ind Ltd Reactor and manufacturing method of the same
JP2013098253A (en) * 2011-10-28 2013-05-20 Tamura Seisakusho Co Ltd Method for manufacturing insert molded core for coil device, method for manufacturing ring core unit for coil device, method for manufacturing coil device, and coil device
JP2013179186A (en) * 2012-02-28 2013-09-09 Sumitomo Electric Ind Ltd Reactor, component for reactor, converter, and power conversion device
WO2014034335A1 (en) * 2012-08-29 2014-03-06 株式会社村田製作所 Coil component and method for manufacturing same
JP2014096530A (en) * 2012-11-12 2014-05-22 Toyota Motor Corp Reactor and method of manufacturing the same, and electric power conversion device with reactor and method of manufacturing the same
JP2014146657A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Guidance system
CN112805797A (en) * 2018-10-26 2021-05-14 株式会社自动网络技术研究所 Electric reactor
CN112805797B (en) * 2018-10-26 2022-10-25 株式会社自动网络技术研究所 Electric reactor
CN110310804A (en) * 2019-06-18 2019-10-08 深圳市中电熊猫磁通电子有限公司 A kind of new structural high-frequency high-power transformer

Also Published As

Publication number Publication date
JP4973890B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4973890B2 (en) Reactor and coil molding
JP5429694B2 (en) Reactor and converter
JP5246502B2 (en) Reactor and converter
JP5263720B2 (en) Reactor component manufacturing method and reactor body manufacturing method
JP2010118610A (en) Reactor
JP5343387B2 (en) Reactor and converter
JP5267240B2 (en) Reactor and converter
WO2012111499A1 (en) Reactor, method for the manufacture thereof, and reactor component
JP4968626B2 (en) Coil molded body and reactor
JP2009194198A (en) Reactor
JP2012209333A (en) Reactor and manufacturing method of the same
JP2009147041A (en) Reactor
JP2012238634A (en) Coil molding and reactor
JP5234517B2 (en) Reactor, reactor manufacturing method, and converter
JP5099523B2 (en) Reactor
US20210358671A1 (en) Reactor
JP2010171312A (en) Reactor
JP2012238659A (en) Reactor and manufacturing method of the same
JP5333798B2 (en) Coil molded body and reactor, and converter
JP5057233B2 (en) Reactor
CN111771252B (en) Electric reactor
JP2011009791A (en) Reactor
JP2011009660A (en) Reactor
CN112840419B (en) Electric reactor
JP2012222089A (en) Method for manufacturing reactor and reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees