JP2010165778A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010165778A
JP2010165778A JP2009005643A JP2009005643A JP2010165778A JP 2010165778 A JP2010165778 A JP 2010165778A JP 2009005643 A JP2009005643 A JP 2009005643A JP 2009005643 A JP2009005643 A JP 2009005643A JP 2010165778 A JP2010165778 A JP 2010165778A
Authority
JP
Japan
Prior art keywords
pattern
interlayer insulating
film
insulating film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009005643A
Other languages
Japanese (ja)
Inventor
Katsunori Okamoto
勝則 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009005643A priority Critical patent/JP2010165778A/en
Publication of JP2010165778A publication Critical patent/JP2010165778A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing semiconductor device that can improve the planarity of an interlayer insulating film, without causing increase in the number of manufacturing steps, by forming an interlayer insulating film having the optimum film thickness, according to the height and interval of a pattern. <P>SOLUTION: The method of manufacturing semiconductor device includes an interlayer insulating film forming step of forming on a substrate 1, an interlayer insulating film 3 of an optimum film thickness T for covering a pattern 2, by computing the optimum film thickness T of the interlayer insulating film 3 to be formed on the substrate 1, according to the vertical and longitudinal ratio K=S/h of pattern interval S and a pattern height h in the pattern 2 of the predetermined shape formed on the substrate 1, and a planarization step of achieving reflow planarization with the heat treatment of the interlayer insulating film 3 formed on the substrate 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体装置の製造方法に関し、さらに詳しくは、パターンを層間絶縁膜にて被覆して平滑化する方法に関する。   The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of smoothing a pattern by covering it with an interlayer insulating film.

単一のディスパージョンヘッドを有する常圧CVD装置を用いた半導体装置の製造方法では、従来より層間絶縁膜としてBPSG(Boro-phospho silicate Glass)膜が用いられている。
BPSG膜を用いた半導体装置の製造では、例えば、図4(A)に示すように、配線2が形成された半導体基板1上にBPSG膜3を形成し、次に図4(B)に示すように、BPSG膜3をリフロー平坦化するために熱処理を行う。次いで、図4(C)に示すように、BPSG膜3上に導体配線4を形成する(従来技術1)。なお、図4(B)における複数の矢印は加熱を表現している。
In a manufacturing method of a semiconductor device using an atmospheric pressure CVD apparatus having a single dispersion head, a BPSG (Boro-phospho silicate glass) film is conventionally used as an interlayer insulating film.
In the manufacture of a semiconductor device using a BPSG film, for example, as shown in FIG. 4A, a BPSG film 3 is formed on the semiconductor substrate 1 on which the wiring 2 is formed, and then shown in FIG. As described above, heat treatment is performed to flatten the BPSG film 3 by reflow. Next, as shown in FIG. 4C, conductor wiring 4 is formed on the BPSG film 3 (Prior Art 1). Note that a plurality of arrows in FIG. 4B represent heating.

また、BPSG膜を用いた他の半導体装置の製造方法として、例えば、特許文献1に記載の方法が提案されている。
この方法では、配線が形成された半導体基板上に第1のBPSG膜および第2のBPSG膜を順次形成し、続いて、第1と第2のBPSG膜をリフロー平坦化するために熱処理を行い、次いで、少なくとも第2のBPSG膜部分をエッチバックして平坦化し、その後、平坦化したBPSG膜上に導体配線を形成する(従来技術2)。
As another method for manufacturing a semiconductor device using a BPSG film, for example, a method described in Patent Document 1 has been proposed.
In this method, a first BPSG film and a second BPSG film are sequentially formed on a semiconductor substrate on which wiring is formed, and then heat treatment is performed to reflow planarize the first and second BPSG films. Then, at least the second BPSG film portion is etched back and planarized, and then conductor wiring is formed on the planarized BPSG film (prior art 2).

特開平6−236847号公報JP-A-6-236847

本発明者は、従来技術1で製造された半導体装置における配線の間隔とBPSG膜の平坦度の関係を調べ、その結果を図5に示した。図5のグラフにおいて、横軸は配線の間隔S、縦軸はBPSG膜の平坦度Hであり、◆はボロン濃度3.4%、リン濃度4.5%の場合であり、■はボロン濃度3.4%、リン濃度5.3%の場合であり、△はボロン濃度3.4%、リン濃度6.2%の場合であり、×はボロン濃度3.6%、リン濃度6.9%の場合である。
また、図6は図5における平坦度Hを説明する図であり、aは基板1からBPSG膜3の表面の最も低い位置までの最小高さ、bは基板1からBPSG膜3の表面の最も高い位置までの最大高さであり、BPSG膜3の平坦度HはH=a/b×100%で表される。なお、図5は、図4(A)に示す配線2の高さhが270nm、成膜後(リフロー前)のBPSG膜3の最大高さh1が1.5h=405nmである場合のグラフである。
The inventor investigated the relationship between the wiring interval and the flatness of the BPSG film in the semiconductor device manufactured by the prior art 1, and the result is shown in FIG. In the graph of FIG. 5, the horizontal axis is the wiring spacing S, the vertical axis is the flatness H of the BPSG film, ◆ is the case of boron concentration 3.4% and phosphorus concentration 4.5%, ■ is boron concentration 3.4%, phosphorus The concentration is 5.3%, Δ is the case of boron concentration 3.4% and phosphorus concentration 6.2%, and × is the case of boron concentration 3.6% and phosphorus concentration 6.9%.
6 is a diagram for explaining the flatness H in FIG. 5, where a is the minimum height from the substrate 1 to the lowest position of the surface of the BPSG film 3, and b is the highest of the surface of the BPSG film 3 from the substrate 1. It is the maximum height up to a high position, and the flatness H of the BPSG film 3 is expressed by H = a / b × 100%. FIG. 5 is a graph when the height h of the wiring 2 shown in FIG. 4A is 270 nm, and the maximum height h 1 of the BPSG film 3 after film formation (before reflow) is 1.5 h = 405 nm. It is.

図5より、BPSG膜3の平坦度Hは、BPSG膜3に含まれる不純物の濃度(リン濃度およびボロン濃度)を高くすることで向上できることがわかる。
しかしながら、従来技術1の場合、不純物濃度を高くしても、配線2の間隔Sが約0.8μmを越えると平坦度は悪化する傾向にあり、2.0μm以上の領域では、BPSG膜厚3が一定の場合にBPSG膜の不純物濃度を析出が発生しない最大限に高くしても平坦度Hの向上は見られない。
FIG. 5 shows that the flatness H of the BPSG film 3 can be improved by increasing the concentration of impurities (phosphorus concentration and boron concentration) contained in the BPSG film 3.
However, in the case of the prior art 1, even if the impurity concentration is increased, the flatness tends to deteriorate when the distance S between the wirings 2 exceeds about 0.8 μm, and in the region of 2.0 μm or more, the BPSG film thickness 3 Even if the impurity concentration of the BPSG film is increased to the maximum at which precipitation does not occur, the flatness H is not improved.

また、本発明者は、従来技術1で製造された半導体装置における配線の間隔とPSG膜(リン濃度9%)の平坦度との関係も調べ、その結果を図7に示した。また、比較のために、配線の間隔とBPSG膜(ボロン濃度3.4%、リン濃度5.3%)の平坦度との関係も図7に示した。図7のグラフにおいて、○はPSG膜、◆はBPSG膜のデータである。図7から、PSG膜もBPSG膜と同様に、配線2の間隔Sが約1μmを越えると平坦度が悪化する傾向にあることがわかる。   The inventor also examined the relationship between the wiring interval and the flatness of the PSG film (phosphorus concentration 9%) in the semiconductor device manufactured by the prior art 1, and the result is shown in FIG. For comparison, FIG. 7 also shows the relationship between the wiring interval and the flatness of the BPSG film (boron concentration 3.4%, phosphorus concentration 5.3%). In the graph of FIG. 7, ◯ is the data of the PSG film, and ◆ is the data of the BPSG film. From FIG. 7, it can be seen that the PSG film, like the BPSG film, tends to deteriorate the flatness when the distance S between the wirings 2 exceeds about 1 μm.

したがって、従来技術1では、配線2の間隔Sが約0.8μmを越えた領域においてもBPSG膜3およびPSG膜の平坦度を向上させるまでに至っておらず、導体配線4がBPSG膜3またはPSG膜の凹部において欠落する、導体配線4が断線して半導体装置の品質が劣化する、歩留りが悪くなって生産性も悪化する等の問題が残されている(図4(C)参照)。   Therefore, in the prior art 1, the flatness of the BPSG film 3 and the PSG film has not been improved even in the region where the distance S between the wirings 2 exceeds about 0.8 μm, and the conductor wiring 4 is not BPSG film 3 or PSG. Problems remain such as missing in the recesses of the film, the conductor wiring 4 being disconnected and the quality of the semiconductor device being deteriorated, the yield is lowered, and the productivity is also lowered (see FIG. 4C).

なお、従来技術1の場合、BPSG膜3およびPSG膜の平坦度Hを向上すべく不純物濃度の適正化、熱処理条件の適正化等を図っても、析出物の発生、半導体製品の特性変動等の副作用が発生するため限界がある。また、例えば、リフロー後の平坦度の低いBPSG膜3をエッチバックによって平坦度を高めようとした場合でも、BPSG膜の凹凸がそのまま反映されてしまうので、平坦度を高めることは難しい。   In the case of the prior art 1, even if the impurity concentration is optimized and the heat treatment conditions are optimized in order to improve the flatness H of the BPSG film 3 and the PSG film, the generation of precipitates, the fluctuation of the characteristics of the semiconductor product, etc. There are limitations due to the occurrence of side effects. Further, for example, even when the BPSG film 3 having a low flatness after reflowing is to be improved by etching back, the unevenness of the BPSG film is reflected as it is, so that it is difficult to increase the flatness.

また、従来技術2では、第1と第2のBPSG膜を形成して合計膜厚を厚くすることにより、リフロー平坦化によりBPSG膜全体の平坦度を向上させ、エッチバックによりさらに平坦度を向上させているが、BPSG膜形成工程を2回行う必要があるため、製造工程が増加するという問題がある。
また、従来技術2では、配線の高さおよび間隔に応じた最適なBPSG膜の膜厚、すなわち、できるだけ薄くしながら平坦度を向上できる膜厚については検討されていない。
In the prior art 2, the first and second BPSG films are formed to increase the total film thickness, thereby improving the flatness of the entire BPSG film by reflow planarization and further improving the flatness by etch back. However, since the BPSG film forming process needs to be performed twice, there is a problem that the manufacturing process increases.
Further, in the prior art 2, an optimum film thickness of the BPSG film according to the height and interval of the wiring, that is, a film thickness that can improve the flatness while being as thin as possible is not studied.

リフロー後のBPSG膜を平坦度100%になるまでエッチバックする際、エッチング量が多ければそれだけBPSG膜の材料および成膜時間が無駄になり、かつエッチバック時間も長くなるため、できるだけ少ないエッチング量で薄膜化する必要があり、そのためには、リフロー時にできるだけ平坦度を高めておく方が有利である。
従来技術2のように、膜厚の厚いBPSG膜を形成すればリフロー後の平坦度は向上するが、BPSG膜を厚く形成すれば材料および成膜時間の無駄が多くなる。それに加え、製造しようとする半導体装置全体を薄型化するためには、リフロー後の厚いBPSG膜を薄膜化しなければならないためエッチング量が増加し、エッチバック時間も長くなる。
When etching back the BPSG film after reflow until the flatness reaches 100%, the higher the etching amount, the more the material and film formation time of the BPSG film will be wasted, and the etch back time will be longer. Therefore, it is advantageous to increase the flatness as much as possible during reflow.
If a thick BPSG film is formed as in prior art 2, the flatness after reflow is improved, but if the BPSG film is formed thick, material and film formation time are wasted. In addition, in order to reduce the thickness of the entire semiconductor device to be manufactured, the thick BPSG film after reflow must be thinned, so that the etching amount increases and the etch back time also increases.

本発明は、このような問題点を解決するためになされたものであり、パターンの高さおよび間隔に応じた最適な膜厚で層間絶縁膜を形成することにより、製造工程数を増加させることなく層間絶縁膜の平坦度を向上させることができる半導体装置の製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and by increasing the number of manufacturing steps by forming an interlayer insulating film with an optimum film thickness according to the height and interval of the pattern. An object of the present invention is to provide a method of manufacturing a semiconductor device that can improve the flatness of an interlayer insulating film.

かくして、本発明によれば、基板上に形成された所定形状のパターンにおけるパターン間隔Sとパターン高さhの縦横比K=S/hに応じて、基板上に形成すべき層間絶縁膜の最適膜厚Tを算出し、前記パターンを覆うように前記最適膜厚Tで層間絶縁膜を基板上に形成する層間絶縁膜形成工程と、基板上の層間絶縁膜を熱処理してリフロー平坦化する平坦化工程とを含む半導体装置の製造方法が提供される。   Thus, according to the present invention, the optimum interlayer insulating film to be formed on the substrate according to the aspect ratio K = S / h between the pattern interval S and the pattern height h in the pattern of a predetermined shape formed on the substrate. A thickness T is calculated, and an interlayer insulating film forming step for forming an interlayer insulating film on the substrate with the optimum film thickness T so as to cover the pattern, and a flat for reflow flattening by heat-treating the interlayer insulating film on the substrate There is provided a method for manufacturing a semiconductor device including a manufacturing step.

本発明によれば、基板上に形成されたパターン上に層間絶縁膜を形成してパターンを被覆する際、パターンの縦横比Kに応じて、できるだけ薄くしながら高い平坦度が得られる最適膜厚Tで層間絶縁膜を形成することができる。
この結果、層間絶縁膜の材料量の抑制および薄膜化の時間の短縮化を図ることができると共に、半導体装置の歩留まりおよび生産性を向上し、かつ高品質な半導体装置を製造することができる。
According to the present invention, when an interlayer insulating film is formed on a pattern formed on a substrate to cover the pattern, an optimum film thickness that provides high flatness while being as thin as possible according to the aspect ratio K of the pattern. An interlayer insulating film can be formed with T.
As a result, it is possible to reduce the amount of material for the interlayer insulating film and shorten the time for thinning, improve the yield and productivity of the semiconductor device, and manufacture a high-quality semiconductor device.

図1(A)〜(D)は本発明の半導体装置の製造方法の実施形態1を示す概略工程図である。1A to 1D are schematic process diagrams showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention. 平坦度90%以上のBPSG膜を得るのに必要なBPSG膜の最適膜厚を求めるための本発明に関する基本データを示すグラフである。It is a graph which shows the basic data regarding this invention for calculating | requiring the optimal film thickness of the BPSG film | membrane required in order to obtain the BPSG film | membrane of 90% or more of flatness. 図3(A)〜(C)は本発明の半導体装置の製造方法の実施形態2を示す概略工程図である。3A to 3C are schematic process diagrams showing Embodiment 2 of the method for manufacturing a semiconductor device of the present invention. 図4(A)〜(C)は従来技術1の半導体装置の製造方法を示す概略工程図である。4A to 4C are schematic process diagrams showing a method of manufacturing a semiconductor device according to Prior Art 1. FIG. 配線間隔とBPSG膜の平坦度との相関性を示す本発明に関するグラフである。It is a graph regarding this invention which shows the correlation with wiring space | interval and the flatness of a BPSG film | membrane. 層間絶縁膜の平坦度を定義する説明図である。It is explanatory drawing which defines the flatness of an interlayer insulation film. 配線間隔とPSG膜の平坦度との相関性を示す本発明に関するグラフである。It is a graph regarding this invention which shows the correlation with wiring space | interval and the flatness of a PSG film | membrane.

本発明の半導体装置の製造方法は、基板上に形成された所定形状のパターンにおけるパターン間隔Sとパターン高さhの縦横比K=S/hに応じて、基板上に形成すべき層間絶縁膜の最適膜厚Tを算出し、前記パターンを覆うように前記最適膜厚Tで層間絶縁膜を基板上に形成する層間絶縁膜形成工程と、基板上の層間絶縁膜を熱処理してリフロー平坦化する平坦化工程とを含むことを特徴とする。 According to the method of manufacturing a semiconductor device of the present invention, an interlayer insulating film to be formed on a substrate according to an aspect ratio K = S / h between a pattern interval S and a pattern height h in a pattern having a predetermined shape formed on the substrate. An optimum film thickness T is calculated, an interlayer insulation film forming step for forming an interlayer insulation film on the substrate with the optimum film thickness T so as to cover the pattern, and a reflow planarization by heat-treating the interlayer insulation film on the substrate And a planarization step.

ここで、「半導体装置」とは基板上にトランジスタ、サイリスタ、ダイオード、メモリ、キャパシタ、抵抗、コイル等の素子が形成された半導体装置であり、「パターン」とは配線パターン、素子パターン、および配線パターンと素子パターンが混在する複合パターンを包含する。
本発明において、基板としては、特に限定されず、例えば半導体基板、SOI基板、ガラス基板、セラミック基板等が挙げられる。
この半導体装置の製造方法において、層間絶縁膜の材料は特に限定されないが、BPSG膜、PSG(Phospho-silicate Glass)膜が適用可能であり、PSG膜より低温で成膜およびリフローできる上でBPSG膜が好ましい。これらは一般に化学気相成長法(CVD法)により成膜することができる。
Here, the “semiconductor device” is a semiconductor device in which elements such as a transistor, a thyristor, a diode, a memory, a capacitor, a resistor, and a coil are formed on a substrate, and the “pattern” is a wiring pattern, an element pattern, and a wiring. A composite pattern in which a pattern and an element pattern are mixed is included.
In the present invention, the substrate is not particularly limited, and examples thereof include a semiconductor substrate, an SOI substrate, a glass substrate, and a ceramic substrate.
In this semiconductor device manufacturing method, the material of the interlayer insulating film is not particularly limited, but a BPSG film and a PSG (Phospho-silicate Glass) film are applicable, and the BPSG film can be formed and reflowed at a lower temperature than the PSG film. Is preferred. These can be generally formed by chemical vapor deposition (CVD).

本発明は、上述の各種基板上にパターンを有する半導体装置の製造過程において、平坦化工程での層間絶縁膜の平坦度90%以上の平坦化を容易とするために、パターンの高さと間隔およびリフロー平坦化により得られる層間絶縁膜の平坦度を考慮した最適膜厚Tで、パターンを覆うように基板上に層間絶縁膜を形成する。ここで、最適膜厚Tとは、基板から層間絶縁膜の表面の任意の位置の高さを意味し、例えば、基板から層間絶縁膜の表面の最も高い高さまたは最も低い高さである。
つまり、本発明は、パターンの縦横比K(=パターン間隔S/パターン高さh)と、リフロー平坦化により得られる層間絶縁膜の平坦度Hとの関係に着目することにより、できるだけ薄い膜厚(最適膜厚T)で層間絶縁膜を形成し、かつリフロー平坦化によって層間絶縁膜の平坦度Hを90%以上に平坦化できる半導体装置の製造方法である。
以下、図面を参照しながら本発明に係る半導体装置およびその製造方法を詳説する。
In the process of manufacturing a semiconductor device having a pattern on the above-described various substrates, the present invention provides a pattern height and interval, and a flatness of the interlayer insulating film in the flattening step to facilitate flattening of 90% or more. An interlayer insulating film is formed on the substrate so as to cover the pattern with an optimum film thickness T in consideration of the flatness of the interlayer insulating film obtained by reflow planarization. Here, the optimum film thickness T means the height of an arbitrary position on the surface of the interlayer insulating film from the substrate, for example, the highest height or the lowest height of the surface of the interlayer insulating film from the substrate.
That is, the present invention pays attention to the relationship between the pattern aspect ratio K (= pattern interval S / pattern height h) and the flatness H of the interlayer insulating film obtained by the reflow flattening, thereby making the film thickness as thin as possible. This is a method of manufacturing a semiconductor device in which an interlayer insulating film is formed with (optimum film thickness T), and the flatness H of the interlayer insulating film can be planarized to 90% or more by reflow planarization.
Hereinafter, a semiconductor device and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1(A)〜(D)は本発明の半導体装置の製造方法の実施形態1を示す概略工程図である。なお、図1において、図4中の要素と同一の要素には同一の符号を付している。
(Embodiment 1)
1A to 1D are schematic process diagrams showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention. In FIG. 1, the same elements as those in FIG. 4 are denoted by the same reference numerals.

<層間絶縁膜形成工程>
この半導体装置の製造方法は、図1(A)に示すように、まず、基板1上に形成された所定形状のパターン2におけるパターンの間隔Sと高さhの縦横比K=S/hに応じて、基板1上に形成すべき層間絶縁膜3の最適膜厚Tを算出し、パターン2を覆うように最適膜厚Tで層間絶縁膜3を基板1上に形成する。
<Interlayer insulating film formation process>
In this method of manufacturing a semiconductor device, as shown in FIG. 1A, first, a pattern interval S and a height h in an aspect ratio K = S / h in a pattern 2 of a predetermined shape formed on a substrate 1 are set. Accordingly, the optimum film thickness T of the interlayer insulation film 3 to be formed on the substrate 1 is calculated, and the interlayer insulation film 3 is formed on the substrate 1 with the optimum film thickness T so as to cover the pattern 2.

実施形態1では、パターン2として配線(例えばゲート配線)を形成し、単一のディスパージョンヘッドを有する常圧CVD装置を用いて層間絶縁膜3としてBPSG膜(ボロン濃度3.4%、リン濃度5.3%)を形成し、形成すべきBPSG膜の最適膜厚Tは、基板1からBPSG膜3の表面の最も高い位置までの最大高さとして算出されている。
前記不純物濃度のBPSG膜の最適膜厚Tは、図2に示すデータに基いて算出される。
In the first embodiment, a wiring (for example, a gate wiring) is formed as the pattern 2, and a BPSG film (boron concentration: 3.4%, phosphorus concentration) is used as the interlayer insulating film 3 by using an atmospheric pressure CVD apparatus having a single dispersion head. The optimum film thickness T of the BPSG film to be formed is calculated as the maximum height from the substrate 1 to the highest position on the surface of the BPSG film 3.
The optimum film thickness T of the BPSG film having the impurity concentration is calculated based on the data shown in FIG.

図2に示すデータは、図5に示すデータに基くものであって、配線2の縦横比K=S/hに対して、平坦度Hが90%以上(100%を含む)のBPSG膜を得るために必要なBPSG膜の最適膜厚Tを求めるグラフである。図2において、縦軸は最適膜厚Tと配線2の高さhの比T/hであり、横軸は配線2の縦横比K=S/hである。ここで、平坦度Hとは、図6で説明したように、H=a/b×100(%)で表される。なお、図2では、ボロン濃度3.4%およびリン濃度5.3%のBPSG膜の場合が代表的に例示されており、本発明ではボロンおよびリンの濃度に応じて図2のようなデータを取得する。   The data shown in FIG. 2 is based on the data shown in FIG. 5, and a BPSG film having a flatness H of 90% or more (including 100%) with respect to the aspect ratio K = S / h of the wiring 2 is used. It is a graph which calculates | requires the optimal film thickness T of the BPSG film | membrane required in order to obtain. In FIG. 2, the vertical axis represents the ratio T / h between the optimum film thickness T and the height h of the wiring 2, and the horizontal axis represents the aspect ratio K = S / h of the wiring 2. Here, the flatness H is represented by H = a / b × 100 (%) as described in FIG. 2 representatively illustrates the case of a BPSG film having a boron concentration of 3.4% and a phosphorous concentration of 5.3%. In the present invention, data as shown in FIG. 2 is shown depending on the boron and phosphorus concentrations. To get.

図2に示すように、本発明では、配線2の縦横比Kが3未満(K<3)の場合、層間絶縁膜形成工程において、BPSG膜3の最適膜厚T(図1(A)参照)を配線高さhの1.5倍以上(T/h≧1.5)とすることで、その後の平坦化工程によってBPSG膜3を平坦度90%以上にリフロー平坦化することができる。
よって、K<3の場合にできるだけ薄いBPSG膜を形成するには、最適膜厚T=1.5hに設定し、例えば、配線高さhが0.4μmのとき、BPSG膜の最適膜厚Tを0.4×1.5=0.6(μm)とする。
As shown in FIG. 2, in the present invention, when the aspect ratio K of the wiring 2 is less than 3 (K <3), the optimum film thickness T of the BPSG film 3 (see FIG. 1A) in the interlayer insulating film forming step. ) At least 1.5 times the wiring height h (T / h ≧ 1.5), the BPSG film 3 can be reflow flattened to a flatness of 90% or higher in the subsequent flattening step.
Therefore, in order to form a BPSG film as thin as possible when K <3, the optimum film thickness T = 1.5 h is set. For example, when the wiring height h is 0.4 μm, the optimum film thickness T of the BPSG film is set. Is 0.4 × 1.5 = 0.6 (μm).

また、図2に示すように、本発明では、配線2の縦横比Kが3〜10(3≦K≦10)の場合、層間絶縁膜形成工程において、BPSG膜の最適膜厚TをT=h×(K−1.5)に設定することで、その後の平坦化工程によってBPSG膜3を平坦度90%以上にリフロー平坦化することができる。
よって、例えば、縦横比Kが5、配線高さhが0.4μmのとき、BPSG膜の最適膜厚Tを0.4×(5−1.5)=1.4(μm)とする。
なお、常圧CVD装置の性能上、一度に1.4μmのBPSG膜3を形成できない場合は、2回に分けて合計膜厚1.4μmのBPSG膜を形成してもよい。
As shown in FIG. 2, in the present invention, when the aspect ratio K of the wiring 2 is 3 to 10 (3 ≦ K ≦ 10), the optimum film thickness T of the BPSG film is set to T = By setting to h × (K−1.5), the BPSG film 3 can be reflow planarized to a flatness of 90% or more by a subsequent planarization process.
Therefore, for example, when the aspect ratio K is 5 and the wiring height h is 0.4 μm, the optimum film thickness T of the BPSG film is set to 0.4 × (5-1.5) = 1.4 (μm).
If the BPSG film 3 having a thickness of 1.4 μm cannot be formed at a time due to the performance of the atmospheric pressure CVD apparatus, the BPSG film having a total film thickness of 1.4 μm may be formed in two steps.

また、図2に示すように、K<3の場合、3≦K≦10の場合およびK<10の場合において、BPSG膜3の最大厚みTと配線2の高さhとの比T/hが8.5を超えると、形成したBPSG膜3にクラックが発生することが分かっている。
したがって、K<3の場合と3≦K≦10の場合において、BPSG膜の最大厚みbの上限は、比T/h<8.5となる値であり、例えば、配線2の高さhが0.4μmのときに許されるBPSG膜3の最大膜厚は21.3μm未満である。
なお、配線縦横比Kが10を超える場合、BPSG膜3の最適膜厚TをT=h×(K−1.5)の算出式に適用してもクラック発生を回避することはできず、この場合は後述する実施形態2の方法で対応する。
As shown in FIG. 2, when K <3, the ratio T / h between the maximum thickness T of the BPSG film 3 and the height h of the wiring 2 when 3 ≦ K ≦ 10 and K <10. It is known that cracks occur in the formed BPSG film 3 when the value exceeds 8.5.
Therefore, in the case of K <3 and 3 ≦ K ≦ 10, the upper limit of the maximum thickness b of the BPSG film is a value satisfying the ratio T / h <8.5. For example, the height h of the wiring 2 is The maximum thickness of the BPSG film 3 allowed at 0.4 μm is less than 21.3 μm.
In addition, when the wiring aspect ratio K exceeds 10, even if the optimum film thickness T of the BPSG film 3 is applied to the calculation formula of T = h × (K−1.5), generation of cracks cannot be avoided. This case is dealt with by the method of Embodiment 2 described later.

<平坦化工程>
図1(A)に示すように、配線2を有する基板1上にBPSG膜3を最適膜厚Tで成膜した後、BPSG膜3を例えば900〜950℃で10〜30分間熱処理することにより、図1(B)に示すように、BPSG膜3をリフロー平坦化する。この平坦化されたBPSG膜3は平坦度Hが90%以上となる。なお、図1(B)における複数の矢印は加熱を表現している。
下地段差である配線2の高さhと配線2の間隔Sの比である縦横比K=S/hに応じた最適膜厚TでBPSG膜3を形成しているため、この熱処理によってBPSG膜3は液状化し平坦になりえる充分な量があるため、90%以上の高い平坦度Hを得ることができる。
<Planarization process>
As shown in FIG. 1A, after forming a BPSG film 3 with an optimum film thickness T on a substrate 1 having wirings 2, the BPSG film 3 is heat-treated at 900 to 950 ° C. for 10 to 30 minutes, for example. As shown in FIG. 1B, the BPSG film 3 is reflow flattened. The flattened BPSG film 3 has a flatness H of 90% or more. Note that a plurality of arrows in FIG. 1B represent heating.
Since the BPSG film 3 is formed with the optimum film thickness T corresponding to the aspect ratio K = S / h which is the ratio of the height h of the wiring 2 which is the base step and the interval S between the wirings 2, the BPSG film is formed by this heat treatment. Since 3 has a sufficient amount that can be liquefied and flattened, a high flatness H of 90% or more can be obtained.

<その他の工程>
平坦化工程の後、図1(C)に示すように、BPSG膜3を所定膜厚まで薄膜化する薄膜化工程を行なってもよい。薄膜化処理は、例えば、エッチングまたは化学機械研磨を用いることができる。なお、平坦化工程後のBPSG膜3の膜厚が所定膜厚まで薄ければ薄膜化工程は省略される。
また、薄膜化工程の後、図1(D)に示すように、BPSG膜3上に導体配線4を形成してもよい。
<Other processes>
After the planarization step, as shown in FIG. 1C, a thinning step for thinning the BPSG film 3 to a predetermined thickness may be performed. For the thinning treatment, for example, etching or chemical mechanical polishing can be used. If the thickness of the BPSG film 3 after the flattening step is thin to a predetermined thickness, the thinning step is omitted.
Further, after the thinning step, the conductor wiring 4 may be formed on the BPSG film 3 as shown in FIG.

なお、この実施形態1において、基板上の配線2のパターン間隔Sが、K<3と3≦K≦10の両方を含む場合は、最も広いパターン間隔Sに応じた最適膜厚TのBPSG膜3を形成すればよい。   In the first embodiment, when the pattern interval S of the wiring 2 on the substrate includes both K <3 and 3 ≦ K ≦ 10, the BPSG film having the optimum film thickness T corresponding to the widest pattern interval S 3 may be formed.

(実施形態2)
図3(A)〜(C)は本発明の半導体装置の製造方法の実施形態2を示す概略工程図である。なお、図3において、図1中の要素と同一の要素には同一の符号を付している。
実施形態2では、図3(A)に示すように、配線2のパターンがK>10となるパターン間隔Sを有する場合に、層間絶縁膜形成工程の前に、K>10となるパターン間にダミーパターン2aを形成してK≦10に調整するパターン間調整工程が行われる。これにより、配線2とダミーパターン2aとの間隔S1はK≦10を満たすようになる。
なお、1つのダミーパターン2aでK≦10を満たさなければ、2つ以上のダミーパターンを配線2、2間に形成するか、あるいは1つのダミーパターンの幅を広くしてK≦10を満たすようにすればよい。
(Embodiment 2)
3A to 3C are schematic process diagrams showing Embodiment 2 of the method for manufacturing a semiconductor device of the present invention. In FIG. 3, the same elements as those in FIG. 1 are denoted by the same reference numerals.
In the second embodiment, as shown in FIG. 3A, when the pattern of the wiring 2 has a pattern interval S that satisfies K> 10, before the interlayer insulating film forming step, between the patterns that satisfy K> 10. An inter-pattern adjustment process is performed in which the dummy pattern 2a is formed and K ≦ 10 is adjusted. As a result, the interval S 1 between the wiring 2 and the dummy pattern 2a satisfies K ≦ 10.
If K ≦ 10 is not satisfied with one dummy pattern 2a, two or more dummy patterns are formed between the wirings 2 and 2, or the width of one dummy pattern is widened to satisfy K ≦ 10. You can do it.

ダミーパターン2aは、基板1上に配線2を形成するのと同時に、かつ配線2と同じ高さhで形成することができるが、ダミーパターン2aを形成する領域は、能動素子を配置する領域のみでよい。
つまり、基板1上の配線2を形成する領域にトランジスタ、サイリスタ、メモリ、ダイオード、キャパシタ、抵抗、コイル等の能動素子が配置される場合、BPSG膜3は高い平坦度を要求されるため、能動素子が配置される配線形成領域にダミーパターン2aを形成する。なお、この場合、能動素子は、配線2と同一面上に配置される場合と配線2より上層に配置される場合の少なくとも一方を含む。
一方、能動素子を配置しない領域であって、K>10を満たす配線パターンの場合、その上に形成したBPSG膜はリフローによる平坦度90%以上を要求されないため、このような場合には、ダミーパターンを形成しなくてもよい。
The dummy pattern 2a can be formed simultaneously with the formation of the wiring 2 on the substrate 1 and at the same height h as the wiring 2. However, the dummy pattern 2a is formed only in the region where the active element is disposed. It's okay.
In other words, when active elements such as transistors, thyristors, memories, diodes, capacitors, resistors, and coils are arranged in the region where the wiring 2 is formed on the substrate 1, the BPSG film 3 is required to have a high flatness. A dummy pattern 2a is formed in a wiring formation region in which elements are arranged. In this case, the active element includes at least one of a case where the active element is arranged on the same plane as the wiring 2 and a case where the active element is arranged in a layer above the wiring 2.
On the other hand, in the case where the active element is not arranged and the wiring pattern satisfies K> 10, the BPSG film formed thereon is not required to have a flatness of 90% or more by reflow. It is not necessary to form a pattern.

その後、図3(B)に示すように、配線2およびダミーパターン2aを覆うように基板1上にBPSG膜3を形成する。K≦10に配線2とダミーパターン2aの間隔S1が調整されているため、BPSG膜3にクラックが発生しない最適膜厚TでBPSG膜3を成膜することができる。
次に、図3(C)に示すように、BPSG膜3を熱処理してリフロー平坦化する。
その後は、図1(C)および図1(D)と同様に、BPSG膜3を薄膜化し、その上に導体配線4を形成してもよい。
Thereafter, as shown in FIG. 3B, a BPSG film 3 is formed on the substrate 1 so as to cover the wiring 2 and the dummy pattern 2a. Since the distance S 1 between the wiring 2 and the dummy pattern 2 a is adjusted so that K ≦ 10, the BPSG film 3 can be formed with an optimum film thickness T that does not cause cracks in the BPSG film 3.
Next, as shown in FIG. 3C, the BPSG film 3 is heat-treated and reflow planarized.
Thereafter, as in FIGS. 1C and 1D, the BPSG film 3 may be thinned and the conductor wiring 4 may be formed thereon.

(他の実施形態)
1.前記実施形態では、層間絶縁膜としてBPSG膜の場合について説明したが、これに限定されることなく、その他の絶縁膜(例えばPSG膜)でもよい。
2.前記実施形態では、CVD装置として常圧CVD装置を用いた場合で説明したが、これに限定されることなく、その他のCVD装置(例えば減圧CVD装置)にも同様に適用できることはいうまでもない。また、CVD装置は、ディスパージョンヘッドが単一でも複数でもよい。
3.前記実施形態では、基板上のパターンとして配線パターンの場合を例示したが、これに限定されることはなく、素子パターンまたは配線パターンと素子パターンが混在する複合パターンでもよい。
4.前記実施形態では、基板上のパターンを層間絶縁膜にて平坦に被覆する場合を例示したが、さらにその上にパターンおよび層間絶縁膜を形成する複層構造の半導体装置を形成する場合にも本発明は適用可能である。
(Other embodiments)
1. In the above embodiment, the case where the BPSG film is used as the interlayer insulating film has been described. However, the present invention is not limited to this, and other insulating films (for example, PSG films) may be used.
2. In the above embodiment, the case where the atmospheric pressure CVD apparatus is used as the CVD apparatus has been described. However, the present invention is not limited to this, and it is needless to say that the present invention can be similarly applied to other CVD apparatuses (for example, a low pressure CVD apparatus). . The CVD apparatus may have a single dispersion head or a plurality of dispersion heads.
3. In the above embodiment, the wiring pattern is exemplified as the pattern on the substrate. However, the present invention is not limited to this, and an element pattern or a composite pattern in which the wiring pattern and the element pattern are mixed may be used.
4). In the above-described embodiment, the case where the pattern on the substrate is covered flat with the interlayer insulating film is exemplified. However, the present invention is also applicable to the case where a semiconductor device having a multilayer structure in which the pattern and the interlayer insulating film are further formed thereon is formed. The invention is applicable.

本発明の半導体装置の製造方法は、トランジスタ、サイリスタ、ダイオード、メモリ、キャパシタ、抵抗、コイル等の素子の素子パターン、配線パターン、および素子パターンと配線パターンが混在する複合パターンを有する半導体装置の製造に適用可能である。   The method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device having an element pattern of a transistor, a thyristor, a diode, a memory, a capacitor, a resistor, a coil or the like, a wiring pattern, and a composite pattern in which the element pattern and the wiring pattern are mixed. It is applicable to.

1 基板
2 パターン(配線)
2a ダミーパターン
3 層間絶縁膜(BPSG膜)
4 導体配線
h 高さ
S、S1 間隔
T 最適膜厚
1 substrate 2 pattern (wiring)
2a Dummy pattern 3 Interlayer insulating film (BPSG film)
4 Conductor wiring h Height S, S 1 interval T Optimal film thickness

Claims (8)

基板上に形成された所定形状のパターンにおけるパターン間隔Sとパターン高さhの縦横比K=S/hに応じて、基板上に形成すべき層間絶縁膜の最適膜厚Tを算出し、前記パターンを覆うように前記最適膜厚Tで層間絶縁膜を基板上に形成する層間絶縁膜形成工程と、
基板上の層間絶縁膜を熱処理してリフロー平坦化する平坦化工程とを含むことを特徴とする半導体装置の製造方法。
The optimum film thickness T of the interlayer insulating film to be formed on the substrate is calculated according to the aspect ratio K = S / h of the pattern interval S and the pattern height h in the pattern of a predetermined shape formed on the substrate, An interlayer insulating film forming step of forming an interlayer insulating film on the substrate with the optimum film thickness T so as to cover a pattern;
A method of manufacturing a semiconductor device, comprising: a planarization step of performing a reflow planarization by heat-treating an interlayer insulating film on a substrate.
前記最適膜厚Tは、K<3のときT=1.5hであり、K=3〜10のときT=h×(K−1.5)である請求項1に記載の半導体装置の製造方法。   2. The semiconductor device manufacturing method according to claim 1, wherein the optimum film thickness T is T = 1.5 h when K <3 and T = h × (K−1.5) when K = 3-10. Method. 前記パターンがK>10となるパターン間隔を有する場合に、層間絶縁膜形成工程の前に、K>10となるパターン間にダミーパターンを形成してK≦10に調整するパターン間調整工程をさらに含む請求項1または2に記載の半導体装置の製造方法。   In the case where the pattern has a pattern interval that satisfies K> 10, an inter-pattern adjusting step for adjusting K ≦ 10 by forming a dummy pattern between the patterns that satisfies K> 10 is further performed before the interlayer insulating film forming step. The manufacturing method of the semiconductor device of Claim 1 or 2 containing. 前記ダミーパターンを形成する領域は、能動素子を配置する領域である請求項3に記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 3, wherein the region where the dummy pattern is formed is a region where an active element is disposed. 前記最適膜厚Tは、基板から層間絶縁膜の表面の最も低い高さaと最も高い高さbとの比である平坦度H=a/b×100が90%以上となる膜厚である請求項1〜4のいずれか1つに記載の半導体装置の製造方法。   The optimum film thickness T is such that the flatness H = a / b × 100, which is the ratio of the lowest height a to the highest height b of the surface of the interlayer insulating film from the substrate, is 90% or more. The manufacturing method of the semiconductor device as described in any one of Claims 1-4. 前記層間絶縁膜がBPSG膜またはPSG膜である請求項1〜5のいずれか1つに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film is a BPSG film or a PSG film. 前記層間絶縁膜が化学気相成長法によって形成される請求項1〜6のいずれか1つに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film is formed by a chemical vapor deposition method. 平坦化工程の後、層間絶縁膜を所定膜厚まで薄膜化する薄膜化工程をさらに含む請求項1〜7のいずれか1つに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, further comprising a thinning step of thinning the interlayer insulating film to a predetermined thickness after the planarization step.
JP2009005643A 2009-01-14 2009-01-14 Method of manufacturing semiconductor device Pending JP2010165778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005643A JP2010165778A (en) 2009-01-14 2009-01-14 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005643A JP2010165778A (en) 2009-01-14 2009-01-14 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2010165778A true JP2010165778A (en) 2010-07-29

Family

ID=42581748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005643A Pending JP2010165778A (en) 2009-01-14 2009-01-14 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2010165778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448491A (en) * 2014-09-24 2016-03-30 三星电机株式会社 Coil unit, method of manufacturing coil unit, thin film inductor, and method of manufacturing thin film inductor
CN109817604A (en) * 2017-11-22 2019-05-28 三星电子株式会社 Semiconductor devices
CN110235229A (en) * 2017-01-17 2019-09-13 株式会社电装 Semiconductor device and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448491A (en) * 2014-09-24 2016-03-30 三星电机株式会社 Coil unit, method of manufacturing coil unit, thin film inductor, and method of manufacturing thin film inductor
CN105448491B (en) * 2014-09-24 2020-02-18 三星电机株式会社 Coil unit and manufacturing method thereof, thin film inductor and manufacturing method thereof
CN110235229A (en) * 2017-01-17 2019-09-13 株式会社电装 Semiconductor device and its manufacturing method
CN109817604A (en) * 2017-11-22 2019-05-28 三星电子株式会社 Semiconductor devices
CN109817604B (en) * 2017-11-22 2023-09-19 三星电子株式会社 Semiconductor device with a semiconductor layer having a plurality of semiconductor layers

Similar Documents

Publication Publication Date Title
TWI548093B (en) Semiconductor devices and methods of forming finfet devices
TWI304246B (en) A liner of a shallow trench isolation modification method
JPH05226480A (en) Manufacture of semiconductor device
US20070144628A1 (en) Intermediate anneal for metal deposition
TW586162B (en) Semiconductor chip mounting wafer
JP2011129690A (en) Method for manufacturing semiconductor device and semiconductor device
JP2010165778A (en) Method of manufacturing semiconductor device
US20150249010A1 (en) Semiconductor device and method of manufacturing same
CN105489481B (en) Manufacturing method of step-type thick gate oxide layer
TWI641117B (en) Semiconductor structure for three-dimensional memory device and manufacturing method thereof
JPH06112192A (en) Manufacture of semiconductor device
JP2978680B2 (en) Method for manufacturing semiconductor device
JPH04245628A (en) Forming method of insulating film
WO2023070624A1 (en) Methods and structures for changing wafer bow
JP2006318941A (en) Semiconductor device and manufacturing method thereof
WO2005074032A1 (en) Semiconductor device and its manufacturing method
JP2009302093A (en) Method of manufacturing semiconductor device
TW533542B (en) Manufacturing method of damascene copper wire
JPH0684802A (en) Vapor phase epitaxy method
TW202119482A (en) Method for manufacturing semiconductor structure and semiconductor structure
JPH07115092A (en) Manufacture of semiconductor device having insulating film
JPH07153755A (en) Manufacture of semiconductor device
JPH08181209A (en) Manufacture of semiconductor device and semiconductor manufacturing device
JPH05275424A (en) Manufacture of semiconductor device
JP2003218116A (en) Semiconductor device and its manufacturing method