JP2010162569A - 射出成形装置および射出成形方法 - Google Patents

射出成形装置および射出成形方法 Download PDF

Info

Publication number
JP2010162569A
JP2010162569A JP2009005977A JP2009005977A JP2010162569A JP 2010162569 A JP2010162569 A JP 2010162569A JP 2009005977 A JP2009005977 A JP 2009005977A JP 2009005977 A JP2009005977 A JP 2009005977A JP 2010162569 A JP2010162569 A JP 2010162569A
Authority
JP
Japan
Prior art keywords
mold
cooling
injection
injection molding
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009005977A
Other languages
English (en)
Inventor
Hirobumi Taniguchi
博文 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009005977A priority Critical patent/JP2010162569A/ja
Publication of JP2010162569A publication Critical patent/JP2010162569A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

【課題】射出成形装置および射出成形方法において、金型内に射出される金属の冷却の均一性を向上するとともに、生産効率を向上することができるようにする。
【解決手段】加熱溶解された金属を射出する射出ノズル部6を有し、一定の射出成形位置に配置された金型60の成形空間内に射出ノズル部6から加熱溶解された金属を射出して成形を行う射出成形装置50であって、内部に設けられた流路に冷却媒体を流通させた状態で金型60に着脱可能に設けられ、射出ノズル部6が金型60に対して接離するための開口部を有し、この開口部内を通して金型60に接離する射出ノズル部6に対向する領域を除く金型60の外周面の略全面を覆って冷却できるようにした冷却支持台7および上冷却部8を備える。
【選択図】図1

Description

本発明は、加熱溶解された金属を金型に射出して成形を行う射出成形装置および射出成形方法に関する。
従来、加熱溶解された金属を金型に射出して成形を行う射出成形装置および射出成形方法が種々提案されている。
例えば、特許文献1には、非晶質合金材料を金型に鋳造する際に非晶質合金材料の鋳込み前は金型を加熱しておき、非晶質合金材料が金型に鋳込まれると同時に金型を急冷して鋳込み合金材料を非晶質化する非晶質合金の冷却方法が記載されている。この冷却方法に用いる装置では、金型の内部に冷媒通過路を設けて金型の冷却を行っている。
また、特許文献2には、関連する技術として、ガラス成形を行う光学素子の製造装置において、下型を滴下位置での冷却部で冷却している状態で溶融ガラスを滴下し、この下型を水平方向に離間して配置された成形位置での冷却部に移動し、成形位置での冷却部で冷却された上型を下型上の溶融ガラスに押圧することで、光学素子の成形を行うものが記載されている。また、本装置は、複数の冷却部によって冷却される全体囲い内に設けられており、溶融ガラスの滴下中や金型の移動中も、金型および溶湯ガラスの冷却が継続される。
特許第3075897号公報 特開2007−186357号公報
しかしながら、上記のような従来の射出成形装置および射出成形方法には、以下のような問題があった。
特許文献1に記載の技術では、金型内に冷媒通過路が設けられているため金型構造が複雑となり、金型も大型化する。このため、金型交換に手間がかかり、複数の金型を用いた連続的な成形を行うことは難しい。そのため、被成形品の生産効率を高めることができないという問題がある。
特許文献2に記載の技術では、冷却部を金型の外部に設けるので、金型の構成は特許文献1の装置に比べて簡素化することはできる。ただし、下型に溶融ガラスに滴下してから、上型の下方に移動して成形を行うため、溶融ガラスは、滴下された溶融ガラスが接する下型と全体囲い内の雰囲気とによって不均一に冷却された後、上型および下型内に保持されて成形され、さらなる冷却が行われる。この結果、不均一な冷却状態で溶融ガラスを成形することになり、このような冷却の不均一性により、湯しわや応力の不均一などが発生しやすくなり成形品質を均質化することができないという問題がある。
特に、特許文献2に記載の技術を、加熱溶解された金属を均質に急冷することが必要な非晶質合金の射出成形に適用すると、非晶質化が不十分な成形品になってしまうという問題がある。
本発明は、上記のような問題に鑑みてなされたものであり、金型内に射出される金属の冷却の均一性を向上することができるとともに、生産効率を向上することができる射出成形装置および射出成形方法を提供することを目的とする。
上記の課題を解決するために、請求項1に記載の発明では、加熱溶解された金属を射出する射出部を有し、一定の射出成形位置に配置された金型の成形空間内に前記射出部から前記加熱溶解された金属を射出して成形を行う射出成形装置であって、内部に設けられた流路に冷却媒体を流通させた状態で前記金型に着脱可能に設けられ、前記射出部が前記金型に対して接離するための開口部を有し、該開口部内を通して前記金型に接離する前記射出部に対向する領域を除く前記金型の外周面の略全面を覆って冷却できるようにした冷却部を備える構成とする。
この発明によれば、冷却媒体を冷却部の流路に流通させた状態で、冷却部を金型に装着することで、開口部内を通して金型に接離する射出部に対向する領域を除く金型の外周面の略全面を覆って冷却を行うことができる。このため、加熱溶解された金属を金型の成形空間内に射出開始する前から射出終了した後までの間、開口部内を通して金型に接離する射出部に対向する領域を除く金型の外周面の略全面を同一の状態で冷却することができる。
このため、加熱溶解された金属が金型の成形空間に射出される前に、金型を全体的に均一に冷却しておくことができる。
そして、冷却部は、金型の外周面を射出部が接離するための開口部に対向する領域を除く範囲で覆っているため、金型を冷却中であっても、冷却部の開口部を通して射出部を金型に接触させ、金型の成形空間内に、加熱溶解された金属を射出することができる。
このため、加熱溶解された金属が成形空間に射出されることで金型に伝導される熱が、冷却部によって、成形空間を囲む金型の外周面から全体的に熱を奪われて、金型の成形空間内の金属が略均一に急冷される。この結果、金型が冷却されていない場合や、冷却されていても均一温度に冷却されていない場合に比べて、金属の冷却の均一性を向上することができる。
そして射出終了後、必要に応じて冷却を続けながら、適宜のタイミングで、冷却部を金型から離脱させることで、成形空間内の金属が冷却された状態の成形品を金型とともに冷却部の外部に取り出すことができる。
そして、金型から外された冷却部に他の金型を装着することで容易に交換することができ、上記のような射出成形を他の金型により繰り返すことができる。これにより、複数の金型を用い生産効率を高く成形品を製造することができる。
本明細書では、「金型の外周面」とは、金型の表面のうち、金型の内部に形成される成形空間と、例えばランナー部など射出部から射出された金属が接触する表面を除く部分を意味する。すなわち、「金型の外周面」は金型の放熱に関する機能上の外周面であり、金型の表面から内部側に形成された凹部であっても、機能上、射出される金属と接しない表面は「金型の外周面」と称する。
また、「開口部内を通して金型に接離する射出部に対向する領域を除く金型の外周面の略全面」とは、例えば、寸法誤差を有する複数の金型に対して、冷却部を円滑に脱着するために必要な隙間や、開口部に射出部を円滑に進退させるために必要な隙間など、金型の外周面全面に対して冷却温度分布にほとんど影響を与えない程度の範囲は、覆われていなくても許容するとの意味である。
請求項2に記載の発明では、請求項1に記載の射出成形装置において、前記射出成形位置と、該射出成形位置から離間した金型退避位置との間で、前記金型を移動させて金型交換を行う金型交換手段を備える構成とする。
この発明によれば、金型交換手段により、未射出の金型を金型退避位置から射出成形位置に移動したり、射出終了後の金型を射出成形位置から金型退避位置まで移動したりすることができ、これにより、複数の金型の交換を行って、連続的に射出成形を行うことができる。
請求項3に記載の発明では、請求項1または2に記載の射出成形装置において、前記冷却部は、前記金型を間に挟んで、該金型に対して着脱可能に設けられた第1の冷却ユニットおよび第2の冷却ユニットと、該第1の冷却ユニットおよび第2の冷却ユニットが前記金型に装着されて前記金型の外周面の略全面を覆う装着位置と、前記第1の冷却ユニットおよび第2の冷却ユニットの少なくともいずれかが前記金型から離間されて前記金型が前記第1の冷却ユニットおよび第2の冷却ユニットの間から取り出し可能となる開放位置との間で、前記第1の冷却ユニットおよび第2の冷却ユニットを相対移動させる冷却ユニット相対移動機構とを備える構成とする。
この発明によれば、冷却ユニット相対移動機構によって、第1の冷却ユニットおよび第2の冷却ユニットを装着位置と開放位置との間で相対移動させることにより、装着位置で金型を第1の冷却ユニットおよび第2の冷却ユニットの間に挟んで金型の外周面の略全面から冷却し、開放位置で金型を第1の冷却ユニットおよび第2の冷却ユニットの間から金型を取り出すことができる。このため、金型の脱着と取り出しを効率よく行うことができる。
請求項4に記載の発明では、請求項3に記載の射出成形装置において、前記第1の冷却ユニットまたは前記第2の冷却ユニットは、前記流路を内部に有する冷却凸部を有し、該冷却凸部は、前記金型の外周面側から前記金型の内部側に形成された凹穴部に挿入可能に設けられた構成とする。
この発明によれば、第1の冷却ユニットまたは第2の冷却ユニットが、冷却凸部を備えるため、冷却凸部を金型の凹穴部に挿入して金型の内部側の領域を冷却することができる。
請求項5に記載の発明では、請求項4に記載の射出成形装置において、前記第1の冷却ユニットまたは前記第2の冷却ユニットは、射出成形時に前記射出部を前記金型に接離するための前記開口部と、射出成形時に前記開口部内に相対的に進出される前記射出部の射出口に対して、前記金型を位置決めして配置する金型位置決め部とを備え、該金型位置決め部は、前記冷却凸部を兼ねる構成とする。
この発明によれば、第1の冷却ユニットまたは第2の冷却ユニットが、開口部と金型位置決め部とを備えるため、金型を金型位置決め部に配置することで、射出成形時に開口部内に相対的に進出される射出部の射出口に対する位置決めを行うことができる。そして、金型位置決め部に含まれる冷却凸部を通して金型の内部側の領域を冷却することができる。
請求項6に記載の発明では、請求項3または4に記載の射出成形装置において、前記第1の冷却ユニットまたは前記第2の冷却ユニットは、射出成形時に前記射出部を前記金型に接離するための前記開口部と、射出成形時に前記開口部内に相対的に進出される前記射出部の射出口に対して、前記金型を位置決めして配置する金型位置決め部とを備える構成とする。
この発明によれば、第1の冷却ユニットまたは第2の冷却ユニットが、開口部と金型位置決め部とを備えるため、金型を金型位置決め部に配置することで、射出成形時に開口部内に相対的に進出される射出部の位置に対する位置決めを行うことができる。
請求項7に記載の発明では、請求項3〜6のいずれかに記載の射出成形装置において、前記第1の冷却ユニットまたは第2の冷却ユニットの温度を計測する温度計測手段と、前記金型に前記金属が射出された後、前記温度計測手段の計測値が一定値になるまで冷却されたことを検知してから、前記冷却ユニット相対移動機構を駆動して前記第1の冷却ユニットおよび第2の冷却ユニットを前記開放位置に相対移動させ、前記金型交換手段によって前記金属が射出された金型を他の金型と交換させる制御手段を備える構成とする。
この発明によれば、制御手段によって、温度計測手段で計測された第1の冷却ユニットまたは第2の冷却ユニットの温度の計測値が一定値になるまで冷却されたことを検知してから、冷却ユニット相対移動機構を駆動して第1の冷却ユニットおよび第2の冷却ユニットを開放位置に相対移動させ、次に金型交換手段によって金属が射出された金型を他の金型と交換させることができる。このため、射出成形を自動で連続的に行うことができる。
温度の一定値は、金型を冷却部から取り出してもよい温度であれば、適宜の温度に設定することができる。例えば、金型を移動することによって成形空間内の金属に慣性力が作用しても成形品の形状や品質に影響しなくなる程度の固化する温度以下であればよい。
請求項8に記載の発明では、請求項1〜7のいずれかに記載の射出成形装置において、前記射出部は、少なくとも、射出成形時に前記金型に近接する表面に断熱部が設けられている構成とする。
この発明によれば、射出部において、射出成形時に前記金型に近接する表面に断熱部が設けられているため、射出成形中に金型と射出部との間の熱交換が抑制される。このため、射出部の近傍であっても、加熱溶解された金属の温度低下が少ない状態で、冷却温度からの温度上昇が少ない金型へ金属を射出することができるから、射出された金属を良好に急冷することができる。
請求項9に記載の発明では、請求項1〜8のいずれかに記載の射出成形装置において、前記加熱溶解する金属の原材料を秤量して供給する原材料供給部と、該原材料供給部から供給された金属の原材料を加熱溶解する溶解部と、前記射出部と一体もしくは前記射出部に連結して設けられ、前記溶解部で溶解された金属溶湯を一定の温度に保温する保温部とを備える構成とする。
この発明によれば、原材料供給部において秤量された原材料を、溶解部によって加熱溶解させて、射出部と一体もしくは射出部に連結して設けられた保温部よって一定の温度に保温してから、金属溶湯を射出することができる。
このため、成形品の体積に対して略過不足のない原材料を安定した温度で金型に供給することができる。
また、合金によって射出成形を行う場合、原材料を固めた母合金を予め他の装置で作製することなく、合金成分ごとの金属を原材料として秤量、混合して合金の金属溶湯を形成し、射出成形を行うことができる。
請求項10に記載の発明では、加熱溶解された金属を射出する射出部によって、一定の射出成形位置に配置された金型の成形空間内に前記加熱溶解された金属を射出する射出工程を有する射出成形方法であって、前記加熱溶解された金属の射出開始までに、前記金型に対して接離する前記射出部に対向する領域を除く前記金型の外周面の略全面を覆う冷却部内に、前記金型を設置する金型設置工程と、該金型設置工程により前記冷却部内に設置された前記金型を、少なくとも前記射出工程の間、前記冷却部によって前記金型の外周面から冷却する金型冷却工程とを備える方法とする。
この発明によれば、加熱溶解された金属の射出開始までに行われる金型設置工程によって、金型を冷却部内に設置し、少なくとも射出工程が行われる間、金型冷却工程を行うことで、冷却部によって金型をその外周面から全体的に冷却することができる。
このため、簡素な構成の金型であっても、射出された金属を全体的に急冷することができる。
また、この発明は、請求項1に記載の射出成形装置を用いて行うことができる射出成形方法となっている。
請求項11に記載の発明では、請求項10に記載の射出成形方法において、前記金型冷却工程の後に、前記金型を前記冷却部から取り出して、他の金型と交換する金型交換工程を備える方法とする。
この発明によれば、金型交換工程により、複数の金型の交換を行いつつ、射出成形を行うことができる。
また、この発明は、請求項2に記載の射出成形装置を用いて行うことができる射出成形方法となっている。
請求項12に記載の発明では、請求項10または11に記載の射出成形方法において、前記金型設置工程は、前記金型を前記冷却部の一部を構成する冷却ユニットに設けられた金型位置決め部に配置して位置決めを行ってから、前記冷却部の他の冷却ユニットを、前記金型位置決め部に配置された前記金型の外周面に配置して行う方法とする。
この発明によれば、金型設置工程を、冷却部の一部を構成する冷却ユニットに設けられた金型位置決め部に配置して位置決めを行ってから、冷却部の他の冷却ユニットを金型位置決め部に配置された金型の外周面に配置して行うため、射出成形時に開口部内に相対的に進出して接離される射出部の位置に対する位置決めを行うことができる。この結果、射出部と、金型の射出部が接離する位置とを位置合わせすることができる。
本発明の射出成形装置および射出成形方法によれば、金型に対して着脱可能に設けられた冷却部によって金型を外周面から全体的に冷却してから、加熱溶解された金属を金型内に射出し、金型を他の金型に容易に交換して他の射出成形を続けることができるので、金型内に射出される金属の冷却の均一性を向上することができるとともに、生産効率を向上することができるという効果を奏する。
本発明の第1の実施形態に係る射出成形装置の概略構成を示す模式的な斜視図である。 本発明の第1の実施形態に係る射出成形装置の制御手段の機能ブロック図である。 本発明の第1の実施形態の溶解ユニットの内部の概略構成を示す模式的な構成図、および原材料供給部および質量測定部の動作を説明する動作説明図である。 本発明の第1の実施形態の射出ノズル部の斜視図である。 本発明の第1の実施形態に係る射出成形装置における金型の載置状態を示す模式的な分解斜視図および斜視図である。 本発明の第1の実施形態に係る射出成形装置の主要部の構成を示す模式的な断面図である。 本発明の第1の実施形態の第1の冷却ユニットの冷却媒体の流路を示す模式的な斜視図である。 本発明の第1の実施形態の第2の冷却ユニットの冷却媒体の流路を示す模式的な斜視図、およびそのA視の平面図である。 本発明の第1の実施形態の金型設置工程および金型冷却工程、ならびに射出工程の様子を示す動作説明図である。 本発明の第1の実施形態の第1変形例に係る第1の冷却ユニット、およびそれに用いる金型を示す模式的な斜視図、およびそのB視の側面図である。 本発明の第1の実施形態の第2変形例に係る第1の冷却ユニット示す模式的な斜視図である。 本発明の第2の実施形態に係る射出成形装置の第1の冷却ユニット、金型、および第2の冷却ユニットの概略構成を示す模式的な分解断面図である。 図12におけるD視の下面図およびE視の上面図である
以下では、本発明の実施の形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
[第1の実施形態]
本発明の第1の実施形態に係る射出成形装置について説明する。
図1は、本発明の第1の実施形態に係る射出成形装置の概略構成を示す模式的な斜視図である。図2は、本発明の第1の実施形態に係る射出成形装置の制御手段の機能ブロック図である。図3(a)は、本発明の第1の実施形態の溶解ユニットの内部の概略構成を示す模式的な構成図である。図3(b)は、本発明の第1の実施形態の原材料供給部および質量測定部の動作を説明する動作説明図である。図4は、本発明の第1の実施形態の射出ノズル部の斜視図である。図5(a)、(b)は、それぞれ本発明の第1の実施形態に係る射出成形装置における金型の載置状態を示す模式的な分解斜視図および斜視図である。図6は、本発明の第1の実施形態に係る射出成形装置の主要部の構成を示す模式的な断面図である。図7は、本発明の第1の実施形態の第1の冷却ユニットの冷却媒体の流路を示す模式的な斜視図である。図8(a)は、本発明の第1の実施形態の第2の冷却ユニットの冷却媒体の流路を示す模式的な斜視図である。図8(b)は、図8(a)におけるA視の平面図である。
本実施形態の射出成形装置50は、図1、図2、図3(a)に示すように、金属20(図3(a)参照)を加熱溶解して金属溶湯20A(図3(a)参照)を形成し、金属溶湯20Aを金型60の成形空間内に射出して冷却固化することで、金型60の成形空間の形状に沿った成形品を製造するものである。
金属20は、鋳造に用いられるどのような金属でも用いることができる。例えば、SUS304のようなステンレス鋼や銀(Ag)などの材料を用いることができる。また、成形品を非晶質合金化することが可能な非晶質合金材料を好適に用いることができる。
非晶質合金とは、複数の金属元素が結晶構造を形成せずに凝固(アモルファス化)した合金のことである。非晶質合金は、複数の金属元素からなる金属原料の溶湯を、ガラス遷移温度以下になるまで急速冷却することにより形成される。非晶質合金は、通常の結晶金属に見受けられるような結晶粒界を有さず、結晶粒界を起因とした粒界腐食(結晶粒界に沿って腐食が進行する現象)を生じないことから、耐食性に優れている。
非晶質合金材料から非晶質合金を成形するには、溶湯が急速冷却される必要があり、部分的に必要な冷却速度より遅い速度で冷却されると結晶化状態で固化される部分が発生し、全体として非晶質合金の性能が劣化してしまう。
非晶質合金の例としては、例えば、チタン(Ti)基合金、鉄(Fe)基合金、ジルコニウム(Zr)基合金、マグネシウム(Mg)基合金などを挙げることができる。
非晶質合金のうち、ガラス遷移領域(結晶化温度からガラス遷移温度を引いた値)が20℃以上である非晶質合金は、特に、金属ガラスと称される場合がある。
このような金属ガラスは、結晶金属のような凝固収縮を生じないことから、成形金型に対する高精度な転写性を有し、さらにガラス遷移領域ではガラスのような熱間プレス加工も可能であることから、成形品の形状自由度、寸法精度、生産性に優れている。また、金属ガラスは、その物性として低ヤング率・高強度であり、さらに熱に対して低膨張である。
射出成形装置50の概略構成は、溶解ユニット1、チャンバー底部2、チャンバー3、天井部4、冷却媒体貯蔵循環部5、および制御ユニット14(制御手段)を備える。
溶解ユニット1は、図1に示すように、内部の雰囲気を減圧した不活性ガス雰囲気に保持することができるように、函型の筐体1bに覆われている。筐体1bの側面には、金属20を内部に投入するために開閉可能に設けられた原材料投入口1aが設けられている。
筐体1bの内部には、図3(a)に示すように、材料供給部15(原材料供給部)、質量測定部16、溶解部17、および射出ノズル部6(射出部)が設けられている。
また、図3(a)には図示しないが、筐体1bの外部には、筐体1bの内部の雰囲気を減圧するため、例えば真空ポンプなどからなる減圧部24と、例えばアルゴン(Ar)ガスなどの不活性ガスを筐体1bの内部に供給する不活性ガス供給部25とが設けられている(図2参照)。
なお、本実施形態では、減圧部24、不活性ガス供給部25は、後述するチャンバー3の内部の雰囲気を制御することもできるようになっている。
材料供給部15は、上側が開口し底面がすり鉢状に形成された容器からなり、底面の中央に開閉可能に設けられた排出口15aが設けられている。これにより、排出口15aを閉止した状態で、原材料投入口1aを通して上方から投入される粒状の金属20を容器内部に貯蔵し、必要に応じて排出口15aを開放して、金属20を下方に放出することができるようになっている。
質量測定部16は、材料供給部15から放出される金属20の質量を秤量して、1回の成形に必要な量の金属20を溶解部17に移動させるものである。
本実施形態では、材料供給部15から放出される金属20を受けて秤量するための皿状の受け部16aと、受け部16a上の金属20の質量を測定する秤量部16cと、受け部16aを秤量部16cの上端部において、傾動可能に支持する傾動機構16bとからなる。
傾動機構16bは、図3(b)に示すように、材料供給部15の排出口15aが開放された場合には、傾動位置が基準位置に設定され、受け部16aが排出口15aの下方で受け面を水平にした状態となるように受け部16aを支持する。また、図3(a)に示すように、排出口15aが閉止されて秤量部16cによる質量の測定が終了した場合には、基準位置から一定角度の傾動を行って受け部16aの受け面を傾斜させ、受け部16a上の金属20を質量測定部16の側方に設けられた溶解部17に滑落させることができるようになっている。
溶解部17は、側面側に加熱機構17aを有する上側に開口した耐熱容器からなり、質量測定部16の側方において、容器の開口が傾動の基準位置の受け部16aより低くなる位置に配置されている。これにより、受け部16aから側方に滑落された金属20を耐熱容器内部に収容し、この収容された金属20を加熱機構17aによって加熱溶解させて、金属溶湯20Aを形成できるようになっている。
加熱機構17aとしては、例えば、金属20を誘導加熱する誘導加熱コイルや、耐熱容器を加熱する加熱ヒータなどの構成を採用することができる。
また、溶解部17の底面部には、溶解部17によって形成された金属溶湯20Aを射出ノズル部6に移送するための溶湯流路19が連結されている。
なお、金属溶湯20Aとして合金溶湯を形成する場合、粒状の金属20を合金溶湯に配合比を有する合金で形成するようにしてもよいが、溶解部17内で合金溶湯を形成してもよい。
例えば、材料供給部15として、合金成分を構成する複数の金属20を分別して収容して1つまたは複数の排出口15aから金属20の金属種類ごとに選択的に放出できる構成を採用し、質量測定部16として、金属種類ごとに必要量を秤量して質量比が調整された複数の金属20を順次溶解部17に滑落させることができる構成を採用すれば、溶解部17内で合金溶湯を形成することができる。
射出ノズル部6は、溶解部17で溶解され、溶湯流路19によって移送された金属溶湯20Aをチャンバー3内の一定の射出成形位置に配置された金型60の内部に射出するものである。
射出ノズル部6の概略構成は、筐体1b内で鉛直方向に立設して設けられ軸方向の中間部に溶湯流路19の端部が接続された管状の固定ノズル部6cと、固定ノズル部6cに対して軸方向に移動可能に連結され筐体1bの上面およびチャンバー底部2を貫通してチャンバー3の内部に高さ可変に進出される昇降ノズル部6bと、昇降ノズル部6bを上下方向に移動させる射出ノズル移動機構22と、溶湯流路19の下方側の固定ノズル部6c内に溶湯流路19から流下された金属溶湯20Aを貯留する耐熱性の固定ノズル底面部21と、固定ノズル底面部21上に貯留された金属溶湯20Aを固定ノズル部6cおよび昇降ノズル部6bの管内部を通して上方に射出する射出機構23とからなる。
昇降ノズル部6bのノズル先端部6a(射出口)は、図3(a)、図4に示すように、昇降ノズル部6bの外周側から管内周面に向かって、管軸方向の内部側に向かって傾斜されたテーパ状の形状を有している。このため、ノズル先端部6aの先端面は、金型の平面部に対して円形の線状に当接できるようになっている。
昇降ノズル部6bおよび固定ノズル部6cの材質は、金属溶湯20Aの保温温度に対する耐熱性がある高融点材料であれば、適宜の材質を採用することができる。例えば、ジルコニア(二酸化ジルコニウム、ZrO)やTi、あるいは、ジルコニアやTiを含む合金などを採用することができる。
また、本実施形態では、ノズル先端部6aの表面およびノズル先端部6aに隣接する昇降ノズル部6bの外周側の表面は、昇降ノズル部6bからの伝熱を抑制する断熱材コート部6d(断熱部)によって覆われている。
昇降ノズル部6bの外周側の表面における断熱材コート部6dは、少なくとも、射出成形時に後述する冷却支持台7の表面と近接する範囲を覆うものとする。
断熱材コート部6dの材質としては、断熱性能および耐熱性を考慮して適宜の材質を採用することができる。例えば、炭化珪素(SiC)、高珪酸ガラス繊維であるシリグラス、炭素繊維強化炭素複合材料(C/Cコンポジット)などを挙げることができる。
固定ノズル部6cの外周部には、溶湯流路19の連結位置の下方側に、溶湯流路19から移送された金属溶湯20Aを一定の温度に保温するための温度保持用ヒータ18(保温部)が設けられている。
温度保持用ヒータ18の保温温度Tは、金属溶湯20Aの溶融状態を保ちつつ、金型60の成形空間60c内に射出したときに適切な冷却速度が得られるような温度に設定する。
射出ノズル移動機構22は、例えば、昇降ノズル部6bの外周に形成された雄ネジを回転ナットで駆動して、昇降ノズル部6bを昇降させるネジ式昇降機構などからなり、チャンバー底部2の内部に設けられている。
射出機構23は、例えば、Arガスを圧力源とするガス圧を用いた機構を採用することができる。
図2に示すように、材料供給部15、質量測定部16、溶解部17、温度保持用ヒータ18、射出ノズル移動機構22、射出機構23、減圧部24、および不活性ガス供給部25は、それぞれ制御ユニット14に電気的に接続され、制御ユニット14から制御信号に応じて、それぞれの動作が制御されるようになっている。
チャンバー底部2は、溶解ユニット1の筐体1b上に断熱して設置された構造部材であり、チャンバー底部2の上面はチャンバー3の底面部3aを構成している。
チャンバー底部2の厚さ方向には、溶解ユニット1から延ばされた昇降ノズル部6bを進退可能に挿通させる貫通孔2aが設けられている。
チャンバー底部2の内部には、射出ノズル移動機構22と、外部から挿入された冷却媒体輸送管10(後述)とが設けられている。
チャンバー3は、図1に示すように、複数の金型60を用いた射出成形を、連続的かつ遠隔的に行うために直方体状に囲われた密閉空間であり、チャンバー底部2の上面で構成された底面部3aの外周は、3つの側面3b、および本体部11で囲まれ、これら側面3bおよび本体部11の上端部には、底面部3aに対向して天井部4が設けられている。
また、チャンバー3は、不図示の減圧部24および不活性ガス供給部25によって、内部の雰囲気が減圧した不活性ガス雰囲気に保持されている。
チャンバー3の内部には、底面部3a上に、冷却支持台7(第1の冷却ユニット)、金型台61、および金型交換アーム9(金型交換手段)が設けられ、天井部4の下面側に上冷却部8(第2の冷却ユニット)が配置されている。
冷却支持台7、上冷却部8等の細部形状は、金型60の外形に合わせて適宜変更すべきものである。
まず、以下の説明に用いる金型60の形状について説明する。
金型60は、図5(a)、図6に示すように、外形が円状の上面60eおよび下面60gを備え、それらの間に円筒面状の側面60fが形成された、全体として略円板ブロック状の金属部材である。
下面60gの中心部には、内部側に向かって、射出成形後の成形品の外形に対応する穴部が彫り込まれ、この穴部の内部が、金属溶湯20Aを射出する成形空間60cを構成している。成形空間60cの形状は、図示の簡略化のため、円柱の端面に円錐台が形成された成形品に対応する形状を描いている。
成形空間60cの下面60g側の端部には、図6に示すように、下面60gから内部側に設けられた平面視円形の段穴部60aと、段穴部60aの底面(図6の上側)の中心に成形空間60cまで貫通し設けられた段穴部60aより小径の開口60bとが設けられている。
段穴部60aの内径は、昇降ノズル部6bのノズル先端部6aを外嵌できる大きさとされている。
成形空間60cの側方において径方向に互いに対向する2箇所には、下面60gから内部側に向かう直方体状の角穴からなる位置決め凹部60d(凹穴部)が設けられている。
各位置決め凹部60dは、段穴部60aの中心に対して精度よく位置出して形成されている。
また、位置決め凹部60dの図6の紙面奥行き方向の大きさ、位置は、本実施形態では、図6の水平方向から見た側面視で、成形空間60cを略覆うことができる大きさ、位置とされている。
なお、模式図のため、図示は省略しているが、位置決め凹部60dの開口部には、位置決めを円滑に行うため面取りが設けられている。
金型60の材質は、射出時の金属溶湯20Aの温度に対する耐熱性がある高融点材料であれば、適宜の材質を採用することができる。例えば、無酸素銅、ジルコニア(二酸化ジルコニウム、ZrO)やTi、あるいは、ジルコニアやTiを含む合金などを採用することができる。
冷却支持台7は、底面部3aの上方で、金型60を一定の射出成形位置に位置決めして配置し、金型60を冷却する冷却ユニットである。
冷却支持台7の概略構成は、底面部3a上に進出された昇降ノズル部6bの上方を跨ぐように設けられた金型60より大径の円板状の支持台部7aと、支持台部7aを底面部3a上に支持する4本の支持脚部7bと、金型60の位置決め凹部60dに嵌合することで、金型60を支持台部7aの上面である合わせ面7dの面内の位置を位置決めする一対の位置決め凸部7cとからなる。
支持台部7aの平面視の中心には、底面部3aから進出される昇降ノズル部6bを挿通可能な貫通孔7e(射出部が金型に対して接離するための開口部)が厚さ方向に貫通して設けられている。
貫通孔7eの内径は、昇降ノズル部6bが貫通孔7eの内部を非接触で円滑に進退できる程度の径として、昇降ノズル部6bの側面との隙間ができるだけ小さくなるようにすることが好ましい。
各位置決め凸部7cの合わせ面7d上の位置は、各位置決め凸部7cが各位置決め凹部60dに嵌合された状態で、金型60の段穴部60aの中心と、貫通孔7eの中心とが同軸上に整列される位置に設定される。
また、各位置決め凸部7cの合わせ面7dからの高さ寸法は、嵌合時に金型60の下面60gが、合わせ面7dに密着して当接できるように、嵌合相手の位置決め凹部60dの深さ寸法よりもわずかに小さい寸法とされる。
なお、模式図のため、図示は省略しているが、位置決め凸部7cの先端部には、位置決めを円滑に行うため面取りが設けられている。
このような構成により、2つの位置決め凹部60dが冷却支持台7の位置決め凸部7cにそれぞれ嵌合されるとともに、金型60の下面60gが冷却支持台7の合わせ面7dに密着して当接された状態では、金型60が射出ノズル部6に対して一定の位置関係に位置決めされる。
本実施形態の射出成形はこの配置位置に設置された金型60に対して行われるので、この配置位置を射出成形位置と称する。
冷却支持台7の内部には、図6、7に示すように、冷却媒体輸送管10から供給される冷却媒体Cを他の冷却媒体輸送管10帰還させて循環させるため、脚部内流路7A、支持台部内流路7B、および凸部内流路7Cで構成される2系統の流路が設けられている。なお、図7は、見易さのため、紙面奥行き側に設けられている位置決め凸部7c、2つの支持脚部7bの図示を省略している。
脚部内流路7Aは、各支持脚部7bの内部に貫通して設けられ、チャンバー底部2の内部に配管された冷却媒体輸送管10と支持台部内流路7Bとに接続される流路である。
支持台部内流路7Bは、図6、7に示すように支持台部7aの内部で合わせ面7dに平行な面内を、貫通孔7eを中心として、外周側から内周側に向かって螺旋状に周回し、凸部内流路7Cの端部に接続される流路である。
凸部内流路7Cは、位置決め凸部7c内で蛇行を繰り返すように設けられ、両端部が2つの支持台部内流路7Bにそれぞれ接続される流路である。
このような流路構成により、対をなす2つの支持脚部7b内の脚部内流路7Aと、一方の位置決め凸部7c内の凸部内流路7Cと、対をなす2つの支持台部内流路7Bとが、一続きの連続的な1系統の流路を形成し、同様の経路が他方の位置決め凸部7cにも形成され、これらにより冷却支持台7の内部を網羅する2系統の流路が形成されている。
上冷却部8は、冷却支持台7上の射出成形位置に配置された金型60に着脱可能に設けられ、冷却支持台7とともに冷却部を構成して、射出成形位置に配置された金型60の外周面の略全面を覆った状態で金型60を冷却する冷却ユニットである。
上冷却部8の形状は、図6、図8(a)、(b)に示すように、射出成形位置に配置された金型60に対向する側に開口し、底部が鉛直上方に位置する全体として有底円筒状の部材である。
上冷却部8は、有底円筒状の底部の上面で、天井部4から鉛直下方に進退可能に設けられた上冷却部移動機構12(冷却ユニット相対移動機構)の先端部に接続され、鉛直方向に移動可能に支持されている。
上冷却部8の円筒部の外径は、支持台部7aの外径と略同等とされ、開口の設けられた軸方向の端部には、支持台部7aの合わせ面7dと密着して当接可能な合わせ面8aが形成されている。
上冷却部8の開口の内周部は、金型60の側面60fに外嵌する円筒内周面8cと、上面内周面8bとからなる。上面内周面8bの深さ方向の位置は、合わせ面8aからの深さが金型60の下面60gから上面60eまでの厚さ(以下、単に金型の厚さと称する)と略同程度に形成されている。このため、上冷却部8の開口の内周部は、金型60の側面60fおよび上面60eを覆う円筒穴状に形成されている。
上面内周面8bの深さ方向の位置が金型60の厚さと同じであると、金型60は、冷却支持台7および上冷却部8によって、外周面の略全面が密着状態、かつ貫通孔7eを除く略密閉状態に覆われるため冷却効率が高くなる。そのため、上面内周面8bは、金型60の厚さと同じ深さの位置に形成されることが最も好ましい。
ただし、金型60の厚さの寸法バラツキを考慮すると、金型60に対して、上冷却部8を円滑に着脱するためには、上面内周面8bは、金型60の厚さと同じ深さの位置に形成することができない場合がある。
この場合は、金型60の厚さよりわずかに深い位置に設定するよりは、わずかに浅い位置に設定することがより好ましい。わずかに浅い位置に設定した場合、金型60の下面60g側の端部がわずかに上冷却部8で覆われないことになるが、全体としては金型60の外周面の略全面を覆っており、さらに上面内周面8bと上面60eとが確実に密着して当接できるため、冷却効率が高くなる。
なお、上面内周面8bと上面60eとの隙間があっても、この隙間による断熱効果が無視できる場合には、わずかに深い設定としてもよい。この場合、合わせ面8aと合わせ面7dとが密着して当接され、金型60の外周面である上面60e、側面60f、下面60gが冷却支持台7および上冷却部8で囲まれて、略全面が略密閉状態に覆われる。
上冷却部8の開口の近傍の側面部8dの外側には、冷却媒体輸送管10に接続された冷却媒体流入口8Aおよび冷却媒体流出口8Bが設けられている。
図6、図8(a)に示すように、上冷却部8の有底円筒状の側面部8dおよび有底円筒状の底部を構成する上面部8eの内部には、それぞれ側面部流路8C、上面部流路8D、および側面部流路8Eが設けられている。
側面部流路8Cは、一端部が、冷却媒体流入口8Aに接続され、上冷却部8の側面部内を上面部8e側に向かって螺旋状に周回し、他端部が上面部流路8Dの一端部80X(図8(b)参照)と接続された流路である。
上面部流路8Dは、上面部8e内を一端部80Xから径方向の対向位置の他端部80Y(図8(b)参照)まで、蛇行を繰り返すように設けられ、他端部80Yにおいて、側面部8d内を開口側に進んでから冷却媒体流出口8Bに接続される側面部流路8Eに接続されている。
このような流路構成により、上冷却部8の側面部8d、上面部8eの内部には、冷却媒体流入口8Aに流入された冷却媒体Cが、側面部流路8Cによって側面部8d内を周回し、上面部流路8Dによって上面部8e内に流通し、側面部流路8Eを通して、冷却媒体流出口8Bに流通して、上冷却部8の内部を網羅する1系統の流路が形成されている。
上冷却部移動機構12の鉛直方向の移動ストロークは、上冷却部8の合わせ面8aを冷却支持台7の合わせ面7dに密着して当接できる位置である装着位置と、金型60を冷却支持台7上から取り出すことができる距離だけ離れた開放位置との間で往復できる距離に設定する。
本実施形態の開放位置は、合わせ面7d、8aとの間の距離が、金型60の厚さと位置決め凸部7cの高さとを加えた距離以上となる位置である。
上冷却部移動機構12は、減圧雰囲気下で1軸方向に進退可能に設けられた適宜の1軸移動ステージや1軸アクチュエータなどを採用することができる。
金型台61は、図1に示すように、複数の金型60を交換可能に収容する棚状の複数の金型載置部61aが設けられた部材であり、本実施形態では冷却支持台7の側方に2台配置されている。
金型台61の各金型載置部61aは、射出成形位置から離間した金型退避位置を構成する。
金型交換アーム9は、射出成形の使用前または使用後の金型60を、金型台61と冷却支持台7上の射出成形位置と金型退避位置との間で移動させて、金型60の交換を行うものである。
本実施形態の金型交換アーム9は、底面部3a状に基端が固定され、任意の金型載置部61aと支持台部7a上の位置との間で、金型60を移動させられるように、例えば、旋回、伸縮、屈曲等の自由度が設定されたロボットアーム9bと、ロボットアーム9bの先端に設けられた金型60を把持するハンド部9aとからなる。
天井部4は、チャンバー3の上部側を密閉して、チャンバー3の天井を構成するもので、上冷却部移動機構12の基端部が取り付けられている。
また、天井部4の側部側からは、図1に示すように、冷却媒体輸送管10が挿入され、特に図示しないが、天井部4の内部を通してチャンバー3内の上冷却部8の冷却媒体流入口8A、冷却媒体流出口8Bに連結されている。チャンバー3内の冷却媒体輸送管10は、上冷却部8の移動量に合わせて進退可能に設けられている。
冷却媒体貯蔵循環部5は、冷却支持台7および上冷却部8を冷却するため、例えば、水などの流体からなる冷却媒体Cを、冷却媒体輸送管10と、冷却支持台7の内部の流路である脚部内流路7A、支持台部内流路7B、凸部内流路7Cと、上冷却部8の内部の流路である側面部流路8C、上面部流路8D、側面部流路8Eとを通して循環させるものである。
冷却媒体貯蔵循環部5の概略構成は、図2に示すように、冷却媒体Cを流路内に循環させるポンプなどからなる冷却媒体循環機構5aと、冷却支持台7および上冷却部8側で加熱された後に冷却媒体貯蔵循環部5内に帰還した冷却冷媒に対して熱交換を行って冷却し、冷却媒体循環機構5aに送出する冷却媒体冷却部5bとからなる。
冷却媒体貯蔵循環部5は、チャンバー底部2および天井部4の側方に配置され、チャンバー底部2および天井部4との間で、それぞれ独立な往復管路を形成する複数の冷却媒体輸送管10によって連結されている。
冷却媒体循環機構5aおよび冷却媒体冷却部5bは、それぞれ制御ユニット14に電気的に接続され、制御ユニット14から制御信号に応じて、それぞれ冷却媒体Cの流量や温度が制御されるようになっている。
制御ユニット14は、射出成形装置50の各装置部分にそれぞれ制御信号を送出して、各装置部分の制御を行うもので、本実施形態では本体部11に内蔵されている。また、特に図示しないが、作業者が制御ユニット14により動作制御を行うための制御データを入力するため、例えばキーボード、マウスなどの操作入力部や、操作画面を表示するためのモニタなどが、本体部11に設けられている。
制御ユニット14の機能構成は、図2に示すように、雰囲気制御部34、冷却制御部33、溶解制御部31、射出動作制御部32、および主制御部30からなる。
雰囲気制御部34は、減圧部24および不活性ガス供給部25に制御信号を送出して、溶解ユニット1およびチャンバー3の内部の減圧雰囲気および不活性ガス雰囲気を制御するものである。
冷却制御部33は、冷却媒体循環機構5aおよび冷却媒体冷却部5bに制御信号を送出して、冷却媒体Cの流量および温度を制御するものである。
溶解制御部31は、材料供給部15、質量測定部16、溶解部17、および温度保持用ヒータ18に制御信号を送出して、1回の射出成形を行う金属20を秤量して加熱溶解して金属溶湯20Aを形成し、金属溶湯20Aを一定温度に保温する制御を行うものである。
射出動作制御部32は、金型交換アーム9、上冷却部移動機構12、射出ノズル移動機構22、および射出機構23に制御信号を送出し、金型の交換動作、上冷却部8の移動動作、昇降ノズル部6bの移動動作、および金属溶湯20Aの射出動作を制御するものである。
主制御部30は、装置の動作シーケンスを制御するため、雰囲気制御部34、冷却制御部33、溶解制御部31、および射出動作制御部32と通信を行い、各制御信号の送出のタイミングを制御するものである。
制御ユニット14の装置構成は、本実施形態では、適宜のハードウェアと、CPU、メモリ、入出力インターフェース、外部記憶装置などからなるコンピュータとで構成され、このコンピュータにより制御プログラムを実行することで上記の各制御機能を実現している。
次に、射出成形装置50の動作について、射出成形装置50を用いた射出成形方法とともに説明する。
図9(a)は、本発明の第1の実施形態の金型設置工程および金型冷却工程の様子を示す動作説明図である。図9(b)は、本発明の第1の実施形態の射出工程の様子を示す動作説明図である。
射出成形装置50を用いた本実施形態の射出成形方法は、金属20を秤量して一定量を加熱溶解して金属溶湯20Aを形成する溶解工程と、金属溶湯20Aを一定温度に保温する保温工程と、金属溶湯20Aを金型60の成形空間60cに射出する射出工程と、金型60に対して接離する昇降ノズル部6bに対向する領域を除く金型60の外周面のほぼ全域を覆う冷却部内に金型60を設置する金型設置工程と、冷却部内に設置された金型60を、少なくとも射出工程の間、冷却部によって金型60をその外周面から冷却する金型冷却工程と、金型60を冷却部から取り出す金型取り出し工程とを備える。
ここで、溶解工程、射出工程および金型取り出し工程はこの順に行い、金型設置工程および金型冷却工程はこの順に行う。また、射出工程における射出開始は、金型冷却工程によって金型60が一定温度まで冷却されてから行い、金型取り出し工程は、金型冷却工程が終了してから行う。このため、溶解工程および射出開始前までの射出工程と、金型設置工程および金型冷却工程の一部とは、並行して実施することができる。
なお、以下の動作は、特に断らない限り、予め制御ユニット14に入力された制御データと、制御ユニット14で実行される制御プログラムとにより自動的に行われる。
まず、以下の工程に先だって、溶解ユニット1およびチャンバー3の内部の雰囲気が、減圧部24および不活性ガス供給部25によって、一定の減圧下の不活性雰囲気に調整される。
また、冷却媒体貯蔵循環部5によって、冷却支持台7および上冷却部8の内部に所定の流量および温度に調整された冷却媒体Cが循環され、冷却支持台7および上冷却部8の表面が、冷却温度Tに冷却されている。
溶解工程では、図3(b)に示すように、材料供給部15の排出口15aを開いて、作業者により予め原材料投入口1aから材料供給部15に投入された金属20を、質量測定部16の受け部16a上に排出する。
質量測定部16では、受け部16a上の金属20を秤量部16cによって秤量し、1回の射出成形に必要な金属20が秤量されたら、制御ユニット14の溶解制御部31に通知して、溶解制御部31により排出口15aを閉止させる。そして、図3(a)に示すように、傾動機構16bを傾動させ、秤量された金属20を溶解部17内に滑落させて供給する。
複数種類の金属20を用いる場合には、上記の工程を金属20の種類の数だけ繰り返す。
溶解部17では、質量測定部16から供給された金属20を加熱機構17aによって、金属20の融点T以上に加熱して溶解させ、金属溶湯20Aを形成する。
金属溶湯20Aは、溶湯流路19を介して、射出ノズル部6内に移送させる。溶湯流路19内を流下する金属溶湯20Aは、固定ノズル底面部21の上面において温度保持用ヒータ18で囲まれた領域に移送される。
以上で、溶解工程が終了する。
保温工程では、温度保持用ヒータ18により温度制御することで、固定ノズル底面部21上の射出ノズル部6内部に移送された金属溶湯20Aが一定の保温温度T(ただし、T>T)になるように保温する。保温温度Tは、射出ノズル部6内部での温度降下を考慮し、ノズル先端部6aから射出される際の射出温度Tが、融点Tより高く、かつ後述する金型冷却工程で冷却された金型60の金型温度Tとの温度差によって必要な冷却速度が得られる温度に設定する。
金型設置工程では、金型交換アーム9を駆動して、金型台61内の未使用の金型60を把持する。そして、この金型60を射出成形位置に移動する。
すなわち、各位置決め凹部60dを冷却支持台7の位置決め凸部7cにそれぞれ嵌合させ、下面60gを合わせ面7dに密着して当接させる。
次に、上冷却部移動機構12によって、上冷却部8を装着位置まで下降させる。これにより、金型60の上面60eおよび側面60fが上冷却部8の上面内周面8bおよび円筒内周面8cによって覆われる状態となる(図9(a)参照)。
この結果、金型60は、射出成形位置に配置されるとともに、冷却支持台7および上冷却部8で構成される冷却部内に配置される。このとき、金型60は、貫通孔7eを通して金型60と接離する昇降ノズル部6bに対向する領域である段穴部60aの範囲を除く略全面が冷却部によって覆われることになる。ここで、略全面というのは、貫通孔7eと昇降ノズル部6bとの間の隙間に対向する下面60gの領域と、金型60の寸法誤差などによって発生しうる合わせ面7dと合わせ面8aとの間の隙間に対向する側面60fの領域からなる小面積の領域は覆われないためである。このような小面積の範囲は、冷却部によって覆われていなくとも金型60の冷却温度分布にほとんど影響を与えないため、金型60が外周面から略均一に冷却させることが可能となる。
また、位置決め凸部7cは、金型60の内部側に設けられた外周面である位置決め凹部60dの内面全部を近接して覆っている。
以上で、金型設置工程を終了する。
なお、金型設置工程および金型冷却工程では、昇降ノズル部6bは貫通孔7eの下方に下降させておく。
金型冷却工程では、金型設置工程で設置された状態に金型60、冷却支持台7、および上冷却部8を保持し、金型60が金型温度Tになるように冷却する。
金型温度Tは、射出温度Tとの温度差によって、必要な冷却速度が得られる温度に設定する。
また、金型温度Tは、一定の形状の金型60に対しては、冷却温度Tの大きさと金型60を冷却支持台7および上冷却部8とで保持した時間によって決まるが、不図示の温度センサーによって、金型温度Tを直接的もしくは間接的に計測できるようにしてもよい。
そして、少なくとも射出工程の間、冷却を継続する。
射出工程では、金型60が金型温度Tになった状態で、射出ノズル移動機構22により、昇降ノズル部6bを上昇させる。
そして、昇降ノズル部6bのノズル先端部6aが、金型60の段穴部60aに当接した状態で、昇降ノズル部6bの移動を停止する(図9(a)の二点鎖線参照)。
このとき、昇降ノズル部6bの先端部には、断熱材コート部6dが設けられているため、ノズル先端部6aが段穴部60aに当接された状態であっても、昇降ノズル部6bは断熱材コート部6dによって断熱されている。このため、段穴部60aおよび貫通孔7eと、昇降ノズル部6bとの間の伝熱は抑制されており、昇降ノズル部6b内を通過する金属溶湯20Aの温度降下を抑制することができる。
次に、射出機構23を駆動し、射出機構23のガス圧によって固定ノズル底面部21上の金属溶湯20Aを上方に射出する。これにより、金属溶湯20Aは射出ノズル部6の内部に沿って上昇し、開口60bを通して成形空間60c内に射出される(図9(b)参照)。なお、射出機構23のガス圧は、成形空間60c内がすべて金属溶湯20Aで満たされるまで保持される。
金属溶湯20Aは、上昇中に、固定ノズル部6c、昇降ノズル部6bからわずかに熱が奪われるが、断熱材コート部6dの断熱効果により昇降ノズル部6bの先端部では、金型温度T程度に冷却された冷却支持台7などから急冷されることはないので、射出温度Tは、温度保持用ヒータ18による保温温度Tよりやや低い程度にとどめることができる。
成形空間60cの内周面は射出温度Tより十分低い金型温度Tに冷却されているため、成形空間60c内に射出された金属溶湯20Aは、この内周面から全体的に急冷され、急速に固化していく。
以上で、射出工程が終了する。
射出工程終了後、成形空間60c内の金属溶湯20Aの固化が進行して、金型60の移動に支障がなくなるまで、冷却支持台7、上冷却部8により金型冷却工程を継続する。
金型冷却工程の終了は、予め、金型の取り出しが可能となる固化状態と、冷却継続時間との関係とを実験的に調べておき、一定の冷却時間が経過したら時点とすればよい。
取り出し可能となる固化状態とは、例えば、金型60を取り出して移動、搬送することによって、成形空間60c内の固化が進行した成形品に、慣性力や衝撃力が作用しても、成形品の形状や品質に影響しない状態を意味する。
金型冷却工程が終了したら、金型取り出し工程を行う。すなわち、上冷却部移動機構12によって、上冷却部8を開放位置まで上昇させる。
そして、金型交換アーム9を駆動して、射出成形が終了した金型60を把持して、冷却支持台7から取り外し、金型台61の金型載置部61aに移載する。
他の射出成形を行う場合には、金型交換アーム9によって、未使用の金型60を把持して、上記と同様の各工程を繰り返す。
チャンバー3内の金型60に対してすべて射出成形が終了したら、チャンバー3の雰囲気を大気圧に開放し、金型台61ごとにチャンバー3の外部に搬出する。そして装置外部で、各金型60を分解して、金属20からなる成形品を脱型する。
このようにして、射出成形装置50によれば、複数の金型60を用いた射出成形を、自動的かつ連続的に行うことができる。
射出成形装置50によれば、冷却支持台7および上冷却部8を備えるため、各金型60には、冷却媒体の流路などの冷却機構を備えなくてもよい。そのため、金型60の形状が簡素になり、小型化を図ることができる。
また、射出成形位置に金型60を着脱するだけで、金型60を容易に交換できる。そのため、予めチャンバー3内に多数の金型60を収容して、金型交換アーム9によって金型60を迅速に交換し、複数の金型60による連続的な射出成形を行えるため、生産効率を向上することができる。
また、射出成形装置50によれば、冷却支持台7、上冷却部8によって、射出ノズル部6のノズル先端部6aを接離する段穴部60aを除く金型60の外周面の略全面が覆われた状態で、金型60の外周面から全体的に金型60を冷却した状態で、金属溶湯20Aを射出する。このため、金型60の外周面で囲まれた成形空間60cの内面が、外周面から全体的に冷却されており、成形空間60c内に射出された金属溶湯20Aを全体的に冷却でき、かつ金属溶湯20Aの射出中も冷却を継続させることができる。
この結果、金型60の内部には、冷却媒体の流路を備えていないにもかかわらず、金型の内部に冷却媒体の流路が設けられているのと略同様な均一性を保ちながら、金属溶湯20Aを急速冷却することができる。
特に、本実施形態では、位置決め凸部7cの内部に凸部内流路7Cが設けられているため、凸部内流路7Cによって、金型60の内部に冷却媒体の流路が形成されているのと同様な効果が生じ、より成形空間60cに近い位置で効率よく冷却を行うことができる。
次に、本実施形態の第1変形例について説明する。
図10(a)は、本発明の第1の実施形態の第1変形例に係る第1の冷却ユニット、およびそれに用いる金型を示す模式的な斜視図である。図10(b)は、図10(a)におけるB視の側面図である。
本変形例は、図10(a)に示すように、上記第1の実施形態の冷却支持台7に代えて、冷却支持台70(第1の冷却ユニット)を備え、これに対応して、金型60に代えて金型60Aを用いるものである。以下、上記第1の実施形態と異なる点を中心に説明する。
冷却支持台70は、上記第1の実施形態の冷却支持台7の各位置決め凸部7cに代えて、位置決め凸部7cの水平方向の一端を支持台部7aの外周部まで同方向に延長した一対の位置決め凸部70c(冷却凸部)を備える。
位置決め凸部70cの支持台部7aの内周側の側端面70aは、金型60Aを、位置決め凸部70cの延設方向に位置決めするための位置決め面を構成しており、貫通孔7eの中心に対して精度よく位置出しして形成されている。
位置決め凸部70cの内部には、特に図示しないが、位置決め凸部7cと同様、位置決め凸部70cの延設方向に沿って凸部内流路7Cと同様な冷却媒体Cの流路が形成されている。
これに対応する金型60Aは、上記第1の実施形態の金型60の位置決め凹部60dに代えて、位置決め凹部60dの水平方向の一端を側面60fまで同方向に延長し、側面60fに貫通させた位置決め凹部60h(凹穴部)を備える。
位置決め凹部60hの延設方向の端部である位置決め面60iは、段穴部60aの中心に対して精度よく位置出しして形成されている。
本変形例によれば、金型60Aを水平に保持して、位置決め凹部60hの開口を位置決め凸部70cの側端面70a側から位置決め凸部70cに嵌め合わせ、合わせ面7d上を水平方向に移動させて、側端面70aと位置決め面60iとが当接されるまで押し込むことで、金型60Aを射出成形位置に配置することができる。
このため、上冷却部8の開放位置を金型60Aの厚さよりわずかに高くするだけで、水平方向から容易に金型60Aを着脱することができる。したがって、上冷却部移動機構12の移動ストロークが上記第1の実施形態に比べて短くて済むので、生産効率をより向上することができる。
また、上記第1の実施形態と比べて、位置決め凸部70cが長くなっているため、金型60Aの内部側の外周面が大きくなり、内部側からの冷却をより促進することができる。
次に、本実施形態の第2変形例について説明する。
図11は、本発明の第1の実施形態の第2変形例に係る第1の冷却ユニット示す模式的な斜視図である。
本変形例は、図11に示すように、上記第1の実施形態の冷却支持台7に代えて、冷却支持台71(第1の冷却ユニット)を備える。以下、上記第1の実施形態と異なる点を中心に説明する。
冷却支持台71は、上記第1の実施形態の冷却支持台7の2つの位置決め凸部7cの上端部にそれぞれ温度センサー74(温度計測手段)を設けたものである。なお、図11は、見易さのため、紙面奥行き側に設けられている位置決め凸部7c、温度センサー74、2つの支持脚部7bの図示を省略している。
温度センサー74は、熱伝導性が良好な金属板に熱電対が埋め込まれたものを採用している。熱電対の出力は、配線74aを通して、支持台部7aおよび支持脚部7bの側部を通して、チャンバー底部2から、本体部11内の制御ユニット14まで導かれ、制御ユニット14の主制御部30に送出されるようになっている。
なお、本変形例の位置決め凸部7cの合わせ面7dからの高さは、温度センサー74の板厚分だけ上記第1の位置決め凸部7cよりも低くしておく。
本変形例によれば、主制御部30は、成形空間60cに近接された各位置決め凸部7cの上端部の温度を温度センサー74によってモニタすることができる。
温度センサー74は、金型60の内部に挿入されるので、この出力値から金型の温度を推定できる。したがって、制御ユニット14は、金型60に金属溶湯20Aが射出される前、温度センサー74の計測値によって金型の温度が金型温度Tになるまで冷却されたことを確実に検知してから、射出動作制御部32を制御して、金型冷却工程から射出工程に移ることができる。
また、温度センサー74は、金型60の内部に挿入されるとともに、成形空間60cに近接された位置決め凸部7cの上端部に配置されるので、この出力値から、成形空間60c内に射出された金属溶湯20Aの温度を精度よく推定することができる。
したがって、温度センサー74の出力による金属溶湯20Aの推定温度に基づいて、金型取り出し工程を行うタイミングを制御することができる。
すなわち、制御ユニット14は、金型60に金属溶湯20Aが射出された後、温度センサー74の計測値が一定値になるまで冷却されたことを検知してから、上冷却部移動機構12を駆動して冷却支持台71および上冷却部8を開放位置に相対移動させ、金型交換アーム9によって金属溶湯20Aが射出された金型60を他の金型60と交換させる制御を行うようにする。
この結果、固化に必要な時間に大きな余裕を持たせることなく、金型取り出し工程を行うことができるので、生産効率を向上させることができる。
なお、温度センサー74の配置位置は、成形空間60cに近接された位置であれば、位置決め凸部7cの上端部には限定されず、例えば、位置決め凸部7cの側面などであってもよい。
また、温度センサー74は、2個には限定されず、金属溶湯20Aの温度を良好に推定することができるならば、3個以上でも、1個でもよい。
本変形例のように、各位置決め凸部7cに温度センサー74を設ける場合、各位置決め凸部7c内には、それぞれ冷却媒体Cの異なる系統の流路が形成されているため、それぞれの流路における冷却性能、あるいは成形品の形状に応じて金型60内に発生する温度分布などによる温度変化を検知することもできる。したがって、温度センサー74の出力に応じて各流路の流速などを調整して、金属溶湯20Aの場所による冷却速度をより均一化するための制御を行うこともできる。
[第2の実施形態]
本発明の第2の実施形態に係る射出成形装置について説明する。
図12は、本発明の第2の実施形態に係る射出成形装置の第1の冷却ユニット、金型、および第2の冷却ユニットの概略構成を示す模式的な分解断面図である。図13(a)は、図12におけるD視の下面図である。図13(b)は、図12におけるE視の上面図である。
本実施形態の射出成形装置51は、図1、図12に示すように、上記第1の実施形態の冷却支持台7および上冷却部8に代えて、冷却支持台72(第1の冷却ユニット)および上冷却部80(第2の冷却ユニット)を備え、これに対応して金型60に代えて金型60Bを用いるものである。以下、上記第1の実施形態と異なる点を中心に説明する。
本実施形態に用いる金型60Bは、図12に示すように、上記第1の実施形態の金型60の位置決め凹部60dを削除し、円筒穴部60j(凹穴部)および位置決め凹部60kを備える。
円筒穴部60jは、段穴部60aの中心軸を挟んで対向する2箇所の位置において上面60eに直交する方向に沿って内部側に形成された円筒穴である。
位置決め凹部60kは、各円筒穴部60jに対して径方向外側で、段穴部60aの中心軸を挟んで対向する2箇所の位置において、下面60gに直交する方向に沿って内部側に形成された位置決め用の凹穴である。位置決め凹部60kは、段穴部60aの中心軸に対して精度よく位置出しして設けられている。
冷却支持台72は、図12および図13(b)に示すように、上記第1の実施形態の冷却支持台7から、各位置決め凸部7cを凸部内流路7Cとともに削除し、合わせ面7d上に、金型60Bを合わせ面7d上で位置決めするために貫通孔7eを挟んで対向する2箇所に位置決め突起72aを設けたものである。
各位置決め突起72aは、金型60Bの各位置決め凹部60kと嵌合されたときに、金型60Bの段穴部60aの中心軸と、支持台部7aの貫通孔7eの中心軸とが整列する位置に形成されている。なお、本実施形態における位置決め突起72aの個数2個は一例であり、位置決め突起72aは3個以上の適宜複数を用意して、さらに冷却効率を高めるようにしてもよい。
本実施形態の射出成形位置は、金型60Bの各位置決め凹部60kを、冷却支持台72の各位置決め突起72aに嵌合させた状態で、下面60gを合わせ面7dに当接させた位置である。
支持台部内流路7Bは、上記第1の実施形態とは異なり、支持台部7aの内部を螺旋状に周回する2系統の独立した流路が、それぞれの端部で脚部内流路7Aに連結されている。
上冷却部80は、冷却支持台72の射出成形位置に配置された金型60Bに着脱可能に設けられ、射出成形位置に配置された金型60Bの外周面の略全面を、冷却支持台72とともに覆った状態で、金型60Bを冷却するための冷却ユニットである。
上冷却部80の外形は、図12、図13(a)に示すように、射出成形位置に配置された金型60Bに対向する側に開口し、底部が鉛直上方に位置する全体として有底円筒状とされる。
上冷却部80は、有底円筒状の底部の外周面である上面80eの中心位置において、上冷却部移動機構12の先端部によって支持されている。
上冷却部80の円筒部の外周面である円筒外周面80dの外径は、支持台部7aの外径と略同等とされ、開口の設けられた軸方向の端部には、支持台部7aの合わせ面7dと密着して当接可能な合わせ面8aが形成されている。
上冷却部80の開口の端部および内周部には、上記第1の実施形態の上冷却部8と同様に、合わせ面8a、円筒内周面8c、および上面内周面8bを有する円筒穴状に形成されている。
ただし、上冷却部80の上面内周面8bには、射出成形位置に配置された金型60Bに円筒内周面8cを嵌合させた状態で、金型60Bの円筒穴部60jに嵌合される円筒突起部80a(冷却凸部)がそれぞれ設けられている。
上冷却部80の底部側の円筒外周面80dには、冷却媒体輸送管10に接続された冷却媒体流入口80Aおよび冷却媒体流出口80Bが設けられている。
上冷却部80の内部は、上冷却部80の外周面および内周面から略一定の肉厚を残してくり抜かれた立体的な空洞が形成され、この空洞内を、冷却媒体流入口80Aから流入した冷却媒体Cが自由に流通して、冷却媒体流出口80Bから流出できるようになっている。
この空洞は、上面内周面8bと上面80eとの間に円板状の上面部流路80Cが形成され、円筒内周面8cと円筒外周面80dとの間に円筒環状の側面部流路80Dが形成され、円筒突起部80aの内部に円柱状の突起部流路80Eが形成され、これらの流路がすべて連通されてなるものである。
次に、射出成形装置51の動作について、上記第1の実施形態と異なる点を中心に説明する。
射出成形装置51を用いた本実施形態の射出成形方法は、上記第1の実施形態と同様に、溶解工程と、保温工程と、射出工程と、金型設置工程と、金型冷却工程と、金型取り出し工程とを備える。
本実施形態の動作との相違点は、金型設置工程、および金型冷却工程の動作のみである。
本実施形態の金型設置工程では、金型交換アーム9を駆動して、金型台61内の未使用の金型60Bを把持する。そして、この金型60Bを射出成形位置に移動する。
すなわち、金型60Bの各位置決め凹部60kを冷却支持台72の各位置決め突起72aにそれぞれ嵌合させ、下面60gを合わせ面7dに密着して当接させる。
次に、上冷却部移動機構12によって、上冷却部80を、各円筒突起部80aが金型60Bの各円筒穴部60jに嵌合する装着位置まで下降させる。これにより、金型60Bの上面60eおよび側面60fが上冷却部8の上面内周面8bおよび円筒内周面8cによって覆われる状態となる。
この結果、金型60Bが射出成形位置に配置されるとともに、冷却支持台72および上冷却部80で構成される冷却部内に、射出ノズル部6のノズル先端部6aを接離するため段穴部60aを除く金型60Bの外周面の略全面が覆われた状態で設置される。
以上で、金型設置工程を終了する。
本実施形態では、予め冷却媒体貯蔵循環部5によって、冷却支持台72および上冷却部80の内部に所定の流量および温度に調整された冷却媒体Cが循環され、冷却支持台72および上冷却部80の表面が、冷却温度Tに冷却されている。
本実施形態の金型冷却工程では、金型設置工程で設置された状態に金型60B、冷却支持台72、および上冷却部80を保持し、金型60Bが金型温度Tになるように冷却する。
そして、少なくとも射出工程の間、冷却を継続する。
上冷却部80の内部では、冷却媒体Cが、冷却媒体流入口80Aから冷却媒体流出口80Bに向かって、上面部流路80C、側面部流路80D、および突起部流路80E内に自由に流通される。また、上冷却部80は、略一定の肉厚を残してくり抜かれた形状とされている。
そのため、上冷却部80の内周面および外周面が全体として略均一に冷却されるので、金型60Bの外周面全体から略均一に熱を奪うことができる。
また、本実施形態は、ノズル先端部6aに対して位置が固定され金型60Bの位置決めを行う第1の冷却ユニットである冷却支持台72は、金型60Bの内部に貫入する流路を有しておらず、移動側の第2の冷却ユニットである上冷却部80の円筒突起部80aが金型60Bの内部に貫入されることにより、成形空間60cに近接した金型内部側から冷却を行う場合の例になっている。
なお、上記の説明では、冷却部が第1の冷却ユニットおよび第2の冷却ユニットに2分割された場合の例で説明したが、冷却部は必要に応じて3分割以上の構成としてもよいし、金型の形状によっては分割しない1つの冷却ユニットから形成してもよい。
例えば、金型が、射出部の先端よりわずかに太い円筒状の形状であれば、冷却部を円筒穴を有する形状と1つの冷却ユニットでも、開口部内を通して金型に接離する射出部に対向する領域を除く金型の外周面の略全面を覆うことができる。
また、上記の説明では、第1の冷却ユニットが固定され、射出部および第2の冷却ユニットが、第1の冷却ユニットに固定された金型に対して進退するものとして説明したが、これらの移動は相対的であって、第2の冷却ユニットや射出部が固定され、他が移動して同様な相対移動を行うようにしてもよい。
また、上記の説明では、金型の内部側に形成された凹穴部に挿入可能に設けられた冷却凸部が、直方体状、円柱状の場合の例で説明したが、これらの形状は一例であって、冷却凸部の形状は、必要に応じて適宜形状を採用することができる。
例えば、金型の成形空間を囲む円筒環状や角形断面を有する管状などの形状を採用してもよい。
成形空間内の金属溶湯を良好に冷却できる場合には、冷却凸部を備えない構成としてもよい。
また、上記の説明では、射出部の先端の断熱部は、射出部の表面にコーティングされた場合の例で説明したが、これは一例であって、例えば、別部材からなる断熱材を射出部の表面に貼り付けたり、固定したりする構成を採用してもよい。
また、上記第1の実施形態の変形例では、温度計測手段が第1の冷却ユニットに設けられ、第1の冷却ユニットの温度を計測できるようにした場合の例で説明したが、温度計測手段は、その計測値から金型の温度または成形空間内の金属溶湯の温度を推定できれば、他の冷却ユニット、例えば、第2の冷却ユニットに設けて、第2の冷却ユニットの温度を計測できるようにしてよい。
また、上記の各実施形態、各変形例に説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせて実施することができる。
以下では、上記第1の実施形態の射出成形装置50により、射出成形を行った実施例について説明する。
各実施例の条件および評価結果は、次の表1に示す。
Figure 2010162569
[実施例1]
実施例1では、金属20として、粒状に形成されたZr55Cu30Al10Niの組成を有する合金材料を用いて、成形品単品を射出成形した例である。
Zr55Cu30Al10Niは、ガラス遷移温度Tは418℃(691K)、結晶化温度Tは504℃(777K)である非晶質合金材料であり、10K/s以上に急速冷却されて固化すると、非晶質化されることが知られている。
制御ユニット14には、制御条件を自動設定するため、以下の制御データを入力した。
金属溶湯20Aの射出時の温度T:1223K
金属20の成形品当たりの必要量:12g
金属20の結晶化温度:777K
射出時のチャンバー内雰囲気:4.5mPa
金属溶湯20Aの射出圧:0.6kPa
金型材質:無酸素銅(熱伝導率:397W/m・K、 密度:8.96g/cm
金型質量:385g
上記制御データにより、溶解ユニット1、チャンバー3の内部の雰囲気が減圧されたArガス雰囲気に設定された。そして、原材料投入口1aから、金属20を30g投入した後、誘導加熱を用いた溶解工程によって、金属20を加熱溶解し、保温温度T=1223(K)で保温工程を行った。一方、金型設置工程、金型冷却工程が自動的に実行され、金型温度Tが、278Kに設定された。そして、射出機構23のArガスの射出圧0.6kPaで、射出工程が行われた。
このような射出状態では、金属溶湯20Aは、急速冷却されて固化していく。
射出終了後、10秒間、金型冷却工程を継続した後、金型取り出し工程を行って、金型60を金型台61に移載した。
そして、射出成形を終了し、チャンバー3が大気開放された後で、金型60を装置外部に取り出し、得られた成形品を脱型した。
成形品の評価としては、質量評価、表面状態の目視観察、およびX線回折による非晶質性の評価を行った。表面状態の目視観察は、湯しわなどが見られず金型の転写性が良好と認められる場合を合格(○)、湯しわなどが観察される場合、不合格(×)で評価した。
成形品の質量は、12.1gであった。X線回折は、X線回折装置MiniFlexII(商品名;(株)リガク製)を用いて評価した。
本実施例の成形品の表面状態は、湯しわもなく良好な転写性が認められた。
X線回折では、測定角20〜50°にブロードなピークが観測され、シャープなピークが観測されなかったことから、非晶質な合金が成形されたことが確認された。
[実施例2]
実施例2では、金属20として、粒状のSUS304を用いて、複数の成形品を連続的に射出成形した例である。成形品は大きさ形状の異なるA系品、B系品の2種類を成形し、個数は、それぞれ5個を連続的に成形した。表1では、それぞれを実施例2−1、実施例2−2とした。
制御ユニット14には、制御条件を自動設定するため、以下の制御データを入力した。
金属溶湯20Aの射出時の温度T:1800K(A系品)、1850K(B系品)
金属20の成形品当たりの必要量:15.5g(A系品)、19.5g(B系品)
金属20の融点T:1720K
射出時のチャンバー内雰囲気:5.0mPa
金属溶湯20Aの射出圧:0.5kPa(A系品)、1.0kPa(B系品)
金型材質:チタン(熱伝導率:21.9 W/m・K、 密度:4.51g/cm
金型質量:345g(A系品用)、323g(B系品用)
上記制御データにより、溶解ユニット1、チャンバー3の内部の雰囲気が減圧されたArガス雰囲気に設定された。そして、原材料投入口1aから、金属20を200g投入した後、アーク溶解を用いた溶解工程によって、金属20を加熱溶解し、保温温度T=1800(K)および1850(K)で保温工程を行った。一方、金型設置工程、金型冷却工程が自動的に実行され、金型温度Tが、278Kに設定された。そして、射出機構23のArガスの射出圧0.5kPa(A系品)、1.0kPa(B系品)で、射出工程が行われた。
このような射出状態では、金属溶湯20Aは、急速冷却されて固化していく。
射出終了後、10秒間、金型冷却工程を継続した後、金型取り出し工程を行って、金型60を金型台61に移載した。
そして、5個の射出成形を終了し、チャンバー3が大気開放された後で、金型60を装置外部に取り出し、得られた成形品を脱型した。
成形品の評価としては、実施例1と同様にして、質量評価、および表面状態の目視観察を行った。
成形品の質量は、射出成形順に、A系品は、15.5g、15.7g、15.7g、15.6g、15.8gであった。B系品は、19.8g、19.7g、19.9g、19.8g、19.9gであった。
表面状態は、湯しわもなく滑らかで良好な転写性が認められた。
[実施例3]
実施例3では、金属20として、粒状のAgを用いて、複数の成形品を連続的に射出成形した例である。成形品は大きさ形状の異なるC系品、D系品の2種類を成形し、個数は、それぞれ3個、2個を連続的に成形した。表1では、それぞれを実施例3−1、実施例3−2とした。
制御ユニット14には、制御条件を自動設定するため、以下の制御データを入力した。
金属溶湯20Aの射出時の温度T:1273K(C系品)、1323K(D系品)
金属20の成形品当たりの必要量:10.5g(C系品)、13.8g(D系品)
金属20の融点T:1235K
射出時のチャンバー内雰囲気:4.5mPa
金属溶湯20Aの射出圧:0.6kPa(C系品)、0.9kPa(D系品)
金型材質:無酸素銅(熱伝導率:397W/m・K、 密度:8.96g/cm
金型質量:405g(C系品用)、465g(D系品用)
上記制御データにより、溶解ユニット1、チャンバー3の内部の雰囲気が減圧されたArガス雰囲気に設定された。そして、原材料投入口1aから、金属20を100g投入した後、誘導加熱を用いた溶解工程によって、金属20を加熱溶解し、保温温度T=_1273(K)および1323(K)で保温工程を行った。一方、金型設置工程、金型冷却工程が自動的に実行され、金型温度Tが、278Kに設定された。そして、射出機構23のArガスの射出圧0.6kPa(C系品)、0.9kPa(D系品)で、射出工程が行われた。
このような射出状態では、金属溶湯20Aは、急速冷却されて固化していく。
射出終了後、3秒間、金型冷却工程を継続した後、金型取り出し工程を行って、金型60を金型台61に移載した。
そして、5個の射出成形を終了し、チャンバー3が大気開放された後で、金型60を装置外部に取り出し、得られた成形品を脱型した。
成形品の評価としては、実施例1と同様にして、質量評価、および表面状態の目視観察を行った。
成形品の質量は、射出成形順に、C系品は、10.7g、10.8g、10.7gであった。D系品は、14.0g、13.9gであった。
表面状態は、湯しわもなく滑らかで良好な転写性が認められた。
1 溶解ユニット
3 チャンバー
3a 底面部
4 天井部
5 冷却媒体貯蔵循環部
6 射出ノズル部(射出部)
6a ノズル先端部(射出口)
6b 昇降ノズル部
6d 断熱材コート部(断熱部)
7、70、71、72 冷却支持台(第1の冷却ユニット)
7A 脚部内流路(流路)
7B 支持台部内流路(流路)
7C 凸部内流路(流路)
7c、70c 位置決め凸部(冷却凸部)
7d、8a 合わせ面
7e 貫通孔(射出部が金型に対して接離するための開口部)
8、80 上冷却部(第2の冷却ユニット)
8C、8E 側面部流路(流路)
8D 上面部流路(流路)
9 金型交換アーム(金型交換手段)
12 上冷却部移動機構(冷却ユニット相対移動機構)
14 制御ユニット(制御手段)
15 材料供給部(原材料供給部)
16 質量測定部
17 溶解部
18 温度保持用ヒータ(保温部)
20 金属
20A 金属溶湯
21 固定ノズル底面部
22 射出ノズル移動機構
23 射出機構
50、51 射出成形装置
60、60A、60B 金型
60a 段穴部
60c 成形空間
60d、60h 位置決め凹部(凹穴部)
60e 上面(外周面)
60f 側面(外周面)
60g 下面(外周面)
60j 円筒穴部(凹穴部)
60k 位置決め凹部
61a 金型載置部
74 温度センサー(温度計測手段)
80C 上面部流路(流路)
80D 側面部流路(流路)
80E 突起部流路(流路)
80a 円筒突起部(冷却凸部)
C 冷却媒体
保温温度
射出温度
冷却温度
金型温度

Claims (12)

  1. 加熱溶解された金属を射出する射出部を有し、一定の射出成形位置に配置された金型の成形空間内に前記射出部から前記加熱溶解された金属を射出して成形を行う射出成形装置であって、
    内部に設けられた流路に冷却媒体を流通させた状態で前記金型に着脱可能に設けられ、前記射出部が前記金型に対して接離するための開口部を有し、該開口部内を通して前記金型に接離する前記射出部に対向する領域を除く前記金型の外周面の略全面を覆って冷却できるようにした冷却部を備えることを特徴とする射出成形装置。
  2. 前記射出成形位置と、該射出成形位置から離間した金型退避位置との間で、前記金型を移動させて金型交換を行う金型交換手段を備えることを特徴とする請求項1に記載の射出成形装置。
  3. 前記冷却部は、
    前記金型を間に挟んで、該金型に対して着脱可能に設けられた第1の冷却ユニットおよび第2の冷却ユニットと、
    該第1の冷却ユニットおよび第2の冷却ユニットが前記金型に装着されて前記金型の外周面の略全面を覆う装着位置と、前記第1の冷却ユニットおよび第2の冷却ユニットの少なくともいずれかが前記金型から離間されて前記金型が前記第1の冷却ユニットおよび第2の冷却ユニットの間から取り出し可能となる開放位置との間で、前記第1の冷却ユニットおよび第2の冷却ユニットを相対移動させる冷却ユニット相対移動機構とを備えることを特徴とする請求項1または2に記載の射出成形装置。
  4. 前記第1の冷却ユニットまたは前記第2の冷却ユニットは、
    前記流路を内部に有する冷却凸部を有し、
    該冷却凸部は、前記金型の外周面側から前記金型の内部側に形成された凹穴部に挿入可能に設けられたことを特徴とする請求項3に記載の射出成形装置。
  5. 前記第1の冷却ユニットまたは前記第2の冷却ユニットは、
    前記開口部と、
    射出成形時に前記開口部内に相対的に進出される前記射出部の射出口に対して、前記金型を位置決めして配置する金型位置決め部とを備え、
    該金型位置決め部は、前記冷却凸部を兼ねることを特徴とする請求項4に記載の射出成形装置。
  6. 前記第1の冷却ユニットまたは前記第2の冷却ユニットは、
    前記開口部と、
    射出成形時に前記開口部内に相対的に進出される前記射出部の射出口に対して、前記金型を位置決めして配置する金型位置決め部とを備えることを特徴とする請求項3または4に記載の射出成形装置。
  7. 前記第1の冷却ユニットまたは第2の冷却ユニットの温度を計測する温度計測手段と、
    前記金型に前記金属が射出された後、前記温度計測手段の計測値が一定値になるまで冷却されたことを検知してから、前記冷却ユニット相対移動機構を駆動して前記第1の冷却ユニットおよび第2の冷却ユニットを前記開放位置に相対移動させ、前記金型交換手段によって前記金属が射出された金型を他の金型と交換させる制御手段を備えることを特徴とする請求項3〜6のいずれかに記載の射出成形装置。
  8. 前記射出部は、少なくとも、射出成形時に前記金型に近接する表面に断熱部が設けられていることを特徴とする請求項1〜7のいずれかに記載の射出成形装置。
  9. 前記加熱溶解する金属の原材料を秤量して供給する原材料供給部と、
    該原材料供給部から供給された金属の原材料を加熱溶解する溶解部と、
    前記射出部と一体もしくは前記射出部に連結して設けられ、前記溶解部で溶解された金属溶湯を一定の温度に保温する保温部とを備えることを特徴とする請求項1〜8のいずれかに記載の射出成形装置。
  10. 加熱溶解された金属を射出する射出部によって、一定の射出成形位置に配置された金型の成形空間内に前記加熱溶解された金属を射出する射出工程を有する射出成形方法であって、
    前記加熱溶解された金属の射出開始までに、前記金型に対して接離する前記射出部に対向する領域を除く前記金型の外周面の略全面を覆う冷却部内に、前記金型を設置する金型設置工程と、
    該金型設置工程により前記冷却部内に設置された前記金型を、少なくとも前記射出工程の間、前記冷却部によって前記金型の外周面から冷却する金型冷却工程とを備えることを特徴とする射出成形方法。
  11. 前記金型冷却工程の後に、前記金型を前記冷却部から取り出して、他の金型と交換する金型交換工程を備えることを特徴とする請求項10に記載の射出成形方法。
  12. 前記金型設置工程は、
    前記金型を前記冷却部の一部を構成する冷却ユニットに設けられた金型位置決め部に配置して位置決めを行ってから、
    前記冷却部の他の冷却ユニットを、前記金型位置決め部に配置された前記金型の外周面に配置して行うことを特徴とする請求項10または11に記載の射出成形方法。
JP2009005977A 2009-01-14 2009-01-14 射出成形装置および射出成形方法 Pending JP2010162569A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005977A JP2010162569A (ja) 2009-01-14 2009-01-14 射出成形装置および射出成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005977A JP2010162569A (ja) 2009-01-14 2009-01-14 射出成形装置および射出成形方法

Publications (1)

Publication Number Publication Date
JP2010162569A true JP2010162569A (ja) 2010-07-29

Family

ID=42579186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005977A Pending JP2010162569A (ja) 2009-01-14 2009-01-14 射出成形装置および射出成形方法

Country Status (1)

Country Link
JP (1) JP2010162569A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023527964A (ja) * 2020-06-09 2023-07-03 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 少なくとも1つの製造パラメータを決定するための方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023527964A (ja) * 2020-06-09 2023-07-03 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 少なくとも1つの製造パラメータを決定するための方法
JP7480357B2 (ja) 2020-06-09 2024-05-09 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 少なくとも1つの製造パラメータを決定するための方法

Similar Documents

Publication Publication Date Title
JP4339135B2 (ja) 非晶質合金成形用の射出鋳造装置
JP4688145B2 (ja) ダイキャスト装置及びダイキャスト方法
JP4688146B2 (ja) ダイキャスト装置
JP2005349646A (ja) 厚肉導光板の成形方法および成形用金型
US8122934B2 (en) Mold for forming cast rods, casting apparatus, and production method of cast rods
JP5442903B1 (ja) 成形装置、半凝固金属の製造装置、成形方法及び半凝固金属の製造方法
JP2008149372A (ja) 材料成形用の型および材料成形法、材料成型装置
JP5273823B2 (ja) ダイキャスト装置及びダイキャスト方法
JP2005138366A (ja) 精密成形金型
JP2010162569A (ja) 射出成形装置および射出成形方法
JP2008080367A (ja) 成形用金型および鋳造装置
JP6171216B2 (ja) 半凝固金属の製造装置、半凝固金属の製造方法及び半凝固金属を用いた成形方法
JP6017203B2 (ja) 半凝固金属の製造装置、半凝固成形装置、半凝固金属の製造方法及び半凝固成形方法
US20160008880A1 (en) Pressure reactor for producing materials having directed porosity
JP2011016139A (ja) 鋳造装置
JP4139868B2 (ja) 高融点金属の高圧鋳造方法およびダイカスト装置
CA2868147C (en) Continuous casting process of metal
JP4425645B2 (ja) 射出鋳造装置の原料塊供給装置
US20190111468A1 (en) Apparatus for casting a mold
JP5965890B2 (ja) 成形装置、半凝固金属の製造装置、成形方法及び半凝固金属の製造方法
JP2014217864A (ja) 半凝固金属生成容器の冷却装置、半凝固金属の製造装置、半凝固金属の製造方法及び半凝固金属を用いた成形方法
KR20130139178A (ko) 반응고 금속의 제조 장치, 반응고 금속의 제조 방법 및 반응고 금속
CN203541842U (zh) 一种大型真空热压炉
KR101175642B1 (ko) 몰드 슬래그 필름층 형성 시뮬레이터
JP4955739B2 (ja) 鋳造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507