JP2010161073A - 燃料電池システム及び燃料電池の電力管理方法 - Google Patents

燃料電池システム及び燃料電池の電力管理方法 Download PDF

Info

Publication number
JP2010161073A
JP2010161073A JP2009296107A JP2009296107A JP2010161073A JP 2010161073 A JP2010161073 A JP 2010161073A JP 2009296107 A JP2009296107 A JP 2009296107A JP 2009296107 A JP2009296107 A JP 2009296107A JP 2010161073 A JP2010161073 A JP 2010161073A
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
output
current value
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009296107A
Other languages
English (en)
Inventor
Yong-Jae Kim
詠栽 金
フー▼ ▲レイ
Lei Hu
Hye-Jung Cho
慧貞 趙
Joon-Hee Kim
峻熙 金
Seong-Kee Yoon
成基 尹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2010161073A publication Critical patent/JP2010161073A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池システム及び燃料電池の電力管理方法を提供する。
【解決手段】燃料電池から出力された電流値を測定する測定部と、測定された電流値と目標定電流値との差によって燃料電池の目標電圧値を調整することによって、燃料電池の電流出力を制御する制御部と、燃料電池から出力された電圧を制御部の制御による電圧に変更するコンバータと、を備える燃料電池システムが提供される。これにより、燃料電池から安定的にさらに一定の定電流を出力させうる。
【選択図】図3

Description

本発明の少なくとも一つの実施形態は、燃料電池システム及び燃料電池の電力管理方法に関する。
燃料電池は、水素のように地球上に豊富に存在する物質から電気エネルギーを発生させる環境にやさしい代替エネルギー技術であって、太陽電池と共に注目されている。しかし、燃料電池は、一般的に、インピーダンスが大きくて負荷の変化に対する応答速度が遅いという特性を有している。これを補完するために、現在開発されている燃料電池システムは、充電可能な2次電池を燃料電池システム内に設置している。
特表2006−501798号公報 特開2005−115553号公報 特開2005−123110号公報 特開2007−280741号公報
現在開発されている燃料電池システムは、燃料電池の定電圧運転のためのシステム、燃料電池の定電流運転のためのシステム、燃料電池の定電力運転のためのシステムに区分されうる。特に、燃料電池の定電流運転のためのシステムは、DC(Direct Current)/DCコンバータに電流制限装置を置いて、燃料電池の出力電流を所定の電流以下に落とさないことが一般的であった。
本発明の少なくとも一つの実施形態が解決しようとする課題は、燃料電池から安定的にさらに一定の定電流を出力させる燃料電池システム及び燃料電池の電力管理方法を提供することである。
本発明が解決しようとする課題は、前記課題に限定されず、さらに他の課題が存在できる。これは、当業者ならば、下記から明確に分かるであろう。
前記課題を解決するための一実施形態による燃料電池システムは、燃料電池から出力された電流値を測定する測定部と、前記測定された電流値と目標定電流値との差によって、前記燃料電池の目標電圧値を調整することによって前記燃料電池の電流出力を制御する制御部と、前記燃料電池から出力された電圧を前記制御部の制御による電圧に変更するコンバータと、を備える。
前記他の課題を解決するための一実施形態による燃料電池の電力管理方法は、燃料電池から出力された電流値及び電圧値を測定するステップと、前記測定された電流値と目標定電流値との差によって前記燃料電池の目標電圧値を調整するステップと、前記測定された電圧値と前記目標電圧値との差に基づいて、前記燃料電池の電流出力を制御するための信号を生成するステップと、前記燃料電池から出力された電圧を前記生成された信号による電圧に変更するステップと、を含む。
本発明によれば、燃料電池から出力された電流値と目標定電流値との差によって燃料電池の目標電圧値を調整することによって、燃料電池から安定的にさらに一定の定電流を出力させうる。
本発明の実施形態に適用される電流−電圧曲線を示す図面である。 本発明の一実施形態による燃料電池システムの構成図である。 図2に示された制御部の詳細回路図である。 図3に示されたマイクロコントローラの内部動作を示すフローチャートである。 本発明の一実施形態による燃料電池の電力管理方法を示すフローチャートである。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
本実施形態は、燃料電池システム及び燃料電池の電力管理方法に関する。本実施形態の特徴をさらに明確にするために、燃料電池を構成するスタック、BOP(Balance Of Plants)など、当業者に周知の事項については、詳細な説明を省略する。また、燃料電池から出力される電流及び電圧は、さらに厳密には、燃料電池のスタックから出力される電流及び電圧を意味するが、以下では、簡単に燃料電池から出力される電流及び電圧と記載する。
図1は、本発明の実施形態に適用される電流−電圧曲線を示す図面である。図1に示されたように、燃料電池は、運転条件及び運転時間によって、その性能が低下する。厳密には、燃料電池の運転時間の経過によってその性能が低下するというのも、燃料電池の運転条件が変化したと見られる。燃料電池の初期駆動時の性能が、図1に示された第1性能曲線と同一であれば、以後の運転条件及び運転時間の変化によって、第2性能曲線または第3性能曲線のようにその性能が低下しうる。したがって、本実施形態では、燃料電池から定電流を出力させるために、燃料電池の出力電圧を、その電圧が出力される時点での性能曲線に合う出力電圧に変換する。
例えば、燃料電池の性能が第1性能曲線から第2性能曲線に低下した時、燃料電池の出力電圧が10Vならば、燃料電池から定電流を出力させるためには、燃料電池の出力電圧を9.95Vに変更せねばならない。次いで、燃料電池の性能が第2性能曲線から第3性能曲線に低下したとすれば、燃料電池から定電流を出力させるためには、燃料電池の出力電圧を再び9.9Vに変更せねばならない。
図2は、本発明の一実施形態による燃料電池システムの構成図である。図2を参照すれば、本実施形態による燃料電池システムは、燃料電池21、I/V(Current/Voltage)測定部22、制御部23、及びバッテリ25で構成される。
燃料電池21は、燃料が有している化学エネルギーを、電気化学的反応を利用して直接電気エネルギーに変換することによって、DC(Direct Current)電力を生成する発電装置である。このような燃料電池の例としては、固体酸化物燃料電池(SOFC:Solid Oxide Fuel Cell)、高分子電解質燃料電池(PEMFC:Polymer Electrolyte Membrance
Fuel Cell)、直接メタノール燃料電池(DMFC:Direct Methanol Fuel Cell)が挙げられる。但し、当業者ならば、上記燃料電池の代りに、太陽電池のように、DC電力を生成する類似した形態の電池が適用されうるということが理解できる。
I/V測定部22は、燃料電池21から出力された電流値Ifcと電圧値Vfcとを測定する。本実施形態で、燃料電池21の電流値または電圧値とは、さらに厳密には、燃料電池21のスタックの正極(アノード)と負極(カソード)とから出力される電流値または電圧値を意味する。
制御部23は、I/V測定部22によって測定された燃料電池21の電流値Ifcと目標定電流値Itとの差によって、燃料電池21の目標電圧値Vtを調整することによって燃料電池21の電流出力を制御する。さらに詳細に説明すれば、制御部23は、燃料電池21から目標定電流値Itに該当する電流値が一定に出力されるように、I/V測定部22によって測定された電流値Ifcと目標定電流値Itとの差に比例して、燃料電池21の目標電圧値Vtを調整する。
特に、本実施形態によれば、燃料電池21の運転条件、例えば、燃料電池21の温度、周辺温度、燃料供給環境、負荷を考慮して、燃料電池21の目標定電流値Itが設定されうる。燃料電池21の目標定電流値Itは、ユーザによって手動で設定され、燃料電池システムに燃料電池21の運転条件を検出できる要素を追加することによって自動に設定させることもできる。すなわち、制御部23は、I/V測定部22によって測定された燃料電池21の電流値Ifcと燃料電池の運転条件を考慮して設定された目標定電流値Itとの差によって、燃料電池21の目標電圧値Vtを調整する。また、制御部23は、ユーザ特有の負荷電力消費パターンを考慮して、ユーザによって設定された目標定電流値Itの差によって燃料電池21の目標電圧値Vtを調整することもできる。
DC/DCコンバータ24は、燃料電池21から出力された電圧を制御部23の制御による電圧に変更する。DC/DCコンバータ24から出力された電力は、DC/DCコンバータ24の出力電圧とバッテリ25の出力電圧との電位差によって、負荷26及びバッテリ25にいずれも供給されることもでき、負荷26にのみ供給されることもできる。
バッテリ25は、燃料電池21の初期始動のための電力を燃料電池21に供給する。また、バッテリ25は、燃料電池21の始動後にはDC/DCコンバータ24から出力された電力のうち、負荷26に供給された電力以外の剰余電力を保存するか、またはDC/DCコンバータ24から出力された電力を補充するための電力を負荷26に供給する。前者は、負荷26が必要とする電力に対して燃料電池21から出力された電力が多過ぎる場合であって、DC/DCコンバータ24から出力された電力は、負荷26及びバッテリ25にいずれも供給される。この場合、バッテリ25の充電が進められる。一方、後者は、負荷26が必要とする電力に対して燃料電池21から出力された電力が足りない場合であって、DC/DCコンバータ24から出力された電力は、負荷26にのみ供給され、その不足分は、バッテリ25から供給される。この場合、バッテリ25の放電が進められる。本実施形態におけるバッテリ25は、DC/DCコンバータ24から出力された電力によって充電可能な2次バッテリであって、エネルギー密度の高いリチウムイオンバッテリが使われうる。
上記のように、本実施形態は、バッテリ25の充放電を通じて燃料電池21の定電流出力による剰余電力と不足電力とを補償可能にする。このために、制御部23は、燃料電池21の現在電圧値Vfcと目標電圧値Vtとの差、及びバッテリ25の出力電圧に基づいて、燃料電池21の電流出力を制御するための信号を生成する。DC/DCコンバータ24は、燃料電池21から出力された電圧を、制御部23によって生成された制御信号による電圧に変更する。以下では、このような制御部23の回路構成を説明する。特に、バッテリ25に対する別の充電回路が要求されない簡単な回路で制御部23が具現されうるということが分かる。
図3は、図2に示された制御部23の詳細回路図である。図3を参照すれば、制御部23は、電圧決定部31、積分器32、差増幅器33、スイッチング制御部34、抵抗Ro1、及び抵抗Ro2で構成される。
DC/DCコンバータ24は、トランジスタTc、インダクタLc、キャパシタCc、ダイオードDcが図3に示された形態に配されたバック/ブースタコンバータで具現されうる。バック/ブースタコンバータは、入力電圧を下降/上昇させうるコンバータであって、当業者には周知の事項であるので、これについての詳細な説明は省略する。理想的なバック/ブースタコンバータの入力電圧対出力電圧の比は、次の数式1の通りである。
Figure 2010161073
数式1で、入力電圧Vfcは、燃料電池21から出力された電圧を意味し、出力電圧Vlは、負荷26にかかる電圧を意味する。また、Dは、トランジスタTcがオン/オフとなる全体期間に対するトランジスタTcがオンとなる期間の比率を意味し、一般的にデューティサイクルと呼ばれる。すなわち、トランジスタTcが常にオフである状態では、Dは0となり、常にオンである状態では、Dは、1となる。それ以外の状態では、Dは、0と1との間に存在する。トランジスタTcは、そのベースの電圧値が臨界値に達すれば、すなわち、トランジスタTcが飽和されれば、トランジスタTcのコレクタとエミッタとの間の線路に電流が流れるか、または流れない特性を有する。このようなトランジスタTcの特性を利用して、トランジスタTcのベースに入力される電圧値を調整することによって、数式1におけるDを変化させ、結果的に、バック/ブースタコンバータに入力される電圧を下降/上昇させうる。
数式1における入力電圧と出力電圧との極性は、逆転される。したがって、本実施形態では、DC/DCコンバータ24の極性と燃料電池21の極性とを互いに逆になるように連結することによって、DC/DCコンバータ24の出力電圧の極性を正常にすることができる。そうでなければ、DC/DCコンバータ24の出力電圧の極性が逆転されるように回路を設計することもできる。それ以外に多様な方式でDC/DCコンバータ24が設計されうるということを、当業者ならば、理解できる。
電圧決定部31は、I/V測定部22によって測定された燃料電池21の電流値Ifcと目標定電流値Itとを比較し、その比較結果に基づいて、燃料電池21の目標電圧値Vtを決定する。さらに詳細に説明すれば、電圧決定部31は、ADC(Analog Digital Converter)311、マイクロコントローラ312、及びDAC(Digital Analog Converter)313で構成される。ADC311は、I/V測定部22によって測定された燃料電池21の電流値Ifcの形態を、アナログ信号からデジタル信号に変換する。マイクロコントローラ312は、デジタル素子であるため、アナログ信号を認識できない。すなわち、ADC311は、I/V測定部22によって測定された燃料電池21の電流値Ifcの形態を、マイクロコントローラ312が認識できるデジタル信号に変換する役割を行う。
図4は、図3に示されたマイクロコントローラ312の内部動作を示すフローチャートである。図4を参照すれば、41ステップで、マイクロコントローラ312は、I/V測定部22によって測定された燃料電池21の電流値Ifcと目標定電流値Itとを比較する。42ステップで、マイクロコントローラ312は、41ステップでの比較結果、燃料電池21の電流値Ifcが目標定電流値Itより大きければ、43ステップに進む。43ステップで、マイクロコントローラ312は、燃料電池21の目標電圧値Vtを所定単位aほど増大させる。44ステップで、マイクロコントローラ312は、41ステップでの比較結果、燃料電池21の電流値Ifcと目標定電流値Itとが同一であれば、45ステップに進む。45ステップで、マイクロコントローラ312は、燃料電池21の目標電圧値Vtを維持する。46ステップで、マイクロコントローラ312は、41ステップでの比較結果、燃料電池21の電流値Ifcが目標定電流値Itより小さければ、47ステップに進む。47ステップで、マイクロコントローラ312は、燃料電池21の目標電圧値Vtを所定単位aほど減少させる。
DAC313は、マイクロコントローラ312によって計算された燃料電池21の目標電圧値Vtの形態を、デジタル信号から本来のアナログ信号に変換する。本実施形態で、所定単位aは、ADC311及びDAC313の分解能によって決定される。ADC311及びDAC313の分解能が高い場合、すなわち、ADC311及びDAC313がアナログ信号をさらに精密にデジタル信号に変換でき、このデジタル信号をさらに精密にアナログ信号に変換できる場合ならば、所定単位aは、小さくなる。逆に、ADC311及びDAC313の分解能が低い場合ならば、所定単位aは、大きくなる。
積分器32は、I/V測定部22によって測定された燃料電池21の電圧値Vfcと電圧決定部31によって決定された目標電圧値Vtとの差を積分する。さらに詳細に説明すれば、積分器32のOPアンプ(Operational Amplifier)の負極としては、燃料電池21の現在電圧値Vfcが入力され、正極としては、DAC313から出力された信号、すなわち、電圧決定部31によって決定された目標電圧値Vtが入力される。積分器32のOPアンプを理想的なOPアンプとすれば、積分器32は、理想的な反転積分器として動作し、積分器32のOPアンプから出力されるVi(t)は、次の数式1の通りである。
Figure 2010161073
数式2で、Vs(s)は、積分器32のOPアンプの正極及び負極として入力される値の差、すなわち、燃料電池21の現在電圧値Vfcと電圧決定部31によって決定された目標電圧値Vtとの差を意味する。また、Vi(0)は、積分器32のキャパシタCiに蓄積された初期電圧値である。このように、積分器32は、燃料電池21の現在電圧値Vfcと電圧決定部31によって決定された目標電圧値Vtとの差を積分することによって、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより大きい区間が続けば、その値の大きさが上昇する形態の値を出力する。また、積分器32は、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより小さな区間が続けば、その値の大きさが下降する形態の値を出力する。
本実施形態では、積分器32のOPアンプの限界電圧として+Vsと0とが入力されるため、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより小さな積分器32のOPアンプの出力値は、+Vsを超えることができない。また、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtと同一か、または大きいときは、積分器32のOPアンプの出力値は、0、すなわち、接地と同一になる。
図3に示されたように、負荷26にかかる電圧をVl、積分器32の出力電圧をViとし、差増幅器33を理想的なOPアンプとすれば、差増幅器33に流入される電流は、0となるので、抵抗Ro1と抵抗Ro2との間にかかる電圧Vrは、次の数式3の通りである。
Figure 2010161073
差増幅器33は、抵抗Ro1と抵抗Ro2との間の電圧Vrと基準電圧Vrefとの差を増幅する。さらに詳細に説明すれば、差増幅器33の負極には、抵抗Ro1と抵抗Ro2との間の電圧Vrが入力され、正極には、基準電圧Vrefが入力される。差増幅器を理想的なOPアンプとすれば、差増幅器33から出力されるVeは、次の数式4の通りである。
Figure 2010161073
数式4で、電圧Vrefは、電圧Vrを差増幅器33に入力可能な電圧範囲に合わせるための基準電圧であり、Aは、電圧利得を表す。すなわち、差増幅器33は、抵抗Ro1と抵抗Ro2との間の電圧Vrと基準電圧Vrefとの差のA倍に該当する大きさの電圧Veを出力する。
スイッチング制御部34は、差増幅器33の出力電圧VeによってDC/DCコンバータ24のトランジスタTcのオン/オフスイッチングを制御する。スイッチング制御部34から出力された制御信号は、DC/DCコンバータ24のトランジスタTcのベースに入力され、スイッチング制御部34から出力された制御信号によって、トランジスタTcのデューティサイクルDは変化する。すなわち、DC/DCコンバータ24は、スイッチング制御部34の制御によってDC/DCコンバータ24に入力される電圧を下降/上昇させる。
図1に示された例のように、燃料電池21の目標定電流値ItをItとし、目標電圧値Vtを10Vとすれば、燃料電池21の運転条件及び運転時間によって、本実施形態による燃料電池システムは、次のように動作する。
負荷26で消費される電力が減少して、燃料電池21の電圧が図1に示された第1性能曲線における目標定電流Itの対応電圧10Vを超える場合に、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより大きくなって、積分器32のOPアンプの出力は、0、すなわち、接地と同一になる。この場合、制御部23は、DC/DCコンバータ24から出力された電圧がバッテリ25の電圧より若干高くなるように、DC/DCコンバータ24を制御する。これにより、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより大きくなる場合には、DC/DCコンバータ24から出力される電圧値は、バッテリ25の電圧値より若干高い所定の値に固定される。すなわち、燃料電池21の電力のみが負荷26に供給され、これと同時に、バッテリ25が充電される。
負荷26で消費される電力が増加するか、または運転時間が経過することによって、燃料電池21の性能が図1に示された第2性能曲線に低下した場合に、10V以下に落ちなければならない。このとき、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより小さくなって、積分器32のOPアンプから0、すなわち、接地より若干高い電圧が出力される。この場合、制御部23は、DC/DCコンバータ24から出力された電圧がバッテリ25の電圧と同一になるように、DC/DCコンバータ24を制御する。これにより、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより小さくなる場合には、DC/DCコンバータ24から出力される電圧値とバッテリ25の電圧値とは、常に同一になる。すなわち、燃料電池21の電力とバッテリ25の電力とが同時に負荷26に供給される。
このように、本実施形態によれば、負荷の突然な変動など、燃料電池21の運転条件が変動されるか、または運転時間が経過する場合にも、負荷26に定電流を供給できる。これにより、燃料電池の短所である負荷追従性が解決されうる。
特に、本実施形態では、燃料電池21の目標定電流値Itを維持するために、燃料電池21の運転条件及び運転時間によって燃料電池21の目標電圧値Vtを10V以上に上昇させるか、または10V以下に下降させる。例えば、燃料電池21の電流値Ifcが目標定電流値Itより大きければ、燃料電池21の目標電圧値Vtを所定単位aほど増加させる。その結果、積分器32のOPアンプの正極に入力される目標電圧値Vtが増加し、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより小さくなって、積分器32のOPアンプから0、すなわち、接地より若干高い電圧が出力される。この場合、DC/DCコンバータ24から出力された電圧がバッテリ25の電圧と同一になるように、制御部23は、DC/DCコンバータ24を制御する。これにより、燃料電池21の電力とバッテリ25の電力とが同時に負荷26に供給される。DC/DCコンバータ24とバッテリ25との電位差がないため、負荷26に流入される燃料電池21の電流が制限されて、燃料電池21の動作電圧は、上昇する。上記過程は、燃料電池21から出力された電流が目標定電流値Itに達するまで反復される。
また、燃料電池21の電流値Ifcと目標定電流値Itとが同一であれば、燃料電池21の目標電圧値Vtを維持し、燃料電池21の電流値Ifcが目標定電流値Itより小さければ、燃料電池21から出力された電流が目標定電流値Itに達するまで、燃料電池21の目標電圧値Vtを減少させる。例えば、燃料電池21の電流値Ifcが目標定電流値Itより小さければ、燃料電池21の目標電圧値Vtを所定単位aほど減少させる。その結果、積分器32のOPアンプの正極に入力される目標電圧値Vtが増加し、燃料電池21の現在電圧値Vfcが電圧決定部31によって決定された目標電圧値Vtより大きくなって、積分器32のOPアンプから0、すなわち、接地と同一になる。この場合、DC/DCコンバータ24から出力された電圧がバッテリ25の電圧より若干高まるように、制御部23は、DC/DCコンバータ24を制御する。これにより、燃料電池21の電力のみが負荷26に供給され、これと同時に、バッテリ25が充電される。DC/DCコンバータ24とバッテリ25との電位差によって、負荷26及びバッテリ25に流入される燃料電池21の電流が増加し、燃料電池21の動作電圧は、落ちる。上記過程は、燃料電池21から出力された電流が目標定電流値Itに達するまで反復される。
図5は、本発明の一実施形態による燃料電池の電力管理方法を示すフローチャートである。図5を参照すれば、本実施形態による燃料電池の電力管理方法は、図2に示された燃料電池システムにおいて、時系列的に処理されるステップで構成される。したがって、以下省略された内容であっても、図2に示された燃料電池システムについて前述された内容は、本実施形態による燃料電池の電力管理方法にも適用される。
51ステップで、燃料電池システムは、燃料電池21から出力された電流値Ifcと電圧値Vfcとを測定する。
52ステップで、燃料電池システムは、51ステップで測定された燃料電池21の電流値Ifcと目標定電流値Itとの差によって、燃料電池21の目標電圧値Vtを所定単位aほど増減させるか、または維持する。
53ステップで、燃料電池システムは、51ステップで測定された燃料電池21の電圧値Vfcと52ステップで調整された目標電圧値Vtとの差を積分する。
54ステップで、燃料電池システムは、53ステップでの積分結果に該当する電圧とDC/DCコンバータ24、バッテリ25及び負荷26の共通連結点の電圧とによって決定された電圧Vrと基準電圧値Vrefとの差を増幅する。
55ステップで、燃料電池システムは、54ステップで増幅された電圧値Veによって燃料電池21の電流出力を制御するための信号を生成する。
56ステップで、燃料電池システムは、燃料電池21から出力された電圧を55ステップで生成された信号による電圧に変更する。
57ステップで、燃料電池システムは、負荷26の状態によって56ステップで変更された電圧として出力された電力のうち一部を保存するか、またはその電力を補充する電力を供給する。
57ステップが終了すれば、再び51ステップに戻り、51ステップから57ステップまでの過程は、燃料電池21から出力された電流が目標定電流値Itに達するまで反復される。
上記実施形態によれば、燃料電池21から出力された電流値Ifcと目標定電流値Itとの差によって燃料電池21の目標電圧値を調整することによって、燃料電池21から安定的にさらに一定の定電流を出力させうる。一般的に、燃料電池21は、定電圧運転を行う場合より定電流運転を行う場合にさらに一定の電力を出力すると知られている。このように、燃料電池21の安定的な定電流出力を可能にすることによって、燃料電池21の性能低下率を下げ、燃料電池21に対する燃料供給の安定性を確保できる。
以上、添付図面を参照しながら本発明の好適な実施の形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
本発明は、燃料電池関連の技術分野に好適に適用可能である。
21 燃料電池
22 I/V測定部
23 制御部
24 DC/DCコンバータ
25 バッテリ
26 負荷
31 電圧決定部
32 積分器
33 差増幅器
34 スイッチング制御部
311 ADC
312 マイクロコントローラ
313 DAC

Claims (15)

  1. 燃料電池から出力された電流値を測定する測定部と、
    前記測定された電流値と目標定電流値との差によって前記燃料電池の目標電圧値を調整することによって、前記燃料電池の電流出力を制御する制御部と、
    前記燃料電池から出力された電圧を前記制御部の制御による電圧に変更するコンバータと、
    を備える、燃料電池システム。
  2. 前記制御部は、前記測定された電流値と前記目標定電流値との差に比例して、前記燃料電池の目標電圧値を調整する、請求項1に記載の燃料電池システム。
  3. 前記制御部は、前記測定された電流値が前記目標定電流値より大きければ、前記目標電圧値を増加させ、前記測定された電流値が前記目標定電流値より小さければ、前記目標電圧値を減少させる、請求項1または2に記載の燃料電池システム。
  4. 前記目標定電流値は、前記燃料電池の運転条件を考慮して設定される、請求項1〜3のいずれか1項に記載の燃料電池システム。
  5. 前記コンバータから出力された電力のうち一部を保存するか、または前記コンバータから出力された電力を補充する電力を供給するバッテリをさらに備える、請求項1〜4のいずれか1項に記載の燃料電池システム。
  6. 前記制御部は、前記燃料電池の現在電圧値と目標電圧値との差、及び前記バッテリの出力電圧に基づいて前記燃料電池の電流出力を制御するための信号を生成し、
    前記コンバータは、前記制御部によって生成された制御信号による電圧に変更する、請求項5に記載の燃料電池システム。
  7. 前記バッテリは、前記燃料電池の初期始動のための電力を供給する、請求項5または6に記載の燃料電池システム。
  8. 前記制御部は、
    前記燃料電池の現在電圧値と前記目標電圧値との差を積分する積分器と、
    前記積分器の出力電圧と負荷にかかる電圧とに基づいて、前記コンバータのスイッチングを制御するスイッチング制御部と、を備える、請求項1〜7のいずれか1項に記載の燃料電池システム。
  9. 燃料電池から出力された電流値と電圧値とを測定するステップと、
    前記測定された電流値と目標定電流値との差によって、前記燃料電池の目標電圧値を調整するステップと、
    前記測定された電圧値と前記目標電圧値との差に基づいて、前記燃料電池の電流出力を制御するための信号を生成するステップと、
    前記燃料電池から出力された電圧を前記生成された信号による電圧に変更するステップと、
    を含む、燃料電池の電力管理方法。
  10. 前記調整するステップは、前記測定された電流値と前記目標定電流値との差に比例して、前記燃料電池の目標電圧値を調整する、請求項9に記載の燃料電池の電力管理方法。
  11. 前記調整するステップは、前記測定された電流値が前記目標定電流値より大きければ、前記目標電圧値を増加させ、前記測定された電流値が前記目標定電流値より小さければ、前記目標電圧値を減少させる、請求項9または10に記載の燃料電池の電力管理方法。
  12. 前記調整するステップは、前記目標電圧値を所定単位ほど増減させるか、または維持し、
    前記ステップは、前記燃料電池から出力された電流が目標定電流値に達するまで反復される、請求項9〜11のいずれか1項に記載の燃料電池の電力管理方法。
  13. 前記目標定電流値は、前記燃料電池の運転条件及びユーザの電力消費パターンのうち少なくとも一つを考慮して設定される、請求項9〜12のいずれか1項に記載の燃料電池の電力管理方法。
  14. 前記変更された電圧として出力された電力のうち一部を保存するか、または前記電力を補充する電力を供給するステップをさらに含む、請求項9〜13のいずれか1項に記載の燃料電池の電力管理方法。
  15. 前記生成するステップは、
    前記測定された電圧値と前記目標電圧値との差を積分するステップと、
    前記積分の結果に該当する電圧と負荷にかかる電圧とに基づいて、前記燃料電池の電流出力を制御するための信号を生成するステップと、を含む、請求項9〜14のいずれか1項に記載の燃料電池の電力管理方法。

JP2009296107A 2009-01-07 2009-12-25 燃料電池システム及び燃料電池の電力管理方法 Pending JP2010161073A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090001248A KR20100081834A (ko) 2009-01-07 2009-01-07 연료 전지 시스템 및 연료 전지의 전력을 관리하는 방법

Publications (1)

Publication Number Publication Date
JP2010161073A true JP2010161073A (ja) 2010-07-22

Family

ID=42311911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296107A Pending JP2010161073A (ja) 2009-01-07 2009-12-25 燃料電池システム及び燃料電池の電力管理方法

Country Status (3)

Country Link
US (1) US8399141B2 (ja)
JP (1) JP2010161073A (ja)
KR (1) KR20100081834A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073901A (ja) * 2011-09-29 2013-04-22 Toto Ltd 固体酸化物型燃料電池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259225A1 (en) 2009-04-10 2010-10-14 Triune Ip Llc Adaptive Power Control for Energy Harvesting
US8928272B2 (en) 2009-12-04 2015-01-06 Hyundai Motor Company Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
US20130241464A1 (en) * 2012-03-14 2013-09-19 Samsung Sdi Co., Ltd. Fuel cell hybrid system and method for charging rechargeable battery thereof
US9141923B2 (en) * 2012-09-25 2015-09-22 Bloom Energy Corporation Optimizing contractual management of the total output of a fleet of fuel cells
KR101910972B1 (ko) 2012-10-24 2018-10-23 삼성전자주식회사 연료 전지 시스템 및 그것을 제어하는 전자 기기
KR101897164B1 (ko) * 2017-03-06 2018-09-10 한국해양대학교 산학협력단 선박용 연료전지의 전력 제어 시스템 및 그 방법
US11139670B2 (en) * 2017-08-14 2021-10-05 Richtek Technology Corporation Charger circuit with temperature compensation function and controller circuit thereof
DE102017214445A1 (de) * 2017-08-18 2019-02-21 Audi Ag Verfahren zum Betreiben einer Brennstoffzellenanordnung sowie entsprechende Brennstoffzellenanordnung
DE102017214440A1 (de) 2017-08-18 2019-02-21 Audi Ag Verfahren zum Betreiben einer Brennstoffzellenanordnung sowie entsprechende Brennstoffzellenanordnung
DE102018218320A1 (de) * 2018-10-26 2020-04-30 Audi Ag Elektrisches Energiesystem mit Brennstoffzellen
US20230275246A1 (en) * 2020-09-25 2023-08-31 Cummins Enterprise Llc Method and fuel cell power system to identify and compensate for fuel composition variations in a fuel cell stack or system
KR102594069B1 (ko) * 2023-06-01 2023-10-26 켄코아에비에이션 주식회사 연료전지를 이용한 배터리의 충전 방법 및 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331930A (ja) * 2002-05-10 2003-11-21 Matsushita Electric Ind Co Ltd 給電システム
JP2003331891A (ja) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2005038792A (ja) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd 電源装置
JP2005056764A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 電源装置
JP2005339994A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 燃料電池の出力特性推定装置及び出力特性推定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632583B2 (en) * 2003-05-06 2009-12-15 Ballard Power Systems Inc. Apparatus for improving the performance of a fuel cell electric power system
US7687167B2 (en) * 2003-07-18 2010-03-30 Panasonic Corporation Power supply unit
JP5098154B2 (ja) * 2005-11-04 2012-12-12 ソニー株式会社 電気化学エネルギー生成装置及びその運転方法
US8486571B2 (en) * 2008-06-27 2013-07-16 Hyundai Motor Company Method for controlling output of fuel cell in fuel cell hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331930A (ja) * 2002-05-10 2003-11-21 Matsushita Electric Ind Co Ltd 給電システム
JP2003331891A (ja) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2005038792A (ja) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd 電源装置
JP2005056764A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 電源装置
JP2005339994A (ja) * 2004-05-27 2005-12-08 Toyota Motor Corp 燃料電池の出力特性推定装置及び出力特性推定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073901A (ja) * 2011-09-29 2013-04-22 Toto Ltd 固体酸化物型燃料電池

Also Published As

Publication number Publication date
US8399141B2 (en) 2013-03-19
US20100173211A1 (en) 2010-07-08
KR20100081834A (ko) 2010-07-15

Similar Documents

Publication Publication Date Title
JP2010161073A (ja) 燃料電池システム及び燃料電池の電力管理方法
JP4838017B2 (ja) ハイブリッド電源ならびに該ハイブリッド電源に適用されるパワーマネージメントシステムおよび方法
CN102498635B (zh) 混合电源系统
JP4791689B2 (ja) 電源装置
US20060222916A1 (en) Mehotd for determining a maximum power point voltage of a fuel cell, as well as fuel cell control system and power controller used in the fuel cell control system
US8614024B2 (en) Power supply apparatus
US7750597B2 (en) Power supply apparatus
JP2018110518A (ja) 電流フィードバックを用いたドループ補償
JPWO2005083868A1 (ja) 充電器及びこの充電器を備えたdc−dcコンバータ、並びにそれらの制御回路
US20130059220A1 (en) Fuel cell system and driving method thereof
US9160198B2 (en) Battery charging method and device using the same
Park et al. Efficient energy harvester for microbial fuel cells using DC/DC converters
KR100786529B1 (ko) 충전기 및 직류-직류 컨버터
JP4629319B2 (ja) 電源装置
JP2007265840A (ja) 燃料電池システム
JP5131805B2 (ja) 燃料電池システム
US8268497B2 (en) Fuel cell with fuel-stoichiometric ratio control portion
JP2006310246A (ja) 燃料電池システム
KR100983071B1 (ko) 전기이중층커패시터의 밸런서
JP2013191555A (ja) 燃料電池ハイブリッドシステム
WO2021261094A1 (ja) 直流バス制御システム
JP2007299532A (ja) 燃料電池システム
WO2023106406A1 (ja) 直流バス制御システム
JP2012156133A (ja) 燃料電池システム及びその制御方法
JP2009142145A (ja) 充電回路を具備する燃料電池装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730