JP2010159393A - Polymer, resist composition, and method for forming patterned substrate - Google Patents

Polymer, resist composition, and method for forming patterned substrate Download PDF

Info

Publication number
JP2010159393A
JP2010159393A JP2009136168A JP2009136168A JP2010159393A JP 2010159393 A JP2010159393 A JP 2010159393A JP 2009136168 A JP2009136168 A JP 2009136168A JP 2009136168 A JP2009136168 A JP 2009136168A JP 2010159393 A JP2010159393 A JP 2010159393A
Authority
JP
Japan
Prior art keywords
polymer
parts
molecular weight
monomer
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009136168A
Other languages
Japanese (ja)
Other versions
JP5716943B2 (en
Inventor
Atsushi Yasuda
敦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009136168A priority Critical patent/JP5716943B2/en
Publication of JP2010159393A publication Critical patent/JP2010159393A/en
Application granted granted Critical
Publication of JP5716943B2 publication Critical patent/JP5716943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer capable of forming a high-sensitivity resist film and excellent in solvent solubility when it is formed into a resist composition. <P>SOLUTION: The polymer (P) is obtained by radical polymerization and satisfying the following formula (1) P[α<SB>A</SB>]/P[α<SB>B</SB>]≤0.7 when subjected to gel permeation chromatography (GPC). In formula (1), P[α<SB>A</SB>] is the ratio of the peak area from the peak start molecular weight to the peak top molecular weight to the total polymer peak area when the polymer (P) is subjected to gel permeation chromatography, and P[α<SB>B</SB>] is the ratio of the peak area from the peak top molecular weight to the peak end molecular weight to the total polymer peak area when polymer (P) is subjected to gel permeation chromatography. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、重合体、レジスト組成物、及びパターンが形成された基板の製造方法に関する。   The present invention relates to a polymer, a resist composition, and a method for producing a substrate on which a pattern is formed.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。   In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to progress in lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter in wavelength from ultraviolet rays typified by conventional g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .

最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術及びEUVエキシマレーザー(波長:13nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。   Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV excimer laser (wavelength: 13 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光または電子線を用いたレジストパターンの形成に用いられる高解像度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良及び開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1、2等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a high-resolution resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of the amplified resist composition are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). 2).

しかしながら、これらの重合体は、レジスト組成物等の半導体装置製造のリソグラフィー工程に用いる組成物を調製する際の溶媒への溶解性が十分でない場合が多く、溶解に長時間を要したり、不溶分が発生することで製造工程数が増加したりする等、組成物の調製に支障を来たす場合がある。また、該組成物の保存中に該組成物に含まれる重合体が経時的に凝集して、マイクロゲルと呼ばれる不溶分が発生し、レジスト組成物の場合には、レジストパターンに抜けが発生することにより、回路の断線、欠陥等を生じることもある。   However, these polymers often have insufficient solubility in a solvent when preparing a composition used in a lithography process for manufacturing a semiconductor device such as a resist composition, and it takes a long time to dissolve or is insoluble. In some cases, the production of the composition may be hindered, for example, the number of manufacturing steps may increase due to the generation of minutes. In addition, during storage of the composition, the polymer contained in the composition aggregates over time, generating an insoluble matter called microgel, and in the case of a resist composition, the resist pattern is missing. As a result, the circuit may be disconnected or defective.

また、ポリマー中に含まれる微量の高分子量成分(ハイポリマー)の生成を抑制することにより、レジスト溶媒やアルカリ現像液等の各種溶媒への溶解性を向上させることが提案されている(特許文献3)。しかしながら、レジスト溶媒等への溶解性等の要求性能を十分に満たす重合体の開発は未だ達成されていない。
特開平10−319595号公報 特開平10−274852号公報 特開2004−269855号公報
In addition, it has been proposed to improve the solubility in various solvents such as resist solvents and alkaline developers by suppressing the formation of trace amounts of high molecular weight components (high polymers) contained in the polymer (Patent Literature). 3). However, development of a polymer that sufficiently satisfies the required performance such as solubility in a resist solvent has not been achieved yet.
JP 10-319595 A JP-A-10-274852 JP 2004-269855 A

本発明は、上記事情を鑑みてなされたもので、DUVエキシマレーザーリソグラフィー、電子線リソグラフィーに用いる重合体として用いた場合に、高感度なレジスト膜を形成でき、レジスト組成物等を調製する際の溶媒への溶解性に優れた重合体、該重合体を含有するレジスト組成物、及び、このレジスト組成物を用いたパターン形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. When used as a polymer for DUV excimer laser lithography and electron beam lithography, a highly sensitive resist film can be formed, and a resist composition or the like can be prepared. It aims at providing the polymer excellent in the solubility to a solvent, the resist composition containing this polymer, and the pattern formation method using this resist composition.

本発明の第一の要旨は、ラジカル重合で得られる重合体(P)であって、該重合体をゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した際に、下記式(1)を満足するレジスト用重合体にある。
P[α]/P[α]≦0.7 …(1)
(式(1)において、P[α]は重合体(P)をGPCによって測定した際のポリマーピーク全面積に対するピークスタート分子量からピークトップ分子量までのピーク面積比を表し、P[α]は重合体(P)をGPCによって測定した際のポリマーピーク全面積に対するピークトップ分子量からピークエンド分子量までのピーク面積比を表す。)
The first gist of the present invention is a polymer (P) obtained by radical polymerization, which satisfies the following formula (1) when the polymer is measured by gel permeation chromatography (GPC). Resist polymer.
P [α A ] / P [α B ] ≦ 0.7 (1)
(In Formula (1), P [α A ] represents a peak area ratio from the peak start molecular weight to the peak top molecular weight with respect to the total area of the polymer peak when the polymer (P) is measured by GPC, and P [α B ] Represents the ratio of the peak area from the peak top molecular weight to the peak end molecular weight with respect to the total area of the polymer peak when the polymer (P) is measured by GPC.)

さらに、本発明の第二の要旨は、上記重合体(P)を含有するレジスト組成物にある。   Furthermore, the second gist of the present invention resides in a resist composition containing the polymer (P).

さらに、本発明の第三の要旨は、上記レジスト組成物を被加工基板上に塗布し、レジスト膜を形成する工程と、該レジスト膜に、250nm以下の波長の光を照射して潜像を形成する工程と、該潜像が形成されたレジスト膜を、現像液で現像処理する工程とを有る、パターンが形成された基板の製造方法にある。   Furthermore, the third aspect of the present invention includes a step of applying the resist composition onto a substrate to be processed to form a resist film, and irradiating the resist film with light having a wavelength of 250 nm or less to form a latent image. There is a method for manufacturing a substrate on which a pattern is formed, which includes a step of forming and a step of developing a resist film on which the latent image is formed with a developer.

上記重合体(P)によれば、重合体中の高分子量成分と低分子量成分の割合を所定の範囲とすることにより、レジスト溶媒等への溶解性等を顕著に向上させることができる。   According to the said polymer (P), the solubility etc. to a resist solvent etc. can be improved notably by making the ratio of the high molecular weight component and low molecular weight component in a polymer into a predetermined range.

上記レジスト組成物によれば、上述したようなレジスト溶媒等への溶解性等に優れる重合体を用いることにより、不溶解性成分を低減することができるので、感度に優れたレジスト膜を形成することができる。   According to the resist composition, since the insoluble component can be reduced by using the polymer having excellent solubility in the resist solvent as described above, a resist film having excellent sensitivity is formed. be able to.

上記製造方法によれば、基板上に欠陥の少ない高精度の微細パターンが形成することができるため、生産性の向上等が図れる。   According to the manufacturing method, a highly accurate fine pattern with few defects can be formed on the substrate, so that productivity can be improved.

本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。   In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.

本明細書において、ピークスタート分子量とは、ゲル・パーミエーション・クロマトグラフィー(GPC)測定の際、試料を試料注入した後、ポリマーの検出ピークの立ち上がり点であり、即ち、高分子量体側の検出ピークとベースラインとの接点を意味する。
本明細書において、ピークトップ分子量とは、ゲル・パーミエーション・クロマトグラフィー(GPC)測定の際、検出される信号強度が最も大きいポリマーピークの位置を意味する。
本明細書において、ピークエンド分子量とは、ゲル・パーミエーション・クロマトグラフィー(GPC)の際、ポリマーの検出ピークが終了する点であり、即ち、低分子量体側の検出ピークとベースラインとの接点を意味する。
In this specification, the peak start molecular weight is the rising point of the detection peak of the polymer after the sample is injected in the gel permeation chromatography (GPC) measurement, that is, the detection peak on the high molecular weight side. And the base line.
In this specification, the peak top molecular weight means the position of a polymer peak having the highest signal intensity detected in gel permeation chromatography (GPC) measurement.
In the present specification, the peak end molecular weight is the point at which the detection peak of the polymer ends during gel permeation chromatography (GPC), that is, the contact point between the detection peak on the low molecular weight side and the baseline. means.

本明細書において、ベースラインとは、ゲル・パーミエーション・クロマトグラフィー(GPC)測定の際、試料を注入した後、測定時間に対する信号強度の変化率が変化した時の(重合体が検出される直前の)信号強度と、ピークトップ位置が出現した後、測定時間に対する信号強度の変化率が変化しなくなった時の(重合体が検出し終わった直後の)信号強度を結んで設定することができる。
本明細書において、P[α]とは、ポリマーピーク全面積に対する、上記ピークスタート分子量からピークトップ分子量までのピーク曲線と、上記ピークトップ分子量からベースラインまでの垂線と、上記二線と交差するベースラインとで囲まれる範囲のピーク面積比を意味する。
本明細書において、P[α]とは、ポリマーピーク全面積に対する、上記ピークトップ分子量からピークエンド分子量までのピーク曲線と、上記ピークトップ分子量からベースラインまでの垂線と、上記二線と交差するベースラインとで囲まれる範囲のピーク面積比を意味する。
本明細書において、ポリマーピークとは、重合体(P)について、ゲル・パーミエーション・クロマトグラフィー(GPC)測定を行った際に検出される主ピークであって、重合体中に含まれる残留モノマー等のピークは含まないことを意味する。
In this specification, the baseline refers to the time when the rate of change of the signal intensity with respect to the measurement time changes after the sample is injected during the gel permeation chromatography (GPC) measurement (the polymer is detected). It can be set by connecting the signal intensity (immediately before) and the signal intensity when the rate of change of the signal intensity with respect to the measurement time does not change after the peak top position appears (immediately after the detection of the polymer). it can.
In the present specification, P [α A ] means a peak curve from the peak start molecular weight to the peak top molecular weight, a perpendicular line from the peak top molecular weight to the baseline, and the two lines with respect to the total area of the polymer peak. It means the peak area ratio in the range surrounded by the baseline.
In the present specification, P [α B ] means the peak curve from the peak top molecular weight to the peak end molecular weight, the perpendicular from the peak top molecular weight to the baseline, and the two lines with respect to the total area of the polymer peak. It means the peak area ratio in the range surrounded by the baseline.
In this specification, the polymer peak is a main peak detected when gel permeation chromatography (GPC) measurement is performed on the polymer (P), and is a residual monomer contained in the polymer. It means that peaks such as are not included.

(重合体)
本発明の重合体(P)は、下記式(1)を満足する重合体である。
P[α]/P[α]≦0.7 …(1)
P[α]/P[α]が0.7以下であることは、重合体(P)においては、GPCによって測定した際のポリマーピークを、ピークトップ分子量で高分子量成分と低分子量成分に分割した際、ピークトップから高分子量成分側のピーク面積(P[α])が、ピークトップから低分子量成分側のピーク面積(P[α])より狭いことを意味する。
(Polymer)
The polymer (P) of the present invention is a polymer satisfying the following formula (1).
P [α A ] / P [α B ] ≦ 0.7 (1)
The fact that P [α A ] / P [α B ] is 0.7 or less means that, in the polymer (P), the polymer peak measured by GPC has a high molecular weight component and a low molecular weight component at the peak top molecular weight. when divided into a peak area of the high molecular weight component side from the peak top (P [α a]) it is meant that smaller than the peak area of the low molecular weight components side (P [α B]) from the peak top.

上記式(1)を満足する重合体は、低分子量成分の割合に対する高分子量成分の割合が所定の数値以下であり、即ち、高分子量成分の生成が抑制されており、マイクロゲル生成等を抑制することができるため、レジスト組成物に用いた場合、レジスト溶媒への溶解性に優れ、かつ、感度に優れたレジスト膜を形成できる。
また、上記上記式(1)を満足する重合体は、上述したように高分子量成分の生成が抑制されており、マイクロゲル生成等を抑制することができるため、反射防止膜形成用組成物に用いた場合には、薄膜形成用溶媒への溶解性に優れ、かつ、反射防止効果に優れた反射防止膜を形成できる。
上記重合体(P)において、P[α]/P[α]は0.7以下である。また、溶媒への溶解性に優れ、溶媒へ完全溶解させる時間が短いことから、P[α]/P[α]は0.69以下が好ましく、0.68以下がより好ましい。
In the polymer satisfying the above formula (1), the ratio of the high molecular weight component to the ratio of the low molecular weight component is not more than a predetermined value, that is, the generation of the high molecular weight component is suppressed, and the formation of the microgel is suppressed Therefore, when used in a resist composition, a resist film having excellent solubility in a resist solvent and excellent sensitivity can be formed.
In addition, since the polymer satisfying the above formula (1) suppresses the generation of a high molecular weight component as described above and can suppress the formation of a microgel and the like, When used, it is possible to form an antireflection film excellent in solubility in a thin film forming solvent and excellent in antireflection effect.
In the polymer (P), P [α A ] / P [α B ] is 0.7 or less. Further, P [α A ] / P [α B ] is preferably 0.69 or less, and more preferably 0.68 or less, because of excellent solubility in a solvent and short time for complete dissolution in a solvent.

また、工業的に再現性良く重合体を製造できることから、上記重合体(P)において、P[α]/P[α]は0.4以上が好ましく、0.5以上がより好ましく、0.6以上がさらに好ましい。 In addition, since the polymer can be produced industrially with good reproducibility, in the polymer (P), P [α A ] / P [α B ] is preferably 0.4 or more, more preferably 0.5 or more, 0.6 or more is more preferable.

(酸不安定基を有する構成単位)
本発明の重合体(P)は、レジスト用として用いる場合は、酸不安定基を有することが好ましい。「酸不安定基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸不安定基の一部または全部が重合体の主鎖から脱離する基である。
酸不安定基を有する構成単位を有する重合体は、レジスト用組成物として用いた場合、酸によってアルカリに可溶となり、レジストパターン形成を可能とする作用を奏する。
(Structural unit having acid labile group)
The polymer (P) of the present invention preferably has an acid labile group when used for resist. The “acid labile group” is a group having a bond that is cleaved by an acid, and a part or all of the acid labile group is removed from the main chain of the polymer by cleavage of the bond.
When used as a resist composition, a polymer having a structural unit having an acid labile group is soluble in an alkali by an acid, and has an effect of enabling resist pattern formation.

酸不安定基を有する構成単位としては、酸不安定基を有する単量体に由来する構成単位が挙げられる。
上記酸不安定基を有する単量体としては、例えば、炭素数6〜20の脂環式炭化水素基を有し、かつ酸の作用により脱離可能な基を有している(メタ)アクリル酸エステル等が挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
Examples of the structural unit having an acid labile group include a structural unit derived from a monomer having an acid labile group.
As the monomer having an acid labile group, for example, a (meth) acryl having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a group capable of being removed by the action of an acid. Acid ester etc. are mentioned. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.

上記(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。   The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Meth) acrylic acid ester in which a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group is bonded directly or via a linking group is included.

上記酸不安定基を有する単量体としては、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1′−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート等が挙げられる。
上記酸不安定基を有する単量体は、1種を単独で用いてもよく、2種以上を必要に応じて組み合わせて用いてもよい。
Examples of the monomer having an acid labile group include 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, and 1- (1′-adamantyl) -1- Examples include methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, and the like.
As the monomer having an acid labile group, one type may be used alone, or two or more types may be used in combination as necessary.

上記酸不安定基を有する単量体の含有量は、特に限定されないが、全単量体の合計の仕込み量(100モル%)中、20モル%以上が好ましく、25モル%以上がより好ましい。また、上記含有量の上限値としては、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。上記含有量が、20モル%以上、好ましくは25モル%以上であれば、感度や解像度が向上する傾向にあり、また、この含有量が、60モル%以下、好ましくは55モル%以下、さらに好ましくは50モル%以下であれば、解像性が向上する傾向にある。   The content of the monomer having an acid labile group is not particularly limited, but is preferably 20 mol% or more and more preferably 25 mol% or more in the total charge amount (100 mol%) of all monomers. . Moreover, as an upper limit of the said content, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable. If the content is 20 mol% or more, preferably 25 mol% or more, sensitivity and resolution tend to be improved, and the content is 60 mol% or less, preferably 55 mol% or less, If it is preferably 50 mol% or less, the resolution tends to be improved.

(ラクトン骨格を有する構成単位)
本発明の重合体は、ラクトン骨格を有する構成単位をさらに有していてもよい。
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
(Constitutional unit having a lactone skeleton)
The polymer of the present invention may further have a structural unit having a lactone skeleton.
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.

上記ラクトン骨格を有する構成単位としては、ラクトン骨格を有する単量体に由来する構成単位が挙げられる。
上記ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。
Examples of the structural unit having a lactone skeleton include structural units derived from a monomer having a lactone skeleton.
As the monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring from the viewpoint of excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having a non-substituted γ-butyrolactone ring is particularly preferable.

上記ラクトン骨格を有する単量体としては、例えば、β−メタクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−メタクリロイルオキシ−γ−ブチロラクトン、β−メタクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−メタクリロイルオキシ−γ−ブチロラクトン、2−(1−メタクリロイルオキシ)エチル−4−ブタノリド、メタクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシコハク酸無水物等も挙げられる。
上記ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を必要に応じて組み合わせて用いてもよい。
Examples of the monomer having a lactone skeleton include β-methacryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β-methacryloyloxy-γ-butyrolactone, β-methacryloyloxy-β-methyl-γ-butyrolactone, α-methacryloyloxy-γ-butyrolactone, 2- (1-methacryloyloxy) ethyl-4-butanolide, pantoyllactone methacrylate, 5- (meth) acryloyloxy- 2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decan-3-one, 9-methacryloxy-4-oxatricyclo [5.2.1 .0 2,6 ] decan-3-one and the like. Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
The monomers having the lactone skeleton may be used alone or in combination of two or more as necessary.

上記ラクトン骨格を有する単量体の含有量は、特に限定されないが、全単量体の合計の仕込み量(100モル%)中、20モル%以上が好ましく、35モル%以上がより好ましい。また、上記含有量の上限値としては、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。上記ラクトン骨格を有する単量体の含有量が20モル%以上、好ましくは30モル%以上であれば、基板等との密着性が良好になる傾向があり、また、この含有量が60モル%以下、好ましくは55モル%以下、更に好ましくは50モル%以下であれば、感度や解像度が向上し、ディフェクトが少なくなる傾向がある。   The content of the monomer having a lactone skeleton is not particularly limited, but is preferably 20 mol% or more, and more preferably 35 mol% or more in the total charged amount (100 mol%) of all monomers. Moreover, as an upper limit of the said content, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable. If the content of the monomer having a lactone skeleton is 20 mol% or more, preferably 30 mol% or more, the adhesion to a substrate or the like tends to be good, and the content is 60 mol%. If the amount is 55 mol% or less, more preferably 50 mol% or less, the sensitivity and resolution are improved and defects tend to be reduced.

(親水性基を有する構成単位)
本発明の重合体は、親水性基を有する構成単位をさらに有していてもよい。「親水性基」としては、例えば、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基及びアミノ基の少なくとも1種が挙げられる。
(Structural unit having a hydrophilic group)
The polymer of the present invention may further have a structural unit having a hydrophilic group. Examples of the “hydrophilic group” include at least one of —C (CF 3 ) 2 —OH, a hydroxy group, a cyano group, a methoxy group, a carboxy group, and an amino group.

上記親水性基を有する構成単位としては、親水性基を有する単量体に由来する構成単位が挙げられる。
上記親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル、単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体、環式炭化水素基を有する単量体((メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基、シアノ基等の親水性基を有する単量体が挙げられる。環式炭化水素基を有する単量体は、ドライエッチング耐性に優れる傾向にあるため好ましい。
Examples of the structural unit having a hydrophilic group include a structural unit derived from a monomer having a hydrophilic group.
Examples of the monomer having a hydrophilic group include (meth) acrylic acid ester having a terminal hydroxy group, and a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer. , Monomer having a cyclic hydrocarbon group (cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate), tricyclodecanyl (meth) acrylate, (meth) acrylic acid Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) have a hydrophilic group such as a hydroxy group, a carboxy group, or a cyano group as a substituent. Monomer. A monomer having a cyclic hydrocarbon group is preferable because it tends to be excellent in dry etching resistance.

上記親水性基を有する単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられ、基板等に対する密着性の点から、1−メタクリロイルオキシ−3−ヒドロキシアダマンタン、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート等が好ましい。
上記親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を必要に応じて組み合わせて用いてもよい。
Examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. From the viewpoint of adhesion to a substrate or the like, 1-methacryloyloxy-3-hydroxyadamantane, 2- or 3-cyano-5-norbornyl (meth) acrylate and the like are preferable.
The said monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type as needed.

上記親水性基を有する単量体の含有量は、全単量体の合計の仕込み量(100モル%)中、5〜30モル%が好ましく、10〜25モル%がより好ましい。上記含有量が5モル%以上、好ましくは10モル%以上であれば、レジストパターン矩形性が良好となる傾向があり、上記含有量が20モル%以下、好ましくは25モル%以上であれば、マイクロゲル、ディフェクトが少ない傾向にある。   The content of the monomer having a hydrophilic group is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, in the total charged amount (100 mol%) of all monomers. If the content is 5 mol% or more, preferably 10 mol% or more, the resist pattern rectangularity tends to be good, and if the content is 20 mol% or less, preferably 25 mol% or more, There is a tendency for microgels and defects to be small.

(重合体の製造方法)
本発明の重合体(P)は、ラジカル重合法によって得ることができ、光線透過率を低下させないために、重合反応終了後に残存する単量体を除去する必要がある点、重合体の分子量を比較的低くする必要がある点から、溶液ラジカル重合法が好ましく、製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性のある重合体が簡便に得られる点から、滴下重合法が更に好ましい。
(Method for producing polymer)
The polymer (P) of the present invention can be obtained by a radical polymerization method. In order not to lower the light transmittance, it is necessary to remove the monomer remaining after the completion of the polymerization reaction, and the molecular weight of the polymer is determined. The solution radical polymerization method is preferable because it needs to be relatively low, and the drop polymerization method is easy because a reproducible polymer can be easily obtained with small variations in average molecular weight and molecular weight distribution due to differences in production lots. Is more preferable.

上記滴下重合法においては、重合容器内を所定の重合温度まで加熱した後、単量体及び重合開始剤を、各々独立に、又は任意の組み合わせで、重合容器内に滴下することができる。単量体は、単量体のみで滴下してもよく、又は単量体を溶媒に溶解させた単量体溶液として滴下してもよい。溶媒を予め重合容器に仕込んでもよく、又は溶媒を予め重合容器に仕込まなくてもよい。溶媒を予め重合容器に仕込まない場合、単量体または重合開始剤は、溶媒がない状態で重合容器中に滴下される。   In the dropping polymerization method, after the inside of the polymerization vessel is heated to a predetermined polymerization temperature, the monomer and the polymerization initiator can be dropped into the polymerization vessel independently or in any combination. A monomer may be dripped only with a monomer, or may be dripped as a monomer solution in which a monomer is dissolved in a solvent. The solvent may be charged into the polymerization vessel in advance, or the solvent may not be charged into the polymerization vessel in advance. When the solvent is not charged in the polymerization vessel in advance, the monomer or the polymerization initiator is dropped into the polymerization vessel in the absence of the solvent.

上記重合開始剤は、単量体に直接に溶解させてもよく、又は単量体溶液に溶解させてもよく、又は溶媒のみに溶解させてもよい。単量体及び重合開始剤は、同じ貯槽内で混合した後、重合容器中に滴下してもよく、又は各々独立した貯槽から重合容器中に滴下してもよく、又は各々独立した貯槽から重合容器に供給する直前で混合し、重合容器中に滴下してもよい。上記単量体及び重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、又は両方を同じタイミングで滴下してもよい。
なお、滴下速度は、滴下終了まで一定であってもよく、又は単量体や重合開始剤の消費速度に応じて、多段階に変化させてもよい。滴下は、連続的又は間欠的に行ってもよい。
The polymerization initiator may be dissolved directly in the monomer, dissolved in the monomer solution, or dissolved only in the solvent. The monomer and the polymerization initiator may be mixed in the same storage tank and then dropped into the polymerization container, or may be dropped into the polymerization container from each independent storage tank, or polymerized from each independent storage tank. They may be mixed immediately before being supplied to the container and dropped into the polymerization container. The monomer and the polymerization initiator may be added dropwise one after the other, or the other may be added with a delay, or both may be added at the same timing.
The dropping speed may be constant until the dropping is completed, or may be changed in multiple stages according to the consumption speed of the monomer or the polymerization initiator. The dripping may be performed continuously or intermittently.

本発明の重合体(P)を得る方法として、上記溶液ラジカル重合による滴下重合法を用いる場合には、重合初期に重合開始剤の供給速度を上げて高分子量体の生成を抑制する方法等が挙げられる。   As a method for obtaining the polymer (P) of the present invention, when the dropping polymerization method based on the solution radical polymerization is used, there is a method of increasing the supply rate of the polymerization initiator at the initial stage of polymerization to suppress the formation of a high molecular weight product. Can be mentioned.

上記重合初期に重合開始剤の供給量を上げる方法として、例えば使用する重合開始剤の全量の約20質量%〜80質量%、更に好ましくは約25質量%〜75質量%、特に好ましくは約30質量%〜70%質量を、重合初期(例えば、重合開始〜1時間以内)に重合系内に供給する方法が挙げられる。   As a method for increasing the supply amount of the polymerization initiator at the initial stage of the polymerization, for example, about 20% by mass to 80% by mass, more preferably about 25% by mass to 75% by mass, and particularly preferably about 30% by mass of the total amount of the polymerization initiator used. A method of supplying mass% to 70% mass into the polymerization system at the initial stage of polymerization (for example, within 1 hour to the start of polymerization) can be mentioned.

一般的に、滴下重合法の場合には、単量体と重合開始剤を同一滴下時間、かつ均一速度で滴下する場合、重合初期に高分子量体が生成する傾向がある。上記方法によれば、重合初期に開始剤を分解させて、ラジカルの生成や失活を定常的に発生させることにより、該ラジカル中に単量体を滴下することで、重合初期に発生する高分子量体の生成を抑制することができるため好ましい。   In general, in the case of the dropping polymerization method, when the monomer and the polymerization initiator are dropped at the same dropping time and at a uniform rate, a high molecular weight product tends to be formed at the initial stage of polymerization. According to the above method, the initiator is decomposed at the initial stage of polymerization, and the generation and deactivation of radicals are steadily generated. Since generation | occurrence | production of a molecular weight body can be suppressed, it is preferable.

具体的な手法としては、二種以上の滴下液を調製し、各々の滴下液の供給速度を多段階に変化させる方法等が挙げられる。例えば、重合開始剤と溶媒等とを含んでなる混合物Aと、単量体と溶媒等とを含んでなる混合物Bとを別々に調製し、該混合物Aを重合開始〜1時間以内等の短時間で供給させると同時に、該混合物Bを1〜数時間以上かけて滴下する方法が挙げられる。   As a specific method, there may be mentioned a method of preparing two or more dropping liquids and changing the supply speed of each dropping liquid in multiple stages. For example, a mixture A comprising a polymerization initiator and a solvent, etc. and a mixture B comprising a monomer and a solvent are prepared separately, and the mixture A is prepared for a short time such as from the start of polymerization to within 1 hour. The method of dripping this mixture B over 1 to several hours or more simultaneously with supplying with time is mentioned.

また、重合開始剤の一部と溶媒等とを含んでなる混合物A’と、単量体と重合開始剤の残部と溶媒等とを含んでなる混合物B’とを別々に調製し、該混合物A’を重合開始〜1時間以内等の短時間で供給させると同時に、該混合物B’を1〜数時間以上かけて滴下する方法が挙げられる。   Further, a mixture A ′ comprising a part of a polymerization initiator and a solvent, etc., and a mixture B ′ comprising a monomer, the remainder of the polymerization initiator, a solvent and the like are prepared separately, and the mixture A method of dropping A ′ over 1 to several hours at the same time as supplying A ′ in a short time such as from the start of polymerization to within 1 hour may be mentioned.

また、本発明の重合体(P)の他の重合方法としては、塊状重合法、懸濁重合法、乳化重合法等の公知の重合方法を用いることができる。   Moreover, as another polymerization method of the polymer (P) of this invention, well-known polymerization methods, such as a block polymerization method, a suspension polymerization method, and an emulsion polymerization method, can be used.

重合温度は、特に制限されないが、通常、50〜150℃の範囲で行うのが好ましい。また、重合反応は窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。   The polymerization temperature is not particularly limited, but usually it is preferably performed in the range of 50 to 150 ° C. The polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.

上記単量体や開始剤の溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」と記す。)等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)、シクロヘキサノン等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the monomer or initiator solvent include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether (hereinafter referred to as “PGME”), etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc. )etc.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), cyclohexanone, and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
A solvent may be used individually by 1 type and may use 2 or more types together.

上記重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。該重合開始剤としては、例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。   As said polymerization initiator, what generate | occur | produces a radical efficiently with a heat | fever is preferable. Examples of the polymerization initiator include azo compounds (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazoline). -2-yl) propane], etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc. Etc.).

溶液ラジカル重合法によって得られた重合体溶液を、必要に応じて、1,4−ジオキサン、アセトン、THF、MEK、MIBK、γ−ブチロラクトン、PGMEA、PGME等の良溶媒で適当な溶液粘度に希釈した後、メタノール、水、ヘキサン、ヘプタン等の多量の貧溶媒中に滴下し、重合体を析出させてもよい。該工程は、再沈殿と呼ばれ、重合体溶液中に残存する未反応の単量体、重合開始剤等を取り除くために非常に有効である。これら未反応物は、そのまま残存しているとレジスト膜の性能に悪影響を及ぼす可能性があるため、できるだけ取り除くことが好ましい。再沈殿工程は、場合により不要となることもある。   The polymer solution obtained by the solution radical polymerization method is diluted to a suitable solution viscosity with a good solvent such as 1,4-dioxane, acetone, THF, MEK, MIBK, γ-butyrolactone, PGMEA, and PGME, if necessary. Then, it may be dropped into a large amount of poor solvent such as methanol, water, hexane or heptane to precipitate the polymer. This process is called reprecipitation and is very effective for removing unreacted monomers, polymerization initiators and the like remaining in the polymer solution. If these unreacted substances remain as they are, there is a possibility that the performance of the resist film may be adversely affected. The reprecipitation process may be unnecessary depending on circumstances.

その後、析出物を濾別し、十分に乾燥して上記重合体(P)を得ることができる。また、濾別した後、乾燥せずに湿粉のまま用いてもよい。
また、重合体溶液をそのままレジスト組成物として用いてもよく、重合体溶液を適当な溶媒で希釈してレジスト組成物として用いてもよく、重合体溶液を濃縮してレジスト組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
Thereafter, the precipitate is filtered off and sufficiently dried to obtain the polymer (P). Moreover, after filtering off, you may use it as a wet powder, without drying.
The polymer solution may be used as it is as a resist composition, or the polymer solution may be diluted with an appropriate solvent and used as a resist composition, or the polymer solution may be concentrated and used as a resist composition. Good. At that time, additives such as a storage stabilizer may be appropriately added.

また、上記式(1)を満足しない重合体であっても、重合反応に用いることができる良溶媒に溶解させ、再沈殿工程で用いることが出来る貧溶媒を添加することで高分子量体を析出させ、高分子量体をろ別することで上記式(1)を満足する上記重合体(P)を得る事ができる。   Even if the polymer does not satisfy the above formula (1), it is dissolved in a good solvent that can be used for the polymerization reaction, and a high-molecular weight material is precipitated by adding a poor solvent that can be used in the reprecipitation step. The polymer (P) satisfying the formula (1) can be obtained by filtering the high molecular weight product.

<レジスト組成物>
本発明のレジスト組成物は、本発明の重合体(P)を溶媒に溶解したものである。また、本発明のレジスト組成物を化学増幅型レジスト組成物として用いる場合は、さらに光酸発生剤を溶解したものである。
<Resist composition>
The resist composition of the present invention is obtained by dissolving the polymer (P) of the present invention in a solvent. When the resist composition of the present invention is used as a chemically amplified resist composition, a photoacid generator is further dissolved.

(溶媒)
溶媒としては、上記重合体の製造に用いた溶媒と同様のものが挙げられる。溶媒は、1種を単独で用いてもよく、2種以上を必要に応じて併用してもよい。
(solvent)
As a solvent, the thing similar to the solvent used for manufacture of the said polymer is mentioned. A solvent may be used individually by 1 type and may use 2 or more types together as needed.

(光酸発生剤)
光酸発生剤は、化学増幅型レジスト組成物の光酸発生剤として使用可能なものの中から任意に選択できる。光酸発生剤は、1種を単独で用いてもよく、2種以上を必要に応じて併用してもよい。
(Photoacid generator)
The photoacid generator can be arbitrarily selected from those that can be used as the photoacid generator of the chemically amplified resist composition. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together as needed.

光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
光酸発生剤の量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for the quantity of a photo-acid generator, 0.5-10 mass parts is more preferable.

(含窒素化合物)
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターン断面形状の劣化の発生がより抑制される。
(Nitrogen-containing compounds)
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).

上記含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
上記含窒素化合物の含有量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for content of the said nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

(有機カルボン酸、リンのオキソ酸またはその誘導体)
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
(Organic carboxylic acid, phosphorus oxo acid or its derivative)
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.

上記有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
上記リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
上記酸化合物の含有量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of the phosphorus oxo acid or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
As for content of the said acid compound, 0.01-5 mass parts is preferable with respect to 100 mass parts of polymers.

(その他)
上記本発明のレジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めることができる。
(Other)
The resist composition of the present invention may contain various additives such as surfactants, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. The amount of these additives is not particularly limited and can be determined as appropriate.

<パターンが形成された基板の製造方法>
次いで、本発明にかかるパターンが形成された基板の製造方法の一例について説明する。
まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面に、本発明のレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。
<Manufacturing method of substrate on which pattern is formed>
Next, an example of a method for manufacturing a substrate on which a pattern according to the present invention is formed will be described.
First, the resist composition of the present invention is applied to the surface of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed by spin coating or the like. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

ついで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。 Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.

また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。   In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものが挙げられる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). Examples of the alkaline developer include known ones.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、微細パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a fine pattern is formed.

以上説明した本発明の重合体(P)は、式(1)で表される分子量分布を有するため、レジスト組成物を調製する際の溶媒への溶解性に優れている。
また、本発明の重合体を用いたレジスト組成物は、高い感度のレジスト膜を形成でき、組成物中の不溶分が少ない。
また、本発明のレジスト組成物を用いることによって、欠陥の少ない高精度の微細なレジストパターンを安定して形成できる。
そのため、本発明の重合体及びレジスト組成物は、DUVエキシマレーザーリソグラフィーあるいは電子線リソグラフィー、特にArFエキシマレーザー(193nm)を使用するリソグラフィーに好適に用いることができる。
Since the polymer (P) of the present invention described above has a molecular weight distribution represented by the formula (1), it has excellent solubility in a solvent when preparing a resist composition.
Moreover, the resist composition using the polymer of the present invention can form a highly sensitive resist film and has a small amount of insolubles in the composition.
Further, by using the resist composition of the present invention, a highly accurate fine resist pattern with few defects can be stably formed.
Therefore, the polymer and resist composition of the present invention can be suitably used for DUV excimer laser lithography or electron beam lithography, particularly lithography using ArF excimer laser (193 nm).

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。
また、以下のようにして、重合体及びレジスト組成物を評価した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, “part” in each example and comparative example means “part by mass” unless otherwise specified.
Moreover, the polymer and the resist composition were evaluated as follows.

(重量平均分子量測定)
重合体の重量平均分子量(Mw)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
<GPC条件>
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:THF、
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
(Weight average molecular weight measurement)
The weight average molecular weight (Mw) of the polymer was determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
<GPC conditions>
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: THF,
Sample: A solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.

検量線:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
さらに、上記GPC装置の計算プログラムを用いて、得られた各重合体のピークについて、ベースライン及びピークトップの線を引いて、ポリマーピーク全面積に対するピークトップから高分子量側のピーク面積比(P[α])及びポリマーピーク全面積に対するピークトップから低分子量側のピーク面積比(P[α])を求めた。
Calibration curve: About 20 mg of standard polystyrene was dissolved in 5 mL of THF and injected into a separation column under the above conditions using a solution filtered through a 0.5 μm membrane filter, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).
Further, by using the calculation program of the GPC apparatus, the base line and peak top lines are drawn for the obtained polymer peaks, and the peak area ratio (P [α a]) and the low molecular weight side peak area ratio from the peak top to the polymer peak total area (P [α B]) was determined.

(溶解性)
重合体の20部とPGMEAの80部とを混合し、25℃に保ちながら撹拌を行い、目視で判断した完全溶解するまでの時間を計測した。
(Solubility)
20 parts of the polymer and 80 parts of PGMEA were mixed, stirred while being kept at 25 ° C., and the time until complete dissolution determined by visual observation was measured.

(感度)
<レジスト組成物の調製>
以下の組成となるように調製した。
重合体 : 100質量部(固形分換算)
光酸発生剤 : トリフェニルスルホニウムトリフレート2質量部
溶媒 : PGMEA (重合体の濃度が12.5質量%となる量。)
(sensitivity)
<Preparation of resist composition>
It prepared so that it might become the following compositions.
Polymer: 100 parts by mass (solid content conversion)
Photoacid generator: 2 parts by mass of triphenylsulfonium triflate Solvent: PGMEA (amount at which the concentration of the polymer is 12.5% by mass)

<感度測定>
上記レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製VUVES−4500)を用い、露光量を変えて10mm×10mmの18ショットを露光した。次いで110℃、60秒間ポストベーク(PEB)した後、レジスト現像アナライザー(リソテックジャパン製RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Sensitivity measurement>
The resist composition was spin-coated on a 6-inch silicon wafer and pre-baked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (VUVES-4500 manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Next, after post-baking (PEB) at 110 ° C. for 60 seconds, using a resist development analyzer (RDA-800 manufactured by RISOTEC Japan), development is performed with an aqueous 2.38 mass% tetramethylammonium hydroxide solution at 23 ° C. for 65 seconds. The change with time of the resist film thickness during development at each exposure amount was measured.

<解析>
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth(残膜率0%とするための必要露光量であり、感度を表す。)を以下の通り求めた。
Eth:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm
<Analysis>
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure amount-residual film rate curve) was prepared, and Eth (required exposure amount for setting the residual film rate to 0% and representing sensitivity) was determined as follows.
Eth: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%

〔実施例1〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル243.6部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物1を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物1の滴下開始と同時に、下記混合物2を別の滴下漏斗より0.1時間かけてフラスコ内に滴下した。
[Example 1]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer, 243.6 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 1 was dropped into the flask from the dropping funnel over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 1, the following mixture 2 was dropped into the flask from another dropping funnel over 0.1 hour.

(混合物1)
下記式(m1)の単量体を95.20部、
下記式(m2)の単量体を131.04部、
下記式(m3)の単量体を66.08部、
乳酸エチル430.5部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))2.14部。
(混合物2)
乳酸エチル8.0部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))4.30部。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 1)
95.20 parts of a monomer of the following formula (m1),
131.04 parts of a monomer of the following formula (m2),
66.08 parts of a monomer of the following formula (m3),
430.5 parts ethyl lactate,
2.14 parts of dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
(Mixture 2)
8.0 parts ethyl lactate,
4.30 parts of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液を約10倍量のメタノール及び水の混合溶媒(メタノール/水=80/20容量比)に撹拌しながら滴下し、白色の析出物(重合体P1)の沈殿を得た。沈殿を濾別し、再度、前記と同じ量のメタノール及び水の混合溶媒(メタノール/水=90/10容量比)へ投入し、撹拌しながら沈殿の洗浄を行った。そして、洗浄後の沈殿を濾別し、重合体湿粉を得た、重合体湿粉のうち10gを減圧下40℃で約40時間乾燥した。得られた重合体P1の重量平均分子量(Mw)は9,300、分子量分布(Mw/Mn)は1.63、P[α]は40.10、P[α]は59.90、P[α]/P[α]は0.669であった。 The obtained reaction solution was added dropwise to a mixed solvent of about 10 times the amount of methanol and water (methanol / water = 80/20 volume ratio) with stirring to obtain a white precipitate (polymer P1). The precipitate was separated by filtration and again poured into a mixed solvent of methanol and water in the same amount as above (methanol / water = 90/10 volume ratio), and the precipitate was washed with stirring. And the precipitate after washing | cleaning was separated by filtration, and 10 g of polymer wet powder was dried at 40 degreeC under pressure reduction for about 40 hours. The resulting polymer P1 has a weight average molecular weight (Mw) of 9,300, a molecular weight distribution (Mw / Mn) of 1.63, P [α A ] of 40.10, P [α B ] of 59.90, P [α A ] / P [α B ] was 0.669.

残りの重合体湿粉をPGMEAの88000部へ投入し、完全に溶解させた後、孔径0.04μmのナイロン製フィルター(日本ポール社製、P−NYLON N66FILTER0.04M(商品名))へ通液して、重合体溶液を濾過した。
重合体溶液を減圧下で加熱してメタノール及び水を留去し、さらにPGMEAを留去し、重合体の濃度が25質量%の重合体P1溶液を得た。この際、最高到達真空度は0.7kPa、最高溶液温度は65℃、留去時間は8時間であった。
The remaining polymer wet powder was poured into 88,000 parts of PGMEA, completely dissolved, and then passed through a nylon filter having a pore diameter of 0.04 μm (P-NYLON N66FILTER 0.04M (trade name) manufactured by Nippon Pole Co., Ltd.). The polymer solution was filtered.
The polymer solution was heated under reduced pressure to distill off methanol and water, and further PGMEA was distilled off to obtain a polymer P1 solution having a polymer concentration of 25% by mass. At this time, the maximum ultimate vacuum was 0.7 kPa, the maximum solution temperature was 65 ° C., and the distillation time was 8 hours.

重合体溶液の400部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。   400 parts of a polymer solution, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent are mixed so that the polymer concentration becomes 12.5% by mass to obtain a uniform solution. And filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔実施例2〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル250.1部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物3を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物3の滴下開始と同時に、下記混合物4を別の滴下漏斗より0.1時間かけてフラスコ内に滴下した。
[Example 2]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer, 250.1 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Then, the following mixture 3 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 3, the following mixture 4 was dropped into the flask from another dropping funnel over 0.1 hour.

(混合物3)
下記式(m1)の単量体を95.20部、
下記式(m4)の単量体を109.76部、
下記式(m3)の単量体を66.08部、
乳酸エチル442.2部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))2.14部。
(混合物4)
乳酸エチル8.0部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))4.30部。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 3)
95.20 parts of a monomer of the following formula (m1),
109.76 parts of a monomer of the following formula (m4),
66.08 parts of a monomer of the following formula (m3),
442.2 parts ethyl lactate,
2.14 parts of dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
(Mixture 4)
8.0 parts ethyl lactate,
4.30 parts of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P2を得た。
得られた重合体P2の重量平均分子量(Mw)は9,300、分子量分布(Mw/Mn)は1.62、P[α]は40.48、P[α]は59.52、P[α]/P[α]は0.680であった。
また、重合体P2を用いて実施例1と同様の操作を行い、重合体P2溶液を得た。
また、重合体P2溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。得られたレジスト組成物について、溶解性及び感度を評価した。結果を表2に示す。
About the obtained reaction solution, operation similar to Example 1 was performed and the polymer P2 was obtained.
The resulting polymer P2 has a weight average molecular weight (Mw) of 9,300, a molecular weight distribution (Mw / Mn) of 1.62, P [α A ] of 40.48, and P [α B ] of 59.52. P [α A ] / P [α B ] was 0.680.
Moreover, operation similar to Example 1 was performed using the polymer P2, and the polymer P2 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P2 solution, and the resist composition was obtained. The resulting resist composition was evaluated for solubility and sensitivity. The results are shown in Table 2.

〔実施例3〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル133.9部、γ−ブチロラクトン133.9部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物5を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物5の滴下開始と同時に、下記混合物6を別の滴下漏斗より0.1時間かけてフラスコ内に滴下した。
Example 3
Under a nitrogen atmosphere, 133.9 parts of ethyl lactate and 133.9 parts of γ-butyrolactone were placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 5 was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 5, the following mixture 6 was dropped into the flask from another dropping funnel over 0.1 hour.

(混合物5)
下記式(m5)の単量体を124.32部、
下記式(m2)の単量体を131.04部、
下記式(m3)の単量体を66.08部、
乳酸エチル235.1部、
γ−ブチロラクトン235.1部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))3.22部。
(Mixture 5)
124.32 parts of a monomer of the following formula (m5),
131.04 parts of a monomer of the following formula (m2),
66.08 parts of a monomer of the following formula (m3),
235.1 parts ethyl lactate,
γ-butyrolactone 235.1 parts Dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)) 3.22 parts.

(混合物6)
乳酸エチル6.0部、
γ−ブチロラクトン6.0部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))6.44部。 各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 6)
6.0 parts ethyl lactate,
γ-butyrolactone 6.0 parts Dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)) 6.44 parts. The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P3を得た。
得られた重合体P3の重量平均分子量(Mw)は9,400、分子量分布(Mw/Mn)は1.76、P[α]は40.62、P[α]は59.38、及びP[α]/P[α]は0.684であった。
また、重合体P3を用いて実施例1と同様の操作を行い、重合体P3溶液を得た。
また、重合体P3溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
About the obtained reaction solution, operation similar to Example 1 was performed and the polymer P3 was obtained.
The resulting polymer P3 has a weight average molecular weight (Mw) of 9,400, a molecular weight distribution (Mw / Mn) of 1.76, P [α A ] of 40.62, P [α B ] of 59.38, And P [α A ] / P [α B ] was 0.684.
Moreover, operation similar to Example 1 was performed using the polymer P3, and the polymer P3 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P3 solution, and the resist composition was obtained. The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔実施例4〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル104.5部、PGMEA69.7部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物7を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物7の滴下開始と同時に、下記混合物8を別の滴下漏斗より0.1時間かけてフラスコ内に滴下した。
Example 4
A flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer was charged with 104.5 parts of ethyl lactate and 69.7 parts of PGMEA under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 7 was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 7, the following mixture 8 was dropped from another dropping funnel into the flask over 0.1 hour.

(混合物7)
下記式(m6)の単量体を94.40部、
下記式(m7)の単量体を91.00部、
下記式(m3)の単量体を23.60部、
乳酸エチル146.7部、
PGMEA125.4部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))4.600部。
(Mixture 7)
94.40 parts of a monomer of the following formula (m6),
91.00 parts of a monomer of the following formula (m7),
23.60 parts of a monomer of the following formula (m3),
146.7 parts ethyl lactate,
PGMEA 125.4 parts Dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 4.600 parts.

(混合物8)
乳酸エチル41.4部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))4.600部。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 8)
41.4 parts ethyl lactate,
4.600 parts of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P4を得た。
得られた重合体P4の重量平均分子量(Mw)は9,600、分子量分布(Mw/Mn)は1.65、P[α]は40.96、P[α]は59.04、及びP[α]/P[α]は0.694であった。
また、重合体P4を用いて実施例1と同様の操作を行い、重合体P4溶液を得た。
また、重合体P4溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P4.
The resulting polymer P4 has a weight average molecular weight (Mw) of 9,600, a molecular weight distribution (Mw / Mn) of 1.65, P [α A ] of 40.96, P [α B ] of 59.04, And P [α A ] / P [α B ] was 0.694.
Moreover, operation similar to Example 1 was performed using the polymer P4, and the polymer P4 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P4 solution, and the resist composition was obtained. The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔実施例5〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、PGMEA164.2部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物9を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物9の滴下開始と同時に、下記混合物10を別の滴下漏斗より0.3時間かけてフラスコ内に滴下した。
Example 5
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer, 164.2 parts of PGMEA was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Then, the following mixture 9 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 9, the following mixture 10 was dropped into the flask from another dropping funnel over 0.3 hours.

(混合物9)
下記式(m8)の単量体を62.40部、
下記式(m2)の単量体を93.60部、
下記式(m9)の単量体を41.00部、
PGMEA289.1部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.050部。
(Mixture 9)
62.40 parts of a monomer of the following formula (m8),
93.60 parts of a monomer of the following formula (m2),
41.00 parts of a monomer of the following formula (m9),
PGMEA 289.1 parts,
Dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 8.050 parts.

(混合物10)
PGMEA32.2部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.050部。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 10)
32.2 parts of PGMEA,
Dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 8.050 parts.
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P5を得た。
得られた重合体P5の重量平均分子量(Mw)は9,200、分子量分布(Mw/Mn)は1.73、P[α]は40.38、P[α]は59.62、及びP[α]/P[α]は0.677であった。
また、重合体P5を用いて実施例1と同様の操作を行い、重合体P5溶液を得た。
また、重合体P5溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
About the obtained reaction solution, operation similar to Example 1 was performed and the polymer P5 was obtained.
The resulting polymer P5 has a weight average molecular weight (Mw) of 9,200, a molecular weight distribution (Mw / Mn) of 1.73, P [α A ] of 40.38, P [α B ] of 59.62, And P [α A ] / P [α B ] was 0.677.
Moreover, operation similar to Example 1 was performed using the polymer P5, and the polymer P5 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P5 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔実施例6〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えたフラスコに、窒素雰囲気下で、PGMEA175.7部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物11を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。また、混合物11の滴下開始と同時に、下記混合物12を別の滴下漏斗より0.2時間かけてフラスコ内に滴下した。
Example 6
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer, 175.7 parts of PGMEA was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Then, the following mixture 11 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours. Simultaneously with the start of dropping of the mixture 11, the following mixture 12 was dropped into the flask from another dropping funnel over 0.2 hours.

(混合物11)
下記式(m1)の単量体を85.00部、
下記式(m10)の単量体を78.60部、
下記式(m3)の単量体を47.20部、
PGMEA309.2部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.740部。
(Mixture 11)
85.00 parts of a monomer of the following formula (m1),
78.60 parts of a monomer of the following formula (m10),
47.20 parts of a monomer of the following formula (m3),
PGMEA 309.2 parts,
8.740 parts of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).

(混合物12)
PGMEA35.0部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.740部。
各単量体の仕込み割合(モル%)を表1に示す。
(Mixture 12)
35.0 parts of PGMEA,
8.740 parts of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P6を得た。
得られた重合体P6の重量平均分子量(Mw)は8,800、分子量分布(Mw/Mn)は1.55、P[α]は41.11、P[α]は58.89、及びP[α]/P[α]は0.698であった。
また、重合体P6を用いて実施例1と同様の操作を行い、重合体P6溶液を得た。
また、重合体P6溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
About the obtained reaction solution, operation similar to Example 1 was performed and the polymer P6 was obtained.
The resulting polymer P6 has a weight average molecular weight (Mw) of 8,800, a molecular weight distribution (Mw / Mn) of 1.55, P [α A ] of 41.11, P [α B ] of 58.89, And P [α A ] / P [α B ] was 0.698.
Moreover, operation similar to Example 1 was performed using the polymer P6, and the polymer P6 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P6 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例1〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル243.6部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物1’を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物1’)
下記式(m1)の単量体を95.20部、
下記式(m2)の単量体を131.04部、
下記式(m3)の単量体を66.08部、
乳酸エチル438.5部、
ジメチル-2,2’-アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.69部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 1]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, a dropping funnel, and a thermometer, 243.6 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 1 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 1 ')
95.20 parts of a monomer of the following formula (m1),
131.04 parts of a monomer of the following formula (m2),
66.08 parts of a monomer of the following formula (m3),
438.5 parts ethyl lactate,
8.69 parts of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’1を得た。
得られた重合体P1’の重量平均分子量(Mw)は9,900、分子量分布(Mw/Mn)は1.67、P[α]は41.87、P[α]は58.13、及びP[α]/P[α]は0.720であった。
また、重合体P’1を用いて実施例1と同様の操作を行い、重合体P’1溶液を得た。
また、重合体P’1溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′1.
The weight average molecular weight (Mw) of the obtained polymer P1 ′ was 9,900, the molecular weight distribution (Mw / Mn) was 1.67, P [α A ] was 41.87, and P [α B ] was 58.13. , And P [α A ] / P [α B ] were 0.720.
Moreover, operation similar to Example 1 was performed using polymer P'1, and polymer P'1 solution was obtained.
Moreover, operation similar to Example 1 was performed using polymer P'1 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例2〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル250.1部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物3’を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物3’)
下記式(m1)の単量体を95.20部、
下記式(m4)の単量体を109.76部、
下記式(m3)の単量体を66.08部、
乳酸エチル450.2部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.69部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 2]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer, 250.1 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 3 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 3 ')
95.20 parts of a monomer of the following formula (m1),
109.76 parts of a monomer of the following formula (m4),
66.08 parts of a monomer of the following formula (m3),
450.2 parts ethyl lactate,
8.69 parts of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’2を得た。
得られた重合体P2’の重量平均分子量(Mw)は9,700、分子量分布(Mw/Mn)は1.64、P[α]は42.18、P[α]は57.82、及びP[α]/P[α]は0.730であった。
また、重合体P’2を用いて実施例1と同様の操作を行い、重合体P’2溶液を得た。
また、重合体P’2溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′2.
The weight average molecular weight (Mw) of the obtained polymer P2 ′ was 9,700, the molecular weight distribution (Mw / Mn) was 1.64, P [α A ] was 42.18, and P [α B ] was 57.82. , And P [α A ] / P [α B ] were 0.730.
Moreover, operation similar to Example 1 was performed using polymer P'2, and polymer P'2 solution was obtained.
Moreover, operation similar to Example 1 was performed using polymer P'2 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例3〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル133.9部、γ−ブチロラクトン133.9部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物5’を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物5’)
下記式(m5)の単量体を124.32部、
下記式(m2)の単量体を131.04部、
下記式(m3)の単量体を66.08部、
乳酸エチル241.1部、
γ−ブチロラクトン241.1部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))14.81部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 3]
Under a nitrogen atmosphere, 133.9 parts of ethyl lactate and 133.9 parts of γ-butyrolactone were placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 5 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 5 ')
124.32 parts of a monomer of the following formula (m5),
131.04 parts of a monomer of the following formula (m2),
66.08 parts of a monomer of the following formula (m3),
241.1 parts ethyl lactate,
γ-butyrolactone 241.1 parts Dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 14.81 parts.
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’3を得た。得られた重合体P’3の重量平均分子量(Mw)は9,500、分子量分布(Mw/Mn)は1.73、P[α]は43.27、P[α]は56.73、及びP[α]/P[α]は0.763であった。
また、重合体P’3を用いて実施例1と同様の操作を行い、重合体P’3溶液を得た。
また、重合体P’3溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′3. The resulting polymer P′3 had a weight average molecular weight (Mw) of 9,500, a molecular weight distribution (Mw / Mn) of 1.73, P [α A ] of 43.27, and P [α B ] of 56. 73 and P [α A ] / P [α B ] were 0.763.
Moreover, operation similar to Example 1 was performed using polymer P'3, and polymer P'3 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P'3 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例4〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、乳酸エチル104.5部、PGMEA69.7部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物7’を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物7’)
下記式(m6)の単量体を94.40部、
下記式(m7)の単量体を91.00部、
下記式(m3)の単量体を23.60部、
乳酸エチル188.1部、
PGMEA125.4部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))9.200部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 4]
Under a nitrogen atmosphere, 104.5 parts of ethyl lactate and 69.7 parts of PGMEA were placed in a flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 7 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 7 ')
94.40 parts of a monomer of the following formula (m6),
91.00 parts of a monomer of the following formula (m7),
23.60 parts of a monomer of the following formula (m3),
188.1 parts ethyl lactate,
PGMEA 125.4 parts Dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 9.200 parts.
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’4を得た。
得られた重合体P’4の重量平均分子量(Mw)は10,100、分子量分布(Mw/Mn)は1.67、P[αA]は42.08、P[αB]は57.92、及びP[αA]/P[αB]は0.727であった。
また、重合体P’4を用いて実施例1と同様の操作を行い、重合体P’4溶液を得た。
また、重合体P’4溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′4.
The resulting polymer P′4 has a weight average molecular weight (Mw) of 10,100, a molecular weight distribution (Mw / Mn) of 1.67, P [αA] of 42.08, P [αB] of 57.92, And P [αA] / P [αB] was 0.727.
Moreover, operation similar to Example 1 was performed using polymer P'4, and polymer P'4 solution was obtained.
Moreover, operation similar to Example 1 was performed using polymer P'4 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例5〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、PGMEA164.2部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物9’を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物9’)
下記式(m8)の単量体を62.40部、
下記式(m2)の単量体を93.60部、
下記式(m9)の単量体を41.00部、
PGMEA295.5部、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))20.470部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 5]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, a dropping funnel, and a thermometer, 164.2 parts of PGMEA was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 9 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 9 ')
62.40 parts of a monomer of the following formula (m8),
93.60 parts of a monomer of the following formula (m2),
41.00 parts of a monomer of the following formula (m9),
295.5 parts of PGMEA,
Dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 20.470 parts.
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’5を得た。
得られた重合体P’5の重量平均分子量(Mw)は9,600、分子量分布(Mw/Mn)は1.83、P[α]は43.83、P[α]は56.17、及びP[α]/P[α]は0.780であった。
また、重合体P’5を用いて実施例1と同様の操作を行い、重合体P’5溶液を得た。
また、重合体P’5溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′5.
The resulting polymer P′5 has a weight average molecular weight (Mw) of 9,600, a molecular weight distribution (Mw / Mn) of 1.83, P [α A ] of 43.83, and P [α B ] of 56. 17 and P [α A ] / P [α B ] were 0.780.
Moreover, operation similar to Example 1 was performed using polymer P'5, and polymer P'5 solution was obtained.
Moreover, operation similar to Example 1 was performed using polymer P'5 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

〔比較例6〕
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えたフラスコに、窒素雰囲気下で、PGMEA175.7部を入れた。フラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物11’を滴下漏斗より4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
(混合物11’)
下記式(m1)の単量体を85.00部、
下記式(m10)の単量体を78.60部、
下記式(m3)の単量体を47.20部、
PGMEA316.2部
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))22.770部。
各単量体の仕込み割合(モル%)を表1に示す。
[Comparative Example 6]
In a flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer, 175.7 parts of PGMEA was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 11 ′ was dropped from the dropping funnel into the flask over 4 hours, and the temperature of 80 ° C. was further maintained for 3 hours.
(Mixture 11 ')
85.00 parts of a monomer of the following formula (m1),
78.60 parts of a monomer of the following formula (m10),
47.20 parts of a monomer of the following formula (m3),
PGMEA 316.2 parts Dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)) 22.770 parts.
The charge ratio (mol%) of each monomer is shown in Table 1.

得られた反応溶液について実施例1と同様の操作を行い、重合体P’6を得た。
得られた重合体P’6の重量平均分子量(Mw)は9,400、分子量分布(Mw/Mn)は1.68、P[α]は47.76、P[α]は52.24、及びP[α]/P[α]は0.914であった。
また、重合体P’6を用いて実施例1と同様の操作を行い、重合体P’6溶液を得た。
また、重合体P’6溶液を用いて実施例1と同様の操作を行い、レジスト組成物を得た。
得られたレジスト組成物について、溶解性及び感度を評価した。評価結果を表2に示す。
The obtained reaction solution was subjected to the same operation as in Example 1 to obtain a polymer P′6.
The resulting polymer P′6 has a weight average molecular weight (Mw) of 9,400, a molecular weight distribution (Mw / Mn) of 1.68, P [α A ] of 47.76, and P [α B ] of 52. 24 and P [α A ] / P [α B ] were 0.914.
Moreover, operation similar to Example 1 was performed using polymer P'6, and polymer P'6 solution was obtained.
Moreover, operation similar to Example 1 was performed using the polymer P'6 solution, and the resist composition was obtained.
The resulting resist composition was evaluated for solubility and sensitivity. The evaluation results are shown in Table 2.

(評価結果)
P[α]/P[α]が0.7以下の重合体(実施例1〜6)を用いた場合には、溶媒への溶解性に優れ、高感度なレジスト組成物が得られることが確認された。一方、上記実施例1〜6と、各々同じ単量体組成の材料を用いて重合した場合(比較例1〜6)であっても、得られた重合体のP[α]/P[α]が0.7を超える場合は、溶媒へ完全に溶解するまでの時間が約二倍以上かかり、溶媒への溶解性が低下することが確認された。さらに、これらの重合体を含有するレジスト組成物の感度も低下することが確認された。
(Evaluation results)
When a polymer (Examples 1 to 6) having P [α A ] / P [α B ] of 0.7 or less is used, a highly sensitive resist composition having excellent solubility in a solvent can be obtained. It was confirmed. On the other hand, even when polymerized using materials having the same monomer composition as in Examples 1 to 6 above (Comparative Examples 1 to 6), P [α A ] / P [ When [alpha] B ] exceeds 0.7, it took about twice or more to complete dissolution in the solvent, and it was confirmed that the solubility in the solvent was lowered. Furthermore, it was confirmed that the sensitivity of the resist composition containing these polymers also decreased.

Claims (3)

ラジカル重合で得られる重合体(P)であって、該重合体をゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した際に、下記式(1)を満足する重合体。
P[α]/P[α]≦0.7 …(1)
(式(1)において、P[α]は重合体(P)をゲル・パーミエーション・クロマトグラフィーによって測定した際のポリマーピーク全面積に対するピークスタート分子量からピークトップ分子量までのピーク面積比を表し、P[α]は重合体(P)をゲル・パーミエーション・クロマトグラフィーによって測定した際のポリマーピーク全面積に対するピークトップ分子量からピークエンド分子量までのピーク面積比を表す。)
A polymer (P) obtained by radical polymerization, which satisfies the following formula (1) when the polymer is measured by gel permeation chromatography (GPC).
P [α A ] / P [α B ] ≦ 0.7 (1)
(In the formula (1), P [α A ] represents the ratio of the peak area from the peak start molecular weight to the peak top molecular weight with respect to the total area of the polymer peak when the polymer (P) is measured by gel permeation chromatography. , P [α B ] represents a peak area ratio from the peak top molecular weight to the peak end molecular weight with respect to the total area of the polymer peak when the polymer (P) is measured by gel permeation chromatography.
請求項1に記載の重合体(P)を含む、レジスト組成物。   A resist composition comprising the polymer (P) according to claim 1. 請求項2に記載のレジスト組成物を被加工基板上に塗布し、レジスト膜を形成する工程と、
前記レジスト膜に、250nm以下の波長の光を照射して潜像を形成する工程と、
前記潜像が形成されたレジスト膜を、現像液で現像処理する工程と
を有する、パターンが形成された基板の製造方法。
Applying the resist composition according to claim 2 on a substrate to be processed to form a resist film;
Irradiating the resist film with light having a wavelength of 250 nm or less to form a latent image;
And developing the resist film on which the latent image is formed with a developer.
JP2009136168A 2008-12-08 2009-06-05 Polymer, resist composition, and method of manufacturing substrate on which pattern is formed Active JP5716943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136168A JP5716943B2 (en) 2008-12-08 2009-06-05 Polymer, resist composition, and method of manufacturing substrate on which pattern is formed

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008312236 2008-12-08
JP2008312236 2008-12-08
JP2009136168A JP5716943B2 (en) 2008-12-08 2009-06-05 Polymer, resist composition, and method of manufacturing substrate on which pattern is formed

Publications (2)

Publication Number Publication Date
JP2010159393A true JP2010159393A (en) 2010-07-22
JP5716943B2 JP5716943B2 (en) 2015-05-13

Family

ID=42576795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136168A Active JP5716943B2 (en) 2008-12-08 2009-06-05 Polymer, resist composition, and method of manufacturing substrate on which pattern is formed

Country Status (1)

Country Link
JP (1) JP5716943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9223213B2 (en) 2013-08-09 2015-12-29 Mitsubishi Rayon Co., Ltd. Method of manufacturing polymer for lithography, method of manufacturing resist composition, and method of manufacturing substrate having pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323003A (en) * 2000-05-18 2001-11-20 Sanyo Chem Ind Ltd Polymer and method for producing the same
JP2008038118A (en) * 2006-08-10 2008-02-21 Fujifilm Corp Method for producing resin for photosensitive composition, resin for resist produced by the same production method, resist composition containing the same resin for resist and method for forming pattern by using the same resist composition
JP2010168434A (en) * 2009-01-21 2010-08-05 Jsr Corp Method for polymerizing methacrylic lactone copolymer and the copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323003A (en) * 2000-05-18 2001-11-20 Sanyo Chem Ind Ltd Polymer and method for producing the same
JP2008038118A (en) * 2006-08-10 2008-02-21 Fujifilm Corp Method for producing resin for photosensitive composition, resin for resist produced by the same production method, resist composition containing the same resin for resist and method for forming pattern by using the same resist composition
JP2010168434A (en) * 2009-01-21 2010-08-05 Jsr Corp Method for polymerizing methacrylic lactone copolymer and the copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9223213B2 (en) 2013-08-09 2015-12-29 Mitsubishi Rayon Co., Ltd. Method of manufacturing polymer for lithography, method of manufacturing resist composition, and method of manufacturing substrate having pattern

Also Published As

Publication number Publication date
JP5716943B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5394119B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate
JP5620627B2 (en) RESIST POLYMER MANUFACTURING METHOD, RESIST COMPOSITION, AND SUBSTRATE MANUFACTURING METHOD
JP5456365B2 (en) Polymer, resist composition, and method for producing substrate having fine pattern formed
JP2013032508A (en) Method for producing polymer solution for lithography, method for producing resist composition and method for producing substrate with pattern formed thereon
JP5942562B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP4851140B2 (en) (Meth) acrylic acid ester, polymer, resist composition, and method for producing substrate on which pattern is formed
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP5696868B2 (en) A method for producing a copolymer for resist.
JP5584980B2 (en) RESIST MATERIAL, RESIST COMPOSITION, METHOD FOR PRODUCING SUBSTRATE WITH FORMED FINE PATTERN, AND METHOD FOR PRODUCING RESIST POLYMER
JP2016089064A (en) Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5942563B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5660483B2 (en) Resist polymer composition, resist composition, and method for producing substrate on which pattern is formed
JP2011137084A (en) Method for producing polymer, polymer for lithography, resist composition and method for producing substrate
JP6657846B2 (en) Method for producing polymer for semiconductor lithography, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP5942564B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6074834B2 (en) Evaluation method of resist material
JP6314786B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150304

R151 Written notification of patent or utility model registration

Ref document number: 5716943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250