JP2013032508A - Method for producing polymer solution for lithography, method for producing resist composition and method for producing substrate with pattern formed thereon - Google Patents

Method for producing polymer solution for lithography, method for producing resist composition and method for producing substrate with pattern formed thereon Download PDF

Info

Publication number
JP2013032508A
JP2013032508A JP2012143766A JP2012143766A JP2013032508A JP 2013032508 A JP2013032508 A JP 2013032508A JP 2012143766 A JP2012143766 A JP 2012143766A JP 2012143766 A JP2012143766 A JP 2012143766A JP 2013032508 A JP2013032508 A JP 2013032508A
Authority
JP
Japan
Prior art keywords
polymer
solvent
lithography
solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143766A
Other languages
Japanese (ja)
Other versions
JP6262416B2 (en
Inventor
Atsushi Yasuda
敦 安田
Tomoya Oshikiri
友也 押切
Shinichi Maeda
晋一 前田
Seiji Tsuchiya
征司 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012143766A priority Critical patent/JP6262416B2/en
Publication of JP2013032508A publication Critical patent/JP2013032508A/en
Application granted granted Critical
Publication of JP6262416B2 publication Critical patent/JP6262416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polymer solution for lithography which can shorten total transit time of drying time and dissolving time without requiring cooling of solvent or heating at dissolving.SOLUTION: This method for producing the polymer solution comprises: a polymerization step of radically polymerizing a monomer using a polymerization initiator in the presence of a polymerization solvent to obtain a polymerization reaction solution; a recovering step of mixing the polymerization reaction solution with a poor solvent for the polymer to precipitate the polymer to obtain a precipitate; a minor drying step of drying the precipitate so that the solid content falls within the range of 65-90 mass%; and a dissolving step of dissolving the minor dried powder in a good solvent for the polymer to obtain the polymer solution for lithography. In the dissolving step, the temperature of the minor dried powder is 0-45°C and the temperature of the good solvent is 0-40°C.

Description

本発明はリソグラフィー用重合体溶液の製造方法、該製造方法で得られるリソグラフィー用重合体溶液を用いてレジスト組成物を製造する方法、および該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。   The present invention relates to a method for producing a polymer solution for lithography, a method for producing a resist composition using the polymer solution for lithography obtained by the production method, and a substrate on which a pattern is formed using the resist composition. It relates to a method of manufacturing.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。   In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to progress in lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter from conventional ultraviolet rays typified by g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .

最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術およびEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。   Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光または電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良および開発が進められている。   A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of amplification resist compositions are underway.

リソグラフィー用重合体の従来の製造方法では、重合反応後の重合反応溶液を貧溶媒に添加して重合体を析出させ、回収した重合体湿粉を乾燥させる方法が知られているが、重合体を乾燥させると重合体粒子の表面が硬くなり重合体粒子同士が融着して、リソグラフィー用溶媒に溶解しにくいという問題がある。
そこで、特許文献1では、回収した重合体湿粉を乾燥させることなく有機溶媒に溶解した後、濃縮することによって重合体溶液を得る方法が提案されている。
In a conventional method for producing a polymer for lithography, there is known a method in which a polymerization reaction solution after polymerization reaction is added to a poor solvent to precipitate the polymer, and the recovered polymer powder is dried. When the is dried, the surface of the polymer particles becomes hard and the polymer particles are fused with each other, which makes it difficult to dissolve in the lithography solvent.
Therefore, Patent Document 1 proposes a method of obtaining a polymer solution by dissolving a collected polymer powder in an organic solvent without drying, and then concentrating the powder.

特許文献2には、回収した重合体湿粉を恒率乾燥領域内で乾燥して、含液率を10%以下にした後、得られた乾燥物を低沸点溶剤に溶解させ、さらにレジスト用溶剤に溶解させて溶媒置換する方法が記載されている。
特許文献3には、回収した重合体湿粉を洗浄溶剤で洗浄し、任意に乾燥を行った後、レジスト用溶剤に溶解させる際に、50℃程度の湿粉に、15℃に冷却させたレジスト用溶剤を加え、混合した後に50℃に加熱溶解させた例が記載されている。
In Patent Document 2, the recovered polymer wet powder is dried in a constant rate drying region to reduce the liquid content to 10% or less, and then the obtained dried product is dissolved in a low-boiling solvent, and further used for resist. A method of solvent replacement by dissolving in a solvent is described.
In Patent Document 3, the recovered polymer wet powder is washed with a washing solvent, optionally dried, and then dissolved in a resist solvent, and then cooled to about 50 ° C. to 15 ° C. An example is described in which a resist solvent is added, mixed and then heated and dissolved at 50 ° C.

特開2006−161052号公報JP 2006-161052 A 特開2010−14906号公報JP 2010-14906 A 特開2010−204306号公報JP 2010-204306 A

しかしながら、本発明者等の知見によれば、重合体湿粉を乾燥させることなく重合体に対する良溶媒に溶解させようとすると、溶解時間が長くかかってしまう。一方、重合体湿粉を、特許文献2に記載されているように含液率10%以下に乾燥させてから重合体に対する良溶媒に溶解させると、湿粉を溶解させる場合よりも溶解時間は短縮できるが、乾燥に長時間を要する。また、特許文献3に記載の方法では、レジスト用溶剤を冷却する必要があり、湿粉をレジスト溶剤に溶解させるのに加熱が必要である。
本発明は前記事情に鑑みてなされたもので、溶媒の冷却や溶解時の加熱を必要とせず、乾燥時間と溶解時間の合計の工程通過時間を短縮できるようにした、リソグラフィー用重合体溶液の製造方法、該製造方法で得られるリソグラフィー用重合体溶液を用いたレジスト組成物の製造方法、および該レジスト組成物を用いた、パターンが形成された基板の製造方法を提供することを目的とする。
However, according to the knowledge of the present inventors, it takes a long time to dissolve the polymer wet powder in a good solvent for the polymer without drying it. On the other hand, when the polymer wet powder is dried to a liquid content of 10% or less and then dissolved in a good solvent for the polymer as described in Patent Document 2, the dissolution time is longer than when dissolving the wet powder. It can be shortened, but it takes a long time to dry. In the method described in Patent Document 3, it is necessary to cool the resist solvent, and heating is required to dissolve the wet powder in the resist solvent.
The present invention has been made in view of the above circumstances, and does not require solvent cooling or heating during dissolution, and can reduce the total process passing time of drying time and dissolution time. It is an object to provide a manufacturing method, a manufacturing method of a resist composition using a polymer solution for lithography obtained by the manufacturing method, and a manufacturing method of a substrate on which a pattern is formed using the resist composition. .

前記課題を解決するために、本発明のリソグラフィー用重合体溶液の製造方法は、重合溶媒の存在下に、重合開始剤を使用して、単量体をラジカル重合させて重合反応溶液を得る重合工程と、前記重合反応溶液を重合体に対する貧溶媒と混合し、重合体を析出させて析出物を得る回収工程と、前記析出物を固形分含有量が65〜90質量%の範囲内となるように乾燥させて、微乾燥粉末を得る微乾燥工程と、前記微乾燥粉末を、重合体に対する良溶媒に溶解させる溶解工程とを有し、前記溶解工程において、前記微乾燥粉末の温度が0〜45℃であり、前記良溶媒の温度が0〜40℃であることを特徴とする。   In order to solve the above-mentioned problems, the method for producing a polymer solution for lithography according to the present invention is a polymerization in which a polymerization initiator is used to radically polymerize a monomer to obtain a polymerization reaction solution in the presence of a polymerization solvent. A step of mixing the polymerization reaction solution with a poor solvent for the polymer, and depositing the polymer to obtain a precipitate; and the solid content of the precipitate is in the range of 65 to 90% by mass. A fine drying step of obtaining a fine dry powder and a dissolution step of dissolving the fine dry powder in a good solvent for the polymer. In the dissolution step, the temperature of the fine dry powder is 0. It is -45 degreeC, The temperature of the said good solvent is 0-40 degreeC, It is characterized by the above-mentioned.

また、前記微乾燥工程で得られる微乾燥粉末に含まれる貧溶媒の量が30質量%以下であることが好ましい。   Moreover, it is preferable that the quantity of the poor solvent contained in the fine dry powder obtained at the said fine dry process is 30 mass% or less.

前記溶解工程で得られた溶液を濃縮する濃縮工程を有することが好ましい。
前記溶解工程で得られた溶液、または前記濃縮工程で得られた濃縮液を濾過する濾過工程を有することが好ましい。
It is preferable to have a concentration step of concentrating the solution obtained in the dissolution step.
It is preferable to have a filtration step of filtering the solution obtained in the dissolution step or the concentrate obtained in the concentration step.

本発明は、本発明のリソグラフィー用重合体溶液の製造方法によりリソグラフィー用重合体溶液を製造する工程と、得られたリソグラフィー用重合体溶液と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法を提供する。   The present invention includes a step of producing a polymer solution for lithography by the method for producing a polymer solution for lithography of the present invention, a polymer solution for lithography obtained, and a compound that generates an acid upon irradiation with actinic rays or radiation. A method for producing a resist composition, comprising the step of mixing

本発明は、本発明のレジスト組成物の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法を提供する。   The present invention includes a step of producing a resist composition by the method for producing a resist composition of the present invention, a step of coating the obtained resist composition on a work surface of a substrate to form a resist film, and the resist Provided is a method for manufacturing a substrate on which a pattern is formed, which includes a step of exposing a film and a step of developing the exposed resist film using a developer.

本発明のリソグラフィー用重合体溶液の製造方法は、溶媒の冷却や溶解時の加熱を必要とせず、乾燥時間と溶解時間の合計の工程通過時間を短縮することができる。
工程通過時間が短縮されることにより生産効率が向上する。
またリソグラフィー用重合体に与えられる熱履歴を抑えつつ、溶媒への溶解性を向上させることができる。これによりリソグラフィー用重合体をレジスト組成物に用いた時の感度および現像コントラストを向上させることができる。
本発明のレジスト組成物の製造方法によれば、本発明の製造方法で製造したリソグラフィー用重合体を含み、感度および現像コントラストに優れたレジスト組成物が得られる。
本発明の基板の製造方法によれば、感度および現像コントラストに優れたレジスト組成物を用いて、高精度の微細レジストパターンを安定して形成できる。
The method for producing a polymer solution for lithography according to the present invention does not require heating during solvent cooling or dissolution, and can shorten the total process passing time of drying time and dissolution time.
Production efficiency is improved by reducing the process passage time.
Moreover, the solubility to a solvent can be improved, suppressing the heat history given to the polymer for lithography. Thereby, the sensitivity and the development contrast when the polymer for lithography is used for the resist composition can be improved.
According to the method for producing a resist composition of the present invention, a resist composition including the polymer for lithography produced by the production method of the present invention and excellent in sensitivity and development contrast can be obtained.
According to the substrate manufacturing method of the present invention, a highly accurate fine resist pattern can be stably formed using a resist composition having excellent sensitivity and development contrast.

<リソグラフィー用重合体>
本発明のリソグラフィー用重合体は、極性基を有する構成単位を有することが好ましい。
[極性基を有する構成単位]
「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
<Polymer for lithography>
The polymer for lithography of the present invention preferably has a structural unit having a polar group.
[Structural unit having a polar group]
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
Among these, the resist polymer applied to the pattern forming method that is exposed to light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group, It is preferable to have a structural unit having a functional group.

(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。
本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.

ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.

(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、親水性基としてヒドロキシ基またはシアノ基を有することが好ましい。
重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, a hydroxy group, a cyano group, a methoxy group, a carboxy group, and an amino group.
Among these, it is preferable that the resist polymer applied to the pattern forming method exposed to light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the polymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. .

親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。   Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.

親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、(メタ)アクリル酸3,5−ジヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the point of adhesion to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 3,5-dihydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl- 2-adamantyl (meth) acrylate and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.

[酸脱離性基を有する構成単位]
本発明のリソグラフィー用重合体がレジスト用途に用いられる場合、上述した極性基を有する構成単位の他に、酸脱離性基を有する構成単位を有することが好ましく、その他に、必要に応じて公知の構成単位をさらに有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部または全部が重合体の主鎖から脱離する基である。
レジスト用組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度および解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Constitutional unit having acid leaving group]
When the polymer for lithography of the present invention is used for resist applications, it is preferable to have a structural unit having an acid-eliminable group in addition to the above-mentioned structural unit having a polar group. The structural unit may be further included.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling resist pattern formation.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, out of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

酸脱離性基を有する単量体は、酸脱離性基および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be any compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Meth) acrylic acid ester in which a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group is bonded directly or via a linking group is included.

特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist composition that is applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( Examples include meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.

本発明におけるリソグラフィー用重合体(以下、単に重合体ということもある。)は、リソグラフィー工程に用いられる重合体であれば、特に限定されずに適用することができる。例えば、レジスト膜の形成に用いられるレジスト用重合体、レジスト膜の上層に形成される反射防止膜(TARC)、またはレジスト膜の下層に形成される反射防止膜(BARC)の形成に用いられる反射防止膜用重合体、ギャップフィル膜の形成に用いられるギャップフィル膜重合体、トップコート膜の形成に用いられるトップコート膜用重合体が挙げられる。
レジスト用重合体の例としては、前記酸脱離性基を有する構成単位の1種以上と、前記極性基を有する構成単位の1種以上とを含む共重合体が挙げられる。
The polymer for lithography in the present invention (hereinafter sometimes simply referred to as polymer) is not particularly limited as long as it is a polymer used in the lithography process. For example, a resist polymer used for forming a resist film, an antireflection film (TARC) formed on the upper layer of the resist film, or a reflection used for forming an antireflection film (BARC) formed on the lower layer of the resist film. Examples thereof include a polymer for prevention film, a gap fill film polymer used for forming a gap fill film, and a polymer for top coat film used for forming a top coat film.
Examples of the resist polymer include a copolymer containing one or more of the structural units having the acid-eliminable group and one or more of the structural units having the polar group.

反射防止膜用重合体の例としては、吸光性基を有する構成単位と、レジスト膜と混合を避けるため、硬化剤などと反応して硬化可能なアミノ基、アミド基、ヒドロキシル基、エポキシ基等の反応性官能基を有する構成単位とを含む共重合体が挙げられる。吸光性基とは、レジスト組成物中の感光成分が感度を有する波長領域の光に対して、高い吸収性能を有する基であり、具体例としては、アントラセン環、ナフタレン環、ベンゼン環、キノリン環、キノキサリン環、チアゾール環等の環構造(任意の置換基を有していてもよい。)を有する基が挙げられる。特に、照射光として、KrFレーザ光が用いられる場合には、アントラセン環又は任意の置換基を有するアントラセン環が好ましく、ArFレーザ光が用いられる場合には、ベンゼン環又は任意の置換基を有するベンゼン環が好ましい。
上記任意の置換基としては、フェノール性水酸基、アルコール性水酸基、カルボキシ基、カルボニル基、エステル基、アミノ基、又はアミド基等が挙げられる。これらのうち、吸光性基として、保護された又は保護されていないフェノール性水酸基を有するものが、良好な現像性・高解像性の観点から好ましい。上記吸光性基を有する構成単位・単量体として、例えば、ベンジル(メタ)アクリレート、p−ヒドロキシフェニル(メタ)アクリレート等が挙げられる。
Examples of the polymer for antireflection film include a structural unit having a light-absorbing group and an amino group, an amide group, a hydroxyl group, an epoxy group, etc. that can be cured by reacting with a curing agent to avoid mixing with the resist film. And a copolymer containing a structural unit having a reactive functional group. The light-absorbing group is a group having high absorption performance with respect to light in a wavelength region where the photosensitive component in the resist composition is sensitive. Specific examples include an anthracene ring, naphthalene ring, benzene ring, quinoline ring. , A group having a ring structure (optionally substituted) such as a quinoxaline ring and a thiazole ring. In particular, when KrF laser light is used as irradiation light, an anthracene ring or an anthracene ring having an arbitrary substituent is preferable, and when ArF laser light is used, a benzene ring or a benzene having an arbitrary substituent A ring is preferred.
Examples of the optional substituent include a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxy group, a carbonyl group, an ester group, an amino group, and an amide group. Among these, those having a protected or unprotected phenolic hydroxyl group as the light absorbing group are preferable from the viewpoint of good developability and high resolution. Examples of the structural unit / monomer having the light-absorbing group include benzyl (meth) acrylate and p-hydroxyphenyl (meth) acrylate.

ギャップフィル膜用重合体の例としては、狭いギャップに流れ込むための適度な粘度を有し、レジスト膜や反射防止膜との混合を避けるため、硬化剤などと反応して硬化可能な反応性官能基を有する構成単位を含む共重合体、具体的にはヒドロキシスチレンと、スチレン、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等の単量体との共重合体が挙げられる。
液浸リソグラフィーに用いられるトップコート膜用重合体の例としては、カルボキシル基を有する構成単位を含む共重合体、水酸基が置換したフッ素含有基を有する構成単位を含む共重合体等が挙げられる。
Examples of polymers for gap fill films are reactive functionalities that have a suitable viscosity for flowing into narrow gaps and can be cured by reacting with curing agents to avoid mixing with resist films and antireflection films. Examples thereof include a copolymer containing a structural unit having a group, specifically, a copolymer of hydroxystyrene and a monomer such as styrene, alkyl (meth) acrylate, or hydroxyalkyl (meth) acrylate.
Examples of the polymer for the topcoat film used in immersion lithography include a copolymer containing a structural unit having a carboxyl group, a copolymer containing a structural unit having a fluorine-containing group substituted with a hydroxyl group, and the like.

<重合体溶液の製造方法>
本発明のリソグラフィー用重合体溶液の製造方法は、概略、単量体を重合させて重合反応溶液を得る重合工程と、重合反応溶液から重合体を析出させて析出物を得る回収工程と、該析出物を特定の固形分含有量となるように乾燥させて微乾燥粉末を得る微乾燥工程と、該微乾燥粉末を良溶媒に溶解させる溶解工程を経て、目的の重合体が溶媒に溶解した重合体溶液を得る方法である。
[重合工程]
重合方法としては溶液重合法を用いる。すなわち、重合溶媒の存在下に重合開始剤を使用して単量体をラジカル重合させて重合反応溶液を得る。
溶液重合法において、単量体および重合開始剤の重合容器への供給は、連続供給であってもよく、滴下供給であってもよい。溶液重合法としては、製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性のある重合体が簡便に得られる点から、単量体および重合開始剤を重合容器内に滴下する滴下重合法が好ましい。
<Method for producing polymer solution>
The method for producing a polymer solution for lithography according to the present invention generally includes a polymerization step of polymerizing monomers to obtain a polymerization reaction solution, a recovery step of depositing a polymer from the polymerization reaction solution to obtain a precipitate, The target polymer was dissolved in the solvent through a fine drying step of drying the precipitate to a specific solid content to obtain a fine dry powder and a dissolution step of dissolving the fine dry powder in a good solvent. This is a method for obtaining a polymer solution.
[Polymerization process]
A solution polymerization method is used as the polymerization method. That is, the polymerization reaction solution is obtained by radical polymerization of the monomer using a polymerization initiator in the presence of a polymerization solvent.
In the solution polymerization method, the monomer and the polymerization initiator may be supplied to the polymerization vessel either continuously or dropwise. As a solution polymerization method, a monomer and a polymerization initiator are dropped into a polymerization vessel from the viewpoint that a variation in average molecular weight and molecular weight distribution due to differences in production lots is small and a reproducible polymer can be easily obtained. The dropping polymerization method is preferred.

滴下重合法においては、重合容器内を所定の重合温度まで加熱した後、単量体および重合開始剤を、それぞれ独立に、または任意の組み合わせで、重合容器内に滴下する。
単量体は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合溶媒及び/又は単量体をあらかじめ重合容器に仕込んでもよい。
重合開始剤は、単量体に直接に溶解させてもよく、単量体溶液に溶解させてもよく、重合溶媒のみに溶解させてもよい。
単量体および重合開始剤は、同じ貯槽内で混合した後、重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器に供給する直前で混合し、重合容器中に滴下してもよい。
単量体および重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体または重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
重合温度は、50〜150℃が好ましい。
所定の重合温度で所定時間、重合反応させた後、重合反応を停止させ、重合反応溶液を得る。重合反応を停止させる手法は反応液を冷却させる工程が一般的に用いられるが、ラジカル捕捉剤を投入することによって停止させることもできる。
In the dropping polymerization method, the inside of the polymerization vessel is heated to a predetermined polymerization temperature, and then the monomer and the polymerization initiator are dropped into the polymerization vessel independently or in any combination.
A monomer may be dripped only with a monomer, and may be dripped as a monomer solution which melt | dissolved the monomer in the polymerization solvent.
A polymerization solvent and / or monomer may be charged into the polymerization vessel in advance.
The polymerization initiator may be dissolved directly in the monomer, may be dissolved in the monomer solution, or may be dissolved only in the polymerization solvent.
The monomer and the polymerization initiator may be dropped into the polymerization vessel after mixing in the same storage tank; they may be dropped into the polymerization container from each independent storage tank; They may be mixed immediately before the supply and dropped into the polymerization vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping rate may be constant until the end of dropping, or may be changed in multiple stages according to the consumption rate of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.
The polymerization temperature is preferably 50 to 150 ° C.
After a polymerization reaction at a predetermined polymerization temperature for a predetermined time, the polymerization reaction is stopped to obtain a polymerization reaction solution. As a method for stopping the polymerization reaction, a process of cooling the reaction solution is generally used, but it can also be stopped by adding a radical scavenger.

重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)、シクロヘキサノン等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
重合溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the polymerization solvent include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether, etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc.) and the like.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), cyclohexanone, and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
A polymerization solvent may be used individually by 1 type, and may use 2 or more types together.

重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。   As the polymerization initiator, those that generate radicals efficiently by heat are preferable. For example, an azo compound (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] Etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc.) and the like.

[回収工程]
重合工程で得られた重合反応溶液を貧溶媒と混合して、重合体を析出させ、析出物を得る。この手法は再沈殿法と呼ばれ、重合反応溶液中に残存する未反応の単量体、重合開始剤等を取り除くために有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。本発明の製造方法で得られる重合体中の不純物としての単量体含有量は2.0質量%以下がより好ましく、1.0質量%以下がさらに好ましく、0.29質量%以下が特に好ましく、0.25質量%以下が最も好ましい。
貧溶媒は、目的の重合体を溶解させる能力が小さくて、該重合体が析出し得る溶媒である。重合体の組成に応じて、公知のものを適宜選択して使用できる。リソグラフィー用重合体に用いられる未反応の単量体、重合開始剤等を効率的に取り除くことができる点で、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、ヘプタン、または水が好ましい。貧溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
[Recovery process]
The polymerization reaction solution obtained in the polymerization step is mixed with a poor solvent to precipitate a polymer to obtain a precipitate. This technique is called a reprecipitation method, and is effective for removing unreacted monomers, polymerization initiators and the like remaining in the polymerization reaction solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible. The monomer content as an impurity in the polymer obtained by the production method of the present invention is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, and particularly preferably 0.29% by mass or less. 0.25% by mass or less is most preferable.
The poor solvent is a solvent that has a small ability to dissolve the target polymer and from which the polymer can precipitate. According to the composition of the polymer, known ones can be appropriately selected and used. Methanol, isopropyl alcohol, diisopropyl ether, heptane, or water is preferable because unreacted monomers, polymerization initiators, and the like used in the lithography polymer can be efficiently removed. A poor solvent may be used individually by 1 type, and may use 2 or more types together.

回収工程において、好ましくは重合反応溶液を貧溶媒中に滴下して、重合反応溶液中の重合体を析出させる。重合反応溶液を貧溶媒中に滴下する際の貧溶媒の量は、特に限定されないが、未反応単量体をより低減しやすい点で、希釈後溶液と同質量以上が好ましく、質量基準で3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。上限は特に限定されないが、多すぎると後の濾過工程における作業効率が悪くなる。例えば質量基準で10倍以下が好ましい。   In the recovery step, the polymerization reaction solution is preferably dropped into a poor solvent to precipitate the polymer in the polymerization reaction solution. The amount of the poor solvent when the polymerization reaction solution is dropped into the poor solvent is not particularly limited, but is preferably equal to or more than that of the diluted solution in terms of easier reduction of unreacted monomers, and is 3 on a mass basis. Is preferably 4 times or more, more preferably 4 times or more, still more preferably 5 times or more, and particularly preferably 6 times or more. The upper limit is not particularly limited, but if it is too much, the working efficiency in the subsequent filtration step is deteriorated. For example, 10 times or less is preferable on a mass basis.

重合反応溶液を貧溶媒と混合する前に、必要に応じて重合反応溶液を希釈溶媒で適当な溶液粘度に希釈してもよい。希釈溶媒としては、1,4−ジオキサン、アセトン、THF、MEK、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル等が挙げられる。これらは1種を用いてもよく、2種以上を併用してもよい。
希釈を行う場合、希釈後の重合反応溶液中の溶媒(重合溶媒と希釈溶媒の混合物)の溶解度パラメーター(以下、SP値とも記す。)と、再沈殿に用いられる貧溶媒のSP値の差は、重合体の良好な分散性が得られ、効率的に単量体を除去できる点で、小さい方が好ましい。
溶媒のSP値は、例えば、「ポリマーハンドブック(Polymer Handbook)」、第4版、VII−675頁〜VII−711頁に記載の方法により求めることができ、具体的には、表1(VII−683頁)、表7〜8(VII−688頁〜VII−711頁)に記載されている。また、複数の溶媒の混合溶媒におけるSP値は、公知の方法により求めることができる。例えば、混合溶媒のSP値は、加成性が成立するとして、各溶媒のSP値と体積分率との積の総和として求めることができる。
Before mixing the polymerization reaction solution with the poor solvent, the polymerization reaction solution may be diluted to an appropriate solution viscosity with a diluent solvent, if necessary. Examples of the dilution solvent include 1,4-dioxane, acetone, THF, MEK, MIBK, γ-butyrolactone, PGMEA, PGME, and ethyl lactate. These may use 1 type and may use 2 or more types together.
When performing dilution, the difference between the solubility parameter (hereinafter also referred to as SP value) of the solvent (mixture of polymerization solvent and dilution solvent) in the diluted polymerization reaction solution and the SP value of the poor solvent used for reprecipitation is The smaller one is preferable in that good dispersibility of the polymer can be obtained and the monomer can be efficiently removed.
The SP value of the solvent can be determined, for example, by the method described in “Polymer Handbook”, 4th edition, pages VII-675 to VII-711. Specifically, Table 1 (VII- 683), Tables 7 to 8 (VII-688 to VII-711). Further, the SP value in a mixed solvent of a plurality of solvents can be determined by a known method. For example, the SP value of the mixed solvent can be obtained as the sum of products of the SP value of each solvent and the volume fraction, assuming that additivity is established.

回収工程において、貧溶媒中で析出した析出物を濾別することにより、目的の重合体が湿粉の状態で得られる。
または、濾別した湿粉を再び貧溶媒に分散させた後に濾別する操作を繰り返して、目的の重合体の析出物を得ることもできる。この工程は、リスラリと呼ばれ、湿粉中に残存する未反応の単量体、重合開始剤等の不純物をより低減させるために有効である。
重合体を高い生産性を維持したまま取得できる点では、リスラリを行わず、再沈殿法のみで重合体の析出物を回収することが好ましい。
In the recovery step, the target polymer is obtained in the form of a wet powder by filtering the precipitate deposited in the poor solvent.
Alternatively, the target polymer precipitate can be obtained by repeating the operation of dispersing the filtered wet powder again in a poor solvent and then filtering it. This process is referred to as “librarian” and is effective for further reducing impurities such as unreacted monomers and polymerization initiator remaining in the wet powder.
From the viewpoint that the polymer can be obtained while maintaining high productivity, it is preferable to recover the polymer precipitate only by the reprecipitation method without performing the rethrowing.

[微乾燥工程]
本発明では、回収工程で得られた析出物を所定の固形分含有量となるまで乾燥させて、微乾燥粉末を得る。すなわち、回収工程で再沈殿を行った後に濾別して得られる湿粉、または再沈殿およびリスラリを行った後に濾別して得られる湿粉を乾燥させる。該固形分含有量が65質量%以上であると、溶媒への溶解性が顕著に向上する。該固形分含有量が90質量%を超えると、乾燥に要する時間が顕著に増大する。特に、溶解工程における再溶解時間が短く、使用釜の占有率を低減することが出来る点で、該固形分含有量の好ましい範囲は75〜90質量%である。
[Slight drying process]
In the present invention, the precipitate obtained in the recovery step is dried until a predetermined solid content is obtained to obtain a finely dried powder. That is, the wet powder obtained by filtering after re-precipitation in the recovery step, or the wet powder obtained by filtering after performing re-precipitation and re-laxing is dried. When the solid content is 65% by mass or more, the solubility in a solvent is remarkably improved. When the solid content exceeds 90% by mass, the time required for drying is remarkably increased. In particular, the preferable range of the solid content is 75 to 90% by mass in that the re-dissolution time in the dissolution step is short and the occupation ratio of the used kettle can be reduced.

また、微乾燥工程で得られる微乾燥粉末に含まれる貧溶媒の量は30質量%以下が好ましい。30質量%以下であると、溶媒への溶解性が顕著に向上する。また、微乾燥粉末に含まれる貧溶媒の量の下限は特に限定されないが10質量%以上が好ましい。10質量%より少なくなると微乾燥中にリソグラフィー用重合体粉末同士が融着し、溶媒への溶解時間が長くなることがある。   Moreover, the amount of the poor solvent contained in the fine dry powder obtained in the fine drying step is preferably 30% by mass or less. When it is 30% by mass or less, the solubility in a solvent is remarkably improved. Moreover, the lower limit of the amount of the poor solvent contained in the fine dry powder is not particularly limited, but is preferably 10% by mass or more. When the content is less than 10% by mass, the polymer powder for lithography is fused with each other during fine drying, and the dissolution time in the solvent may be prolonged.

乾燥方法は、湿粉を、所定の固形分含有量になるように乾燥できればよく、公知の乾燥方法を用いることができる。より短い時間で乾燥できる点で、乾燥雰囲気下で減圧する減圧乾燥法、乾燥雰囲気下で加熱する加熱乾燥法、または乾燥雰囲気下で減圧および加熱を行う減圧加熱乾燥法が好ましく、特に減圧加熱乾燥法が好ましい。
減圧を行う場合の減圧度は、50kPa以下が好ましく、40kPa以下がより好ましく、30kPa以下がさらに好ましい。該減圧度の下限値は特に限定されないが、現実的には0.01kPa以上である。
加熱を行う場合の加熱温度としては30℃以上が好ましく、35℃以上がより好ましく、40℃以上がさらに好ましい。加熱温度の上限は、重合体の熱劣化を防ぐ点で100℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。
Any drying method may be used as long as the wet powder can be dried to have a predetermined solid content, and a known drying method can be used. A vacuum drying method in which the pressure is reduced under a dry atmosphere, a heat drying method in which the heat is dried in a dry atmosphere, or a vacuum heat drying method in which the pressure is reduced and heated in a dry atmosphere is preferable, particularly in terms of drying in a shorter time. The method is preferred.
The degree of pressure reduction when the pressure is reduced is preferably 50 kPa or less, more preferably 40 kPa or less, and further preferably 30 kPa or less. The lower limit value of the degree of decompression is not particularly limited, but is practically 0.01 kPa or more.
When heating, the heating temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, and further preferably 40 ° C. or higher. The upper limit of the heating temperature is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower in terms of preventing thermal deterioration of the polymer.

[溶解工程]
微乾燥工程で得られた、0〜45℃の温度の微乾燥粉末を、0〜40℃の温度の良溶媒に溶解させる。これにより目的の重合体が良溶媒に溶解された溶液が得られる。
良溶媒は、目的の重合体を溶解させることができる公知の溶媒を用いることができ、上記に重合溶媒として挙げた溶媒を用いることができる。目的の重合体をレジスト組成物の製造に用いる場合、該レジスト組成物におけるレジスト溶媒と同じ溶媒を、溶解工程における良溶媒として使用することが好ましい。
本発明において、0〜40℃の温度の良溶媒に溶解させるとは、例えば、所定の室温(雰囲気温度)中で恒温に達している良溶媒に、積極的な冷却または加熱を行わずに溶解させることを意味する。該室温(雰囲気温度)は0〜40℃であり、16〜30℃が好ましい。
微乾燥粉末を良溶媒と混合する直前における、該微乾燥粉末の温度は、0〜45℃であることが好ましく、16〜40℃がさらに好ましく、前記所定の室温(雰囲気温度)中で恒温に達していることがとくに好ましい。すなわち、混合させる微乾燥粉末と良溶媒との温度差の絶対値は、積極的な冷却または加熱を行わなくて済む点で小さい方が好ましい。具体的には該温度差の絶対値は30℃以下が好ましく、20℃以下がさらに好ましく、15℃以下がとくに好ましい。
また微乾燥粉末を良溶媒に溶解させる際、保存安定剤等の添加剤を適宜添加してもよい。すなわち前記重合体溶液は保存安定剤等の添加剤を含んでもよい。
[Dissolution process]
The fine dry powder having a temperature of 0 to 45 ° C. obtained in the fine drying step is dissolved in a good solvent having a temperature of 0 to 40 ° C. Thereby, a solution in which the target polymer is dissolved in a good solvent is obtained.
As the good solvent, a known solvent capable of dissolving the target polymer can be used, and the solvents mentioned above as the polymerization solvent can be used. When the target polymer is used for the production of a resist composition, the same solvent as the resist solvent in the resist composition is preferably used as a good solvent in the dissolution step.
In the present invention, dissolving in a good solvent at a temperature of 0 to 40 ° C. means, for example, dissolving in a good solvent that has reached a constant temperature at a predetermined room temperature (atmospheric temperature) without actively cooling or heating. It means that The room temperature (atmosphere temperature) is 0 to 40 ° C, preferably 16 to 30 ° C.
The temperature of the fine dry powder immediately before mixing the fine dry powder with a good solvent is preferably 0 to 45 ° C, more preferably 16 to 40 ° C, and constant temperature at the predetermined room temperature (atmosphere temperature). It is particularly preferred that this is reached. In other words, the absolute value of the temperature difference between the finely-dried powder to be mixed and the good solvent is preferably smaller in that it does not require active cooling or heating. Specifically, the absolute value of the temperature difference is preferably 30 ° C. or less, more preferably 20 ° C. or less, and particularly preferably 15 ° C. or less.
Further, when the fine dry powder is dissolved in a good solvent, additives such as a storage stabilizer may be added as appropriate. That is, the polymer solution may contain an additive such as a storage stabilizer.

[濃縮工程]
前記溶解工程で得られた溶液を濃縮して、目的の重合体が良溶媒に溶解された濃縮液としてもよい。濃縮を行うことで、残留する低沸点化合物を除去することができる。
公知の濃縮方法を用いることができる。短い時間で濃縮できる点で減圧濃縮することが好ましい。減圧濃縮を行う場合の減圧度は、50kPa以下が好ましく、40kPa以下がより好ましく、30kPa以下がさらに好ましい。該減圧度の下限値は特に限定されないが、現実的には0.05kPa以上である。
また、減圧濃縮中に加熱することも短い時間で濃縮できる点で好ましい。加熱温度としては20℃以上が好ましく、30℃以上がより好ましく、40℃以上がさらに好ましい。また、重合体の熱劣化を防ぐ点で加熱温度は100℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。
濃縮中は突沸を防ぐ点で攪拌しながら行うのが好ましい。また、圧力制御ができ、熱伝導性に優れ反応温度制御が容易になる点で、耐圧製金属反応容器内で濃縮することが好ましい。金属としては耐食性が高く重合体への金属不純物の混入が低減できる点でステンレス鋼(以下SUSとも言う)が好ましい。
[Concentration process]
The solution obtained in the dissolving step may be concentrated to obtain a concentrated solution in which the target polymer is dissolved in a good solvent. By performing the concentration, the remaining low-boiling compounds can be removed.
A known concentration method can be used. It is preferable to concentrate under reduced pressure because it can be concentrated in a short time. The degree of reduced pressure in the case of concentration under reduced pressure is preferably 50 kPa or less, more preferably 40 kPa or less, and further preferably 30 kPa or less. The lower limit value of the degree of decompression is not particularly limited, but is actually 0.05 kPa or more.
In addition, heating during vacuum concentration is also preferable because it can be concentrated in a short time. As heating temperature, 20 degreeC or more is preferable, 30 degreeC or more is more preferable, and 40 degreeC or more is further more preferable. In addition, the heating temperature is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower in terms of preventing thermal degradation of the polymer.
During the concentration, it is preferable to carry out stirring while preventing bumping. In addition, it is preferable to concentrate in a pressure-resistant metal reaction vessel in that pressure control is possible and heat conductivity is excellent and reaction temperature control is facilitated. As the metal, stainless steel (hereinafter also referred to as SUS) is preferable because it has high corrosion resistance and can reduce the mixing of metal impurities into the polymer.

[濾過工程]
前記溶解工程で得られた溶液、または前記濃縮工程で得られた濃縮液を必要に応じて濾過してもよい。これにより重合体のゲル物や異物が低減された重合体溶液を得ることができる。
濾過フィルター前後の圧力損失を低く抑えたまま、短時間で濾過できる点では、濃縮工程の前に、記溶解工程で得られた溶液を濾過することが好ましい。
最終製品に混入する恐れのある重合体のゲル物や異物を効率的に低減できる点では、濃縮工程の後に、得られた濃縮液を濾過することが好ましい。
前記溶解工程で得られた溶液と前記濃縮液の両方を濾過してもよい。すなわち溶解工程で得られた溶液を濾過した後、得られた濾液を前記濃縮工程に供して濃縮し、得られた濃縮液を、さらに濾過してもよい。
[Filtering process]
The solution obtained in the dissolution step or the concentrate obtained in the concentration step may be filtered as necessary. As a result, a polymer solution with reduced polymer gel and foreign matter can be obtained.
In view of the fact that the pressure loss before and after the filtration filter can be kept low and the filtration can be performed in a short time, it is preferable to filter the solution obtained in the dissolution step before the concentration step.
In terms of efficiently reducing polymer gels and foreign substances that may be mixed into the final product, it is preferable to filter the obtained concentrated solution after the concentration step.
Both the solution obtained in the dissolving step and the concentrated solution may be filtered. That is, after filtering the solution obtained in the dissolution step, the obtained filtrate may be subjected to the concentration step and concentrated, and the resulting concentrated solution may be further filtered.

<レジスト組成物の製造方法>
本発明のレジスト組成物の製造方法は、本発明の製造方法により目的の重合体が溶解した溶液(重合体溶液)を製造する工程と、得られた重合体溶液と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する。必要に応じて、さらにレジスト溶媒を加えて混合する。レジスト溶媒としては、上記に重合溶媒として挙げた溶媒を用いることができる。こうして得られるレジスト組成物は化学増幅型レジスト組成物である。
レジスト組成物の製造に用いる重合体溶液は、前記溶解工程で得られた溶液でもよく、その後に濾過した濾液でもよく、前記濃縮工程で得られた濃縮液でもよく、その後に濾過した濾液でもよい。
<Method for producing resist composition>
The method for producing a resist composition of the present invention includes a step of producing a solution (polymer solution) in which a target polymer is dissolved by the production method of the present invention, the obtained polymer solution, and irradiation with actinic rays or radiation. And a step of mixing with a compound generating an acid. If necessary, a resist solvent is further added and mixed. As the resist solvent, the solvents listed above as the polymerization solvent can be used. The resist composition thus obtained is a chemically amplified resist composition.
The polymer solution used in the production of the resist composition may be the solution obtained in the dissolution step, the filtrate filtered thereafter, the concentrate obtained in the concentration step, or the filtrate filtered thereafter. .

[活性光線又は放射線の照射により酸を発生する化合物]
活性光線又は放射線の照射により酸を発生する化合物は、化学増幅型レジスト組成物の光酸発生剤として使用可能なものの中から任意に選択できる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
光酸発生剤の使用量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Compound that generates acid upon irradiation with actinic ray or radiation]
The compound that generates an acid upon irradiation with actinic rays or radiation can be arbitrarily selected from those that can be used as a photoacid generator for a chemically amplified resist composition. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for the usage-amount of a photo-acid generator, 0.5-10 mass parts is more preferable.

[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

[有機カルボン酸、リンのオキソ酸またはその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.

[添加剤]
レジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition may contain various additives such as a surfactant, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.

<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法の一例について説明する。
まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面に、本発明の製造方法で得られるレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。
<Manufacturing method of substrate on which fine pattern is formed>
An example of the manufacturing method of the board | substrate with which the fine pattern was formed of this invention is demonstrated.
First, the resist composition obtained by the production method of the present invention is applied to the surface of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed by spin coating or the like. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

ついで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものが挙げられる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). Examples of the alkaline developer include known ones.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、微細パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a fine pattern is formed.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法および評価方法は以下の方法を用いた。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, “part” in each example and comparative example means “part by mass” unless otherwise specified. The measurement method and evaluation method used the following methods.

<重量平均分子量の測定>
重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: Tetrahydrofuran (THF)
Sample: A solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.

検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).

<微乾燥前の湿粉および微乾燥後の微乾燥粉末の固形分含有量>
測定対象の粉1.0gをアルミ皿に計量し、常圧環境下150℃で3時間乾燥させた後の質量を計量し、下記式の通り計算して固形分含有量[単位:質量%]の値を算出する。乾燥前の質量[g]は1.0(g)である。
固形分含有量[質量%]=乾燥後の質量[g]/乾燥前の質量[g]×100
<Solid content of wet powder before fine drying and fine dry powder after fine drying>
Weigh 1.0 g of the powder to be measured in an aluminum dish, weigh the mass after drying at 150 ° C. for 3 hours under normal pressure, calculate the following formula, and calculate the solid content [unit: mass%] Is calculated. The mass [g] before drying is 1.0 (g).
Solid content [mass%] = mass after drying [g] / mass before drying [g] × 100

<残存溶剤の評価>
重合体中の残存溶剤は、下記の条件(GC条件)でガス・クロマトグラフィーにより、内部標準法で求めた。
[GC条件]
装置:アジレント・テクノロジー社製、Agilent Technologies 6890(商品名)、
キャリアガス:He、
全流量:24mL/min、
分離カラム:アジレント・テクノロジー社製、HP−INNWAX(商品名) 長さ30m×内径0.32mm×膜厚0.25μm、
カラム流量:1.5mL/min(40℃)
カラム昇温条件:50℃(10分間保持)→(10℃/minで昇温)→110℃(9分間保持)、
注入口温度:230℃、
検出口温度:230℃、
検出器:水素炎イオン化検出器(FID)
注入量:1μL
試料:重合体の0.1gに5mLのアセトニトリルを加え、12時間・25℃で静置した後、上澄み液を0.98mL分取し、内部標準であるn−ブチルアルコールの1%溶液を20μL添加した溶液。
<Evaluation of residual solvent>
The residual solvent in the polymer was determined by an internal standard method by gas chromatography under the following conditions (GC conditions).
[GC condition]
Apparatus: Agilent Technologies, Inc., Agilent Technologies 6890 (trade name),
Carrier gas: He,
Total flow rate: 24 mL / min,
Separation column: HP-INNWAX (trade name), manufactured by Agilent Technologies, Inc., length 30 m × inner diameter 0.32 mm × film thickness 0.25 μm,
Column flow rate: 1.5 mL / min (40 ° C.)
Column heating conditions: 50 ° C. (holding for 10 minutes) → (heating at 10 ° C./min)→110° C. (holding for 9 minutes),
Inlet temperature: 230 ° C
Detection port temperature: 230 ° C.
Detector: Hydrogen flame ionization detector (FID)
Injection volume: 1 μL
Sample: 0.1 mL of the polymer was added with 5 mL of acetonitrile and allowed to stand at 25 ° C. for 12 hours. Then, 0.98 mL of the supernatant was collected, and 20 μL of 1% solution of n-butyl alcohol as an internal standard was collected. Added solution.

<溶解性の評価>
得られた微乾燥粉末の200gを、PGMEAの2000gに溶解させた。目視で観察し、溶解開始から完全に溶解するまでの時間を再溶解時間[単位:時間]とした。
<Evaluation of solubility>
200 g of the obtained fine dry powder was dissolved in 2000 g of PGMEA. The time from the start of dissolution until complete dissolution was observed as the redissolution time [unit: hours].

<重合体膜の光線透過率の測定>
測定対象の重合体を固形分濃度で19質量%含む、PGMEA溶液を調製し、孔径0.1μmのメンブレンフィルターで濾過し、重合体溶液を調製した。 調製した重合体溶液を石英ウエハー上にスピンコートし、ホットプレートを用いて120℃、60秒間プリベークを行い、膜厚1.0μmの重合体膜を製造した。
石英ウエハー上に製造された重合体膜を試料側に、未処理の石英ウエハーを参照側にそれぞれ設置し、島津製作所製、紫外・可視吸光光度計UV−3100(商品名)を用いて、波長範囲を192〜194nm、スキャンスピードを中速、サンプリングピッチを自動、スリット幅を2.0にそれぞれ設定して測定を行い、193nmにおける光線透過率(%)を求めた。
<Measurement of light transmittance of polymer film>
A PGMEA solution containing 19% by mass of the polymer to be measured in solid content concentration was prepared and filtered through a membrane filter having a pore size of 0.1 μm to prepare a polymer solution. The prepared polymer solution was spin-coated on a quartz wafer and pre-baked at 120 ° C. for 60 seconds using a hot plate to produce a 1.0 μm-thick polymer film.
The polymer film produced on the quartz wafer was placed on the sample side, and the untreated quartz wafer was placed on the reference side, respectively, and the wavelength was measured using an ultraviolet / visible absorptiometer UV-3100 (trade name) manufactured by Shimadzu Corporation. Measurement was carried out with the range set to 192 to 194 nm, the scan speed set to medium speed, the sampling pitch set to automatic, and the slit width set to 2.0 to determine the light transmittance (%) at 193 nm.

<レジスト組成物の評価>
[感度、現像コントラスト測定]
レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製、商品名:VUVES−4500)を用い、露光量を変えて10mm×10mmの18ショットを露光した。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン製。商品名:RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Evaluation of resist composition>
[Sensitivity and development contrast measurement]
The resist composition was spin-coated on a 6-inch silicon wafer and prebaked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (product name: VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Then, after post-baking (PEB) at 110 ° C. for 60 seconds, 2.38 mass% tetramethylammonium hydroxide at 23 ° C. using a resist development analyzer (product name: RDA-800). Development was performed with an aqueous solution for 65 seconds, and the change with time in the resist film thickness during development at each exposure amount was measured.

[解析]
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)とγ値(露光量−残膜率曲線の接線の傾きであり、現像コントラストを表す。)を以下の通り求めた。Eth感度の値が小さいほどレジスト組成物の感度が高く、γ値の値が大きいほど現像コントラストが良好であることを示す。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm)。
γ値:露光量−残膜率曲線の残膜率50%における露光量をE50(mJ/cm)、露光量−残膜率曲線のE50における接線が、残膜率100%の直線及び残膜率0%の直線と交わる露光量をそれぞれE100及びE0として、以下の計算式で求めた。
γ=1/{log(E0/E100)}
[analysis]
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure dose-residual film rate curve) is prepared, and Eth sensitivity (required exposure amount for setting the remaining film rate to 0%, which represents sensitivity) and γ value (exposure dose-residual film rate curve). (Denoting the development contrast). The smaller the Eth sensitivity value, the higher the sensitivity of the resist composition, and the larger the γ value, the better the development contrast.
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%.
γ value: E50 (mJ / cm 2 ) exposure amount at 50% of the remaining film rate of the exposure amount-residual film rate curve, and a tangent line at E50 of the exposure amount-residual film rate curve is a straight line with a remaining film rate of 100% The exposure amount intersecting with the straight line having a film rate of 0% was determined as E100 and E0, respectively, and the following formula was used.
γ = 1 / {log (E0 / E100)}

<実施例1>
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量1LのSUS製のフラスコに、乳酸エチル243.6gを入れた。フラスコ内を窒素で置換し、窒素雰囲気を保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物1を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物1]
下記式(m1)の単量体を95.20g、
下記式(m2)の単量体を131.04g、
下記式(m3)の単量体を66.08g、
乳酸エチル438.5g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.649g。
各単量体の仕込み割合(モル%)を表1に示す。得られた重合反応溶液の25℃における粘度を測定した。その結果を表1に示す。
<Example 1>
243.6 g of ethyl lactate was placed in a 1 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, a dropping funnel, and a thermometer. The inside of the flask was replaced with nitrogen, the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 1 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 1]
95.20 g of a monomer of the following formula (m1),
131.04 g of a monomer of the following formula (m2),
66.08 g of a monomer of the following formula (m3),
438.5 g of ethyl lactate,
8.649 g of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1. The viscosity at 25 ° C. of the obtained polymerization reaction solution was measured. The results are shown in Table 1.

Figure 2013032508
Figure 2013032508

得られた重合反応溶液を、7.0倍量の貧溶媒中に、該貧溶媒を攪拌しながら滴下し、重合体(白色の析出物)を沈殿させた。貧溶媒としてはメタノールと水の混合溶媒(メタノール/水=95/5容量比)を用いた。
沈殿を濾別し、湿粉516gを得た。湿粉を表1に示す微乾燥条件(圧力[単位:kPa]、乾燥温度[単位:℃]、乾燥時間[単位:時間])で微乾燥して微乾燥粉末を得た。微乾燥前の湿粉および得られた微乾燥粉末の固形分含有量、微乾燥粉末の残存溶剤組成をそれぞれ測定した。結果を表1に示す。
次に、25℃の雰囲気中で、上記で得られた微乾燥粉末(29℃)の200gを、PGMEA(25℃)の2000gに溶解させた。このとき上記の方法で再溶解時間を測定した。結果を表1に示す。
The obtained polymerization reaction solution was dropped into 7.0 times the amount of a poor solvent while stirring the poor solvent to precipitate a polymer (white precipitate). As a poor solvent, a mixed solvent of methanol and water (methanol / water = 95/5 volume ratio) was used.
The precipitate was filtered off to obtain 516 g of wet powder. The wet powder was finely dried under the fine drying conditions shown in Table 1 (pressure [unit: kPa], drying temperature [unit: ° C.], drying time [unit: time]) to obtain a fine dry powder. The moisture content before fine drying, the solid content of the fine dry powder obtained, and the residual solvent composition of the fine dry powder were measured. The results are shown in Table 1.
Next, 200 g of the fine dry powder (29 ° C.) obtained above was dissolved in 2000 g of PGMEA (25 ° C.) in an atmosphere at 25 ° C. At this time, the re-dissolution time was measured by the above method. The results are shown in Table 1.

次いで、得られた溶液をナイロン製の孔径0.04μmのカートリッジフィルターで濾過した。得られた濾液を圧力20kPa、温度50℃の条件で濃縮し、留出液が出なくなった時点で圧力3kPa、温度65℃の条件に変更して、重合体の固形分濃度が25質量%になるまで濃縮を行った。
得られた濃縮液(PGMEA溶液)について、上記の方法で重量平均分子量(Mw)および分子量分布(Mw/Mn)を測定した。結果を表2に示す。
また得られた濃縮液(PGMEA溶液)を用い、上記の方法で重合体膜の光線透過率を測定した。その結果を表2に示す。
Next, the obtained solution was filtered through a cartridge filter made of nylon having a pore size of 0.04 μm. The obtained filtrate was concentrated under the conditions of a pressure of 20 kPa and a temperature of 50 ° C., and when the distillate no longer came out, the pressure was changed to 3 kPa and a temperature of 65 ° C., so that the solid content concentration of the polymer was 25% by mass. Concentration was performed until
About the obtained concentrate (PGMEA solution), the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were measured by said method. The results are shown in Table 2.
Moreover, the light transmittance of the polymer film was measured by the above method using the obtained concentrated liquid (PGMEA solution). The results are shown in Table 2.

[レジスト組成物の評価]
得られた濃縮液を用いてレジスト組成物を調製した。すなわち、該濃縮液の400部に、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部を添加し、さらに溶媒であるPGMEAを重合体濃度が12.5質量%になるように加えて混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物について上記の方法でEth感度およびγ値を測定した。結果を表2に示す。
[Evaluation of resist composition]
A resist composition was prepared using the obtained concentrated liquid. That is, to 400 parts of the concentrated solution, 2 parts of triphenylsulfonium triflate as a photoacid generator is added, and further PGMEA as a solvent is added so that the polymer concentration becomes 12.5% by mass and mixed. After preparing a uniform solution, the solution was filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. Eth sensitivity and γ value of the obtained resist composition were measured by the above methods. The results are shown in Table 2.

<実施例2、3、4および比較例1、2>
乾燥条件を表1に示すとおりに変更したほかは実施例1と同様に行った。結果を表1および表2に示す。
<Examples 2, 3, 4 and Comparative Examples 1, 2>
The same procedure as in Example 1 was performed except that the drying conditions were changed as shown in Table 1. The results are shown in Tables 1 and 2.

<実施例5>
本例では、実施例1における式(m2)の単量体に代えて、下記式(m4)の単量体を用いた。
すなわち、実施例1と同じフラスコに、乳酸エチル225.9gを入れた。フラスコ内を窒素で置換し、窒素雰囲気下で保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物2を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物2]
下記式(m1)の単量体を95.20g、
下記式(m3)の単量体を66.08g、
下記式(m4)の単量体を109.76g、
乳酸エチル406.6g、
ジメチル−2,2’−アゾビスイソブチレート(前記V601(商品名))8.372g。
各単量体の仕込み割合(モル%)を表1に示す。
<Example 5>
In this example, a monomer of the following formula (m4) was used in place of the monomer of the formula (m2) in Example 1.
That is, 225.9 g of ethyl lactate was placed in the same flask as in Example 1. The inside of the flask was replaced with nitrogen, and the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 2 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 2]
95.20 g of a monomer of the following formula (m1),
66.08 g of a monomer of the following formula (m3),
109.76 g of a monomer of the following formula (m4),
406.6 g of ethyl lactate,
8.372 g of dimethyl-2,2′-azobisisobutyrate (said V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

Figure 2013032508
Figure 2013032508

得られた重合反応溶液を、7.0倍量の貧溶媒中に、該貧溶媒を攪拌しながら滴下し、重合体(白色の析出物)を沈殿させた。貧溶媒としてはメタノールと水の混合溶媒(メタノール/水=80/20容量比)を用いた。
沈殿を濾別し、湿粉684gを得た。湿粉を表1に示す微乾燥条件で微乾燥して微乾燥粉末を得た。微乾燥前の湿粉および得られた微乾燥粉末の固形分含有量、微乾燥粉末の残存溶剤組成をそれぞれ測定した。結果を表1に示す。
次に、20℃の雰囲気中で、上記で得られた微乾燥粉末(25℃)の200gを、PGMEA(20℃)の2000gに溶解させた。このとき上記の方法で再溶解時間を測定した。結果を表1に示す。
次いで、得られた溶液をナイロン製の孔径0.02μmのカートリッジフィルターで濾過した。得られた濾液を、実施例1と同様にして濃縮し、MwおよびMw/Mnを測定した。実施例1と同様にして重合体膜の光線透過率を測定した。実施例1と同様にしてレジスト組成物を調製し、評価した。結果を表2に示す。
The obtained polymerization reaction solution was dropped into 7.0 times the amount of a poor solvent while stirring the poor solvent to precipitate a polymer (white precipitate). As a poor solvent, a mixed solvent of methanol and water (methanol / water = 80/20 volume ratio) was used.
The precipitate was filtered off to obtain 684 g of wet powder. The wet powder was finely dried under the fine drying conditions shown in Table 1 to obtain a finely dried powder. The moisture content before fine drying, the solid content of the fine dry powder obtained, and the residual solvent composition of the fine dry powder were measured. The results are shown in Table 1.
Next, 200 g of the fine dry powder (25 ° C.) obtained above was dissolved in 2000 g of PGMEA (20 ° C.) in an atmosphere of 20 ° C. At this time, the re-dissolution time was measured by the above method. The results are shown in Table 1.
Subsequently, the obtained solution was filtered through a cartridge filter made of nylon having a pore size of 0.02 μm. The obtained filtrate was concentrated in the same manner as in Example 1, and Mw and Mw / Mn were measured. The light transmittance of the polymer film was measured in the same manner as in Example 1. Resist compositions were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.

<比較例3>
乾燥条件を表1に示すとおりに変更した。微乾燥粉末をPGMEAに溶解させて重合体溶液とした後、濾過を行わずに前記濃縮を行った。そのほかは実施例5と同様に行った。結果を表1および表2に示す。
<Comparative Example 3>
The drying conditions were changed as shown in Table 1. The fine dry powder was dissolved in PGMEA to form a polymer solution, and then the concentration was performed without filtration. The others were performed in the same manner as in Example 5. The results are shown in Tables 1 and 2.

<実施例6>
本例では、実施例1における式(m2)(m3)の単量体に代えて、下記式(m6)(m5)の単量体を用いた。
すなわち、実施例1と同じフラスコに、乳酸エチル161.0gを入れた。フラスコ内を窒素で置換し、窒素雰囲気下で保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を80℃に上げた。
その後、下記混合物3を滴下漏斗より、4時間かけてフラスコ内に滴下し、さらに80℃の温度を3時間保持した。
その後、25℃までフラスコ内の反応液を冷却して重合反応を停止させ、重合反応溶液を得た。
[混合物3]
下記式(m1)の単量体を136.1g、
下記式(m5)の単量体を70.5g、
下記式(m6)の単量体を104.0g、
乳酸エチル310.6g、
ジメチル−2,2’−アゾビスイソブチレート(前記V601(商品名))16.56g。
各単量体の仕込み割合(モル%)を表1に示す。
<Example 6>
In this example, monomers of the following formulas (m6) and (m5) were used in place of the monomers of the formulas (m2) and (m3) in Example 1.
That is, 161.0 g of ethyl lactate was placed in the same flask as in Example 1. The inside of the flask was replaced with nitrogen, and the flask was placed in a hot water bath while maintaining the nitrogen atmosphere, and the temperature of the hot water bath was raised to 80 ° C. while stirring the inside of the flask.
Thereafter, the following mixture 3 was dropped into the flask over 4 hours from the dropping funnel, and the temperature of 80 ° C. was further maintained for 3 hours.
Then, the reaction liquid in a flask was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymerization reaction solution was obtained.
[Mixture 3]
136.1 g of the monomer of the following formula (m1),
70.5 g of a monomer of the following formula (m5),
104.0 g of the monomer of the following formula (m6),
310.6 g of ethyl lactate,
16.56 g of dimethyl-2,2'-azobisisobutyrate (said V601 (trade name)).
The charge ratio (mol%) of each monomer is shown in Table 1.

Figure 2013032508
Figure 2013032508

得られた重合反応溶液を質量が1.5倍となるように乳酸エチルで希釈した。その後、希釈後の重合反応溶液の10.0倍量の貧溶媒中に、該貧溶媒を攪拌しながら滴下し、重合体(白色の析出物)を沈殿させた。貧溶媒としてはジイソプロピルエーテルを用いた。
沈殿を濾別し、湿粉508gを得た。湿粉を表1に示す乾燥条件で微乾燥して微乾燥粉末を得た。微乾燥前の湿粉および得られた微乾燥粉末の固形分含有量、微乾燥粉末の残存溶剤組成をそれぞれ測定した。結果を表1に示す。
The obtained polymerization reaction solution was diluted with ethyl lactate so that the mass became 1.5 times. Thereafter, the poor solvent was dropped into 10.0 times the poor solvent of the diluted polymerization reaction solution while stirring to precipitate a polymer (white precipitate). Diisopropyl ether was used as a poor solvent.
The precipitate was filtered off to obtain 508 g of wet powder. The wet powder was finely dried under the drying conditions shown in Table 1 to obtain a finely dried powder. The moisture content before fine drying, the solid content of the fine dry powder obtained, and the residual solvent composition of the fine dry powder were measured. The results are shown in Table 1.

次に、16℃の雰囲気中で、上記で得られた微乾燥粉末(16℃)の200gを、PGMEA(16℃)の2000gに溶解させて溶液とした。このとき上記の方法で再溶解時間を測定した。結果を表1に示す。
次いで、得られた溶液をナイロン製の孔径0.04μmのカートリッジフィルターで濾過した。得られた濾液(濾過後の重合体溶液)を圧力10kPa、温度40℃の条件で濃縮し、留出液が出なくなった時点で圧力5kPa、温度55℃の条件に変更して、重合体の濃度が25質量%になるまで濃縮を行った。
得られた濃縮液について、実施例1と同様にして濃縮し、MwおよびMw/Mnを測定した。
また実施例1と同様にして重合体膜の光線透過率を測定した。結果を表2に示す。193nmの光線透過率が低く大きな吸光度を示すことから、ArFリソグラフィー用反射防止膜として使用できることがわかった。このためレジスト組成物の評価は行わなかった。
Next, 200 g of the fine dry powder (16 ° C.) obtained above was dissolved in 2000 g of PGMEA (16 ° C.) in a 16 ° C. atmosphere to obtain a solution. At this time, the re-dissolution time was measured by the above method. The results are shown in Table 1.
Next, the obtained solution was filtered through a cartridge filter made of nylon having a pore size of 0.04 μm. The obtained filtrate (the polymer solution after filtration) was concentrated under the conditions of a pressure of 10 kPa and a temperature of 40 ° C., and when the distillate no longer came out, the pressure was changed to 5 kPa and the temperature of 55 ° C. Concentration was performed until the concentration reached 25% by mass.
The obtained concentrated solution was concentrated in the same manner as in Example 1, and Mw and Mw / Mn were measured.
Further, the light transmittance of the polymer film was measured in the same manner as in Example 1. The results are shown in Table 2. Since the light transmittance at 193 nm is low and the absorbance is large, it was found that the film can be used as an antireflection film for ArF lithography. For this reason, the resist composition was not evaluated.

<比較例4>
乾燥条件を表1に示すとおりに変更した。微乾燥粉末をPGMEAに溶解させて重合体溶液とした後、濾過を行わずに前記濃縮を行った。そのほかは実施例6と同様に行った。結果を表1および表2に示す。
<Comparative example 4>
The drying conditions were changed as shown in Table 1. The fine dry powder was dissolved in PGMEA to form a polymer solution, and then the concentration was performed without filtration. The others were performed in the same manner as in Example 6. The results are shown in Tables 1 and 2.

Figure 2013032508
Figure 2013032508

Figure 2013032508
Figure 2013032508

表1、2の結果に示されるように、微乾燥粉末の固形分含有量が65〜90質量%である実施例1〜4は、微乾燥粉末の固形分含有量がこれより低い比較例1に比べて、再溶解時間が大幅に短縮され、レジスト組成物の感度および現像コントラストが向上した。また、微乾燥粉末の固形分含有量が90質量%以下の範囲では、微乾燥粉末の固形分含有量が高くなるにしたがって再溶解時間は短くなるが、比較例2のように90質量%を超えると再溶解時間はかえって長くなり、比較例2は実施例1〜4と比べてレジスト組成物の感度および現像コントラストが劣っていた。
同様に、実施例5と比較例3を比べると、微乾燥粉末の固形分含有量が70質量%である実施例5は、該微乾燥粉末の固形分含有量が98質量%である比較例3に比べて、再溶解時間が短く、レジスト組成物の感度および現像コントラストが向上した。
また、実施例6と比較例4を比べると、微乾燥粉末の固形分含有量が67質量%である実施例6は、該微乾燥粉末の固形分含有量が58質量%である比較例4に比べて、再溶解時間が大幅に短縮された。
As shown in the results of Tables 1 and 2, Examples 1 to 4 in which the solid content of the fine dry powder is 65 to 90% by mass are Comparative Examples 1 in which the solid content of the fine dry powder is lower than this. As compared with, the re-dissolution time was significantly shortened, and the sensitivity and development contrast of the resist composition were improved. In addition, in the range where the solid content of the fine dry powder is 90% by mass or less, the re-dissolution time becomes shorter as the solid content of the fine dry powder becomes higher. When it exceeded, re-dissolution time became long on the contrary, and the comparative example 2 was inferior in the sensitivity and development contrast of the resist composition compared with Examples 1-4.
Similarly, when Example 5 and Comparative Example 3 are compared, Example 5 in which the solid content of the fine dry powder is 70% by mass is Comparative Example in which the solid content of the fine dry powder is 98% by mass. Compared to 3, the re-dissolution time was short, and the sensitivity and development contrast of the resist composition were improved.
Further, when Example 6 and Comparative Example 4 are compared, Example 6 in which the solid content of the fine dry powder is 67% by mass is Comparative Example 4 in which the solid content of the fine dry powder is 58% by mass. Compared with, re-dissolution time was significantly shortened.

Claims (6)

重合溶媒の存在下に、重合開始剤を使用して、単量体をラジカル重合させて重合反応溶液を得る重合工程と、
前記重合反応溶液を重合体に対する貧溶媒と混合し、重合体を析出させて析出物を得る回収工程と、
前記析出物を固形分含有量が65〜90質量%の範囲内となるように乾燥させて、微乾燥粉末を得る微乾燥工程と、
前記微乾燥粉末を、重合体に対する良溶媒に溶解させる溶解工程とを有し、
前記溶解工程において、前記微乾燥粉末の温度が0〜45℃であり、前記良溶媒の温度が0〜40℃である、リソグラフィー用重合体溶液の製造方法。
A polymerization step in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent to obtain a polymerization reaction solution;
A recovery step of mixing the polymerization reaction solution with a poor solvent for the polymer, precipitating the polymer, and obtaining a precipitate;
A fine drying step of drying the precipitate so that the solid content is in the range of 65 to 90% by mass to obtain a fine dry powder;
Dissolving the finely-dried powder in a good solvent for the polymer,
The method for producing a polymer solution for lithography, wherein in the dissolving step, the temperature of the fine dry powder is 0 to 45 ° C, and the temperature of the good solvent is 0 to 40 ° C.
前記微乾燥工程で得られる微乾燥粉末に含まれる貧溶媒の量が30質量%以下である、請求項1に記載のリソグラフィー用重合体溶液の製造方法。   The manufacturing method of the polymer solution for lithography of Claim 1 whose quantity of the poor solvent contained in the fine dry powder obtained at the said fine drying process is 30 mass% or less. 前記溶解工程で得られた溶液を濃縮する濃縮工程を有する、請求項1または2に記載のリソグラフィー用重合体溶液の製造方法。   The manufacturing method of the polymer solution for lithography of Claim 1 or 2 which has a concentration process which concentrates the solution obtained by the said melt | dissolution process. 前記溶解工程で得られた溶液、または前記濃縮工程で得られた濃縮液を濾過する濾過工程を有する、請求項1〜3のいずれか一項に記載のリソグラフィー用重合体溶液の製造方法。   The manufacturing method of the polymer solution for lithography as described in any one of Claims 1-3 which has a filtration process which filters the solution obtained at the said melt | dissolution process, or the concentrate obtained at the said concentration process. 請求項1〜4のいずれか一項に記載の製造方法によりリソグラフィー用重合体溶液を製造する工程と、得られたリソグラフィー用重合体溶液と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法。   A step of producing a polymer solution for lithography by the production method according to any one of claims 1 to 4, a polymer solution for lithography obtained, and a compound that generates an acid upon irradiation with actinic rays or radiation, A method for producing a resist composition, which comprises a step of mixing. 請求項5に記載の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して、露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法。   A step of producing a resist composition by the production method according to claim 5, a step of applying the obtained resist composition onto a work surface of a substrate to form a resist film, and the resist film, A method for producing a substrate on which a pattern is formed, comprising a step of exposing and a step of developing the exposed resist film using a developer.
JP2012143766A 2011-07-01 2012-06-27 Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method Active JP6262416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143766A JP6262416B2 (en) 2011-07-01 2012-06-27 Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011147205 2011-07-01
JP2011147205 2011-07-01
JP2012143766A JP6262416B2 (en) 2011-07-01 2012-06-27 Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2013032508A true JP2013032508A (en) 2013-02-14
JP6262416B2 JP6262416B2 (en) 2018-01-17

Family

ID=47788622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143766A Active JP6262416B2 (en) 2011-07-01 2012-06-27 Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP6262416B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021454A (en) * 2012-07-23 2014-02-03 Jsr Corp Production method of resin solution for photoresist
JP2015057463A (en) * 2013-08-09 2015-03-26 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP2018066010A (en) * 2017-11-24 2018-04-26 三菱ケミカル株式会社 Method for producing polymer for semiconductor lithography
JP2019073587A (en) * 2017-10-13 2019-05-16 三菱ケミカル株式会社 Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161052A (en) * 2002-04-01 2006-06-22 Daicel Chem Ind Ltd Method for producing polymer solution for arf excimer laser resist
JP2010204306A (en) * 2009-03-02 2010-09-16 Jsr Corp Method for producing resin solution for photoresist
JP2010270185A (en) * 2009-05-19 2010-12-02 Daicel Chem Ind Ltd Method of manufacturing polymer compound for photoresist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161052A (en) * 2002-04-01 2006-06-22 Daicel Chem Ind Ltd Method for producing polymer solution for arf excimer laser resist
JP2010204306A (en) * 2009-03-02 2010-09-16 Jsr Corp Method for producing resin solution for photoresist
JP2010270185A (en) * 2009-05-19 2010-12-02 Daicel Chem Ind Ltd Method of manufacturing polymer compound for photoresist

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021454A (en) * 2012-07-23 2014-02-03 Jsr Corp Production method of resin solution for photoresist
JP2015057463A (en) * 2013-08-09 2015-03-26 三菱レイヨン株式会社 Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP2019073587A (en) * 2017-10-13 2019-05-16 三菱ケミカル株式会社 Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP7127267B2 (en) 2017-10-13 2022-08-30 三菱ケミカル株式会社 Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP2018066010A (en) * 2017-11-24 2018-04-26 三菱ケミカル株式会社 Method for producing polymer for semiconductor lithography

Also Published As

Publication number Publication date
JP6262416B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6262416B2 (en) Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6520054B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed
JP5771942B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6369156B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP7127267B2 (en) Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP6212945B2 (en) Lithographic polymer manufacturing method, lithography polymer, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP2013127023A (en) Method for producing polymer used for lithography, polymer for lithography, resist composition and method for producing substrate
JP2017119881A (en) Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP6268804B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6268803B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6314786B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP2011137084A (en) Method for producing polymer, polymer for lithography, resist composition and method for producing substrate
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP6623562B2 (en) Method for producing lithographic material, method for producing lithographic composition, and method for producing substrate on which pattern is formed
JP2023123014A (en) Method for producing polymer, method for producing resist composition, and method for producing patterned substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171214

R151 Written notification of patent or utility model registration

Ref document number: 6262416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151