JP2010151346A - Sunlight collecting system - Google Patents

Sunlight collecting system Download PDF

Info

Publication number
JP2010151346A
JP2010151346A JP2008328309A JP2008328309A JP2010151346A JP 2010151346 A JP2010151346 A JP 2010151346A JP 2008328309 A JP2008328309 A JP 2008328309A JP 2008328309 A JP2008328309 A JP 2008328309A JP 2010151346 A JP2010151346 A JP 2010151346A
Authority
JP
Japan
Prior art keywords
center mirror
mirror
center
thermal energy
collecting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008328309A
Other languages
Japanese (ja)
Other versions
JP5247416B2 (en
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2008328309A priority Critical patent/JP5247416B2/en
Publication of JP2010151346A publication Critical patent/JP2010151346A/en
Application granted granted Critical
Publication of JP5247416B2 publication Critical patent/JP5247416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/20Arrangements for moving or orienting solar heat collector modules for linear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/52Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/11Driving means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunlight collecting system for adjusting thermal energy obtained without changing the state of heliostats. <P>SOLUTION: A center mirror 1 is moved parallel in the vertical direction. When the center mirror 1 is moved vertically parallel from a state of reflected light from the center mirror 1, being condensed onto one point, a reflected light condensing range is widened to decrease thermal energy obtained per unit area. When the thermal energy of a condensing section becomes too large, the center mirror 1 is only moved vertically parallel without changing the direction of the partial heliostats 7. Since the thermal energy is decreased according to the amount of movement, thermal energy is easily adjusted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽光集光システムに関するものである。   The present invention relates to a solar light collecting system.

太陽光を効率良く一点に集めて熱エネルギーに変え、その熱エネルギーにより、発電や、海水淡水化を行う技術が知られている。この種の太陽光集光装置は、所定の高さに設置された下向きのセンタミラーへ向けて、複数のヘリオスタットにより太陽光を反射し、センタミラーにて反射された太陽光をセンタミラーの下方の一点に集光させる構造になっている。複数のヘリオスタットからの反射光を一点に集中するため高い熱エネルギーが得られるようになっている。   A technology is known in which sunlight is efficiently collected into one point and converted into thermal energy, and power generation and seawater desalination are performed using the thermal energy. This type of solar concentrator reflects sunlight by a plurality of heliostats toward a downward center mirror installed at a predetermined height, and reflects the sunlight reflected by the center mirror to the center mirror. It is structured to collect light at one point below. Since the reflected light from a plurality of heliostats is concentrated at one point, high thermal energy can be obtained.

この種の太陽光集光システムの場合、太陽光の弱い冬期などでも必要な熱エネルギーが得られるように、数多くのヘリオスタットをセンタミラーの周囲に配置している。従って、太陽光の強い夏期の日中などは全てのヘリオスタットを利用すると、一点に集中する熱エネルギーが大きくなり過ぎるため、一部のヘリオスタットの向きを変えてセンタミラーから外し、センタミラーに入光しないようにして、一点に集光される熱エネルギーの調整を図っている。曇りの状態から晴天に変化したような場合も同様の調整を図っている(例えば、特許文献1参照)。
特開平11−119105号公報
In the case of this type of solar condensing system, a large number of heliostats are arranged around the center mirror so that necessary heat energy can be obtained even in winter when sunlight is weak. Therefore, if all heliostats are used during the daytime, such as in the summer, when sunlight is strong, the thermal energy concentrated on one point becomes too large. The adjustment of the thermal energy collected at one point is made so as not to enter the light. The same adjustment is made even when the cloudy state changes to a clear sky (see, for example, Patent Document 1).
JP 11-119105 A

しかしながら、このような従来の技術にあっては、一部のヘリオスタットの向きを変えることにより、得られる熱エネルギーの調整を行っているため、ヘリオスタットの制御が大変に面倒である。特に、各ヘリオスタットをセンサー方式により自律制御している場合は、いったん向きを変えたヘリオスタットを元の状態の戻すために別のセンサーが必要となり、センサーの構造が大変に複雑になる。   However, in such a conventional technique, the heat energy obtained is adjusted by changing the direction of some heliostats, so that the control of the heliostat is very troublesome. In particular, when each heliostat is autonomously controlled by a sensor system, another sensor is required to return the heliostat whose direction has been changed once to its original state, and the structure of the sensor becomes very complicated.

本発明は、このような従来の技術に着目してなされたものであり、ヘリオスタットの状態は変化させずに得られる熱エネルギーの調整を図ることができる太陽光集光システムを提供するものである。   The present invention has been made by paying attention to such a conventional technique, and provides a solar condensing system capable of adjusting the thermal energy obtained without changing the state of the heliostat. is there.

請求項1記載の発明は、所定の高さに設置されるセンタミラーと、センタミラーを所定の高さ位置に支持するタワーと、センタミラーの周囲の地上に設置されて太陽光をセンタミラーへ向けて反射させるヘリオスタットとから成り、センタミラーにて反射された太陽光がセンタミラーの下方の一点に集光する太陽光集光システムであって、前記センタミラーがタワーに対して上下方向に平行移動自在であることを特徴とする。   According to the first aspect of the present invention, a center mirror installed at a predetermined height, a tower that supports the center mirror at a predetermined height position, and a solar that is installed on the ground around the center mirror to the center mirror A solar condensing system that condenses sunlight reflected by the center mirror at a point below the center mirror, the center mirror being vertically oriented with respect to the tower It is characterized by being freely movable.

請求項2記載の発明は、センタミラーがタワーの上部に伸縮機構を介して吊り下げ支持され、伸縮機構を伸縮させることにより、センタミラーが上下方向に平行移動することを特徴とする。   The invention according to claim 2 is characterized in that the center mirror is suspended and supported on the upper portion of the tower via an expansion / contraction mechanism, and the expansion / contraction of the expansion / contraction mechanism moves the center mirror in the vertical direction.

請求項3記載の発明は、センタミラーが楕円鏡で、ヘリオスタットからの反射光がセンタミラーの第1焦点に向けて反射され、第1焦点を通過した反射光がセンタミラーで反射されて第2焦点に集光することを特徴とする。   In the invention according to claim 3, the center mirror is an elliptical mirror, the reflected light from the heliostat is reflected toward the first focus of the center mirror, and the reflected light that has passed through the first focus is reflected by the center mirror. It is characterized by focusing on two focal points.

請求項1記載の発明によれば、センタミラーが上下方向に平行移動するため、センタミラーからの反射光が一点に集光した状態から、センタミラーを上下に平行移動させると、反射光の集光範囲が広がり、単位面積当たりで得られる熱エネルギーが低下する。従って、集光部の熱エネルギーが大きくなり過ぎる場合は、一部のヘリオスタットの向きを変えるのではなく、センタミラーを上下に平行移動させるだけで、その移動量に応じて、熱エネルギーが低下するため、熱エネルギーの調整が容易である。   According to the first aspect of the present invention, since the center mirror is translated in the vertical direction, if the center mirror is translated up and down from the state in which the reflected light from the center mirror is focused on one point, the reflected light is collected. The light range is expanded and the thermal energy obtained per unit area is reduced. Therefore, if the heat energy of the condensing part becomes too large, instead of changing the direction of some heliostats, the center mirror is simply moved in parallel up and down, and the heat energy decreases according to the amount of movement. Therefore, adjustment of thermal energy is easy.

請求項2記載の発明によれば、センタミラーをタワーに対して吊り下げ支持している構造が伸縮機構のため、伸縮機構を伸縮させるだけで、センタミラーを上下方向で平行移動させることができる。   According to the second aspect of the present invention, since the structure in which the center mirror is suspended and supported from the tower is an expansion / contraction mechanism, the center mirror can be translated in the vertical direction only by expanding / contracting the expansion / contraction mechanism. .

請求項3記載の発明によれば、センタミラーが楕円鏡のため、ヘリオスタットはセンタミラーの第1焦点へ向けて太陽光を反射するように制御すれば良い。そうすれば、第1焦点を通過した反射光は必ずセンタミラーで反射されて第2焦点に集光する。全てのヘリオスタットの反射ターゲットが一点(第1焦点)のため、ヘリオスタットの制御が行い易い。   According to the invention described in claim 3, since the center mirror is an elliptical mirror, the heliostat may be controlled to reflect sunlight toward the first focal point of the center mirror. If it does so, the reflected light which passed the 1st focus will certainly be reflected by a center mirror, and will be condensed on the 2nd focus. Since the reflection target of all the heliostats is one point (first focus), the heliostat can be easily controlled.

本発明の好適な実施形態を図1〜図6に基づいて説明する。図1は太陽集光装置を示している。中心にはセンタミラー1が4本のタワー2により地面に対して所定高さ(約10m)に支持されている。センタミラー1は楕円鏡で、中央には円形の開口3が形成されている。この開口3は下方の熱気を上方へ逃がすためのものである。   A preferred embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a solar concentrator. At the center, a center mirror 1 is supported at a predetermined height (about 10 m) with respect to the ground by four towers 2. The center mirror 1 is an elliptical mirror, and a circular opening 3 is formed at the center. This opening 3 is for letting downward hot air escape upward.

タワー2の頂部4は内側に曲折している。センタミラー1の四方にはタワー2の頂部4の下方に位置する突片5が形成されている。そして、この突片5と頂部4とが、伸縮機構としてのリニアアクチュエータ6により上下方向で連結されている。従って、センタミラー1はこのアクチュエータ6を介してタワー2の頂部4に吊り下げ支持された状態になっている。4本のアクチュエータ6は油圧で作動し、全てが同じ長さだけ精密に同期して伸縮することができる。   The top 4 of the tower 2 is bent inward. Projecting pieces 5 positioned below the top 4 of the tower 2 are formed on the four sides of the center mirror 1. And this protrusion 5 and the top part 4 are connected with the up-down direction by the linear actuator 6 as an expansion-contraction mechanism. Therefore, the center mirror 1 is suspended and supported by the top 4 of the tower 2 via the actuator 6. The four actuators 6 are hydraulically operated, and all of them can be expanded and contracted in synchronism precisely with the same length.

センタミラー1は下面が反射面で、その反射面の鏡面形状が回転楕円面の一部(オフセット楕円鏡)を構成している。従って、このセンタミラー1の下方には楕円面の長軸上に第1焦点A(高位置)と第2焦点B(低位置)が存在する。   The center mirror 1 has a reflecting surface on the lower surface, and the mirror surface shape of the reflecting surface constitutes a part of an ellipsoidal surface (offset elliptical mirror). Therefore, below the center mirror 1, there are a first focal point A (high position) and a second focal point B (low position) on the major axis of the ellipsoid.

センタミラー1の周囲には、多数のヘリオスタット7がセンタミラー1を取り囲むように放射状に設置されている。ヘリオスタット7は図示せぬセンサーにより太陽の動きに連動して向きを変化させる構造となっており、センターミラー1の高さとは独立に地面に対して位置固定された仮想点に向けて反射するように制御される。そしてセンターミラー1が地面に対して所定の高さに位置づけられて第1焦点Aが仮想点に一致したときに、ヘリオスタット7は常に太陽光Lを第1焦点Aへ向けて反射するように制御される。第1焦点Aを通過した太陽光Lはセンタミラー1にて反射され、そして第2焦点Bに集光する。第2焦点Bに集光した太陽光Lは熱変換装置8導入されて熱エネルギーに変換される。得られた熱エネルギーは蒸気タービンを回転させる蒸気発生等に利用される。   A large number of heliostats 7 are radially disposed around the center mirror 1 so as to surround the center mirror 1. The heliostat 7 has a structure in which the direction is changed by a sensor (not shown) in conjunction with the movement of the sun, and reflects toward a virtual point whose position is fixed with respect to the ground independently of the height of the center mirror 1. To be controlled. When the center mirror 1 is positioned at a predetermined height with respect to the ground and the first focus A coincides with the virtual point, the heliostat 7 always reflects the sunlight L toward the first focus A. Be controlled. The sunlight L that has passed through the first focal point A is reflected by the center mirror 1 and then condensed at the second focal point B. The sunlight L collected at the second focal point B is introduced into the heat conversion device 8 and converted into heat energy. The obtained thermal energy is used for generating steam for rotating the steam turbine.

太陽光Lは第2焦点Bに集光するが、完全な点ではなく、第2焦点Bにおいて一定の大きさの太陽の像dを結ぶ。第1焦点Aを通過して第2焦点Bに集光する像dが一番小さいサイズとなる。この状態では高温が得られ、熱変換装置8において大きな熱エネルギーが得られる。   Sunlight L is condensed at the second focal point B, but is not a perfect point, and forms a sun image d of a certain size at the second focal point B. The image d passing through the first focal point A and condensing on the second focal point B has the smallest size. In this state, a high temperature is obtained, and large heat energy is obtained in the heat conversion device 8.

そして、熱変換装置8で発生する熱エネルギーをモニターした結果、必要量よりも熱エネルギーが大きくなり過ぎた場合には、これを検出し、その検出信号を図示せぬ制御部へ出力する。検出信号を入力した制御部はアクチュエータ6を制御して、全てのアクチュエータ6を所定の同じ長さだけ長くする。全てのアクチュエータ6が同じだけ長くなるため、センタミラー1は下方へ平行移動する。   When the thermal energy generated by the heat conversion device 8 is monitored, if the thermal energy becomes excessively larger than the required amount, this is detected and a detection signal is output to a control unit (not shown). The control unit that has input the detection signal controls the actuators 6 to lengthen all the actuators 6 by the same predetermined length. Since all the actuators 6 become the same length, the center mirror 1 translates downward.

センタミラー1が下方へ平行移動すると、第1焦点A及び第2焦点Bも地面に対して平行移動し地面に対して固定された仮想点から第1焦点Aがずれるため、太陽光Lが第1焦点A及び第2焦点Bに集まらなくなって、第2焦点Bにおける集光面積Dが大きくなる。従って、単位面積当たりの熱エネルギー量が低下し、熱変換装置8で発生する熱量も低下する。   When the center mirror 1 is translated downward, the first focal point A and the second focal point B are also translated relative to the ground, and the first focal point A deviates from the virtual point fixed with respect to the ground. The light is not collected at the first focus A and the second focus B, and the light collection area D at the second focus B is increased. Therefore, the amount of heat energy per unit area is reduced, and the amount of heat generated in the heat conversion device 8 is also reduced.

熱変換装置8で発生する熱エネルギーが下がり過ぎると、その信号が制御部へ出力され、制御部がアクチュエータ6を元の長さに戻す。アクチュエータ6が元の長さに戻ると、センタミラー1が上昇し、第1焦点A及び第2焦点Bの幾何学的関係が成立し、第2焦点Bに小さな太陽の像dを結ぶ。   If the heat energy generated in the heat conversion device 8 is too low, the signal is output to the control unit, and the control unit returns the actuator 6 to its original length. When the actuator 6 returns to its original length, the center mirror 1 is raised, the geometric relationship between the first focus A and the second focus B is established, and a small sun image d is formed at the second focus B.

以上の制御を繰り返すことにより、熱変換装置8で得られる熱エネルギーが大きくなりすぎるのを防止することができる。ヘリオスタット7の向きはそのままで、センタミラー1を上下方向で平行移動させるだけで熱エネルギーの制御を行うことができるため、熱エネルギーの調整が容易である。   By repeating the above control, it is possible to prevent the thermal energy obtained by the heat conversion device 8 from becoming too large. Since the heat energy can be controlled by simply moving the center mirror 1 in the vertical direction while maintaining the orientation of the heliostat 7, the adjustment of the heat energy is easy.

以上に実施形態では、集光面積Dを広げるために、センタミラー1は下降させる例を示したが、正規位置から上昇させても良い。   As described above, in the embodiment, the example in which the center mirror 1 is lowered in order to widen the light collection area D is shown, but it may be raised from the normal position.

センタミラー1を楕円鏡例にしたが球面鏡でも良い。下側に凸の鏡面でも良い。複数のリング状のミラーをフレネル状に中心から隙間を設けて状態で組み合わせた構造でも良い。要は、高い位置に設置したセンタミラーにミラーに向けてヘリオスタット7から太陽光Lを反射し、センタミラーで反射された太陽光Lがセンタミラー1の下方である程度の範囲に集光する太陽光集光システムであれば、本発明を適用することができる。   Although the center mirror 1 is an example of an elliptical mirror, a spherical mirror may be used. The mirror surface may be convex downward. A structure in which a plurality of ring-shaped mirrors are combined in a state of providing a gap from the center in a Fresnel shape. The point is that the sunlight L is reflected from the heliostat 7 toward the center mirror installed at a high position, and the sunlight L reflected by the center mirror is condensed to a certain extent below the center mirror 1. The present invention can be applied to any light condensing system.

伸縮機構として油圧式のアクチュエータ6を例にしたが、その他のスクリュー構造等を採用することもできる。   Although the hydraulic actuator 6 is taken as an example of the expansion / contraction mechanism, other screw structures or the like can be employed.

本発明の実施形態に係る太陽集光装置を示す一部断面の全体図。1 is an overall view of a partial cross section showing a solar concentrator according to an embodiment of the present invention. センタミラーを示す拡大断面図。The expanded sectional view which shows a center mirror. センタミラーを示す斜視図。The perspective view which shows a center mirror. センタミラーを示す平面図。The top view which shows a center mirror. 正規位置にあるセンタミラーの光路を示す図。The figure which shows the optical path of the center mirror in a regular position. 下方へ平行移動させたセンタミラーの光路を示す図。The figure which shows the optical path of the center mirror translated in the downward direction.

符号の説明Explanation of symbols

1 センタミラー
2 タワー
6 アクチュエータ(伸縮機構)
7 ヘリオスタット
8 熱変換装置
A 第1焦点
B 第2焦点
L 太陽光
1 Center mirror 2 Tower 6 Actuator (extension mechanism)
7 Heliostat 8 Heat conversion device A 1st focus B 2nd focus L Sunlight

Claims (3)

所定の高さに設置されるセンタミラーと、センタミラーを所定の高さ位置に支持するタワーと、センタミラーの周囲の地上に設置されて太陽光をセンタミラーへ向けて反射させるヘリオスタットとから成り、センタミラーにて反射された太陽光がセンタミラーの下方の所定の一点に集光する太陽光集光システムであって、
前記センタミラーがタワーに対して上下方向に平行移動自在であることを特徴とする太陽光集光システム。
A center mirror installed at a predetermined height, a tower that supports the center mirror at a predetermined height, and a heliostat installed on the ground around the center mirror to reflect sunlight toward the center mirror A solar light collecting system in which sunlight reflected by the center mirror is collected at a predetermined point below the center mirror,
The solar light collecting system, wherein the center mirror is movable in parallel in the vertical direction with respect to the tower.
センタミラーがタワーの上部に伸縮機構を介して吊り下げ支持され、伸縮機構を伸縮させることにより、センタミラーが上下方向に平行移動することを特徴とする請求項1記載の太陽光集光システム。   2. The solar light collecting system according to claim 1, wherein the center mirror is suspended and supported on an upper portion of the tower via an expansion / contraction mechanism, and the center mirror translates in the vertical direction by extending / contracting the expansion / contraction mechanism. センタミラーが楕円鏡で、ヘリオスタットからの反射光がセンタミラーの第1焦点に向けて反射され、第1焦点を通過した反射光がセンタミラーで反射されて第2焦点に集光することを特徴とする請求項1又は請求項2記載の太陽光集光システム。   The center mirror is an elliptical mirror, and the reflected light from the heliostat is reflected toward the first focal point of the center mirror, and the reflected light that has passed through the first focal point is reflected by the center mirror and collected on the second focal point. The solar light collecting system according to claim 1, wherein the solar light collecting system is characterized.
JP2008328309A 2008-12-24 2008-12-24 Sunlight collection system Expired - Fee Related JP5247416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328309A JP5247416B2 (en) 2008-12-24 2008-12-24 Sunlight collection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328309A JP5247416B2 (en) 2008-12-24 2008-12-24 Sunlight collection system

Publications (2)

Publication Number Publication Date
JP2010151346A true JP2010151346A (en) 2010-07-08
JP5247416B2 JP5247416B2 (en) 2013-07-24

Family

ID=42570648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328309A Expired - Fee Related JP5247416B2 (en) 2008-12-24 2008-12-24 Sunlight collection system

Country Status (1)

Country Link
JP (1) JP5247416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342053B1 (en) * 2012-10-02 2013-11-13 信博 松本 Solar collector with concave mirror and convex lens
CN115854564A (en) * 2022-11-28 2023-03-28 哈尔滨工业大学 Sun tracking and gathering system based on photo-thermal method for exploiting water ice in moon polar region and design method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116770U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 heliostat
JPH11119105A (en) * 1997-10-15 1999-04-30 Mitaka Koki Co Ltd Solar light converging system
JP2000146310A (en) * 1998-11-05 2000-05-26 Mitaka Koki Co Ltd Heliostat for solar light collecting system
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116770U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 heliostat
JPH11119105A (en) * 1997-10-15 1999-04-30 Mitaka Koki Co Ltd Solar light converging system
JP2000146310A (en) * 1998-11-05 2000-05-26 Mitaka Koki Co Ltd Heliostat for solar light collecting system
JP2004037037A (en) * 2002-07-05 2004-02-05 Mitaka Koki Co Ltd Heliostat for sunlight condensing system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342053B1 (en) * 2012-10-02 2013-11-13 信博 松本 Solar collector with concave mirror and convex lens
WO2014054816A1 (en) * 2012-10-02 2014-04-10 Matsumoto Nobuhiro Solar heat collection device formed with concave mirror and convex lens
CN115854564A (en) * 2022-11-28 2023-03-28 哈尔滨工业大学 Sun tracking and gathering system based on photo-thermal method for exploiting water ice in moon polar region and design method
CN115854564B (en) * 2022-11-28 2023-10-20 哈尔滨工业大学 Solar tracking and focusing system based on photo-thermal mining moon polar region water ice method and design method

Also Published As

Publication number Publication date
JP5247416B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US8033110B2 (en) Solar power generation with multiple energy conversion modes
JP5797737B2 (en) Solar heat collection system
JP5135202B2 (en) Sunlight collection system
JP5232627B2 (en) Sunlight collection system
US10371125B1 (en) Solar-concentrating chimney system with inflatable fresnel lens
US20170167755A1 (en) Solar Receiver With Metamaterials-Enhanced Solar Light Absorbing Structure
JP5337612B2 (en) Heat exchange structure for solar heat converter
JP2010286200A (en) Solar heat collector
JP5247416B2 (en) Sunlight collection system
KR20050042314A (en) Solar collecting apparatus having variable function of a collecting angle
JP5687043B2 (en) Solar collector
JP2010281251A (en) Solar light concentrating steam power generator
US20110023866A1 (en) Solar receiver for a solar concentrator with a linear focus
JP2007324387A (en) Sunlight automatic tracking device
JP2006010292A (en) Waste incineration system using solar heat obtained by condensing sunlight
JP2008243374A (en) Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it
KR100995821B1 (en) Solar compound parabolic conentrator
KR20190073757A (en) Parabolic Trough Concentrator with improved concentration efficiency
WO2016017323A1 (en) Solar heat collecting device
IL306025A (en) Multiple charged-particle beam apparatus with low crosstalk
Mehta et al. Conceptual design of concentrated solar power plant using SPT-Solar power tower technology
JP3172797U (en) Sunlight collector
KR101182834B1 (en) Ray of sun generator
RU2661169C1 (en) Multi-mirror solar plant with the common drive of the orientation system
CA2569981A1 (en) Solar energy collecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees