JP2006010292A - Waste incineration system using solar heat obtained by condensing sunlight - Google Patents

Waste incineration system using solar heat obtained by condensing sunlight Download PDF

Info

Publication number
JP2006010292A
JP2006010292A JP2004210842A JP2004210842A JP2006010292A JP 2006010292 A JP2006010292 A JP 2006010292A JP 2004210842 A JP2004210842 A JP 2004210842A JP 2004210842 A JP2004210842 A JP 2004210842A JP 2006010292 A JP2006010292 A JP 2006010292A
Authority
JP
Japan
Prior art keywords
parabolic mirror
temperature
focal point
incineration
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210842A
Other languages
Japanese (ja)
Inventor
Takao Shishido
昂郎 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004210842A priority Critical patent/JP2006010292A/en
Publication of JP2006010292A publication Critical patent/JP2006010292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve a problem in incinerating "refuse" or the like by using solar heat wherein a temperature of an incineration part is affected by weather causing a large problem in an incineration condition of the incineration part, and consequently, there is a need to adjust incineration output in regard to the problem. <P>SOLUTION: Since the temperature of the incineration part is affected by weather, and there is a need to deviate a heating part of a device from a focal point of a parabolic mirror to adjust the incineration output, when it is almost cloudy weather, sunlight is condensed on the focal point or near the focal point of the parabolic mirror, and when it is fine weather, it is alright to condense the sunlight at a position separated from the focal point on an optical axis of the parabolic mirror. To that end, the parabolic mirror is composed of segment mirrors, orientations of the segment mirrors are controlled so as to separate away from the focal point, and the heating part of the device using solar heat is controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は,太陽熱を利用する装置の受光部の温度を制御して,常時一定の温度で「ゴミ」を焼却出来るシステムに関するものである。The present invention relates to a system that can always incinerate “dust” at a constant temperature by controlling the temperature of a light receiving part of a device that uses solar heat.

背景技術
太陽光をレンズ等で集光すれば,集光付近でかなりの高温が得られ,紙等を発火させることは古くから知られている。この熱を利用して「ゴミ」等を焼却するためには,太陽光を受光する面積をかなり広くとらなければならないが,レンズではレンズを構成するガラスによって高温を得るための赤外線が吸収されることから,効率が悪い.そこで,太陽光を受光する面積を広くとるためには,レンズよりは広く口径のとれる放物面鏡が用いられている.しかし,大口径の放物面鏡を一体構造として作成するのは難しく,実用的に用いられている放物面鏡では小さな鏡で,形成するセグメント鏡を多数放物面上に配置して,各々のセグメントから反射する光が放物面の光軸上の焦点に集まるように設計,製作されていて,これはセグメント型放物面鏡と呼ばれている。これまでに,セグメント型放物面鏡により太陽光をその光軸上の焦点に集めて,その焦点の近傍に置かれた物体を加熱し.物体の温度を3500℃近くまで上げることが可能である。すでに,この熱エネルギーを利用して,タングステンの金属片を熔かす実験が報告されており,又,実用化をめざして野外用調理器等への応用実験が試みられいる.
BACKGROUND ART When sunlight is condensed with a lens or the like, it has been known for a long time that a fairly high temperature is obtained in the vicinity of the light and a paper is ignited. In order to incinerate "garbage" etc. using this heat, it is necessary to take a large area to receive sunlight, but the lens absorbs infrared rays to obtain high temperature by the glass constituting the lens. Therefore, efficiency is bad. Therefore, in order to increase the light receiving area, a parabolic mirror with a wider aperture than the lens is used. However, it is difficult to create a large-diameter parabolic mirror as a unitary structure, and a practically used parabolic mirror is a small mirror, and many segmented mirrors are arranged on the parabolic surface. It is designed and manufactured so that the light reflected from each segment is focused at the focal point on the optical axis of the paraboloid, which is called a segmented parabolic mirror. So far, the sunlight has been collected at the focal point on the optical axis by the segmented parabolic mirror and the object placed near the focal point has been heated. It is possible to raise the temperature of the object to nearly 3500 ° C. Experiments have already been reported in which tungsten metal pieces are melted using this thermal energy, and application experiments to outdoor cookers have been attempted for practical application.

発明が解決しようとする課題Problems to be solved by the invention

放物面鏡によって,太陽光をその光軸上の焦点に集める場合,太陽から得られる最高の温度が得られる焦点の位置は,焦点距離(f)と口径(D)の比(f/D)(以下,口径比と呼ぶ)が約0.3で,しかも収束された太陽像の直径が焦点距離fの1/100のときに,最も高い温度が得られる(例えば,宍戸著[密閉サイクル式太陽熱エンジン],太陽エネルギー,29巻4号,2003,p.62参照)
実際に太陽光を放物面鏡の焦点に集めて得られる温度は,晴天であれば約3500℃にも達するが,曇天となれば,この温度はかなり低温になり,得られる温度の変化が大きいという問題がある.例えば,この太陽熱を利用して、「ゴミ]等を焼却する場合,焼却部の温度が天候に左右されることになり,焼却部の焼却状況に大きな問題を引き起こすことになる.従って.その問題に対しては焼却する出力を調整する必要がある.しかし,これまでにそのような装置は存在しない.
When sunlight is collected at the focal point on the optical axis by a parabolic mirror, the position of the focal point at which the highest temperature obtained from the sun is obtained is the ratio of the focal length (f) to the aperture (D) (f / D ) (Hereinafter referred to as the aperture ratio) is about 0.3, and the diameter of the converged solar image is 1/100 of the focal length f, the highest temperature can be obtained (for example, by Shishido [sealed cycle] Type solar thermal engine], solar energy, Vol. 29, No. 4, 2003, p.62)
The temperature obtained by actually collecting sunlight at the focal point of the parabolic mirror reaches about 3500 ° C when it is fine, but if it is cloudy, this temperature will be considerably lower, and the change in temperature obtained will be There is a problem that it is big. For example, when using this solar heat to incinerate “garbage” etc., the temperature of the incinerator will be affected by the weather, which will cause a major problem in the incineration situation of the incinerator. It is necessary to adjust the output for incineration, but there is no such device so far.

{課題を解決するための手段」
上記の問題を解決するために,曇天に近い場合には,太陽光を放物面鏡の焦点の近くに集め,一方,晴天の場合には放物面鏡の光軸上で焦点より離れた位置に集めれば良い.すなわち,具体的に言えば,太陽熱の温度が高い場合には,セグメント型放物面鏡を構成するそれぞれのセグメントの向きを,それぞれの焦点から離れるように制御し,極めて高い温度を得たい場合には,放物面鏡の焦点を段々に焼却部に近い位置に制御すれば,焼却部の温度を任意に制御出来,目的を達成出来る.
{Means for solving problems]
To solve the above problem, sunlight is collected near the focal point of the parabolic mirror when it is close to cloudy weather, while it is far from the focal point on the optical axis of the parabolic mirror when it is fine. Collect it at a location. Specifically, when the temperature of the solar heat is high, the direction of each segment constituting the segmented parabolic mirror is controlled so as to be away from the focal point, and an extremely high temperature is desired. If the focus of the parabolic mirror is gradually controlled to a position close to the incinerator, the temperature of the incinerator can be controlled arbitrarily and the purpose can be achieved.

{発明の実施の形態}
この発明の実施例として,太陽熱焼却炉の放物面鏡を北側に向けて固定し,ヘリオスタット鏡により太陽光を放物面鏡の光軸に平行に導く,放物面鏡により集光された太陽光は焼焼却部2に注がれる.焼却部2に高温の熱が供給されて,焼却部の温度が上昇する.この高温がゴミの焼却を促進する.
{Embodiment of the Invention}
As an embodiment of the present invention, a parabolic mirror of a solar incinerator is fixed toward the north side, and sunlight is condensed by a parabolic mirror that guides sunlight parallel to the optical axis of the parabolic mirror by a heliostat mirror. Sunlight is poured into the incineration unit 2. High temperature heat is supplied to the incinerator 2 and the temperature of the incinerator rises. This high temperature promotes incineration of garbage.

本発明はこの放物面鏡1と図2に示すような構造のセグメント型放物面鏡とし,そのセグメント鏡3の向きを可変にしたものである.即ち,焼却部2に集光される太陽光の強度と分布に対して,セグメント型放物面鏡の向きを変え,反射光の方向をそれぞれの放物面鏡の焦点に向けたり,焦点から離したりして,受光面から焼却部に一様な熱エネルギーを供給するように,受光面に取り付けた温度センサー4により制御している.  The present invention uses the parabolic mirror 1 and a segmented parabolic mirror having a structure as shown in FIG. 2, and the direction of the segment mirror 3 is variable. That is, the direction of the segmented parabolic mirrors is changed with respect to the intensity and distribution of sunlight collected on the incinerator 2, and the direction of the reflected light is directed to the focal point of each parabolic mirror. It is controlled by a temperature sensor 4 attached to the light receiving surface so that it can be separated and supplied with uniform heat energy from the light receiving surface to the incinerator.

図2に示す本発明によるセグメント鏡の可変システムでは,太陽光の焦点および近傍の強度と分布を任意に制御できる.以下,本発明による一様な焼却熱を得るための方法について説明する.上にも述べたように.セグメント型放物面鏡の凹面鏡が正しい放物面に沿っていれば,光軸に沿って入ってくる太陽光は当然放物面鏡の焦点に集まる.このときの温度は.晴天時には平均温度よりも十分高くなるように放物面鏡を設計する.なお,当然ながら放物面鏡そのものは通常の大型天体望遠鏡に適用されている自動追尾システムと同様な機構により,太陽の方向と焼却部との関係を一定の関係に保つように自動制御用台上の設置されている.  In the segment mirror variable system according to the present invention shown in FIG. 2, the intensity and distribution of sunlight and its vicinity can be controlled arbitrarily. The method for obtaining uniform incineration heat according to the present invention will be described below. As mentioned above. If the concave mirror of a segmented parabolic mirror is along the correct paraboloid, then the incoming sunlight along the optical axis will naturally converge at the focal point of the parabolic mirror. The temperature at this time is. Design the parabolic mirror so that it is sufficiently higher than the average temperature in fine weather. Of course, the parabolic mirror itself is an automatic control platform that maintains the relationship between the sun's direction and the incinerator using a mechanism similar to the automatic tracking system applied to ordinary large astronomical telescopes. It is installed above.

{発明の効果}
本発明が.太陽熱を利用する焼却にとってどのように役立つかについて.述べれば、例えば図3を例にすれば,図のaは放物面鏡の口径比を0.3とし,それによる焦点における太陽像であって,同じ輪帯(ゾーン)によっては,図3のbの点線によって示した円の中の太陽像となる,即ち,この場合,図4によれば,放物面鏡の焦点における太陽像の直径の約2倍になっていれば,太陽熱の温度としては,約2400℃になっている.このことは,太陽熱焼却に対して何を意味するかを考えた時,その時点における天候が,極めて良くはなくとも,セグメン鏡によって十分に「ゴミ}の焼却が出来ることを示している.
次に,太陽熱焼却によってどれだけの効果が得られるかについて考えれば,晴天時におけるエネルギーとしては,地上に注ぐ太陽光では,1平方mについて約900Wであり,その70%が有効であるとする考えがあり,このことから考えれば,直径10mの放物面鏡によって得られる出力は50kWとなり,日常の使用時における台風等を避けるために,放物面鏡の約上半分を使用し,台風時には,その底辺部を中心にして地上に伏させる形式にすれば,その出力は半分の25kWとなる.このような放物面鏡の上半分を使用する方法をとれば,例えば,このような放物面鏡を使用すれば,それによって得られる出力は約100kWとなる。
又,このような焼却の効果について考えれば,一般に太陽光発電の効率か10%から13%と言われていることに対して,本太陽熱発電の効率が25%を上まわり,しかも製作時における産業廃棄物や,使用時における公害等もなく,しかもダイオキシンの発生につながる,焼却時における温度を850℃におさえることが可能であり,極めて有効なシステムであると評価できるものと言えよう.
以上説明したように,本発明によれば,装置の発熱部と放物面鏡の焦点の近傍に形成される太陽光の映像の位置と形状を,単にセグメント鏡の傾き角を制御することにより,太陽光による発熱部の温度を一定に保つことが出来る.この発明によって,例えば太陽熱によって「ゴミ」を焼却する場合,焼却時の天候が晴天か曇天かの状況に関わらず,最適な熱源を焼却部に供給出来るので,天候の変動を気にしなくとも,常に安定で良好な焼却の効果が得ることが出来,極めて実用性に富んだ太陽熱焼却システムとして提供できる.
{The invention's effect}
The present invention. How can it be useful for incineration using solar heat? For example, taking FIG. 3 as an example, a in FIG. 3 is a sun image at the focal point with a parabolic mirror aperture ratio of 0.3, and depending on the same annular zone (zone), FIG. The solar image in the circle indicated by the dotted line b in FIG. 4 is obtained, that is, in this case, according to FIG. 4, if the solar image diameter is approximately twice the diameter of the solar image at the focal point of the parabolic mirror, The temperature is about 2400 ° C. This shows that when we consider what it means for solar thermal incineration, even if the weather at that time is not very good, the segment mirror can sufficiently incinerate "garbage".
Next, considering how much effect can be obtained by solar thermal incineration, it is assumed that the energy in fine weather is about 900 W per square meter for sunlight poured on the ground, 70% of which is effective. Considering this, the output obtained with a 10m diameter parabolic mirror is 50kW, and in order to avoid typhoons during daily use, the upper half of the parabolic mirror is used. In some cases, the output will be half of 25 kW if it is made to lie on the ground centering on its bottom. If a method using the upper half of such a parabolic mirror is taken, for example, if such a parabolic mirror is used, the output obtained thereby is about 100 kW.
Also, considering the effect of such incineration, the efficiency of solar power generation is generally said to be 10% to 13%, whereas the efficiency of this solar thermal power generation exceeds 25%, and at the time of production It can be said that the system can be evaluated as an extremely effective system because it can keep the temperature at incineration at 850 ° C, which is free from industrial waste and pollution during use, and also leads to the generation of dioxins.
As described above, according to the present invention, the position and shape of the sunlight image formed in the vicinity of the heat generating part of the device and the focal point of the parabolic mirror are simply controlled by controlling the inclination angle of the segment mirror. , The temperature of the heat generating part by sunlight can be kept constant. According to the present invention, for example, when “garbage” is incinerated by solar heat, an optimal heat source can be supplied to the incinerator regardless of whether the weather at the time of incineration is clear or cloudy. A stable and good incineration effect can always be obtained, and it can be provided as a solar thermal incineration system with extremely high practicality.

放物面鏡を用いた太陽熱焼却システムSolar incineration system using a parabolic mirror セグメント型放物面鏡による太陽像の例Example of sun image by segmented parabolic mirror (a) 焦点における太陽像 (b) 焦点より遠い位置におけるセグメント鏡1個による太陽像(A) Sun image at the focal point (b) Sun image by one segment mirror at a position far from the focal point f/D=0.3の時の放物面鏡による到達温度Temperature reached by a parabolic mirror when f / D = 0.3

Claims (3)

太陽熱を利用する装置の受光部の温度を制御するための集光方法。A light condensing method for controlling the temperature of the light receiving part of a device using solar heat. 放物面鏡をセグメント型放物面鏡とし、そのセグメント鏡の向きを変えて,それによる反射光をそれぞれの放物面鏡の光軸上で,焦点に近ずけたり,焦点から遠ざけたりして,受光部に一様な熱エネルギーを供給するシステム。The parabolic mirror is a segmented parabolic mirror, the direction of the segment mirror is changed, and the reflected light is moved closer to or away from the focal point on the optical axis of each parabolic mirror. System that supplies uniform heat energy to the light receiving part. 放物面鏡によって,太陽光をその光軸上の焦点に集める場合,太陽から得られる温度は,焦点距離(f)と口径(D)との比(f/D):(口径比)が約0.3で,収束された太陽像の直径が焦点距離1/100のときに,最も高い温度が得られ,3500℃にも達し,その太陽像をセグメント鏡の向きを変えることによって,光軸上で焦点より遠くの位置に集めれば,その太陽像の直径は大きくなり温度は低くなり,その直径が焦点の太陽像の6倍でも,その温度は約1200℃である。従って,このような条件の元で太陽熱エンジンを駆動するための,太陽光による到達温度の制御法。When sunlight is collected at the focal point on the optical axis by a parabolic mirror, the temperature obtained from the sun is the ratio (f / D) :( caliber ratio) between the focal length (f) and the aperture (D). When the diameter of the focused solar image is about 0.3 and the focal length is 1/100, the highest temperature is obtained, reaching 3500 ° C. If they are collected on the axis farther from the focal point, the diameter of the solar image becomes larger and the temperature becomes lower. Even if the diameter is six times that of the focal solar image, the temperature is about 1200 ° C. Therefore, a method for controlling the temperature reached by sunlight to drive a solar engine under such conditions.
JP2004210842A 2004-06-21 2004-06-21 Waste incineration system using solar heat obtained by condensing sunlight Pending JP2006010292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210842A JP2006010292A (en) 2004-06-21 2004-06-21 Waste incineration system using solar heat obtained by condensing sunlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210842A JP2006010292A (en) 2004-06-21 2004-06-21 Waste incineration system using solar heat obtained by condensing sunlight

Publications (1)

Publication Number Publication Date
JP2006010292A true JP2006010292A (en) 2006-01-12

Family

ID=35777734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210842A Pending JP2006010292A (en) 2004-06-21 2004-06-21 Waste incineration system using solar heat obtained by condensing sunlight

Country Status (1)

Country Link
JP (1) JP2006010292A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001546A1 (en) * 2009-06-29 2011-01-06 三菱重工業株式会社 Gas turbine plant, heat receiver, power generating device, and solar concentrating system associated with solar thermal electric generation system
JP2011007458A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007459A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007149A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Gas turbine plant
JP2011007150A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Heat receiver
JP2011032902A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Sunlight concentrating and heat-receiving device
JP2011033242A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Solar concentrating system
JP2011032901A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Power generating device and drive control method
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001546A1 (en) * 2009-06-29 2011-01-06 三菱重工業株式会社 Gas turbine plant, heat receiver, power generating device, and solar concentrating system associated with solar thermal electric generation system
JP2011007458A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007459A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007149A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Gas turbine plant
JP2011007150A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Heat receiver
AU2009349048B2 (en) * 2009-06-29 2013-07-04 Mitsubishi Heavy Industries, Ltd. Gas turbine plant, heat receiver, power generating device, and sunlight collecting system associated with solar thermal electric generation system
JP2011032902A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Sunlight concentrating and heat-receiving device
JP2011033242A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Solar concentrating system
JP2011032901A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Power generating device and drive control method
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Similar Documents

Publication Publication Date Title
US8033110B2 (en) Solar power generation with multiple energy conversion modes
CA2590165C (en) Solar energy collection system
MXPA03010621A (en) Conversion of solar energy.
JP2007524055A (en) Solar energy integrated equipment
EA200900968A1 (en) SOLAR ENERGY CONVERSION TO ELECTRIC AND / OR HEAT
JP2008523593A5 (en)
JP2006010292A (en) Waste incineration system using solar heat obtained by condensing sunlight
JP5337612B2 (en) Heat exchange structure for solar heat converter
JP5135202B2 (en) Sunlight collection system
JP5687043B2 (en) Solar collector
Gupta et al. Dual Fresnel lens and segmented mirrors based efficient solar concentration system without tracking sun for solar thermal energy generation
JP3855160B2 (en) Solar radiation concentrator
CN105042885A (en) Concentrating type flat-plate solar collector
KR102453312B1 (en) Solar concentrator
JP2007324387A (en) Sunlight automatic tracking device
KR102358975B1 (en) Parabolic trough concentrator type solar thermal energy system capable of tracking solar using camera image
KR102358978B1 (en) Parabolic trough concentrator type solar thermal energy system having concentrated photovoltaic
JP2003322419A (en) Sunlight composite focusing machine of electric power generation system for house
NL1030369C2 (en) Solar heat absorbing device for e.g. greenhouse, includes reflector which is transparent to visible light but reflects infra=red radiation
KR101182834B1 (en) Ray of sun generator
RU2709007C1 (en) Solar tower power plant
JP5247416B2 (en) Sunlight collection system
CN205048752U (en) Concentrating type flat -plate solar collector
JP2005188496A (en) System for controlling temperature of solar heat obtained by collecting sunlight
CN217131541U (en) Non-tracking parabolic mirror concentrating solar device