JP2008243374A - Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it - Google Patents

Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it Download PDF

Info

Publication number
JP2008243374A
JP2008243374A JP2007077612A JP2007077612A JP2008243374A JP 2008243374 A JP2008243374 A JP 2008243374A JP 2007077612 A JP2007077612 A JP 2007077612A JP 2007077612 A JP2007077612 A JP 2007077612A JP 2008243374 A JP2008243374 A JP 2008243374A
Authority
JP
Japan
Prior art keywords
solar
tracking device
thermal expansion
sunlight
expansion body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077612A
Other languages
Japanese (ja)
Other versions
JP4615537B2 (en
Inventor
Tomohiro Takagi
智洋 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007077612A priority Critical patent/JP4615537B2/en
Publication of JP2008243374A publication Critical patent/JP2008243374A/en
Application granted granted Critical
Publication of JP4615537B2 publication Critical patent/JP4615537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a solar azimuth tracking device having a simple mechanism, a solar light condensing device, and a solar light illumination system using it. <P>SOLUTION: This solar azimuth tracking device 3 has a thermally expanding body 5 which expands and contracts based on heat by solar light 7, a movement conversion part 6 to convert reciprocation attendant on expansion and contraction of the thermally expanding body 5 to a movement corresponding to the diurnal movement of the sun, and a tracking device body 4 to track a solar azimuth by interlocking with movement by the movement conversion part 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、太陽方位追尾装置、太陽光集光装置及びそれを用いた太陽光照明システムに関するものである。   The present invention relates to a solar azimuth tracking device, a solar light collecting device, and a solar lighting system using the same.

建物内部や地下・半地下施設内において、晴天であるにもかかわらず日中に十分な太陽光が窓から入射せず、照明を始終つけている場合も多い。そこで、晴天時に建物外に照射される太陽光を建物内部の光源として有効活用できれば、照明用の電力を削減でき、省エネに貢献することになる。   There are many cases in the building and underground / semi-underground facilities where sufficient sunlight does not enter the window during the day, even though it is fine, and the lighting is turned on and off. Therefore, if the sunlight radiated outside the building during sunny weather can be effectively used as the light source inside the building, the power for lighting can be reduced, contributing to energy saving.

太陽光を建物内部の光源として利用するものとして、太陽光採光システムがある。すなわち、太陽光採光システムは、太陽光を高効率で採光するために太陽方位追尾装置によって向きを太陽方位に合わせて変化させる集光部を備えたシステムである。このシステムは、集光部とそれに付随する太陽方位追尾装置、光伝送部、照射部からなっている。   There is a solar lighting system that uses sunlight as a light source inside a building. That is, the solar light collection system is a system including a light collecting unit that changes the direction according to the solar direction by the solar direction tracking device in order to collect sunlight with high efficiency. This system is composed of a condensing unit, a solar azimuth tracking device, an optical transmission unit, and an irradiation unit.

集光部は、パラボラ型に成形したパラボラ型反射鏡と複数のレンズからなっており、受光面に照射される太陽光のうちのできる限り多くを光伝送部の光入射口に集光させる構造となっている。
太陽方位追尾装置は、集光部が受光した光を高い効率で光伝送部へと集光させるために集光部を太陽の方位へ向ける。太陽は日周運動によりその方位を常に変化させているので、集光部はその向きを太陽の方位に合わせるように追尾することになる。
The condensing unit consists of a parabolic reflector formed into a parabolic shape and a plurality of lenses, and has a structure for condensing as much of the sunlight as possible on the light receiving surface to the light entrance of the light transmission unit. It has become.
The solar azimuth tracking device directs the condensing unit toward the sun in order to condense the light received by the condensing unit onto the optical transmission unit with high efficiency. Since the sun always changes its direction due to the diurnal motion, the condensing part tracks the direction to match the direction of the sun.

光伝送部は、集光部が集光した太陽光を、内部が光を反射する光ダクトや光ファイバケーブルを用いて屋内まで伝送させる。
照射部は、伝送されてきた光を、レンズや光拡散体に照射することにより屋内に隈なく拡散させる。
The light transmission unit transmits the sunlight collected by the light collecting unit to the inside using an optical duct or an optical fiber cable that reflects light inside.
The irradiating unit diffuses the transmitted light throughout the room by irradiating the lens and the light diffuser.

特許文献1に記載されている太陽光採光システムでは、太陽の日周運動をコンピュータで予め計算しておき、その計算結果に基づいて集光パラボラの向きを太陽方位と一致させる制御を行っている。集光パラボラの向きを変化させる駆動力としては、電動の駆動モーターを用いている。
その他、同文献では、光伝送部である光ファイバに入射される太陽光量をモニターし、入射光量が最大となるように集光パラボラの向きを制御するという手法も提案されている。
In the daylighting system described in Patent Document 1, the diurnal motion of the sun is calculated in advance by a computer, and control is performed so that the direction of the light collecting parabola coincides with the solar direction based on the calculation result. . An electric drive motor is used as the driving force for changing the direction of the condensing parabola.
In addition, the same document proposes a method of monitoring the amount of sunlight incident on an optical fiber that is an optical transmission unit and controlling the direction of the condensing parabola so that the amount of incident light is maximized.

特開平11−232915号公報JP-A-11-232915

コンピュータで太陽方位の変化を計算したり伝送される光量をモニターしながら最適な受光部の向きを決定する方式では、コンピュータや時計もしくは光量検出器をシステムに内蔵させる必要があるため、コストアップの要因となる。また、それらの装置を作動させるための電力を恒常的に消費することになり、太陽光集光システムの省エネの趣旨に却って反することにもなる。さらにそれらが故障する可能性や時計の時刻がずれる可能性があり、定期的なメンテナンスも必要となる。
また、集光部の向きを変化させる駆動モーターについても、同様にコストアップや電力消費という問題を抱えている。
The method of determining the optimal light receiving unit direction while calculating changes in the sun's azimuth and monitoring the amount of transmitted light with a computer requires a computer, a clock, or a light amount detector to be built into the system. It becomes a factor. Moreover, the electric power for operating these apparatuses will be consumed constantly, and it will be contrary to the purpose of the energy saving of a sunlight condensing system. Furthermore, there is a possibility that they may break down or the time of the clock may be shifted, and regular maintenance is also required.
Similarly, the drive motor that changes the direction of the light condensing unit also has problems of cost increase and power consumption.

その他、太陽光集光システムの集光部において集光される太陽光は、屋内の照明に必要な可視光成分ばかりでなく、近赤外成分も含まれ、この成分が屋内に導かれることによって、屋内の必要以上の温度上昇を招いてしまう。これは特に気温の高い夏季において大きな問題となる。   In addition, the sunlight collected at the condensing part of the sunlight collecting system includes not only the visible light component necessary for indoor lighting but also the near infrared component, and this component is guided indoors. The temperature rises more than necessary indoors. This is a big problem especially in summer when the temperature is high.

本発明が解決しようとする課題は、機構が簡単な太陽方位追尾装置を提供することである。また、機構が簡単な太陽方位追尾装置を有している太陽光集光装置を提供することである。またこれにより、定期的なメンテナンスが不要でコストが安く、省エネも実現できる太陽方位追尾装置、太陽光集光装置及びそれを用いた太陽光照明システムを提供することである。   The problem to be solved by the present invention is to provide a solar azimuth tracking device with a simple mechanism. Moreover, it is providing the sunlight condensing device which has a solar azimuth | direction tracking device with a simple mechanism. In addition, a solar azimuth tracking device, a solar concentrating device, and a solar lighting system using the solar azimuth tracking device that do not require regular maintenance, are inexpensive, and can realize energy saving.

本発明は、太陽光による熱に基づき膨張収縮する熱膨張体と、前記熱膨張体の膨張収縮に伴う往復運動を太陽の日周運動に対応する運動に変換する運動変換部と、前記運動変換部による運動と連動することにより太陽方位を追尾する追尾装置本体とを有する太陽方位追尾装置である。   The present invention includes a thermal expansion body that expands and contracts based on heat from sunlight, a motion conversion unit that converts a reciprocating motion accompanying expansion and contraction of the thermal expansion body into a motion corresponding to the diurnal motion of the sun, and the motion conversion It is a solar azimuth | direction tracking apparatus which has a tracking apparatus main body which tracks a solar azimuth | direction by synchronizing with the motion by a part.

具体的には、前記運動変換部は、前記熱膨張体との接続部および下端の軸先をもつ前記追尾装置本体の支持軸と、前記支持軸の軸先がなぞることによって前記接続部の運動に基づく前記支持軸の運動を太陽の日周運動に対応するように変換する、固定された基板上に刻まれた案内溝と、前記支持軸が貫通する円形のリングもしくは穿孔を有する板材、および固定された基板との接続部からなる支持部材とを有する。   Specifically, the motion conversion unit is configured such that the connection shaft of the tracking device main body having a connection portion with the thermal expansion body and a lower end shaft tip, and the shaft tip of the support shaft are traced. A plate having a guide groove carved on a fixed substrate, a circular ring or perforation through which the support shaft passes, and converting the movement of the support shaft based on the above to correspond to the diurnal motion of the sun, and And a support member including a connection portion with the fixed substrate.

また、支持軸先の駆動機構には熱膨張体を用いるが、熱膨張体の変位量のみでは変位量が不足する時は、拡大てこを用いて熱膨張による変位量を増幅させることができる。また、拡大てこを用いない手法として、前記熱膨張体の変位量を変位センサーで検出し、その変位量に応じて支持軸先を電動モーターで変位させる機構を用いてもよい。この場合に、熱膨張体とは、別体に設けた電動モーターで支持軸先を変位させることで、前記支持軸先に駆動力を与え、電動モーターの駆動力により、前記支持軸先の運動を制御することができる。このように、電動モーターを別体に設けるのは、電動モーターを熱膨張体と別体に設けることにより、熱膨張体の変位を直接使用するより、変位量を大きくすることができるからである。   In addition, although a thermal expansion body is used for the drive mechanism of the support shaft tip, when the displacement amount is insufficient with only the displacement amount of the thermal expansion body, the displacement amount due to the thermal expansion can be amplified using an enlarged lever. Further, as a technique that does not use an enlarged lever, a mechanism may be used in which the displacement amount of the thermal expansion body is detected by a displacement sensor, and the support shaft tip is displaced by an electric motor in accordance with the displacement amount. In this case, the thermal expansion body is provided with a driving force applied to the support shaft tip by displacing the support shaft tip with an electric motor provided separately, and the motion of the support shaft tip is driven by the driving force of the electric motor. Can be controlled. Thus, the reason why the electric motor is provided separately is that the amount of displacement can be increased by directly providing the displacement of the thermal expansion body by providing the electric motor separately from the thermal expansion body. .

好ましくは、前記案内溝は、日没前の日照量が低下する時間帯における前記支持軸先の逆走を防ぐため、所定の部位に深さの変化を有するか、もしくは、正午に前記熱膨張体が最も膨張した状態で前記太陽方位追尾装置が南側を向くことになるような閉曲線形状で、所定の箇所に前記軸先の逆走を防ぐための段差を設けている。   Preferably, the guide groove has a change in depth at a predetermined portion or prevents the thermal expansion at noon in order to prevent the support shaft tip from running backward in a time zone in which the amount of sunshine before sunset decreases. The solar azimuth tracking device has a closed curve shape that faces the south side in a state where the body is most inflated, and a step is provided at a predetermined location to prevent the shaft tip from running backward.

ここで、案内溝が可動式の基板上に設けると、前記基板の位置を変位させることで季節の変化に伴う太陽の日周運動の変化に対応させる機能を付与することができる。   Here, when the guide groove is provided on the movable substrate, the function of responding to the change of the diurnal motion of the sun accompanying the change of the season can be provided by displacing the position of the substrate.

また本発明は、太陽光を集光する集光部と、前記太陽方位追尾装置を有する太陽光集光装置である。   Moreover, this invention is a sunlight condensing apparatus which has a condensing part which condenses sunlight, and the said solar direction tracking apparatus.

前記太陽光集光装置は、前記集光部が集光した太陽光の一部を前記熱膨張体へ誘導する光誘導機構を有する。   The sunlight condensing device includes a light guiding mechanism that guides a part of sunlight condensed by the light collecting unit to the thermal expansion body.

好ましくは、前記光誘導機構は、前記集光部が集光した太陽光の近赤外成分を分離する分光装置を有し、分離された近赤外成分を前記熱膨張体へ誘導する分離誘導装置を有する。   Preferably, the light guiding mechanism includes a spectroscopic device that separates a near-infrared component of sunlight collected by the light collecting unit, and separates and induces the separated near-infrared component to the thermal expansion body. Have the device.

具体的には、前記分光装置は、前記集光した太陽光の前記近赤外成分を選択的に反射する誘電多層膜からなる反射鏡と、波長無依存型の反射特性を有する反射鏡により構成されている。   Specifically, the spectroscopic device includes a reflecting mirror made of a dielectric multilayer film that selectively reflects the near-infrared component of the collected sunlight and a reflecting mirror having a wavelength-independent reflection characteristic. Has been.

好ましくは、前記集光部とは異なる補助集光部を有し、日照の途絶により前記太陽方位追尾装置の太陽方位追尾が停止した後、日照が回復したときに前記補助集光部が集光した太陽光が前記熱膨張体に照射されることで前記太陽方位追尾装置の太陽方位追尾を再開させる機能を有している。   Preferably, the auxiliary condensing unit is different from the condensing unit, and the auxiliary condensing unit condenses when the sunshine recovers after the solar azimuth tracking of the solar azimuth tracking device stops due to the interruption of sunshine. The solar expansion device has a function of resuming the solar direction tracking of the solar direction tracking device by irradiating the thermal expansion body with the sunlight.

さらに、本発明は太陽光集光装置で集光された太陽光を照明部へと伝送する光伝送部と、伝送されてきた太陽光を屋内へ照射させる照射部とを備えた太陽光照明システムである。   Furthermore, the present invention provides a solar lighting system including an optical transmission unit that transmits sunlight collected by a solar concentrator to an illumination unit, and an irradiation unit that irradiates the transmitted sunlight indoors. It is.

本発明の太陽方位追尾装置、太陽光集光装置及びそれを用いた太陽光照明システムは機構が簡単なものとなる。   The mechanism of the solar azimuth tracking device, the solar light collecting device, and the solar lighting system using the same according to the present invention is simple.

図1は、本発明の実施形態に係る太陽方位追尾装置、および、その太陽方位追尾装置を使用した太陽光集光装置の構成を示す図である。   FIG. 1 is a diagram illustrating a configuration of a solar azimuth tracking device according to an embodiment of the present invention and a solar light collecting device using the solar azimuth tracking device.

図1に示した太陽光集光装置1は、集光部2と太陽方位追尾装置3を有しており、これらで、集光部、太陽方位追尾装置、光伝送部、照射部からなる太陽光採光システムの一部をなしている。
また、太陽方位追尾装置3はさらに、追尾装置本体4(集光部2)と、熱膨張体5と、運動変換部6により構成されている。
The solar light collecting device 1 shown in FIG. 1 has a light collecting unit 2 and a solar azimuth tracking device 3, and the sun including a light collecting unit, a solar azimuth tracking device, a light transmission unit, and an irradiation unit. It is part of the daylighting system.
The solar azimuth tracking device 3 is further configured by a tracking device main body 4 (light condensing unit 2), a thermal expansion body 5, and a motion conversion unit 6.

集光部2は、太陽から照射される太陽光7を集光する。なお、集光部2の具体的な構成は、図1に示したようなパラボラ形状に成形したパラボラ型反射鏡と、複数のレンズからなっており、受光面に照射される太陽光7のうちのできる限り多くを光伝送部の光入射口に集光させる構造となっている。   The condensing part 2 condenses the sunlight 7 irradiated from the sun. In addition, the specific structure of the condensing part 2 consists of the parabolic reflecting mirror shape | molded in the parabolic shape as shown in FIG. 1, and a some lens, Of sunlight 7 irradiated to a light-receiving surface Thus, as much as possible can be collected at the light entrance of the light transmission section.

太陽方位追尾装置3を構成する熱膨張体5は、太陽光7による熱に基づいて、図1に示した両矢印AR1の方向に膨張収縮する。ここで、太陽光7による熱に基づくとは以下で説明するように、主として集光部2で集光した太陽光7に含まれる近赤外成分の物体に対する加熱作用に基づくという意味である。このような膨張収縮を熱膨張体5が行うためには、熱膨張体5は、図1に示したような液体や気体などの媒体を密閉したシリンダーのピストンが、当該媒体の膨張収縮に伴って動くようにしても良いし、また、熱膨張係数の大きな金属の棒を用いても良い。   The thermal expansion body 5 constituting the solar azimuth tracking device 3 expands and contracts in the direction of the double-headed arrow AR1 shown in FIG. Here, based on the heat from the sunlight 7 means that it is mainly based on the heating action on the object of the near-infrared component contained in the sunlight 7 collected by the light collecting unit 2 as described below. In order for the thermal expansion body 5 to perform such expansion and contraction, the thermal expansion body 5 has a cylinder piston sealed with a medium such as liquid or gas as shown in FIG. It is also possible to use a metal rod having a large thermal expansion coefficient.

運動変換部6は、熱膨張体5の膨張収縮を太陽の日周運動に対応する運動に変換する機能を有している。すなわち、図1において、運動変換部6は、熱膨張体5が膨張収縮することによる両矢印AR1の往復運動を、矢印AR2で示すような運動に変換する。そして、この運動に連動して追尾装置本体4(集光部2)が矢印AR3で示すような日周運動を行う太陽の経路8と対応する運動を行い、追尾装置本体4(集光部2)は太陽を追尾することになる。   The motion conversion unit 6 has a function of converting the expansion / contraction of the thermal expansion body 5 into a motion corresponding to the diurnal motion of the sun. That is, in FIG. 1, the motion conversion unit 6 converts the reciprocating motion of the double arrow AR1 due to the expansion and contraction of the thermal expansion body 5 into the motion indicated by the arrow AR2. In conjunction with this movement, the tracking device main body 4 (light condensing unit 2) performs a movement corresponding to the solar path 8 performing the daily movement as indicated by the arrow AR3, and the tracking device main body 4 (light collecting unit 2). ) Will track the sun.

追尾装置本体4(集光部2)を矢印AR3の方向に示す運動を行わせるようにするための、より具体的な運動変換部6の機構について図1を参照しながらさらに説明する。
すなわち、図1に示したように、支持軸9が追尾装置本体4(集光部2)下部に取り付けられている。そして、熱膨張体5の膨張収縮と連動して運動する接続部10が支持軸9の箇所P1に設けられている。支持軸9の中心軸の延長線上に太陽が位置するような追尾装置本体4(集光部2)の向きにおいて、太陽光7の集光効率が最大となるようにする。このとき、太陽光7の集光効率を高めるためには支持軸9の中心軸の延長線上に太陽が位置するように支持軸9の向きを合わせればよいことになる。
A more specific mechanism of the motion conversion unit 6 for causing the tracking device main body 4 (the light collecting unit 2) to perform the motion indicated by the arrow AR3 will be further described with reference to FIG.
That is, as shown in FIG. 1, the support shaft 9 is attached to the lower part of the tracking device main body 4 (light collecting unit 2). A connecting portion 10 that moves in conjunction with expansion and contraction of the thermal expansion body 5 is provided at a location P <b> 1 of the support shaft 9. The light collection efficiency of the sunlight 7 is maximized in the direction of the tracking device main body 4 (light collecting unit 2) such that the sun is positioned on the extended line of the central axis of the support shaft 9. At this time, in order to increase the light collection efficiency of the sunlight 7, the orientation of the support shaft 9 may be adjusted so that the sun is positioned on the extended line of the central axis of the support shaft 9.

太陽光集光装置1が設置される面Qに所定の平面パターンを有する案内溝を設け、支持軸先11に案内溝をなぞらせるようにする。支持軸9が熱膨張体5の膨張収縮と連動して動くと、支持軸先11は案内溝をなぞることにより矢印AR2に示した運動を行う。支持軸9の上部は固定された基板と接続部によって接続された円形のリングもしくは穿孔を有する板材からなる支持部材12を貫通しており、この部位で運動の制限を受ける構造となっている。支持軸9上部の動きが制限されている状態で支持軸先11が運動を行うと、それに合わせて支持軸9の向きが変化し、追尾装置本体4(集光部2)の向きが矢印AR3に示したように変化することになる。   A guide groove having a predetermined plane pattern is provided on the surface Q on which the solar light collecting device 1 is installed, and the support shaft tip 11 is made to trace the guide groove. When the support shaft 9 moves in conjunction with the expansion and contraction of the thermal expansion body 5, the support shaft tip 11 performs the movement indicated by the arrow AR2 by tracing the guide groove. The upper part of the support shaft 9 passes through a support member 12 made of a plate material having a circular ring or a perforation connected to a fixed substrate by a connection portion, and has a structure in which movement is restricted at this part. When the support shaft tip 11 moves in a state where the movement of the upper portion of the support shaft 9 is restricted, the direction of the support shaft 9 changes accordingly, and the direction of the tracking device main body 4 (light collecting unit 2) is changed to the arrow AR3. It will change as shown in.

図2は、案内溝の具体的な例の一つを示す平面図である。すなわち、図2に示したような円弧状の案内溝13aが固定された基板上の面Qに設けられている。点Fは支持部材12に付属するリングもしくは穿孔の中心から面Qへの射影点である。支持軸先11に案内溝13aをなぞらせるようにすると、熱膨張体5の膨張収縮により支持軸先11は矢印AR5方向に示した運動を行い、追尾装置本体4(集光部2)の向きを矢印AR3に示したように変化させることができる。   FIG. 2 is a plan view showing one specific example of the guide groove. That is, an arcuate guide groove 13a as shown in FIG. 2 is provided on the surface Q on the fixed substrate. Point F is a projection point onto the surface Q from the center of the ring or perforation attached to the support member 12. When the guide groove 13a is traced on the support shaft tip 11, the support shaft tip 11 performs the movement shown in the direction of the arrow AR5 by the expansion and contraction of the thermal expansion body 5, and the tracking device main body 4 (the light collecting portion 2) is moved. The direction can be changed as indicated by the arrow AR3.

かかる運動について、図2を参照しながらさらに説明する。
まず、案内溝13aは、東西方向にそれぞれ2箇所の端点Pe、Pwを有し、北向きに凸の弧を描いている。熱膨張体5の膨張収縮は基本的に矢印AR1で示す方向の往復運動を引き起こす。しかし、熱膨張体5の先端が接続部10で支持軸9と接続されているため、支持軸先11の動きが案内溝13aによって制約されることで、熱膨張体5の向きがそれに合うような修正を受けることになる。
Such movement will be further described with reference to FIG.
First, the guide groove 13a has two end points Pe and Pw in the east-west direction and draws a convex arc in the north direction. The expansion and contraction of the thermal expansion body 5 basically causes a reciprocating motion in the direction indicated by the arrow AR1. However, since the tip of the thermal expansion body 5 is connected to the support shaft 9 at the connection portion 10, the movement of the support shaft tip 11 is restricted by the guide groove 13a, so that the orientation of the thermal expansion body 5 matches that. Will receive a lot of corrections.

太陽の日周運動に対応する追尾装置本体4(集光部2)の運動としては、まず、日の出前の早朝に案内溝13aの西側の端点Pw付近に支持軸先11が位置しており、追尾装置本体4(集光部2)は東側を向いている。このとき、熱膨張体5は太陽光7に含まれる近赤外成分が照射されていないため収縮した状態にある。
日の出後、追尾装置本体4(集光部2)が太陽光7を受けると、熱膨張体5は太陽光7に含まれる近赤外成分に加熱されて膨張を開始し、その力が接続部10によって支持軸9へと伝達され、支持軸先11は案内溝13aに案内されながら北東方向へ移動していく。それに伴い、追尾装置本体4(集光部2)の向きは南西方向へと変化していく。
As the movement of the tracking device body 4 (condenser 2) corresponding to the diurnal movement of the sun, first, the support shaft tip 11 is located in the vicinity of the west end point Pw of the guide groove 13a in the early morning before sunrise. The tracking device main body 4 (light condensing unit 2) faces the east side. At this time, the thermal expansion body 5 is in a contracted state because the near infrared component contained in the sunlight 7 is not irradiated.
After the sunrise, when the tracking device main body 4 (the light collecting unit 2) receives the sunlight 7, the thermal expansion body 5 is heated by the near-infrared component contained in the sunlight 7 and starts expanding, and the force is connected to the connection portion. 10 is transmitted to the support shaft 9 and the support shaft tip 11 moves in the northeast direction while being guided by the guide groove 13a. Along with this, the direction of the tracking device main body 4 (light condensing unit 2) changes in the southwest direction.

この機構をさらに詳しく説明する。太陽光7に含まれる近赤外成分の照射によって加熱された熱膨張体5は膨張し、支持軸先11を北東方向へ移動させ、追尾装置本体4の向きを変化させる。熱膨張体5の膨張がさらに進むと追尾装置本体4の向きがさらに変化し、太陽光7の集光効率が低下する。すると熱膨張体5に照射される太陽光7の近赤外成分の強度が弱まり、膨張が停止する。こうして太陽光7に含まれる近赤外成分の加熱量と外部大気に放出される熱量が一致する地点で熱膨張体5の膨張量が定まる。太陽方位が変化するとこの熱量がつりあう地点も変化し、それに合わせて熱膨張体5の膨張量が変化していくことで、結果的に追尾装置本体4(集光部2)が太陽の日周運動に対応する運動を行い、集光部2は受けた太陽光7を高い効率で所定位置へ集光し続けることができる。   This mechanism will be described in more detail. The thermal expansion body 5 heated by the irradiation of the near-infrared component contained in the sunlight 7 expands, moves the support shaft 11 in the northeast direction, and changes the direction of the tracking device body 4. When the expansion of the thermal expansion body 5 further proceeds, the orientation of the tracking device body 4 further changes, and the light collection efficiency of the sunlight 7 decreases. Then, the intensity | strength of the near-infrared component of the sunlight 7 irradiated to the thermal expansion body 5 becomes weak, and expansion | swelling stops. Thus, the expansion amount of the thermal expansion body 5 is determined at a point where the heating amount of the near-infrared component contained in the sunlight 7 and the heat amount released to the external atmosphere coincide. When the solar direction changes, the point at which this amount of heat changes also changes, and the expansion amount of the thermal expansion body 5 changes accordingly. As a result, the tracking device main body 4 (condenser 2) becomes the solar diurnal. The condensing part 2 can continue condensing the received sunlight 7 to a predetermined position with high efficiency by performing an exercise corresponding to the exercise.

午後から夕刻にかけては太陽光7の強度が弱まり、熱膨張体5へ供給される熱が少なくなる。もし支持軸先11の位置が太陽光7の集光効率を最大にする点にあっても熱膨張体5の膨張状態を維持するだけの熱量が得られない状況になると、熱膨張体5はその後収縮し続けて支持軸先11が日の出前の早朝と同じ西側の端点Pwまで戻ってしまい、それ以後太陽方位追尾は続行不可能となってしまう。
また、熱膨張体5の膨張状態を維持するだけの熱量が得られる状況であっても、何らかのはずみで支持軸先11が太陽光7の集光効率を最大にする点よりも西側に移ってしまうと、同様に熱膨張体5はその後収縮し続けてそれ以後太陽方位追尾は続行不可能となる。
From the afternoon to the evening, the intensity of the sunlight 7 is weakened, and the heat supplied to the thermal expansion body 5 is reduced. If the amount of heat sufficient to maintain the expanded state of the thermal expansion body 5 cannot be obtained even if the position of the support shaft 11 is at the point where the light collection efficiency of the sunlight 7 is maximized, the thermal expansion body 5 Thereafter, the support shaft 11 continues to contract and returns to the same west end point Pw as in the early morning before sunrise, and thereafter, the solar azimuth tracking cannot be continued.
Moreover, even if it is the situation where the amount of heat sufficient to maintain the expanded state of the thermal expansion body 5 is obtained, the support shaft tip 11 moves to the west side with respect to maximizing the light collection efficiency of the sunlight 7 by some means. As a result, similarly, the thermal expansion body 5 continues to contract thereafter, and the solar azimuth tracking cannot be continued thereafter.

そこでこの不具合を緩和するために、案内溝13aの深さが東側の端点Peに近づくほど深くなるような形態が望ましい。それにより、追尾装置本体4の自重が熱膨張体5の膨張による支持軸先11のPe方向の運動を補助することになる。かかる運動の補助により、正午以降から夕方にかけて太陽光7の強度が弱まっても、何らかのはずみで支持軸先11がPw側へ逆走することを阻止することができる。   Therefore, in order to alleviate this problem, it is desirable that the depth of the guide groove 13a becomes deeper as it approaches the east end point Pe. Thereby, the weight of the tracking device main body 4 assists the movement of the support shaft tip 11 in the Pe direction due to the expansion of the thermal expansion body 5. With the assistance of such exercise, even if the intensity of the sunlight 7 decreases from noon to the evening, it is possible to prevent the support shaft 11 from running backward to the Pw side by any moment.

日没後から日の出前までの夜間は日照が途絶えるので、日中に太陽光7の近赤外成分によって加熱されて膨張した熱膨張体5は外気温によって冷却されて収縮し、翌日には支持軸先11が案内溝13aの西側の端点Pw近傍に戻っている。こうして、翌日の日の出以降に再度上記の運動が繰り返されることになる。   Since the sunshine is interrupted during the night from sunset to before sunrise, the thermal expansion body 5 heated and expanded by the near-infrared component of the sunlight 7 during the day is cooled and contracted by the outside air temperature. The tip 11 returns to the vicinity of the end point Pw on the west side of the guide groove 13a. Thus, the above motion is repeated again after the next day's sunrise.

前記案内溝13aで最も北に位置する点と点Fとの間の距離が離れているほど、支持軸先11がこの最北点に到達したときに追尾装置本体4がより南側に傾くことになる。正午における太陽の南側への傾き具合は季節によって変化するため、この最北点と点Fとの間の距離を季節によって調整できるようにすれば、それぞれの季節において集光部2が最も高い効率で受けた太陽光7を所定位置へ集光することが可能となり、より好ましい。具体的には、固定された基板Q上に手動操作もしくは電動モーターの動作によってスライド可能な別の平面基板を置き、その上面に前記案内溝13aを設ければよい。
なお、地球の南半球では太陽は東から昇って北側の空を通って西に沈むため、南半球で使用する場合には前記案内溝13aは南側に凸の円弧としなければならない。
As the distance between the point located most north in the guide groove 13a and the point F increases, the tracking device main body 4 tilts more southward when the support shaft tip 11 reaches the northmost point. Become. Since the inclination of the sun toward the south at noon changes depending on the season, if the distance between the northernmost point and the point F can be adjusted according to the season, the light collecting unit 2 has the highest efficiency in each season. It is possible to collect the sunlight 7 received in step 1 at a predetermined position, which is more preferable. Specifically, another planar substrate that can be slid by manual operation or the operation of an electric motor is placed on the fixed substrate Q, and the guide groove 13a is provided on the upper surface thereof.
In the southern hemisphere of the earth, the sun rises from the east and sinks west through the north sky. Therefore, when used in the southern hemisphere, the guide groove 13a must be a convex arc on the south side.

図3は、別の案内溝の具体例を示す平面図である。すなわち、図3に示したような、北向きの半円に近い形状の閉曲線である。
案内溝13b,13cに支持軸先11をなぞらせるようにすると、熱膨張体5の膨張収縮が支持軸先11の矢印AR7,AR8で示される運動へと変換されることで、追尾装置本体4(集光部2)の向きを矢印AR3に示したように変化させることができる。
またこのとき、正午に熱膨張体5が最も膨張した状態で、太陽方位追尾装置が南側を向くことになる。そのため、熱膨張体5の断熱性がそれほど高くない場合でも、また案内溝の深さに変化を持たせて追尾装置本体4の自重の助けを借りなくても、日没まで追尾装置本体4に太陽方位を追尾させ続けることができる。
FIG. 3 is a plan view showing a specific example of another guide groove. That is, the closed curve has a shape close to a semicircle facing north as shown in FIG.
If the support shaft tip 11 is traced in the guide grooves 13b and 13c, the expansion and contraction of the thermal expansion body 5 is converted into the movement indicated by the arrows AR7 and AR8 of the support shaft tip 11, so that the main body of the tracking device 4 (light collecting unit 2) can be changed as indicated by an arrow AR3.
At this time, the solar azimuth tracking device faces the south side in a state where the thermal expansion body 5 is most expanded at noon. Therefore, even when the thermal insulation of the thermal expansion body 5 is not so high, or without changing the depth of the guide groove and without the help of the weight of the tracking device body 4, the tracking device body 4 can be used until sunset. The sun direction can be tracked continuously.

かかる運動について、図3を参照しながらさらに説明する。
まず、案内溝13bは、西北方向にそれぞれ2箇所の端点Pwb,Pnbを有し、北西向きに凸の弧を描いている。案内溝13bと接する案内溝13cは、2箇所の端点Pnc,Pwcを有し、東向きに凸の弧を描いている。案内溝13bの端点Pnbは案内溝13cと接しているものの接触部に段差が形成されており、点Pnbにおいては案内溝13cのほうが案内溝13bよりも少し深くなっている。同様に、案内溝13cの端点Pwcは案内溝13bと接しているものの接触部に段差が形成されており、点Pwcにおいては案内溝13bのほうが案内溝13cよりも少し深くなっている。
Such movement will be further described with reference to FIG.
First, the guide groove 13b has two end points Pwb and Pnb in the north-west direction, and draws a convex arc in the northwest direction. The guide groove 13c in contact with the guide groove 13b has two end points Pnc and Pwc and draws a convex arc in the east direction. Although the end point Pnb of the guide groove 13b is in contact with the guide groove 13c, a step is formed at the contact portion. At the point Pnb, the guide groove 13c is slightly deeper than the guide groove 13b. Similarly, although the end point Pwc of the guide groove 13c is in contact with the guide groove 13b, a step is formed at the contact portion. At the point Pwc, the guide groove 13b is slightly deeper than the guide groove 13c.

また、熱膨張体5の膨張収縮は基本的に矢印AR1で示す方向の往復運動を引き起こす。しかし、熱膨張体5の先端が接続部10で支持軸9と接続されているため、支持軸先11の動きが案内溝13bもしくは案内溝13cによって制約されることで、熱膨張体5の向きがそれに合うような修正を受けることになる。   The expansion and contraction of the thermal expansion body 5 basically causes a reciprocating motion in the direction indicated by the arrow AR1. However, since the tip of the thermal expansion body 5 is connected to the support shaft 9 by the connecting portion 10, the movement of the support shaft tip 11 is restricted by the guide groove 13 b or the guide groove 13 c. Will be modified to fit.

太陽の日周運動に対応する追尾装置本体4(集光部2)の運動としては、まず、日の出前の早朝に案内溝13bの西側の端点Pwb近傍に支持軸先11が位置しており、追尾装置本体4(集光部2)は東側を向いている。このとき、熱膨張体5は太陽光7に含まれる近赤外成分が照射されていないため収縮した状態にある。   As the movement of the tracking device main body 4 (condensing part 2) corresponding to the diurnal movement of the sun, first, the support shaft tip 11 is located in the vicinity of the end point Pwb on the west side of the guide groove 13b in the early morning before sunrise. The tracking device main body 4 (light condensing unit 2) faces the east side. At this time, the thermal expansion body 5 is in a contracted state because the near infrared component contained in the sunlight 7 is not irradiated.

日の出後、追尾装置本体4(集光部2)が太陽光7を受けると、熱膨張体5は太陽光7に含まれる近赤外成分に加熱されて膨張を開始し、その力が接続部10によって支持軸9へと伝達され、支持軸先11は案内溝13bに案内されながら北東方向へ移動していく。それに伴い、追尾装置本体4(集光部2)の向きは南西方向へと変化していく。正午近くになると支持軸先11は点Pnbで案内溝13bから案内溝13cへ移り、正午には支持軸先11がさらに点Pnc近傍まで移動する。   After the sunrise, when the tracking device main body 4 (the light collecting unit 2) receives the sunlight 7, the thermal expansion body 5 is heated by the near-infrared component contained in the sunlight 7 and starts expanding, and the force is connected to the connection portion. 10 is transmitted to the support shaft 9, and the support shaft tip 11 moves in the northeast direction while being guided by the guide groove 13b. Along with this, the direction of the tracking device main body 4 (light condensing unit 2) changes in the southwest direction. When it is near noon, the support shaft tip 11 moves from the guide groove 13b to the guide groove 13c at the point Pnb, and at noon the support shaft tip 11 further moves to the vicinity of the point Pnc.

正午を過ぎて太陽方位が西へ移動していくと、支持軸先11が点Pnc近傍にある状態で追尾装置本体4(集光部2)の向きが太陽方位から逸脱していくため、熱膨張体5に照射される太陽光7の近赤外成分の強度が低下する。すると今度は熱膨張体5が収縮し始め、支持軸先11は点Pncから遠ざかっていく。このとき点Pnbには段差があるため支持軸先11が案内溝13bへと逆走することはなく、案内溝13cに沿って南東方向へと移動していく。するとそれに合わせて追尾装置本体4(集光部2)の向きが北西へと変化していき、太陽方位に近づく。それに伴って熱膨張体に照射される太陽光7の近赤外成分の強度が増大していき、太陽光7の近赤外成分による加熱量と外部大気に放出される熱量が一致する地点で熱膨張体5の膨張量が定まる。太陽方位が変化するとこの熱量がつりあう地点も変化し、それに合わせて熱膨張体5の膨張量が変化していくことで、結果的に午後も追尾装置本体4(集光部2)が太陽の日周運動に対応する運動を続け、集光部2は高い効率で受けた太陽光7を所定位置へ集光し続けることができる。   When the sun azimuth moves west past noon, the direction of the tracking device main body 4 (condenser 2) deviates from the sun azimuth with the support shaft tip 11 in the vicinity of the point Pnc. The intensity | strength of the near-infrared component of the sunlight 7 irradiated to the expansion body 5 falls. Then, the thermal expansion body 5 starts to contract this time, and the support shaft tip 11 moves away from the point Pnc. At this time, since there is a step at the point Pnb, the support shaft 11 does not run backward to the guide groove 13b, but moves in the southeast direction along the guide groove 13c. Then, the direction of the tracking device main body 4 (condensing part 2) changes to the northwest according to it, and approaches the solar direction. Along with this, the intensity of the near-infrared component of the sunlight 7 irradiated to the thermal expansion body increases, and the amount of heat generated by the near-infrared component of the sunlight 7 matches the amount of heat released to the external atmosphere. The expansion amount of the thermal expansion body 5 is determined. When the solar direction changes, the point at which this amount of heat changes also changes, and the amount of expansion of the thermal expansion body 5 changes accordingly. As a result, the tracking device main body 4 (condenser 2) also becomes solar in the afternoon. Continuing the movement corresponding to the diurnal movement, the condensing unit 2 can continue to collect the sunlight 7 received with high efficiency at a predetermined position.

日没後から日の出前までの夜間は日照が途絶えるので、日中に太陽光7の近赤外成分によって加熱されて膨張した熱膨張体5は外気温によって冷却されて収縮し、案内溝13cの最も東に位置する点を通過して点Pwcへと至る。さらに段差を通過して点Pwb近傍まで移動し、その点で翌朝の日の出を迎えることになる。翌朝の日の出と共に再び熱膨張体5は膨張を開始するが、点Pwcには段差があるため支持軸先11が案内溝13cへと逆走することはなく、案内溝13bに沿って再び北西方向へと移動していく。   Since the sunshine is interrupted during the night from sunset to before sunrise, the thermal expansion body 5 heated and expanded by the near-infrared component of the sunlight 7 during the day is cooled and contracted by the outside air temperature, and most of the guide groove 13c. It passes through a point located east and reaches a point Pwc. Further, it passes through the step and moves to the vicinity of the point Pwb, and the next morning sunrise is reached at that point. The thermal expansion body 5 starts to expand again with the next morning sunrise, but the support shaft 11 does not run backward to the guide groove 13c because there is a step at the point Pwc, and again in the northwest direction along the guide groove 13b. Move to.

以上で示されたように、案内溝13a、案内溝13bもしくは案内溝13cのいずれかを支持軸先11がなぞる際、熱膨張体5に流入する熱が最大となる方位からわずかにずれた位置で支持軸先11が定まる。そのため、熱膨張体5に流入する熱は所定以上の量にはならず、本願で示される太陽方位追尾装置を備えた太陽光集光装置が日差しの強い地域で使用されても、過熱による熱膨張体5の劣化を抑えることができる。   As described above, when the support shaft tip 11 traces any of the guide groove 13a, the guide groove 13b, or the guide groove 13c, the position slightly deviated from the direction in which the heat flowing into the thermal expansion body 5 becomes maximum. Thus, the support shaft tip 11 is determined. Therefore, the amount of heat flowing into the thermal expansion body 5 does not become more than a predetermined amount, and even if the solar light collecting device provided with the solar azimuth tracking device shown in the present application is used in an area with strong sunlight, the heat due to overheating. Deterioration of the expansion body 5 can be suppressed.

運動変換部6は、熱膨張体5の膨張収縮による往復運動を太陽の日周運動に対応する運動に変換する機能を有している。ここで、熱膨張体5の熱膨張量が小さく、両矢印AR1の方向の変位量が不十分であるような場合は、図4に示したように、拡大てこ14を用いて、両矢印AR1の運動を両矢印AR9の運動に拡大すればよい。あるいは、拡大てこ14を用いる代わりに、熱膨張体の変位量を変位センサーで検出し、その変位量に応じて、支持軸先を電動モーターで変位させることもできる。変位量を変位センサーで検出し、電動モーターで支持軸先を変位させる機構は、特に具体的には記載しないが公知の方法を用いれば良い。   The motion conversion unit 6 has a function of converting the reciprocating motion due to the expansion and contraction of the thermal expansion body 5 into a motion corresponding to the diurnal motion of the sun. Here, when the thermal expansion amount of the thermal expansion body 5 is small and the displacement amount in the direction of the double-headed arrow AR1 is insufficient, as shown in FIG. This motion may be expanded to the motion indicated by the double arrow AR9. Alternatively, instead of using the enlarged lever 14, the displacement amount of the thermal expansion body can be detected by a displacement sensor, and the support shaft tip can be displaced by an electric motor in accordance with the displacement amount. A mechanism for detecting the amount of displacement with a displacement sensor and displacing the support shaft tip with an electric motor is not specifically described, but a known method may be used.

以上のように、図1に示した太陽方位追尾装置3では、追尾装置本体4による太陽方位の追尾が、機械的な機構のみにより実現される。そのため、コンピュータや駆動モーターなどの装置が不要であり、太陽方位追尾装置3のコストを安く抑えることができるだけでなく、電力も不要となり、省エネにもつながる。また故障の可能性も少なく、内蔵時計の時刻修正のようなメンテナンスも不要となる。以上のメリットは、かかる太陽方位追尾装置3を有する太陽光集光装置1についても同様である。   As described above, in the solar azimuth tracking device 3 shown in FIG. 1, the tracking of the solar azimuth by the tracking device main body 4 is realized only by a mechanical mechanism. Therefore, a device such as a computer or a drive motor is unnecessary, and not only the cost of the solar azimuth tracking device 3 can be kept low, but also no power is required, leading to energy saving. In addition, there is little possibility of failure, and maintenance such as time correction of the built-in clock becomes unnecessary. The above merits are the same also about the sunlight condensing device 1 which has this solar azimuth | direction tracking device 3. FIG.

太陽方位追尾装置3の熱膨張体5を膨張させる熱源としては、集光部2で集光された太陽光7の近赤外成分のみを抽出して用いることが好ましい。それを実現させるには、太陽光集光装置1が受光する太陽光7から近赤外成分を分離して熱膨張体5に誘導する光誘導機構が必要となる。   As a heat source for expanding the thermal expansion body 5 of the solar azimuth tracking device 3, it is preferable to extract and use only the near-infrared component of the sunlight 7 collected by the light collecting unit 2. In order to realize this, a light guiding mechanism that separates the near-infrared component from the sunlight 7 received by the sunlight collecting device 1 and guides it to the thermal expansion body 5 is required.

図5は、太陽光集光装置1を構成する集光部2の断面図である。図5に示した集光部2は、パラボラ型反射鏡15を透明な保護カバー16で覆ったものにより構成されている。パラボラ型反射鏡15の焦点近傍には、光誘導機構として分光装置17が設けられている。この分光装置17によって分離された近赤外成分を熱膨張体5に誘導し、近赤外成分を除かれた残りの太陽光を屋内の照明部へと伝送すればよい。   FIG. 5 is a cross-sectional view of the light collecting unit 2 constituting the solar light collecting device 1. The light collecting unit 2 shown in FIG. 5 is configured by a parabolic reflector 15 covered with a transparent protective cover 16. In the vicinity of the focal point of the parabolic reflector 15, a spectroscopic device 17 is provided as a light guiding mechanism. The near-infrared component separated by the spectroscopic device 17 may be guided to the thermal expansion body 5 and the remaining sunlight from which the near-infrared component has been removed may be transmitted to an indoor illumination unit.

具体的には、分光装置17は焦点付近に通常の鏡と同じ波長無依存型の反射特性を有する凹面鏡18aを設け、その手前には、近赤外成分のみを選択的に反射する波長選択性の凹面鏡18bを設けている。近赤外成分のみを選択的に反射する波長選択性反射鏡としては、例えば、誘電体多層膜が挙げられる。
図6に、反射特性の異なる2つの凹面鏡18の組み合わせからなる分光装置17の拡大断面図を示した。図6に示したように、2つの凹面鏡18a,18bの組み合わせにより、パラボラ型反射鏡15により反射された太陽光7の近赤外成分が分離される。分離された近赤外成分は、レンズ19bへ反射される。一方、可視光成分を含む太陽光7の近赤外成分を除く成分は、レンズ19aへ反射される。
Specifically, the spectroscopic device 17 is provided with a concave mirror 18a having the same wavelength-independent reflection characteristics as a normal mirror in the vicinity of the focal point, and in front of this, the wavelength selectivity that selectively reflects only the near-infrared component. The concave mirror 18b is provided. An example of the wavelength-selective reflector that selectively reflects only the near-infrared component is a dielectric multilayer film.
FIG. 6 shows an enlarged cross-sectional view of the spectroscopic device 17 composed of a combination of two concave mirrors 18 having different reflection characteristics. As shown in FIG. 6, the near-infrared component of the sunlight 7 reflected by the parabolic reflector 15 is separated by the combination of the two concave mirrors 18a and 18b. The separated near infrared component is reflected to the lens 19b. On the other hand, components other than near-infrared components of sunlight 7 including visible light components are reflected to the lens 19a.

近赤外成分集光用のレンズ19bへ反射されてくる近赤外成分は、光ダクトや光ファイバを通して、熱膨張体5へと誘導される。一方、レンズ19aへ反射されてくる主として可視光からなるその他の成分は、別途光ダクトや光ファイバからなる光伝送部を伝送させて、太陽光照明システムの照射部に伝送し、屋内の照明光として使用される。こうして近赤外成分が除去された残りの太陽光成分を屋内の照明設備へ伝送することにより、近赤外成分による屋内の不必要な気温上昇を抑えることができる。   The near-infrared component reflected by the near-infrared component condensing lens 19b is guided to the thermal expansion body 5 through an optical duct or an optical fiber. On the other hand, the other components mainly composed of visible light reflected on the lens 19a are transmitted separately to the illuminating unit of the solar lighting system by transmitting an optical transmission unit composed of an optical duct and an optical fiber, and are used for indoor illumination light. Used as. By transmitting the remaining solar light component from which the near-infrared component has been removed to the indoor lighting equipment, an unnecessary increase in indoor temperature due to the near-infrared component can be suppressed.

なお、誘電多層膜による波長選択性反射鏡では、広い波長帯域に渡って一様な高い反射率を得るには高精度な膜厚制御が必要となるが、この場合近赤外成分の反射漏れがあっても熱膨張体5の加熱効率が多少低下する程度の不具合で済む。逆に可視光帯域に反射率の不均一があると屋内に伝送される照明光に不自然な色彩が生じてしまうが、広い波長帯域に渡って一様な低い反射率を得ることはそれほど難しくない。従って、分光装置17としては近赤外成分の選択的反射鏡と波長非選択的反射鏡の組み合せとする方が、作製が容易である。   Note that a wavelength selective reflector using a dielectric multilayer film requires highly accurate film thickness control in order to obtain a uniform high reflectivity over a wide wavelength band. Even if there is, there is only a problem that the heating efficiency of the thermal expansion body 5 is somewhat lowered. Conversely, if the reflectance in the visible light band is non-uniform, an unnatural color occurs in the illumination light transmitted indoors, but it is difficult to obtain a uniform low reflectance over a wide wavelength band. Absent. Therefore, the spectroscopic device 17 is easier to manufacture by combining a near-infrared component selective reflecting mirror and a wavelength non-selective reflecting mirror.

太陽光誘導機構としての分光装置17は、誘電多層膜による波長選択性反射鏡を使用するだけでなく、回折格子やホログラムシートなどの分光光学素子を使用することもできる。   The spectroscopic device 17 as the sunlight guiding mechanism can use not only a wavelength selective reflecting mirror made of a dielectric multilayer film but also a spectroscopic optical element such as a diffraction grating or a hologram sheet.

図1に示した本発明の実施形態に係る太陽方位追尾装置3、および、その太陽方位追尾装置3を使用した太陽光集光装置1では、一日中晴天が続くことを前提に、太陽の日周運動に対応して追尾装置本体4(集光部2)が太陽光7を追尾する。しかし天気が一時的に悪化して日照が途絶えた場合、太陽方位に合わせて膨張した熱膨張体5が収縮し、これに伴って追尾装置本体4(集光部2)の向きが日の出前の状態に戻ってしまう。一度追尾装置本体4(集光部2)の向きが日の出前の状態に戻ってしまうと、以上に述べてきた太陽方位追尾機構では後に日照が回復しても翌日の日の出まで太陽方位追尾を再開することができない。熱膨張体5周辺の断熱性を高めることで短時間の日照の途絶による熱膨張体5の収縮を防ぐことができるが、太陽の方位が変化してしまうほど長時間の日照の途絶に対しては有効でない。   In the solar azimuth tracking device 3 and the solar light collecting device 1 using the solar azimuth tracking device 3 according to the embodiment of the present invention shown in FIG. The tracking device main body 4 (light collecting unit 2) tracks the sunlight 7 in response to the movement. However, when the weather temporarily deteriorates and the sunshine stops, the thermal expansion body 5 that expands in accordance with the sun direction contracts, and accordingly, the direction of the tracking device main body 4 (light condensing unit 2) is before sunrise. It will return to the state. Once the tracking device body 4 (condenser 2) returns to the pre-sunrise direction, the solar azimuth tracking mechanism described above resumes solar azimuth tracking until the next day's sunrise even if sunshine recovers later. Can not do it. The thermal insulation around the thermal expansion body 5 can be improved to prevent the thermal expansion body 5 from contracting due to a short interruption of sunshine. Is not valid.

この問題を解決するには、主となる集光部2とは別に補助集光部を設け、そこで集光される太陽光7を熱膨張体5へ誘導し、熱膨張体5を加熱するような機構とすればよい。この場合、補助集光部には太陽方位を追尾させられないので広角の光を集光する必要があり、逆に近赤外成分だけでなくすべての光を熱膨張体5の加熱用に用いることができるためそれほど高い集光効率は必要ない。そのため、補助集光部の構造は、図7で示されるような凹レンズの集積体20aと凸レンズ20bおよび光ガイド21の組み合わせとすることが望ましい。   In order to solve this problem, an auxiliary condensing unit is provided separately from the main condensing unit 2, and the sunlight 7 collected there is guided to the thermal expansion body 5 to heat the thermal expansion body 5. What is necessary is just a mechanism. In this case, since the sun azimuth cannot be tracked in the auxiliary condensing unit, it is necessary to condense wide-angle light, and conversely, not only the near-infrared component but also all the light is used for heating the thermal expansion body 5. Therefore, the light collection efficiency is not so high. Therefore, it is desirable that the structure of the auxiliary condensing unit is a combination of the concave lens integrated body 20a, the convex lens 20b, and the light guide 21 as shown in FIG.

また、集光方位を少し南西側に傾けて固定することで東側からの日光を集光しにくくし、さらに支持軸先11の動きと連動する光量調整機構を設けて主となる集光部2が西側を向いているほど集光された光の熱膨張体5への導光率が低下するようにすれば、追尾装置本体4が正常に太陽方位を追尾している際の影響を小さく、逆に日照があるにもかかわらず追尾装置本体4の追尾機能が停止している場合には大きな影響力を持つようにすることができる。   In addition, the condensing direction is slightly tilted to the southwest side and fixed to make it difficult to collect sunlight from the east side. Further, a light amount adjusting mechanism interlocking with the movement of the support shaft 11 is provided to provide the main condensing unit 2. If the light guide rate of the collected light to the thermal expansion body 5 decreases as the direction of the light is directed to the west side, the influence when the tracking device body 4 is normally tracking the solar direction is reduced, On the contrary, when the tracking function of the tracking device main body 4 is stopped despite the sunshine, it can have a great influence.

具体的には、図8に示したように、光を導波するための光ファイバ23もしくは光結合レンズ22の固定にばね25などによる遊びを持たせ、熱膨張体5の膨張具合に応じた変位を伝達させて光ファイバ23への光結合効率を調節すればよい。   Specifically, as shown in FIG. 8, the optical fiber 23 for guiding light or the optical coupling lens 22 is fixed with a play by a spring 25 or the like, and according to the expansion degree of the thermal expansion body 5. What is necessary is just to adjust the optical coupling efficiency to the optical fiber 23 by transmitting displacement.

本発明の実施形態に係る太陽方位追尾装置、およびその太陽方位追尾装置を備えた太陽光集光装置の構成を示す図である。It is a figure which shows the structure of the solar concentrating device provided with the solar azimuth | direction tracking apparatus which concerns on embodiment of this invention, and the solar azimuth | direction tracking apparatus. 本発明の実施形態に係る太陽方位追尾装置の運動変換部で使用される案内溝の平面図の一つの例である。It is one example of the top view of the guide groove used by the motion conversion part of the solar azimuth | direction tracking device which concerns on embodiment of this invention. 本発明の実施形態に係る太陽方位追尾装置の運動変換部で使用される案内溝の平面図の別の例である。It is another example of the top view of the guide groove used by the motion conversion part of the solar azimuth | direction tracking device which concerns on embodiment of this invention. 熱膨張体の膨張収縮による変位量を拡大する機構を示す図である。It is a figure which shows the mechanism which expands the displacement amount by expansion / contraction of a thermal expansion body. 本発明の実施形態に係る太陽光集光装置で使用される集光部の断面図である。It is sectional drawing of the condensing part used with the sunlight condensing device which concerns on embodiment of this invention. 本発明の実施形態に係る太陽光集光装置で使用される集光部に設けられる分光装置の断面図である。It is sectional drawing of the spectroscopic device provided in the condensing part used with the sunlight condensing device which concerns on embodiment of this invention. 本発明の実施形態に係る太陽光集光装置で使用される、凹レンズの集積体と光ガイドの組み合わせからなる補助集光部の断面図である。It is sectional drawing of the auxiliary | assistant condensing part which consists of the combination of the accumulation body of a concave lens and a light guide used with the sunlight condensing apparatus which concerns on embodiment of this invention. 外部から伝達される変位量に応じて集光レンズから光ファイバへの光結合効率を変化させる機構を示す断面図である。It is sectional drawing which shows the mechanism which changes the optical coupling efficiency from a condensing lens to an optical fiber according to the displacement amount transmitted from the outside.

符号の説明Explanation of symbols

1…太陽光集光装置
2…集光部
3…太陽方位追尾装置
4…追尾装置本体
5…熱膨張体
6…運動変換部
7…太陽光
8…経路
9…支持軸
10…接続部
11…支持軸先
12…支持部材
13…案内溝
14…拡大てこ
15…パラボラ反射鏡
16…保護カバー
17…分光装置
18…凹面鏡
19…レンズ
20a…凹レンズ集積体
20b…凸レンズ
21…光ガイド
22…光結合レンズ
23…光ファイバ
24…光ファイバ固定部材
25…ばね
DESCRIPTION OF SYMBOLS 1 ... Sunlight condensing device 2 ... Condensing part 3 ... Solar direction tracking device 4 ... Tracking apparatus main body 5 ... Thermal expansion body 6 ... Motion conversion part 7 ... Sunlight 8 ... Path | route 9 ... Support shaft 10 ... Connection part 11 ... Support shaft tip 12 ... Support member 13 ... Guide groove 14 ... Enlarged lever 15 ... Parabolic reflector 16 ... Protective cover 17 ... Spectroscopic device 18 ... Concave mirror 19 ... Lens 20a ... Concave lens assembly 20b ... Convex lens 21 ... Light guide 22 ... Optical coupling Lens 23 ... Optical fiber 24 ... Optical fiber fixing member 25 ... Spring

Claims (12)

太陽光による熱に基づき膨張収縮する熱膨張体と、
前記熱膨張体の膨張収縮に伴う往復運動を太陽の日周運動に対応する運動へ変換する運動変換部と、
前記運動変換部による運動と連動することにより太陽方位を追尾する追尾装置本体と
を有する太陽方位追尾装置。
A thermal expansion body that expands and contracts based on heat from sunlight;
A motion converter for converting the reciprocating motion associated with the expansion and contraction of the thermal expansion body into a motion corresponding to the diurnal motion of the sun;
A tracking device main body that tracks the sun's azimuth by interlocking with the motion by the motion conversion unit;
A solar azimuth tracking device.
前記運動変換部は、
前記熱膨張体との接続部と下端の軸先とをもつ前記追尾装置本体の支持軸と、
前記支持軸先がなぞることによって前記接続部の運動に基づく前記支持軸の運動を太陽の日周運動に対応するように変換する、固定された基板上に刻まれた案内溝と、
前記支持軸が貫通する円形のリングもしくは穿孔を有する板材、および固定された基板との接続部からなる支持部材と
を有する請求項1に記載の太陽方位追尾装置。
The motion converter is
A support shaft of the tracking device main body having a connection portion with the thermal expansion body and a lower end shaft;
A guide groove carved on a fixed substrate for converting the movement of the support shaft based on the movement of the connecting portion by tracing the support shaft tip so as to correspond to the diurnal motion of the sun;
The solar azimuth tracking device according to claim 1, further comprising: a plate member having a circular ring or perforation through which the support shaft passes, and a support member including a connection portion with a fixed substrate.
前記熱膨張体の変位量を変位センサーで検出し、その変位量に応じて、熱膨張体とは別体に設けた支持軸先を電動モーターで変位させることで、前記支持軸先に駆動力を与え、電動モーターの駆動力により、前記支持軸先の運動を制御する請求項2に記載の太陽方位追尾装置。 The displacement amount of the thermal expansion body is detected by a displacement sensor, and according to the displacement amount, a support shaft tip provided separately from the thermal expansion body is displaced by an electric motor, whereby a driving force is applied to the support shaft tip. The solar azimuth tracking device according to claim 2, wherein the movement of the support shaft tip is controlled by a driving force of an electric motor. 端点を有する開いた円弧状曲線形状であり、所定の部位において深さに変化をもたせてある前記案内溝を有する、請求項2または請求項3に記載の太陽方位追尾装置。   4. The solar azimuth tracking device according to claim 2, wherein the guide groove has an open arcuate curved shape having end points and has the guide groove having a change in depth at a predetermined portion. 5. 閉曲線形状であり、正午に前記熱膨張体が最も膨張した状態で前記太陽方位追尾装置が南側を向くことになるような形状で、所定の箇所に前記軸先の逆走を防ぐための段差を設けてある前記案内溝を有する、請求項2または請求項3に記載の太陽方位追尾装置。   It is a closed curve shape, and the solar azimuth tracking device is facing the south side in the state where the thermal expansion body is most expanded at noon, and has a step to prevent the shaft tip from running backward at a predetermined location. The solar azimuth | direction tracking apparatus of Claim 2 or Claim 3 which has the said guide groove provided. 請求項2から請求項5に記載の案内溝が可動式の基板上に設けてあり、前記基板の位置を変位させることで季節の変化に伴う太陽の日周運動の変化に対応させる機能を有する請求項1または請求項2に記載の太陽方位追尾装置。 The guide groove according to any one of claims 2 to 5 is provided on a movable substrate, and has a function of responding to a change in the diurnal motion of the sun accompanying a seasonal change by displacing the position of the substrate. The solar azimuth | direction tracking device of Claim 1 or Claim 2. 請求項1から請求項3、請求項6のいずれか1項に記載の太陽方位追尾装置を備え、前記太陽方位追尾装置と連動して太陽方位を追尾する太陽光の集光部を有する太陽光集光装置。   Sunlight comprising the solar azimuth tracking device according to any one of claims 1 to 3 and claim 6, and having a sunlight condensing unit that tracks the solar azimuth in conjunction with the solar azimuth tracking device. Concentrator. 前記集光部が集光した太陽光の一部を前記熱膨張体へ誘導する光誘導機構を有する請求項7に記載の太陽光集光装置。   The solar light collecting device according to claim 7, further comprising a light guide mechanism that guides a part of the sunlight collected by the light collecting unit to the thermal expansion body. 前記集光部が集光した太陽光の近赤外成分を分離する分光装置を有し、前記分光装置により分離された近赤外成分を前記光誘導機構により前記熱膨張体へ誘導する分離誘導装置を有する、請求項8に記載の太陽光集光装置。   Separation induction having a spectroscopic device for separating the near-infrared component of sunlight collected by the condensing unit, and guiding the near-infrared component separated by the spectroscopic device to the thermal expansion body by the light guiding mechanism The solar light collecting device according to claim 8, comprising the device. 前記分光装置は、前記集光部が集光した太陽光の近赤外成分を選択的に反射する誘電多層膜からなる反射鏡と、波長無依存型の反射特性を有する反射鏡により構成されている、請求項9に記載の太陽光集光装置。   The spectroscopic device includes a reflecting mirror made of a dielectric multilayer film that selectively reflects near-infrared components of sunlight collected by the light collecting unit, and a reflecting mirror having a wavelength-independent reflection characteristic. The solar light collecting device according to claim 9. 前記集光部とは異なる補助集光部を有し、日照の途絶により前記太陽方位追尾装置の太陽方位追尾が停止した後、日照が回復したときに前記補助集光部が集光した太陽光が前記熱膨張体に照射されることで前記太陽方位追尾装置の太陽方位追尾を再開させる機能を有する、請求項7から請求項10のいずれか1項に記載の太陽光集光装置。   Sunlight collected by the auxiliary light-collecting unit when the sunshine recovers after the sun-directional tracking of the solar azimuth tracking device stops due to the disruption of sunshine. The solar light collecting device according to any one of claims 7 to 10, which has a function of resuming solar azimuth tracking of the solar azimuth tracking device by being irradiated on the thermal expansion body. 請求項7から請求項11のいずれか1項に記載の太陽光集光装置と、太陽光集光装置で集光された太陽光を照明部へと伝送する光伝送部と、伝送されてきた太陽光を屋内へ照射させる照射部とを備えた太陽光照明システム。 The solar light collecting device according to any one of claims 7 to 11, and an optical transmission unit that transmits sunlight collected by the solar light collecting device to an illumination unit, and has been transmitted. A solar lighting system including an irradiation unit that irradiates sunlight indoors.
JP2007077612A 2007-03-23 2007-03-23 Solar azimuth tracking device, solar condensing device, and solar lighting system using the same Expired - Fee Related JP4615537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077612A JP4615537B2 (en) 2007-03-23 2007-03-23 Solar azimuth tracking device, solar condensing device, and solar lighting system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077612A JP4615537B2 (en) 2007-03-23 2007-03-23 Solar azimuth tracking device, solar condensing device, and solar lighting system using the same

Publications (2)

Publication Number Publication Date
JP2008243374A true JP2008243374A (en) 2008-10-09
JP4615537B2 JP4615537B2 (en) 2011-01-19

Family

ID=39914491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077612A Expired - Fee Related JP4615537B2 (en) 2007-03-23 2007-03-23 Solar azimuth tracking device, solar condensing device, and solar lighting system using the same

Country Status (1)

Country Link
JP (1) JP4615537B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042086A1 (en) * 2011-09-23 2013-03-28 Active Space Technologies, Actividades Aeroespaciais S.A. Passive heat source tracking system
JP2015508634A (en) * 2011-12-29 2015-03-19 スラス・インダストリーズ・インコーポレイテッドSulas Industries,Inc. Solar tracking device for solar energy device
JP2016101004A (en) * 2014-11-21 2016-05-30 株式会社豊田中央研究所 Solar tracking device
WO2019112015A1 (en) * 2017-12-06 2019-06-13 有限会社手島通商 Light concentrating unit, light concentrating device, and illumination device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160214A (en) * 1983-03-02 1984-09-10 Sumitomo Electric Ind Ltd Solar light tracking device
JPS63143460A (en) * 1986-12-03 1988-06-15 Hitachi Ltd Solar tracking mechanism for heat collector
JPH06301420A (en) * 1993-04-16 1994-10-28 Yaskawa Electric Corp Solar ray tracking device
JPH11125765A (en) * 1997-08-22 1999-05-11 Nippon Telegr & Teleph Corp <Ntt> Tracking type solar power generating device and sunshine tracking device
JPH11232915A (en) * 1998-02-16 1999-08-27 Mimatsu Insatsu Kk Light energy carrying method and its carrying device
JPH11354824A (en) * 1998-06-05 1999-12-24 Sanyo Electric Co Ltd Solar cell device
JP2001091818A (en) * 1999-09-22 2001-04-06 Mitsuhiko Morikawa Sunlight follower
JP2005090889A (en) * 2003-09-18 2005-04-07 Hideo Kurosawa Automatic solar follow-up system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160214A (en) * 1983-03-02 1984-09-10 Sumitomo Electric Ind Ltd Solar light tracking device
JPS63143460A (en) * 1986-12-03 1988-06-15 Hitachi Ltd Solar tracking mechanism for heat collector
JPH06301420A (en) * 1993-04-16 1994-10-28 Yaskawa Electric Corp Solar ray tracking device
JPH11125765A (en) * 1997-08-22 1999-05-11 Nippon Telegr & Teleph Corp <Ntt> Tracking type solar power generating device and sunshine tracking device
JPH11232915A (en) * 1998-02-16 1999-08-27 Mimatsu Insatsu Kk Light energy carrying method and its carrying device
JPH11354824A (en) * 1998-06-05 1999-12-24 Sanyo Electric Co Ltd Solar cell device
JP2001091818A (en) * 1999-09-22 2001-04-06 Mitsuhiko Morikawa Sunlight follower
JP2005090889A (en) * 2003-09-18 2005-04-07 Hideo Kurosawa Automatic solar follow-up system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042086A1 (en) * 2011-09-23 2013-03-28 Active Space Technologies, Actividades Aeroespaciais S.A. Passive heat source tracking system
JP2015508634A (en) * 2011-12-29 2015-03-19 スラス・インダストリーズ・インコーポレイテッドSulas Industries,Inc. Solar tracking device for solar energy device
JP2016101004A (en) * 2014-11-21 2016-05-30 株式会社豊田中央研究所 Solar tracking device
WO2019112015A1 (en) * 2017-12-06 2019-06-13 有限会社手島通商 Light concentrating unit, light concentrating device, and illumination device

Also Published As

Publication number Publication date
JP4615537B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US7207327B2 (en) Feedback control method for a heliostat
JP5250545B2 (en) Device for converting solar energy
US10514186B2 (en) Solar collector assembly
JP2008518192A (en) Concentrator
JP4615537B2 (en) Solar azimuth tracking device, solar condensing device, and solar lighting system using the same
KR102223570B1 (en) Solar thermal powered thermoelectric generator system with solar tracker
US20140261392A1 (en) Solar Collector
US6425391B1 (en) Electromagnetic radiation collector system
KR20050042314A (en) Solar collecting apparatus having variable function of a collecting angle
JP3855160B2 (en) Solar radiation concentrator
KR101093773B1 (en) Sun Light Condensing Equipment
TWI684703B (en) Side concentrating solar blinds
US9344031B2 (en) Concentrator-driven, photovoltaic power generator
CN106091421B (en) A kind of solar concentrator
JP2007324387A (en) Sunlight automatic tracking device
RU2225965C1 (en) Solar unit with concentrator
KR101616757B1 (en) Device for concentrating optical radiation for localized heating by automatic solar tracking
CN206019032U (en) A kind of solar concentrator
JP3172797U (en) Sunlight collector
JP2000113703A (en) Sun tracking reflector
KR100332734B1 (en) Wall-mount type sunlighting system
KR101182834B1 (en) Ray of sun generator
JP5247416B2 (en) Sunlight collection system
KR100592426B1 (en) Apparatus for collecting of solar light
CN106225260A (en) A kind of solar energy collecting system and collection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees