WO2019112015A1 - Light concentrating unit, light concentrating device, and illumination device - Google Patents

Light concentrating unit, light concentrating device, and illumination device Download PDF

Info

Publication number
WO2019112015A1
WO2019112015A1 PCT/JP2018/044969 JP2018044969W WO2019112015A1 WO 2019112015 A1 WO2019112015 A1 WO 2019112015A1 JP 2018044969 W JP2018044969 W JP 2018044969W WO 2019112015 A1 WO2019112015 A1 WO 2019112015A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
view
auxiliary
plan
Prior art date
Application number
PCT/JP2018/044969
Other languages
French (fr)
Japanese (ja)
Inventor
浩光 手島
Original Assignee
有限会社手島通商
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社手島通商 filed Critical 有限会社手島通商
Priority to JP2019506454A priority Critical patent/JP6829494B2/en
Publication of WO2019112015A1 publication Critical patent/WO2019112015A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a light collecting unit capable of collecting more sunlight at one point, a light collecting device using the light collecting unit, and an irradiation device using the light collecting unit or the light collecting device. .
  • Patent Document 1 Japanese Utility Model Laid-Open No. 61-199061
  • this focusing unit uses a means such as a main lens 11A consisting of a normal biconvex lens having a circular plan view at the center and a circular shape in a plan view and a special shape of the lens surface around it.
  • a focusing unit 1A is presented, in which the focal point of the auxiliary lens 12A, which is made to be bent and focused, matches the focal point of the main lens 11A.
  • the auxiliary lens 12A since it is necessary to make the focal point of the auxiliary lens 12A planarly disposed around the periphery coincide with the focal point of the main lens 11A disposed at the center, the auxiliary lens 12A must be a lens of a special shape. , Not easy to manufacture.
  • the conventional light collecting unit 1A presented in this publication also has a problem that it can not cope with the increase or decrease of the light collection amount due to the change of the position of the sun according to the season or time.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-123779
  • Patent Document 3 Japanese Utility Model Laid-Open No. 3-58601
  • Patent Document 4 Japanese Patent Application Laid-Open No. 10-68904
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-321525
  • the conventional irradiation device presented in the above-mentioned publication transmits and irradiates the sunlight collected by the light collecting unit or the light collecting device through the optical fiber 14A as shown in FIG. It has the advantage of being able to cope with changes in sunshine duration and changes in the angle of incidence of sunlight, as well as increasing the collection efficiency with the optical fiber with a wide acceptance angle, but for transmission optical fiber it is a transmission loss In order to increase the amount of light collection, it is necessary to enlarge the lenses that make up the device and to increase the number of optical fibers to be used. There is also a problem that you can not
  • the temperature is suitable for heat collection up to a certain level, and the temperature exceeds the heat resistance limit.
  • the heat energy is limited to small ones, for example, when it becomes necessary to cool.
  • the present invention has been made to solve the problems of the above-described conventional light collecting unit, light collecting device and irradiation device to make sunlight sufficient energy for a base load power source, and a lens with a large diameter is used.
  • a condensing unit which makes it possible to obtain almost the same amount of concentration without using it, and further, using the above-mentioned efficient condensing unit, latitude and longitude, sunshine time and sun azimuth angle which change according to weather and season
  • a condensing device that maximizes the concentration of sunlight in a limited sunshine time on the ground by coping with a decrease in the concentration of sunlight due to the elevation angle, and further, the light collecting unit or the light collecting unit It is an object of the present invention to provide an irradiation device for efficiently using the sunlight collected by the device.
  • the condensing unit according to the present invention made to solve the above problems is a main lens which is a convex lens of a plan view circular shape disposed at the center and a convex lens of which one or more pieces are arranged around the main lens. It is characterized in that it comprises a certain auxiliary lens, and converges the sunlight incident on the incident surface of each lens to the focal point of the main lens.
  • the auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in plan view and whose outer peripheral diameter is larger than the diameter of the main lens It is characterized in that it is vertically cut at a point.
  • the auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in plan view and whose outer peripheral diameter is larger than the diameter of the main lens, and is cut vertically at a plurality of locations
  • a first auxiliary lens and a donut shape which is sequentially disposed outward from the first auxiliary lens and whose inner periphery is substantially the same as the outer periphery of the auxiliary lens located inside, and in a plurality of places in the vertical direction
  • the main lens is at the lowest position in the side view and the auxiliary lenses are disposed at the positions that are sequentially upward toward the outer side, adjustment for matching the focal points of the respective lenses becomes easy, and It is possible to prevent the upper lens from interfering with the lower lens.
  • the auxiliary lens is a convex lens having a semicircular shape in plan view, and when the chord portion is disposed on the main lens side, the auxiliary lens is provided around the main lens. It is possible to arrange a small gap and a small inclination, increase the lens area that can collect light with respect to incident light, increase the light collection efficiency per unit area, and make the entire light collection unit smaller While it is possible to increase the amount of light collection.
  • the condenser according to the present invention when the refractive index of the main lens and that of the auxiliary lens are different, it is easy to adjust the focal positions of the two to match and converge the sunlight.
  • the size of the entire light collecting unit can be freely set.
  • the main lens and the auxiliary lens are biconvex lenses and are formed so that the refractive index on the incident side of each lens and the refractive index on the output side are different, a lens having the same size and diameter in plan view Even in this case, the focal length can be changed variously, and the size of the light collecting unit can be adjusted without changing the amount of light collection.
  • the lenses can be arranged extremely efficiently per unit area, and the amount of collected light can be obtained efficiently.
  • the condensing unit according to the present invention movably on the hemispherical surface so that the optical axis of the main lens always faces the sun, efficient condensing according to the position of the sun is possible.
  • the light collecting amount can be increased, and there is no need to track the sun, and further, in the direction of the sun Since sunlight can be condensed also in the condensing unit in which the optical axes of the main lenses do not coincide, weak light can be sufficiently condensed.
  • the light collecting unit or a light collecting device comprises a light collecting unit or a light collecting device, and a tubular light collector having a heat insulating material between the outer wall and the inner wall which is a mirror surface, and an entrance where one open end of the light collector coincides with the focal point.
  • the other opening end of the light collector is formed by an irradiation port formed of an irradiation port for irradiating the condensed light introduced from the incident port, thereby losing the concentrated strong solar energy Without, it can be irradiated in the desired direction.
  • the light collecting unit or a light collecting device comprises a light collecting unit or a light collecting device, and a tubular light collecting body having a heat insulating material between the outer wall and the inner wall which is a mirror surface, and one open end of the light collecting body diffuses after the focal point It was condensed by being an irradiation port which is an incident port for introducing traveling light and is formed from an irradiation port for irradiating the other open end of the light collector introduced from the entrance port and collected light.
  • the diffused sunlight after the focal point of sunlight is to be used at different positions in different light intensities, for example, for various ecology such as organisms, microbes, pathogens, bacteria, cells and viruses as irradiation objects. Irradiation makes it possible to use the results widely for research and research.
  • the turning device has a disk shape in plan view in which the central portions of the bottom and top surfaces are open.
  • a case body supported by a plurality of spring members disposed with their central axes aligned and the upper portion of the light collector disposed between the upper outer peripheral surface and the upper surface opening inner peripheral surface; and a main body of the case body
  • the condensing unit of the present invention it is almost the case that sunlight is condensed using a large aperture lens without using a large aperture lens which is difficult to manufacture and transport and expensive as well as difficult to install.
  • the same or more light collecting effect can be exhibited, and the manufacture can also be provided easily and inexpensively.
  • the light collecting apparatus according to the present invention uses the light collecting unit with high efficiency, and the amount of collected sunlight due to the sunshine time and the azimuth and elevation angle of the sun changing according to the latitude and longitude, the weather and the season.
  • the irradiation device of the present invention is characterized in that the light collection unit or the light collection device
  • the light collection unit or the light collection device By eliminating the loss of the energy of the sunlight collected by the transmission and efficiently transmitting it, it is possible to converge the sunlight and irradiate it to one point, and on the ground, the utilization of the sunlight and its thermal energy is the most efficient in a limited sunshine time. If it can be further applied, in space, realization of a powerful solar heat focusing irradiation device is also possible.
  • FIG. 3 is a longitudinal sectional view of the embodiment shown in FIG. 2;
  • FIG. 2 is a partially enlarged perspective view of the embodiment shown in FIG. 1;
  • FIG. 2 is a schematic plan view of the embodiment according to a further improvement of the embodiment shown in FIG. 1;
  • the plane view schematic which shows the different embodiment of the condensing unit which is this invention.
  • FIG. 6A is a schematic view showing the difference in optical path due to the difference in the auxiliary lens in the present invention, wherein FIG.
  • FIG. 7A is a schematic diagram of the optical path until the incident light converges to the focal point when the auxiliary lens 13 of a semicircular plan view is a symmetrical biconvex lens;
  • (B) is an optical path until the incident light converges to the focal point in the case where the refractive index at the incident side is smaller than the refractive index at the output side when the auxiliary lens 13 in plan view semicircular is asymmetric biconvex lens and in the case of the symmetric biconvex lens.
  • (C) is a semi-circular auxiliary lens 13 in plan view is an asymmetrical biconvex lens, and the incident light in the case of a symmetrical biconvex lens is focused when the refractive index on the incident side is larger than the refractive index on the outgoing side
  • the optical path schematic which shows the difference of the optical path until it converges to f and f '.
  • the main lens 11 is an asymmetrical biconvex lens
  • it is a schematic view showing the difference of the optical path due to the difference of the auxiliary lens.
  • (A) is a biconvex lens having a semicircular plan view and the auxiliary lens 13 in plan view.
  • FIG. 6 is a schematic plan view showing a preferred embodiment of the present invention in which four auxiliary lenses 13 in plan view are arranged at equal intervals around the main lens 11, and FIG. FIG. 6B is a schematic view showing the arrangement of the auxiliary lens 13, and FIG.
  • FIG. 7B is a schematic view showing how the main lens 11 and the auxiliary lens 13 having a semicircular plan view are connected using the main lens connecting holder 46.
  • FIG. 1 is a schematic view showing a preferred embodiment of a light collecting device 2 having only one light collecting unit 1 according to the present invention, in which the auxiliary lens is an auxiliary lens 13 with a semicircular shape in plan view.
  • FIG. 1 is a schematic view showing a preferred embodiment of a light collecting device 3 according to the present invention including a plurality of light collecting units 1 whose auxiliary lenses are semicircular in plan view.
  • FIG. 1 shows a preferred embodiment of the light collecting unit 1 according to the present invention
  • the light collecting unit 1 is, as shown in FIGS. 1 (a) and 1 (b), a centrally disposed flat surface.
  • the main lens 11 is a convex lens having a circular view
  • the four auxiliary lenses 12 having the same shape and a non-circular convex lens having an arc shape in plan view disposed around the main lens 11.
  • Incident surfaces of the main lens 11 and the auxiliary lens 12 The sunlight incident on the light is made to converge on the focal point F of the main lens 11.
  • the radius R2 of the inner circumferential diameter 121 of each of the auxiliary lenses 12 is substantially equal to the radius R1 in plan view of the main lens 11, and the radius R3 of the outer circumferential diameter 122 is A plan view is formed by cutting a donut-shaped lens in a plan view larger than the radius R1 of the main lens 11 into four equally spaced planar straight lines passing through the center C and intersecting each other at an angle of 90 degrees.
  • a donut shape which is manufactured as an arc-shaped non-circular shape in a plan view and before being cut in a plan view substantially in combination with the outer periphery of the main lens 11 as shown in FIGS. 1 (a) and 1 (b)
  • the focal length f of the main lens 11 and the focal length f 'of the auxiliary lens are made to coincide with the same focal point F (see FIG. 1 (c)).
  • the light collecting amount and the light collecting efficiency substantially equal to those of the large lens of radius R3 are easier to manufacture and smaller in radius compared to the large lens which is difficult to manufacture, and the planar view donut It can be realized by combining four auxiliary lenses 12 having a plan view arc shape which is substantially equivalent to a shape obtained by dividing a shape lens into four straight lines in a radial straight line passing through the center of the donut shape lens.
  • the light collecting unit 1 shown in the present embodiment is configured as shown in FIG. 1 (b) by making the refractive index of the main lens 11 arranged at the center larger than that of the flat-view donut-shaped auxiliary lens 12 arranged at the periphery.
  • the focal length f of the main lens 11 is shorter than the focal length f ′ of the toroidal auxiliary lens 12 in plan view, as shown in FIG.
  • the main lens 11 can be positioned below the auxiliary lens 12, and an arc-shaped auxiliary lens in which light incident on the main lens 11 is arranged in a substantially donut shape in plan view.
  • the amount of light collected by the main lens 11 and the planar-view donut-shaped auxiliary lens 12 that can be collected at the focal point F can be maximized without affecting the light incident on 12.
  • the arc-shaped auxiliary lenses 12 juxtaposed in a planar view toroidal shape are asymmetric biconvex lenses, and the auxiliary lens 12 having an arc-like plan view by making the refractive index on the incident side smaller than the refractive index on the output side.
  • the focal length f 'of the lens unit 1 can be extended, and the focal point F of the entire light collecting unit 1 can be adjusted to extend forward.
  • the focal length f 'of the auxiliary lens 12 having an arc-shaped plan view is further extended.
  • the focal point F of the entire light collecting unit 1 can be adjusted to be longer.
  • the present embodiment is formed by four auxiliary lenses 12 having the same shape, the present invention is not limited to this.
  • eight auxiliary lenses 12 may be formed.
  • the number of components it is possible to mass-produce the auxiliary lens 12 by using the auxiliary lens 12 having the same shape at least equally divided, and it is possible to improve the productivity.
  • the design is easy and the arrangement is easy, but it is not limited to this, and it is a single flat-view donut-shaped lens May be
  • FIGS. 3 to 4 show an embodiment according to the improvement of the embodiment shown in FIG. 1, and in particular, the first auxiliary lenses 12a, 12a, The second auxiliary lens 12b,... 12b, and the third auxiliary lens 12c,.
  • the second auxiliary lens 12b... 12b, the third auxiliary lens 12c... 12c and the main lens 11 are arranged on the same line in a side view.
  • the refractive index of the first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, and the third auxiliary lens 12c are enlarged in order from the first auxiliary lens 12a, 12a, 12a, 12b,... 12b, and the third auxiliary lens 12c,.
  • ⁇ ⁇ By aligning the focal point of 12c with the focal point F of the main lens, it is possible to easily form a large aperture lens with a large light-gathering effect that is difficult to realize due to limitations in size and thickness as well as manufacturing difficulties.
  • a condensing effect can be mentioned, and in this case, since all the lenses can be arranged on the same line in the side view direction, the installation space of the entire condensing unit 1 can also be reduced.
  • the focal point F of the main lens 11 may be matched by arranging the lens 11 at a predetermined inclination angle (not shown).
  • FIGS. 5 to 6 relate to an embodiment according to a further improvement of the embodiment shown in FIG. 1, and the first auxiliary lenses 12a, 12a, and the second one are arranged in a donut shape in plan view.
  • auxiliary lens 12b ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 12b, a third auxiliary lens 12c ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 12c are point and small are arranged to overlap in a plurality in a plan view a first auxiliary lens 12a ⁇ ⁇ 12a, second auxiliary lens 12b ⁇ ⁇ ⁇ ⁇ ⁇ 12b, the points having the same light condensing effect and a large-diameter lens with a third auxiliary lens 12c ⁇ ⁇ ⁇ ⁇ ⁇ 12c is FIG 3 to 4
  • this embodiment includes a plurality of first auxiliary lenses 12a, 12a, and a second auxiliary lens 12b,.
  • the first auxiliary lenses 12a, 12a, the second auxiliary lenses 12b, ... 12b, and the third auxiliary lenses 12c, ... 12c have the same refractive index. Even if they are used, since their focal points can be made to coincide with the focal point F of the main lens 11, a collection equivalent to a similar large aperture lens more easily and inexpensively as compared with the embodiment described in FIGS. It has the advantage that the light unit 1 can be manufactured.
  • the main lens 11, the first auxiliary lenses 12a, 12a, the second auxiliary lenses 12b,... 12b, and the third auxiliary lenses 12c Since the distance is a distance, it is possible to prevent the upper lens from interfering with the lower lens.
  • the first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, the third auxiliary lens 12c In the embodiment shown in FIGS. 3 to 6, the first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, the third auxiliary lens 12c,.
  • the auxiliary lenses are not limited to this, as long as a plurality of auxiliary lenses arranged in a plurality of planar views in a donut shape overlap each other in plan view.
  • FIG. 7 is a schematic view showing another embodiment of the light collecting unit 1 according to the present invention.
  • the light collecting unit 1 has the center R1 disposed at the center and the main lens 11 around the main lens 11 circular in plan view.
  • the auxiliary lens 13 with a radius of the same diameter as the lens is R4 and the chord side 131 of the semicircle in plan view is thickest, and the chord side 131 of the semicircle in plan view faces the main lens 11 side 180
  • Two or four sheets are arranged at intervals of 90 degrees.
  • the auxiliary lens 13 is arranged to be inclined at an inclination angle ⁇ with respect to the main lens 11 supported horizontally in a side view.
  • the focal distances become equal when the main lens 11 and the auxiliary lens 13 having a semicircular shape in plan view have the same refractive index.
  • the focal point of the light collecting unit 1 can not be made to coincide even if the auxiliary lens 13 in a plan view semicircular shape is inclined.
  • the focal length f 'of the auxiliary lens 13 is extended, and the main lens 11 is semicircular in plan view by tilting at an inclination angle ⁇ .
  • the focus of the auxiliary lens 13 can be matched.
  • the focal length f 'of the auxiliary lens 13 is expressed by the following equation (1).
  • the smallest one of the squares that can be occupied by one light collecting unit 1 is the same as the light collecting unit 1
  • the auxiliary lens 13 in plan view and semicircular in plan view has the same radius R1 as the main lens 11 and can have only one or at most two lenses in plan view that are circular (see FIG. 8B).
  • the number of light collecting units 1 is three in terms of a circular lens in plan view.
  • the number of lenses capable of occupying a certain area is larger, and the light collection rate is higher, than in the case where the light collecting unit 1 combines a circular lens in plan view.
  • the light collecting unit 1 can greatly improve the light collection rate per unit area as compared with the light collecting unit combining a plan view circular lens. It is.
  • FIG. 9 shows still another embodiment of the light collecting unit 1 according to the present invention.
  • the auxiliary lens 13 having a semicircular shape in plan view is an asymmetric biconvex lens, and the refractive index on the incident side is on the output side.
  • the radius of curvature on the incident side is larger than the radius of curvature on the output side so as to be smaller than the refractive index of.
  • auxiliary lenses 13 having a semicircular plan view is two or four
  • the radius R4 of the auxiliary lenses 13 is equal to the radius R1 of the main lens 11
  • the entire shape is a plano semicircle
  • the viewing area is half of that of the main lens 11.
  • the refractive index of the entrance surface and the exit surface of the auxiliary lens 13 is such that the focal distance f ′ ′ of the auxiliary lens 13 is a value represented by the equation 1, and the focal points of the main lens 11 and the auxiliary lens 13 are matched.
  • FIG. 15B The inclination angle ⁇ with respect to the boundary surface between the entrance surface and the exit surface of the main lens 11 of the auxiliary lens 13 in a plan view semicircle shown in b) is sufficiently larger than the inclination angle ⁇ of the circular lens (see FIG. 15B) It is decided to be smaller.
  • the convex lens on the incident side is enlarged for the radius of curvature of the auxiliary lens 13 in a plan view semicircular shape, which is the asymmetrical biconvex lens, as compared with the output side convex lens.
  • the focal length f ' can be made longer and the inclination angle ⁇ can be made smaller as compared with the case of a semi-circular auxiliary lens 13 in plan view as shown in FIG.
  • the lens area capable of collecting light can be further increased, and the above-described improvement of the light collecting efficiency per unit area can maximize the amount of light collected as the light collecting unit.
  • the curvature radius of the incident side is such that the refractive index on the incident side is larger than the refractive index on the outgoing side, and the auxiliary lens 13 in plan view semicircular is an asymmetric biconvex lens. If it is smaller than the radius of curvature, the focal length f ′ ′ will be shorter than the symmetrical biconvex lens.
  • the amount of light is 80% or more of the total condensed amount of the auxiliary lens 13 in plan view semi-circle, the condensed amount is 40% or more in terms of circular lens and four auxiliary lenses 13 in plan view semi-circle are 160 in total Since the total amount of collected light is 260% or more in the entire light collecting unit 1, the light collecting unit 1 can realize the same amount of light collected as a large lens which is difficult to manufacture.
  • the auxiliary lens 13 having a semicircular plan view may be a plano-convex lens in which the focal length of the auxiliary lens 13 having a semicircular plan view is f ′ ′ so that the focal point coincides with the focal point of the main lens 11. It may be a symmetrical biconvex lens in which the refractive index is made smaller by making the curvature on the emission side larger than that of the main lens 11, and the focal length f 'is extended.
  • FIG. 10 is a schematic view showing a preferred embodiment in the case where the main lens 11 disposed at the center of the light collecting unit 1 of the present invention is an asymmetric biconvex lens and the refractive index on the incident side is smaller than the refractive index on the outgoing side. is there.
  • two or four auxiliary lenses 13 in plan view are semicircular, and the radius is equal to that of the main lens 11 in the same manner as described above, and the entire shape is plano semicircular in plan view area 1/2 of the main lens 11.
  • it is an asymmetric biconvex lens.
  • the main lens 11 disposed at the center may be a symmetrical biconvex lens having the same refractive index on the incident side and the outgoing side, or an asymmetric biconvex lens having a refractive index on the incident side smaller than the refractive index on the emission side.
  • the semicircular auxiliary lens 13 may be a symmetric biconvex lens having equal refractive indices on both sides as shown in FIG. 10A, or may be a planoconvex lens.
  • the focal length f of the main lens 11 can be adjusted by making the main lens 11 disposed at the center as an asymmetric biconvex lens, a symmetrical biconvex lens, or a planoconvex lens, and the size of the condensing unit It can be adjusted according to the case where it is desired to make the focal length f longer or shorter in order to determine.
  • the focal length f can be made longer than in the case of a symmetric biconvex lens and can be made shorter than in the case of a planoconvex lens. .
  • planar view semicircular auxiliary lens 13 is made as an asymmetrical biconvex lens, it is possible to increase the amount of light collection while reducing the inclination angle ⁇ of the planar view semicircular auxiliary lens 13.
  • FIG. 11 is a schematic view showing a preferred embodiment in the case of arranging four auxiliary lenses 13 in plan view in the center around the main lens 11 disposed in the center, and four auxiliary lenses 13 in plan view with a semicircular shape.
  • straight lines on the same plane as the boundary surface having the intersections of the optical axis of the main lens 11 arranged at the center and the boundary surfaces on the incident side and the output side with each other are the auxiliary lens
  • the chords of the 13 plan view semicircles are vertically bisected, and the four plan view semicircle auxiliary lenses 13 are arranged side by side at equal intervals.
  • the four plan view semicircular auxiliary lenses 13 are directed toward the main lens 11 with the plan view side disposed at the center, and the focal point of the plan view semicircular auxiliary lens 13 is set to the main lens 11. It is inclined at the inclination angle ⁇ as described above to coincide with the focal point.
  • the main lens 11 is connected by mounting the main lens connecting holder 46 having the function of adjusting the distance between the two lenses and the angle of the auxiliary lens 13 of a plan view semicircular shape in the four corners of the periphery. It is assumed to be 1.
  • the main lens 11 and the auxiliary lens 12 or the auxiliary lens 13 are a frame (not shown) for fixing each lens, a support (not shown) It is conceivable to adjust the focal length variously as long as the light path does not interfere with the light path.
  • FIG. 12 shows a preferred embodiment of the light collecting device 2 according to the present invention.
  • the light collecting unit 1 shown in FIG. 1 to FIG. As it is arranged to move on the hemispherical surface that is maximized, the amount of incident sunlight can be maximized.
  • the means for moving the hemispherical surface of the light collecting unit 1 uses a known means.
  • FIG. 13 shows another embodiment of the light collecting apparatus 3 according to the present invention.
  • the light collecting unit 1 shown in FIGS. 1 to 11 has a plurality of light collecting units 1 according to the present invention
  • the sizes of the main lens 11 and the flat-view donut-shaped auxiliary lens 12 and the cross-sectional shape of the lens are determined so that the light collection efficiency is maximized with respect to the target light collection amount.
  • the sizes of the main lens 11 and the auxiliary lens 13 in a plan view semicircle and the sectional shape of the lens in a side view are determined, and the light collecting unit 1 is made the maximum light collecting amount from the lens size determined as the target light collecting amount. Determine the number of
  • FIG. 14 is a schematic view showing a preferred embodiment of the irradiation device 4 according to the present invention.
  • the irradiation device 4 has a tubular shape having the light collecting unit 1 and a mirror inner wall 44 with little loss of light to be collected.
  • the light collector 41 is an entrance 42 whose one open end coincides with the focal point of the light collection unit 1, and the other open end of the light collector 41 is the light incident side.
  • the inner wall 44 is surrounded by a heat insulating material 45, and an outer wall 46 is formed on the outer periphery of the heat insulating material 45. ing.
  • auxiliary lenses 13 having a semicircular shape in plan view are used as the auxiliary lenses, but a toroidal auxiliary lens 12 in a planar view may be used, and the number of lenses is not limited to this.
  • the light collecting unit 1 enlarges the radii of the main lens 11 and the auxiliary lens 13 having a semicircular shape in plan view, according to the target irradiation light amount or irradiation heat amount. Then, the size, the sectional shape in a side view and the refractive index of all the constituent lenses are determined.
  • the light collecting unit 1 is a main lens supporting column 53 capable of adjusting the distance and angle with the auxiliary lens 13 of a plan view semi circular provided on four sides of the main lens 11 of the light collecting unit 1 and a plan view semi circular.
  • An auxiliary lens support 54 having a function of adjusting a distance to the irradiation device 4 provided on the side of the arc 132 of the auxiliary lens 13 in a plan view semicircle is connected to be supported by being connected.
  • the irradiation device 4 makes the optical axis of the main lens 11 coincide with the entrance 42 of the condenser 41 at the entrance 42 of the condenser 41.
  • the main lens connecting holder 51 erected at the opening end on the entrance 42 side of the light collector 4 is held by the main lens connecting holder 51, and the auxiliary lens 13 focuses on the entrance 42 of the light collector 41.
  • the main lens 11 and the auxiliary lens 13 of the light collecting unit or light collecting device The irradiation device 4 can be implemented easily and reliably and easily.
  • the inner wall 44 is a reflective wall having a mirror inner wall 44 with little loss of light that reflects the introduced sunlight, and since the periphery is surrounded by the heat insulating material 45, the collected sunlight is It is also possible to irradiate the heat energy of the solar cell without releasing it to the outside, or to collect and irradiate a large heat energy, and to transmit the heat energy of the condensed sunlight without loss.
  • the light collecting device 2 or the light collecting device 3 may be used, and in this case, the light collector 41 is placed at the focal position 21 of the light collecting device 2 or the focal position 31 of the light collecting device 3.
  • the irradiation device 4 By setting the irradiation device 4 so that the entrance 42 of the light source 42 comes, it is possible to obtain a larger amount of collected heat.
  • the tubular light collecting body 41 may be a circular pipe or a rectangular pipe, and may be a linear shape, but an L-shaped opening of the irradiation port 43 by providing a reflection mirror at an intermediate bent portion.
  • the incident light may be reflected in a direction, may be flexible, may be freely bent, and may be irradiated with sunlight collected by directing the irradiation port 43 in any direction.
  • FIG. 15 is a schematic view showing another embodiment of the irradiation device 6 according to the present invention, and the entire configuration of the irradiation device 6 is the same as that of the irradiation device 4 shown in FIG. However, the difference is that the entrance is not at the focal point of the light collecting unit but at a position for introducing diffused light after the focal point.
  • the irradiation device 6 is used by installing a plurality of light collectors 61 at different positions from the focal point F, and the diffused light of the sunlight F collected after the focal point F by the light collection unit 1 is It is used at different locations at multiple locations.
  • the irradiation device 6 of the present embodiment it is possible to effectively use the sunlight to irradiate the object according to the characteristics of different light intensity, and, for example, a living object, a microorganism, a pathogen, and a bacteria as the irradiation object -Irradiating cells, viruses, etc. to various ecology, the results can be widely used for research and research.
  • FIG. 16 is a schematic view showing still another embodiment of the irradiation device 7 according to the present invention, and the irradiation device 7 has the light collecting unit 1 and a mirror inner wall 74 with little loss of light to be collected.
  • the light collector 71 is a light entrance 71 whose one open end coincides with the focal point of the light collection unit 1 and the other open end of the light collector 71 is the light entrance.
  • the irradiation port 73 is an irradiation port 73 for irradiating the light introduced into the light collector 71 through the entrance port 72 and condensed, the inner wall 74 is surrounded by the heat insulating material 75, and an outer wall 76 is formed on the outer periphery of the heat insulating material 75. It is done.
  • connection between the light collecting unit 1 for collecting sunlight, the light collecting device 2 or the light collecting device 3 and the irradiation device 7 is connected so as to be supported by the connection support 77.
  • the irradiation device 7 differs from the irradiation device 4 shown in FIG. 14 or the irradiation device 6 shown in FIG. 15 in that the irradiation device 7 has a turning device 8 for adjusting the direction of the irradiation port 73.
  • the turning device 8 has a disk shape in plan view and is in the shape of a bottom opening in which the central portion of the upper surface 811 is open, and arranges the light collectors 71 at the centers with their central axes aligned.
  • the case body 81 is supported by a plurality of spring members 82 disposed between the upper outer peripheral surface 711 and the upper surface 811 opening inner peripheral surface 812 and the main inner peripheral surface 813 of the case body 81 is formed
  • a cylinder provided with an electric cylinder 85, and an outer peripheral surface 712 below the entrance 72 of the light collector 71, and provided with a recess 871 for holding the ring member 86 rotatably in the circumferential direction With the ring holding member 87, the.
  • the traveling body 84 has an upper surface wheel 841 in contact with the rail 83 from the upper surface, and a side wheel 842 in contact with the rail 83 from the side surface, and drives the wheels 841 and 842 by power mounted on the traveling body 84. As a result, the traveling body 84 can be driven on the rail 83.
  • the motive power uses the motor 844 and the battery 845 for operating the motor 844.
  • any other drive source may be used, and only one of the wheels may be driven.
  • the portions of the rail 83 in contact with the wheels 841 and 842 have chevron teeth, and the wheels 841 and 842 use a so-called rack and pinion type drive mechanism having chevron teeth formed on the outer periphery, A more reliable drive is possible, but of course flat rails and conventional wheels may also be used.
  • the case body 81 is composed of two parts, an upper member 814 and a lower member 815, and the upper member 814 and the lower member 815 are fixed in a state where the traveling body 84 is mounted on a rail 83 formed on the lower member 815.
  • the traveling body 84 is structured to be able to travel without being deviated from above the rail 83 by being sandwiched between the upper side member 814 and the lower side member 815.
  • the turning device 8 having the above configuration first determines the direction in which the irradiation port 73 is to be directed, moves the traveling body 84 to a position coincident with the direction, and contracts the electric cylinder 85 to contract the electric cylinder 85. Accordingly, the ring member 86 and the ring holding member 87 holding the same are pulled toward the traveling body 84, but the positions of the entrances 72 held by the plurality of spring members 82 remain fixed. Since it is possible to move only in the desired direction, the irradiation port 73 can be easily directed in the desired direction in any direction of 360 degrees.
  • Reference Signs List 1 light condensing unit 11 main lens, 12 auxiliary lens, 12a first auxiliary lens, 12b second auxiliary lens, 12c third auxiliary lens, 121 inner circumferential diameter, 122 outer circumferential diameter, 131 Chord side of semi-viewing circle, arc of plan view semi-circle of auxiliary lens of 132 plan view semi-circle, circular lens of the same radius as 14 main lens, 2 light-gathering device in case of one light-gathering unit, 21 light-gathering Focus position of the device, 3 Focusing device where a plurality of focusing units are arranged in a hemispherical shape, 31 Focus position of the focusing device 3, 4 Irradiator, 41 Focusing body, 42 Incident port, 43 Irradiation port, 44 Inner wall, 45 thermal insulation material, 51 main lens connection holder, 52 auxiliary lens connection holder, 53 main lens support column, 54 auxiliary lens support column, 6 irradiation devices, 7 irradiation 71 light collector, 711 upper outer peripheral surface

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are: a light concentrating unit that is capable of efficiently concentrating a large amount of sunlight; a light concentrating device that comprises said light concentrating unit; and an illumination device that is combined with said light concentrating device and radiates concentrated sunlight. This light concentrating unit comprises a plurality of lenses, namely, a main lens (11) that is a centrally disposed convex lens having a circular shape in a plan view, and an auxiliary lens (12) that is a convex lens having a non-circular shape in a plan view and disposed around the main lens. Sunlight incident to the incident surfaces of the lenses (11, 12) is converged upon a focal point (F) of the main lens.

Description

集光ユニット、集光装置及び照射装置Light collecting unit, light collecting device and irradiation device
 本発明は、より多くの太陽光を一点に集光可能とする集光ユニット、前記集光ユニットを用いた集光装置、及び前記集光ユニットもしくは集光装置を用いた照射装置に関するものである。 The present invention relates to a light collecting unit capable of collecting more sunlight at one point, a light collecting device using the light collecting unit, and an irradiation device using the light collecting unit or the light collecting device. .
 近年、とりわけ、2011年3月に発生した福島第一原子力発電所の事故により、原子力発電に代わるベースロード電源の開発が社会的急務となっている中で、クリーンエネルギーによる発電をその代替となすことについて盛んに議論が行われており、殊に、安全で経費の安いエネルギーの活用が望まれていることから、自然エネルギーの一つである太陽光の有効利用が図られている。 In recent years, the accident at the Fukushima Daiichi Nuclear Power Station, which occurred in March 2011, in particular, has made it a social imperative to develop a baseload power source to replace nuclear power generation, making clean energy generation its alternative There is a lot of debate about things, and in particular, because it is desirable to use safe and inexpensive energy, effective use of solar light, which is one of natural energy, is promoted.
 そして、太陽光を集光し、太陽光のエネルギーを直接発電に利用する方法として、太陽電池を用いた太陽光発電があるが、この方法は設置面積当たりの発電効率が低く、また設置方位角や仰角は固定されて一定のため、日照時間や季節による太陽の方位角や入射角の変動の影響を大きく受けてしまい集光量が著しく増減し、ベースロード電源に足る十分な発電量を得ることは困難である。 And as a method of condensing sunlight and using the energy of sunlight directly for power generation, there is solar power generation using a solar cell, but this method has a low power generation efficiency per installation area, and an installation azimuth angle And the elevation angle is fixed and constant, so it is greatly affected by fluctuations of the sun's azimuth angle and incident angle due to sunshine hours and seasons, and the amount of collected light increases or decreases significantly to obtain a sufficient amount of power generation sufficient for the base load power supply. It is difficult.
 そこで、太陽光のエネルギーを有効に利用する手段の1つとして集光レンズを用いて高エネルギーを得ることが考えられ、その際高エネルギーを得るには大口径のレンズを用いることが好ましいが、大口径のレンズは製造や運搬が容易でなく、また、重量も嵩むため装置自体も耐強度が必要であるなどの問題点がある。 Therefore, it is conceivable to obtain high energy using a condenser lens as one of the means for effectively utilizing the energy of sunlight, and in that case, it is preferable to use a large aperture lens to obtain high energy, Large-aperture lenses are not easy to manufacture and transport, and they also have problems such as the increase in weight and the need for strength of the device itself.
 このような問題点を解決するための手段の1つとして例えば実開昭61-199061号公報(特許文献1)に複数のレンズを並設することにより大径レンズと同等の集光を得る手段が提示されている。 As one of means for solving such problems, for example, means for obtaining the same light concentration as a large diameter lens by arranging a plurality of lenses in parallel in Japanese Utility Model Laid-Open No. 61-199061 (Patent Document 1) Is presented.
 この集光ユニットは、図18に示すように、中央に平面視円形の通常の両凸レンズからなるメインレンズ11Aとその周囲に同じく平面視円形でレンズ面が特殊形状などの手段を用いて光線を屈曲集光させるようにした補助レンズ12Aの焦点を前記メインレンズ11Aの焦点と一致させる集光ユニット1Aを提示するものである。 As shown in FIG. 18, this focusing unit uses a means such as a main lens 11A consisting of a normal biconvex lens having a circular plan view at the center and a circular shape in a plan view and a special shape of the lens surface around it. A focusing unit 1A is presented, in which the focal point of the auxiliary lens 12A, which is made to be bent and focused, matches the focal point of the main lens 11A.
 しかしながら、この公報に提示されている従来の集光ユニット1Aはメインレンズ11Aおよびその周囲に並設される補助レンズ12Aが何れも平面視円形のレンズであることから互いに隣接すると単位照射面積における空隙率が大径レンズに比べて大きくなり、集光効率が良くない。 However, when the conventional condensing unit 1A presented in this publication is adjacent to each other since the main lens 11A and the auxiliary lenses 12A juxtaposed around it are both lenses in plan view, the gaps in the unit irradiation area are adjacent to each other Ratio is larger than that of the large diameter lens, and the light collection efficiency is not good.
 更に、周囲に平面的に配置される補助レンズ12Aの焦点を中央に配置されるメインレンズ11Aの焦点に合致させることが必要であるため、補助レンズ12Aを特殊な形状のレンズにしなければならず、製造が容易でない。 Furthermore, since it is necessary to make the focal point of the auxiliary lens 12A planarly disposed around the periphery coincide with the focal point of the main lens 11A disposed at the center, the auxiliary lens 12A must be a lens of a special shape. , Not easy to manufacture.
 また、この公報に提示されている従来の集光ユニット1Aは季節や時刻に応じた太陽の位置の変化による集光量の増減には対応できないという問題もある。 Further, the conventional light collecting unit 1A presented in this publication also has a problem that it can not cope with the increase or decrease of the light collection amount due to the change of the position of the sun according to the season or time.
 この点について、例えば特開2009-123779号公報(特許文献2)、実開平3-58601号公報(特許文献3)などに複数のレンズをドーム型の半球構造上に配置することで、太陽の方位角や入射角の変動に対応し、集光量を上げる集光装置を提供するものが示されている。 In this regard, for example, by disposing a plurality of lenses on a dome-shaped hemispherical structure in, for example, Japanese Patent Application Laid-Open No. 2009-123779 (Patent Document 2), Japanese Utility Model Laid-Open No. 3-58601 (Patent Document 3), etc. It is shown to provide a light collecting device which responds to fluctuations in azimuth and incident angle and raises the amount of light collected.
 しかしながら、これらの公報に提示されている集光装置は、季節や日時での太陽の方位角や入射角の変化に対応できるものの、図19に示すように単に平面視円形の複数枚のレンズを組み合わせドーム状に並べたものであるため、集光装置上のレンズ以外の空隙の面積が大きくなってしまい前記実開昭61-199061号公報(特許文献1)の発明と同様に単位面積当たりの集光効率が低下するという問題がある。 However, although the light collecting apparatus presented in these publications can cope with changes in the azimuth angle and the incident angle of the sun in season and date and time, as shown in FIG. Since they are arranged in a combined dome shape, the area of the space other than the lens on the light collecting device is increased, and the area per unit area is the same as the invention of the above-mentioned Japanese Utility Model Application Publication No. 61-199061 (Patent Document 1). There is a problem that the light collection efficiency decreases.
 更に、複数のレンズを組み合わせた集光ユニットや集光装置により集光した太陽光を照明などに利用するために伝送し照射する装置が特開平10-68904号公報(特許文献4)、特開2000-321525号公報(特許文献5)などに提示されている。 Furthermore, an apparatus for transmitting and irradiating sunlight for utilizing, for example, sunlight collected by a light collecting unit or a light collecting device in which a plurality of lenses are combined is disclosed in Japanese Patent Application Laid-Open No. 10-68904 (Patent Document 4) No. 2000-321525 (patent document 5) and the like.
 しかしながら、前記公報に提示されている従来の照射装置は、図20に示したように集光ユニットや集光装置により集光した太陽光を光ファイバ14Aにより伝送して照射するものであるため、日照時間の変化や太陽光の入射角の変化に対応可能であるとともに広い受光角の光ファイバにより集光効率を上昇させることができる利点を有しているが、伝送する光ファイバには伝送損失が必ずあり集光した光エネルギーが減衰することから、集光量を増大させるには装置を構成するレンズを大きくするとともに、使用する光ファイバの本数を増やす必要があるなど、装置の大型化は避けられないというも問題がある。 However, the conventional irradiation device presented in the above-mentioned publication transmits and irradiates the sunlight collected by the light collecting unit or the light collecting device through the optical fiber 14A as shown in FIG. It has the advantage of being able to cope with changes in sunshine duration and changes in the angle of incidence of sunlight, as well as increasing the collection efficiency with the optical fiber with a wide acceptance angle, but for transmission optical fiber it is a transmission loss In order to increase the amount of light collection, it is necessary to enlarge the lenses that make up the device and to increase the number of optical fibers to be used. There is also a problem that you can not
 更に、集光の目的が建築物の屋内等を照らすためのものであり、また、光ファイバを用いていることから、ある程度までの集熱量には適する、耐熱限度を超えるような温度になる場合には、冷却する必要が生じるなど、熱エネルギーは小さいものに限られる。 Furthermore, when the purpose of light collection is to illuminate the interior of a building, etc., and an optical fiber is used, the temperature is suitable for heat collection up to a certain level, and the temperature exceeds the heat resistance limit. The heat energy is limited to small ones, for example, when it becomes necessary to cool.
実開昭61-199061号公報Japanese Utility Model Publication No. 61-199061 特開2009-123779号公報JP, 2009-123779, A 実開平3-58601号公報Japanese Utility Model Application Publication No. 3-58601 特開平10-68904号公報Japanese Patent Application Laid-Open No. 10-68904 特開2000-321525号公報JP 2000-321525 A
 本発明は、前記従来の集光ユニット、集光装置及び照射装置が有する問題点を解決して太陽光をベースロード電源に足るエネルギーとするためになされたものであって、大口径のレンズを用いることなしにそれとほぼ同等の集光量を可能にする集光ユニット、更に、前記効率の良い集光ユニットを用いて緯度や経度、天候や季節に応じて変化する日照時間及び太陽の方位角や仰角に起因する太陽光の集光量の低下に対応することで、地上において限られた日照時間の中での太陽光の集光量を最大にする集光装置、更には前記集光ユニットまたは集光装置により集光した太陽光を効率よく利用するための照射装置を提供することを課題とする。 The present invention has been made to solve the problems of the above-described conventional light collecting unit, light collecting device and irradiation device to make sunlight sufficient energy for a base load power source, and a lens with a large diameter is used. A condensing unit which makes it possible to obtain almost the same amount of concentration without using it, and further, using the above-mentioned efficient condensing unit, latitude and longitude, sunshine time and sun azimuth angle which change according to weather and season A condensing device that maximizes the concentration of sunlight in a limited sunshine time on the ground by coping with a decrease in the concentration of sunlight due to the elevation angle, and further, the light collecting unit or the light collecting unit It is an object of the present invention to provide an irradiation device for efficiently using the sunlight collected by the device.
 前記課題を解決するためになされた本発明である集光ユニットは、中央に配置される平面視円形の凸レンズであるメインレンズとその周囲に1枚以上配置される平面視が非円形の凸レンズである補助レンズとからなり、前記各レンズの入射面に入射する太陽光を前記メインレンズの焦点に収束させることを特徴とする。 The condensing unit according to the present invention made to solve the above problems is a main lens which is a convex lens of a plan view circular shape disposed at the center and a convex lens of which one or more pieces are arranged around the main lens. It is characterized in that it comprises a certain auxiliary lens, and converges the sunlight incident on the incident surface of each lens to the focal point of the main lens.
 また、本発明である集光ユニットにおいて、前記補助レンズは、平面視において内周径がメインレンズの径とほぼ同一であるとともに外周径がメインレンズの径よりも大きいドーナツ形状であるとともに、複数個所において垂直方向に切分されていることを特徴とする。 Further, in the condensing unit according to the present invention, the auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in plan view and whose outer peripheral diameter is larger than the diameter of the main lens It is characterized in that it is vertically cut at a point.
 更に、補助レンズは、平面視において内周径がメインレンズの径とほぼ同一であるとともに外周径がメインレンズの径よりも大きいドーナツ形状であるとともに、複数個所において垂直方向に切分されている第一補助レンズと、前記第一補助レンズから外側に向かって順次配置され、それぞれの内周が内側に位置する補助レンズの外周とほぼ同一であるドーナツ形状であるとともに、複数個所において垂直方向に切分されている第二以降の補助レンズとからなることにより、更に大口径のレンズを容易に形成でき、きわめて大きな集光効果を挙げることができる。 Furthermore, the auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in plan view and whose outer peripheral diameter is larger than the diameter of the main lens, and is cut vertically at a plurality of locations A first auxiliary lens and a donut shape which is sequentially disposed outward from the first auxiliary lens and whose inner periphery is substantially the same as the outer periphery of the auxiliary lens located inside, and in a plurality of places in the vertical direction By using the second and subsequent auxiliary lenses that have been cut, it is possible to easily form a lens with a large aperture, and it is possible to cite an extremely large light collection effect.
 加えて、前記メインレンズと補助レンズが側面視において同一線上に配置されている場合には、上下方向に距離を隔てることもなく少ない設置空間で大口径のレンズが有する焦点距離に対する厚みの限度を超えて更に大きな集光効果を挙げることが可能である。 In addition, when the main lens and the auxiliary lens are arranged on the same line in side view, there is no distance in the vertical direction, and the thickness limit to the focal length of the large aperture lens in the small installation space is small. It is possible to raise the light collection effect further beyond.
 また、側面視において前記メインレンズが最下位であって、前記補助レンズが外側に向かって順次上方となる位置に配置されていることで、各レンズの焦点を一致させる調整が容易となり、また、上方に位置するレンズが下方に位置するレンズに干渉するのを防止することができる。 In addition, since the main lens is at the lowest position in the side view and the auxiliary lenses are disposed at the positions that are sequentially upward toward the outer side, adjustment for matching the focal points of the respective lenses becomes easy, and It is possible to prevent the upper lens from interfering with the lower lens.
 また、本発明である集光ユニットにおいて、補助レンズが平面視半円形である凸レンズであって、弦部がメインレンズ側に位置するよう配置した場合には、メインレンズの周囲に補助レンズとの空隙が少なく、傾斜も小さく配置することが可能となり、入射光に対して集光可能なレンズ面積を大きくでき、また単位面積当たりの集光効率を上げることができ、集光ユニット全体は小さくすることができる一方で集光量を増加させることが可能となる。 Further, in the light collecting unit of the present invention, the auxiliary lens is a convex lens having a semicircular shape in plan view, and when the chord portion is disposed on the main lens side, the auxiliary lens is provided around the main lens. It is possible to arrange a small gap and a small inclination, increase the lens area that can collect light with respect to incident light, increase the light collection efficiency per unit area, and make the entire light collection unit smaller While it is possible to increase the amount of light collection.
 特に、本発明である集光装置において、前記メインレンズと前記補助レンズの屈折率が異なっている場合には、両者の焦点位置を一致するように調整して太陽光を収束させることが容易となり、集光ユニット全体の大きさも自由に設定できる。 In particular, in the condenser according to the present invention, when the refractive index of the main lens and that of the auxiliary lens are different, it is easy to adjust the focal positions of the two to match and converge the sunlight. The size of the entire light collecting unit can be freely set.
 更に、前記メインレンズおよび補助レンズは両凸レンズであって、それぞれのレンズの入射側の屈折率と出射側の屈折率が異なるように形成されている場合には、平面視同じ大きさや径のレンズであっても焦点距離を様々に変化させることができ、集光量を変えずに集光ユニットの大きさを調整することができる。 Furthermore, when the main lens and the auxiliary lens are biconvex lenses and are formed so that the refractive index on the incident side of each lens and the refractive index on the output side are different, a lens having the same size and diameter in plan view Even in this case, the focal length can be changed variously, and the size of the light collecting unit can be adjusted without changing the amount of light collection.
 更にまた、前記補助レンズ4枚をメインレンズ周囲に等間隔に配置した場合には、単位面積あたりに極めて効率よくレンズを配置することができ、効率的に集光量を得ることができる。 Furthermore, when the four auxiliary lenses are arranged at equal intervals around the main lens, the lenses can be arranged extremely efficiently per unit area, and the amount of collected light can be obtained efficiently.
 また、前記本発明である集光ユニットを前記メインレンズの光軸が太陽方向を常に向くように半球面の上を移動可能に配置することにより太陽の位置に応じた効率的な集光が可能となり、或いは前記発明である集光ユニットを複数、半球状に配置させた集光装置とすることにより、集光量を増加させることができるとともに、太陽を追尾する必要がなく、更には太陽方向にメインレンズの光軸が一致しない集光ユニットにおいても太陽光を集光することができるため、弱い光も十分に集光することができる。 Further, by arranging the condensing unit according to the present invention movably on the hemispherical surface so that the optical axis of the main lens always faces the sun, efficient condensing according to the position of the sun is possible. Or, by using a plurality of light collecting units according to the invention arranged in a hemispherical shape, the light collecting amount can be increased, and there is no need to track the sun, and further, in the direction of the sun Since sunlight can be condensed also in the condensing unit in which the optical axes of the main lenses do not coincide, weak light can be sufficiently condensed.
 更に、集光ユニットまたは集光装置と、外壁と鏡面である内壁との間に断熱材を有する管状の集光体からなり、前記集光体の一方の開口端が前記焦点と一致する入射口であるとともに、前記集光体の他方の開口端が前記入射口から導入され集光した光を照射する照射口より形成される照射装置としたことにより、集光した強力な太陽エネルギーを損失させることなく、希望する方向に照射することができる。 Furthermore, it comprises a light collecting unit or a light collecting device, and a tubular light collector having a heat insulating material between the outer wall and the inner wall which is a mirror surface, and an entrance where one open end of the light collector coincides with the focal point. And the other opening end of the light collector is formed by an irradiation port formed of an irradiation port for irradiating the condensed light introduced from the incident port, thereby losing the concentrated strong solar energy Without, it can be irradiated in the desired direction.
 また、集光ユニットまたは集光装置と、外壁と鏡面である内壁との間に断熱材を有する管状の集光体からなり、前記集光体の一方の開口端が前記焦点以後の拡散していく光を導入する入射口であるとともに、前記集光体の他方の開口端が前記入射口から導入され集光した光を照射する照射口より形成される照射装置としたことにより、集光した太陽光の焦点以後の拡散する太陽光を、複数の任意の位置で異なる光度のものを利用するものとし、例えば照射対象物として生物・微生物・病原体・細菌・細胞・ウィルスなど様々な生態に対し照射し、その結果を調査や研究等に広く役立てることが可能となる。 In addition, it comprises a light collecting unit or a light collecting device, and a tubular light collecting body having a heat insulating material between the outer wall and the inner wall which is a mirror surface, and one open end of the light collecting body diffuses after the focal point It was condensed by being an irradiation port which is an incident port for introducing traveling light and is formed from an irradiation port for irradiating the other open end of the light collector introduced from the entrance port and collected light. The diffused sunlight after the focal point of sunlight is to be used at different positions in different light intensities, for example, for various ecology such as organisms, microbes, pathogens, bacteria, cells and viruses as irradiation objects. Irradiation makes it possible to use the results widely for research and research.
 更にまた、前記照射口の向きを360度変更する転回装置を備えており、前記転回装置は、底面および上面の中央部が開口した平面視円盤形であってその中央に前記集光体を互いの中心軸を一致させて配置し前記集光体の上部を該上部外周面と前記上面開口部内周面との間に配置した複数のばね部材により支持するケース体と、前記ケース体の本体内周面に形成した環状のレールと、前記レール上を走行する走行体と、前記走行体と前記集光体とを接続する伸縮部材とを有するものとすることにより、容易に希望する方向に照射口を向けることが可能となる。 Furthermore, it has a turning device for changing the direction of the irradiation port by 360 degrees, and the turning device has a disk shape in plan view in which the central portions of the bottom and top surfaces are open. A case body supported by a plurality of spring members disposed with their central axes aligned and the upper portion of the light collector disposed between the upper outer peripheral surface and the upper surface opening inner peripheral surface; and a main body of the case body By providing an annular rail formed on the circumferential surface, a traveling body traveling on the rail, and an expandable member connecting the traveling body and the light collector, irradiation in a desired direction is facilitated. It is possible to turn the mouth.
 本発明である集光ユニットによれば、製造・運搬が困難で高価であるばかりか設置も困難な大口径のレンズを用いなくとも、大口径のレンズを用いて太陽光を集光したとほぼ同様、或いはそれ以上の集光効果を発揮させることができ、製造も容易で且つ安価に提供することができる。また、本発明である集光装置は、前記効率の良い集光ユニットを用いて緯度や経度、天候や季節に応じて変化する日照時間及び太陽の方位角や仰角に起因する太陽光の集光量の低下に対応することで、地上において限られた日照時間の中での太陽光の集光量を最大にすることが可能であり、本発明である照射装置は、前記集光ユニットまたは集光装置により集光した太陽光のエネルギーの損失を無くして効率よく伝送することにより、太陽光を収束し一点へ照射でき、地上では限られた日照時間で最大効率の太陽光及びその熱エネルギーの利用ができ、更に応用すれば宇宙空間においては、強力な太陽光熱集束照射装置の実現も可能である。 According to the condensing unit of the present invention, it is almost the case that sunlight is condensed using a large aperture lens without using a large aperture lens which is difficult to manufacture and transport and expensive as well as difficult to install. The same or more light collecting effect can be exhibited, and the manufacture can also be provided easily and inexpensively. Further, the light collecting apparatus according to the present invention uses the light collecting unit with high efficiency, and the amount of collected sunlight due to the sunshine time and the azimuth and elevation angle of the sun changing according to the latitude and longitude, the weather and the season. Corresponding to the reduction of the light intensity, it is possible to maximize the concentration of sunlight within limited sunshine hours on the ground, and the irradiation device of the present invention is characterized in that the light collection unit or the light collection device By eliminating the loss of the energy of the sunlight collected by the transmission and efficiently transmitting it, it is possible to converge the sunlight and irradiate it to one point, and on the ground, the utilization of the sunlight and its thermal energy is the most efficient in a limited sunshine time. If it can be further applied, in space, realization of a powerful solar heat focusing irradiation device is also possible.
本発明である集光ユニットの好ましい実施の形態の概略を示すものであり、(a)は平面視概略図、(b)は(a)におけるX-Xに沿う概略断面図、(c)は製造過程の説明図。BRIEF DESCRIPTION OF THE DRAWINGS The outline of the preferable embodiment of the condensing unit which is this invention is shown, (a) is a planar view schematic, (b) is a schematic sectional drawing in alignment with XX in (a), (c) is Explanatory drawing of a manufacturing process. 図1に示した実施の形態の改良に係る実施の形態の平面視概略図。The top view schematic of the embodiment which concerns on the improvement of the embodiment shown in FIG. 図2に示した実施の形態の縦断面図。FIG. 3 is a longitudinal sectional view of the embodiment shown in FIG. 2; 図1に示した実施の形態の部分拡大斜視図。FIG. 2 is a partially enlarged perspective view of the embodiment shown in FIG. 1; 図1に示した実施の形態の更に改良に係る実施の形態の平面視概略図。FIG. 2 is a schematic plan view of the embodiment according to a further improvement of the embodiment shown in FIG. 1; 本発明である集光ユニットの異なる実施の形態を示す平面視概略図。The plane view schematic which shows the different embodiment of the condensing unit which is this invention. 本発明である集光ユニットの更に異なる実施の形態を示すものであり、(a)(b)は平面視概略図、(c)は側面視概略断面図。The further another embodiment of the condensing unit which is this invention is shown, (a) and (b) are planar view schematic, (c) is side view schematic sectional drawing. (a)は集光ユニット1を内包できる正方形のうちで最小のものに集光ユニット1を配置した場合の概略図、(b)は前記正方形内に円形レンズを2枚配置した場合の概略図。(A) is a schematic view of the case where the condenser unit 1 is disposed at the smallest one of the squares capable of containing the condenser unit 1, (b) is a schematic view of the case where two circular lenses are disposed in the square . 本発明における補助レンズの違いによる光路の違いを示す概略図であり、(a)は平面視半円形の補助レンズ13が対称両凸レンズの場合の入射光が焦点へ収束するまでの光路概略図、(b)は平面視半円形の補助レンズ13が非対称両凸レンズの場合で入射側の屈折率が出射側の屈折率より小さい場合と対称両凸レンズの場合の入射光が焦点へ収束するまでの光路の違いを示す光路概略図、(c)は平面視半円形の補助レンズ13が非対称両凸レンズで入射側の屈折率が出射側の屈折率より大きい場合と対称両凸レンズの場合の入射光が焦点f及びf´へ収束するまでの光路の違いを示す光路概略図。FIG. 6A is a schematic view showing the difference in optical path due to the difference in the auxiliary lens in the present invention, wherein FIG. 7A is a schematic diagram of the optical path until the incident light converges to the focal point when the auxiliary lens 13 of a semicircular plan view is a symmetrical biconvex lens; (B) is an optical path until the incident light converges to the focal point in the case where the refractive index at the incident side is smaller than the refractive index at the output side when the auxiliary lens 13 in plan view semicircular is asymmetric biconvex lens and in the case of the symmetric biconvex lens. (C) is a semi-circular auxiliary lens 13 in plan view is an asymmetrical biconvex lens, and the incident light in the case of a symmetrical biconvex lens is focused when the refractive index on the incident side is larger than the refractive index on the outgoing side The optical path schematic which shows the difference of the optical path until it converges to f and f '. 本発明においてメインレンズ11が非対称両凸レンズである場合に補助レンズの違いによる光路の違いを示す概略図であり、(a)は平面視半円形の補助レンズ13が対称両凸レンズでありメインレンズ11が対称両凸レンズの場合の入射光が焦点へ収束するまでの光路の違いを示す光路概略図、(b)は平面視半円形の補助レンズ13が非対称両凸レンズでありメインレンズ11が非対称両凸レンズの場合での入射光が焦点へ収束するまでの光路を示す光路概略図。In the present invention, when the main lens 11 is an asymmetrical biconvex lens, it is a schematic view showing the difference of the optical path due to the difference of the auxiliary lens. (A) is a biconvex lens having a semicircular plan view and the auxiliary lens 13 in plan view. Optical path schematic diagram showing the difference in the optical path until the incident light converges to the focal point in the case of a symmetrical biconvex lens, (b) is an asymmetrical biconvex lens with a semicircular auxiliary lens 13 in plan view and a main lens 11 is an asymmetrical biconvex lens The optical path schematic which shows the optical path until the incident light in case of converges on a focus. 平面視半円形の補助レンズ13がメインレンズ11の周囲に等間隔に4枚配置された場合の本発明の好ましい実施の形態を示す平面視概略図であり、(a)は平面視半円形の補助レンズ13の配置を表す概略図、(b)はメインレンズ連結用ホルダー46を用いてメインレンズ11と平面視半円形の補助レンズ13を連結した様子を表す概略図。FIG. 6 is a schematic plan view showing a preferred embodiment of the present invention in which four auxiliary lenses 13 in plan view are arranged at equal intervals around the main lens 11, and FIG. FIG. 6B is a schematic view showing the arrangement of the auxiliary lens 13, and FIG. 7B is a schematic view showing how the main lens 11 and the auxiliary lens 13 having a semicircular plan view are connected using the main lens connecting holder 46. 本発明で、補助レンズが平面視半円形の補助レンズ13である集光ユニット1を1基だけ備えた集光装置2の好ましい実施形態を示す概略図。FIG. 1 is a schematic view showing a preferred embodiment of a light collecting device 2 having only one light collecting unit 1 according to the present invention, in which the auxiliary lens is an auxiliary lens 13 with a semicircular shape in plan view. 本発明で、補助レンズが平面視半円形である集光ユニット1を複数基備えた集光装置3の好ましい実施形態を示す概略図。FIG. 1 is a schematic view showing a preferred embodiment of a light collecting device 3 according to the present invention including a plurality of light collecting units 1 whose auxiliary lenses are semicircular in plan view. 本発明の照射装置4の好ましい実施形態を示す概略図であり、(a)は照射装置4と組み合わせた集光ユニット1の平面視概略図、(b)は照射装置4の側面視概略断面図。It is the schematic which shows the preferable embodiment of the irradiation apparatus 4 of this invention, (a) is the plane view schematic of the condensing unit 1 combined with the irradiation apparatus 4, (b) is the side view schematic sectional drawing of the irradiation apparatus 4. . 本発明の照射装置6の異なる実施形態を示す概略図。Schematic which shows another embodiment of the irradiation apparatus 6 of this invention. 本発明の照射装置7の更に異なる実施形態を示す概略図であり、(a)は平面視概略図、(b)は側面視概略断面図。It is the schematic which shows the further another embodiment of the irradiation apparatus 7 of this invention, (a) is a planar view schematic, (b) is a side view schematic sectional drawing. メインレンズ11と半径R1が等しい円形レンズを4枚組み合わせた集光ユニットの平面視概略図であり、(a)は前記集光ユニットの平面視概略図、(b)は前記集光ユニットの側面視概略断面図。It is the plane view schematic diagram which combined the main lens 11 and four circular lenses with the same radius R1 in plan view, (a) is the plane view schematic of the light collecting unit, (b) is the side of the light collecting unit Visual schematic sectional drawing. 集光ユニットの従来例における概略を示す説明図であり、(a)は平面図、(b)は側面図。It is explanatory drawing which shows the outline in the prior art example of a condensing unit, (a) is a top view, (b) is a side view. 集光装置の従来例を示す斜視図。The perspective view which shows the conventional example of a condensing device. 照射装置の従来例を示す説明図。Explanatory drawing which shows the prior art example of irradiation apparatus.
 以下に、本発明の好ましい実施の形態について図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明である集光ユニット1の好ましい実施の形態を示すものであり、集光ユニット1は、図1(a)および図1(b)に示すように、中央に配置される平面視円形の凸レンズであるメインレンズ11とその周囲に配置される平面視が弧状形である非円形の凸レンズである同形の4枚の補助レンズ12からなり、メインレンズ11と補助レンズ12の入射面に入射する太陽光を前記メインレンズ11の焦点Fに収束させる構成である。 FIG. 1 shows a preferred embodiment of the light collecting unit 1 according to the present invention, and the light collecting unit 1 is, as shown in FIGS. 1 (a) and 1 (b), a centrally disposed flat surface. The main lens 11 is a convex lens having a circular view, and the four auxiliary lenses 12 having the same shape and a non-circular convex lens having an arc shape in plan view disposed around the main lens 11. Incident surfaces of the main lens 11 and the auxiliary lens 12 The sunlight incident on the light is made to converge on the focal point F of the main lens 11.
 更に説明すると、前記各補助レンズ12は、例えば図1(a)に示したように内周径121の半径R2がメインレンズ11の平面視で半径R1にほぼ等しく、外周径122の半径R3が前記メインレンズ11の半径R1よりも大きい平面視ドーナツ形レンズをその中心Cを通るとともに互いに90度の角度で交差する放射状の直線で平面視4等分に切分して形成される平面視が弧状形となるような平面視非円形の形状として製造され、図1(a)及び図1(b)に示すように前記メインレンズ11の外周に組み合わせて平面視ほぼ切分する前のドーナツ形になるように配置し、且つ、メインレンズ11の焦点距離fと補助レンズの焦点距離f´とを同一の焦点Fに一致させて製造される(図1(c)参照)。 More specifically, as shown in FIG. 1A, for example, the radius R2 of the inner circumferential diameter 121 of each of the auxiliary lenses 12 is substantially equal to the radius R1 in plan view of the main lens 11, and the radius R3 of the outer circumferential diameter 122 is A plan view is formed by cutting a donut-shaped lens in a plan view larger than the radius R1 of the main lens 11 into four equally spaced planar straight lines passing through the center C and intersecting each other at an angle of 90 degrees. A donut shape which is manufactured as an arc-shaped non-circular shape in a plan view and before being cut in a plan view substantially in combination with the outer periphery of the main lens 11 as shown in FIGS. 1 (a) and 1 (b) And the focal length f of the main lens 11 and the focal length f 'of the auxiliary lens are made to coincide with the same focal point F (see FIG. 1 (c)).
 このような本実施の形態は、半径R3の大型レンズと略同等の集光量及び集光効率を、製造が難しい前記大型レンズと比べて製造が容易で半径が小さい前記メインレンズ11と平面視ドーナツ形レンズをドーナツ形レンズの中心を通る放射状の直線で平面視4等分したものと略同等の平面視弧状形の補助レンズ12を4枚組み合わせることで実現できる。 In this embodiment, the light collecting amount and the light collecting efficiency substantially equal to those of the large lens of radius R3 are easier to manufacture and smaller in radius compared to the large lens which is difficult to manufacture, and the planar view donut It can be realized by combining four auxiliary lenses 12 having a plan view arc shape which is substantially equivalent to a shape obtained by dividing a shape lens into four straight lines in a radial straight line passing through the center of the donut shape lens.
 また、本実施の形態に示した集光ユニット1は、中央に配置されるメインレンズ11の屈折率を周囲に配置する平面視ドーナツ形補助レンズ12よりも大きくすることで、図1(b)に示すようにメインレンズ11の焦点距離fが平面視ドーナツ形補助レンズ12の焦点距離f´よりも短くなる。 Further, the light collecting unit 1 shown in the present embodiment is configured as shown in FIG. 1 (b) by making the refractive index of the main lens 11 arranged at the center larger than that of the flat-view donut-shaped auxiliary lens 12 arranged at the periphery. The focal length f of the main lens 11 is shorter than the focal length f ′ of the toroidal auxiliary lens 12 in plan view, as shown in FIG.
 そのため、前記焦点Fを一致させた場合にメインレンズ11を補助レンズ12よりも下方に位置させることができ、メインレンズ11に入射する光が平面視でほぼドーナツ形に並設する弧状の補助レンズ12に入射する光に影響を及ぼさず、前記焦点Fに集光可能なメインレンズ11及び平面視ドーナツ形補助レンズ12の集光量を最大にすることができる。 Therefore, when the focal point F is matched, the main lens 11 can be positioned below the auxiliary lens 12, and an arc-shaped auxiliary lens in which light incident on the main lens 11 is arranged in a substantially donut shape in plan view. The amount of light collected by the main lens 11 and the planar-view donut-shaped auxiliary lens 12 that can be collected at the focal point F can be maximized without affecting the light incident on 12.
 更に、前記平面視ドーナツ形に並設する弧状の補助レンズ12が非対称両凸レンズであって、入射側の屈折率が出射側の屈折率よりも小さくすることにより平面視が孤状の補助レンズ12の焦点距離f´を延ばすことができ、集光ユニット1全体の焦点Fを先方に延ばすように調節することができる。 Furthermore, the arc-shaped auxiliary lenses 12 juxtaposed in a planar view toroidal shape are asymmetric biconvex lenses, and the auxiliary lens 12 having an arc-like plan view by making the refractive index on the incident side smaller than the refractive index on the output side. The focal length f 'of the lens unit 1 can be extended, and the focal point F of the entire light collecting unit 1 can be adjusted to extend forward.
 更にまた、同様にメインレンズ11が非対称両凸レンズであって、入射側の屈折率が出射側の屈折率よりも小さい場合にも、平面視が弧状の補助レンズ12の焦点距離f´をより延ばすことで、集光ユニット1全体の焦点Fをより延ばすように調節することもできる。 Furthermore, similarly, even when the main lens 11 is an asymmetrical biconvex lens and the refractive index on the incident side is smaller than the refractive index on the emission side, the focal length f 'of the auxiliary lens 12 having an arc-shaped plan view is further extended. Thus, the focal point F of the entire light collecting unit 1 can be adjusted to be longer.
 尚、本実施の形態は同一形状の4枚の補助レンズ12により形成されているが、これに限るものでなく、例えば図2に示したように8枚の補助レンズ12により形成してもよく、構成する枚数は問わない。ただ、少なくとも等分されて同一形状の補助レンズ12を用いることで補助レンズ12を多量生産することが可能であり、生産性の向上を図ることができる。勿論、構成枚数についても4枚や8枚の場合には設計が容易であるとともに配置し易いという利点を有しているが、これに限るものでなく、1枚の平面視ドーナツ形レンズであってもよい。 Although the present embodiment is formed by four auxiliary lenses 12 having the same shape, the present invention is not limited to this. For example, as shown in FIG. 2, eight auxiliary lenses 12 may be formed. There is no limitation on the number of components. However, it is possible to mass-produce the auxiliary lens 12 by using the auxiliary lens 12 having the same shape at least equally divided, and it is possible to improve the productivity. Of course, in the case of four or eight lenses, there is an advantage that the design is easy and the arrangement is easy, but it is not limited to this, and it is a single flat-view donut-shaped lens May be
 図3乃至図4は、前記図1に示した実施の形態の改良に係る実施の形態を示すものであり、特に、平面視ドーナツ形に配置された第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cが平面視において複数に重ねて配置されているとともに第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cおよびメインレンズ11が側面視において同一線上に配置されている。 FIGS. 3 to 4 show an embodiment according to the improvement of the embodiment shown in FIG. 1, and in particular, the first auxiliary lenses 12a, 12a, The second auxiliary lens 12b,... 12b, and the third auxiliary lens 12c,. The second auxiliary lens 12b... 12b, the third auxiliary lens 12c... 12c and the main lens 11 are arranged on the same line in a side view.
 また、本実施の形態では、第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cの屈折率を内側の第一の補助レンズ12a・・12aから順に大きく形成されており、第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・12b,第三の補助レンズ12c・・・・・・12cの焦点をメインレンズの焦点Fに合致させることにより、大きさや厚みの制限更には製造上の困難性から実現が難しい集光効果の大きい大口径のレンズを容易に形成でき、きわめて大きな集光効果を挙げることができ、特にこの場合には全てのレンズを側面視方向において同一線上に配置することができることから集光ユニット1全体の設置空間も少なくすることができる。尚、第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cをそれぞれ、側面において水平に支持されるメインレンズ11に対して所定の傾斜角だけ傾斜させて配置させることによりメインレンズ11の焦点Fに一致させてもよい(図示せず)。 Further, in the present embodiment, the refractive index of the first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, and the third auxiliary lens 12c,. The first auxiliary lenses 12a, 12a are enlarged in order from the first auxiliary lens 12a, 12a, 12a, 12b,... 12b, and the third auxiliary lens 12c,. · · By aligning the focal point of 12c with the focal point F of the main lens, it is possible to easily form a large aperture lens with a large light-gathering effect that is difficult to realize due to limitations in size and thickness as well as manufacturing difficulties. A condensing effect can be mentioned, and in this case, since all the lenses can be arranged on the same line in the side view direction, the installation space of the entire condensing unit 1 can also be reduced.The first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, and the third auxiliary lens 12c,. The focal point F of the main lens 11 may be matched by arranging the lens 11 at a predetermined inclination angle (not shown).
 図5乃至図6は前記図1に示した実施の形態の更に改良に係る実施の形態に係るものであり、平面視ドーナツ形に配置された第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cが平面視において複数に重ねて配置されている点および小型の第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cを用いて大口径のレンズと同等の集光効果を有する点については前記図3乃至4に記載した実施の形態と共通であるが、本実施の形態は、ドーナツ形に配置された複数の第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cをメインレンズ11を最下位としてその上方位置に順次所定の距離を隔てて配置されている点が異なる。 FIGS. 5 to 6 relate to an embodiment according to a further improvement of the embodiment shown in FIG. 1, and the first auxiliary lenses 12a, 12a, and the second one are arranged in a donut shape in plan view. auxiliary lens 12b · · · · · · 12b, a third auxiliary lens 12c · · · · · · 12c are point and small are arranged to overlap in a plurality in a plan view a first auxiliary lens 12a · · 12a, second auxiliary lens 12b · · · · · · 12b, the points having the same light condensing effect and a large-diameter lens with a third auxiliary lens 12c · · · · · · 12c is FIG 3 to 4 In common with the embodiment described in the present embodiment, this embodiment includes a plurality of first auxiliary lenses 12a, 12a, and a second auxiliary lens 12b,. Third auxiliary lens 12c ... 1 c that are arranged sequentially at a predetermined distance to its upper position the main lens 11 as the least significant is different.
 本実施の形態は、第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cを同一の屈折率のものを用いてもそれらの焦点をメインレンズ11の焦点Fに一致させることができることから前記図3乃至図4に記載の実施の形態に比べてより容易且つ安価に同様な大口径レンズと同等の集光ユニット1を製造することができるという利点を有している。 In this embodiment, the first auxiliary lenses 12a, 12a, the second auxiliary lenses 12b, ... 12b, and the third auxiliary lenses 12c, ... 12c have the same refractive index. Even if they are used, since their focal points can be made to coincide with the focal point F of the main lens 11, a collection equivalent to a similar large aperture lens more easily and inexpensively as compared with the embodiment described in FIGS. It has the advantage that the light unit 1 can be manufactured.
 尚、メインレンズ11、第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cは互いに側面視において所定の距離だけ離れているので上方に位置するレンズが下方に位置するレンズに干渉するのを防止することができる。尚、図3乃至図6に示した実施の形態では第一の補助レンズ12a・・12a,第二の補助レンズ12b・・・・・・12b,第三の補助レンズ12c・・・・・・12cとして三重のドーナツ形としたが補助レンズは複数の平面視ドーナツ形に配置された補助レンズが平面視において複数に重ねて配置されていればよく、これに限るものではない。 The main lens 11, the first auxiliary lenses 12a, 12a, the second auxiliary lenses 12b,... 12b, and the third auxiliary lenses 12c,. Since the distance is a distance, it is possible to prevent the upper lens from interfering with the lower lens. In the embodiment shown in FIGS. 3 to 6, the first auxiliary lens 12a, 12a, the second auxiliary lens 12b,... 12b, the third auxiliary lens 12c,. However, the auxiliary lenses are not limited to this, as long as a plurality of auxiliary lenses arranged in a plurality of planar views in a donut shape overlap each other in plan view.
 図7は本発明である集光ユニット1の異なる実施の形態を示す概略図であり、集光ユニット1は、中央に配置される半径がR1で平面視円形のメインレンズ11の周囲に前記メインレンズと同径の半径がR4で平面視半円の弦側131が最も厚い平面視半円形の補助レンズ13を、平面視半円の弦側131がメインレンズ11側を向くようにして互いに180度または90度の間隔で2枚または4枚が配置されている。また、前記補助レンズ13は図6(c)に示すように側面視において水平に支持されるメインレンズ11に対して傾斜角αだけ傾斜させて配置される。 FIG. 7 is a schematic view showing another embodiment of the light collecting unit 1 according to the present invention. The light collecting unit 1 has the center R1 disposed at the center and the main lens 11 around the main lens 11 circular in plan view. The auxiliary lens 13 with a radius of the same diameter as the lens is R4 and the chord side 131 of the semicircle in plan view is thickest, and the chord side 131 of the semicircle in plan view faces the main lens 11 side 180 Two or four sheets are arranged at intervals of 90 degrees. Further, as shown in FIG. 6C, the auxiliary lens 13 is arranged to be inclined at an inclination angle α with respect to the main lens 11 supported horizontally in a side view.
 ところで、例えばメインレンズ11と補助レンズ13が対称両凸レンズにより構成すると、メインレンズ11と平面視半円形の補助レンズ13を同じ屈折率とした場合には、焦点距離が等しくなることから傾斜角αで平面視半円形の補助レンズ13を傾斜させても集光ユニット1の焦点を一致させることができないことがある。 By the way, for example, when the main lens 11 and the auxiliary lens 13 are configured by a symmetrical biconvex lens, the focal distances become equal when the main lens 11 and the auxiliary lens 13 having a semicircular shape in plan view have the same refractive index. In some cases, the focal point of the light collecting unit 1 can not be made to coincide even if the auxiliary lens 13 in a plan view semicircular shape is inclined.
 そこで、補助レンズ13の屈折率をメインレンズ11の屈折率より小さくすることで、補助レンズ13の焦点距離f´を延ばし、傾斜角αで傾斜させることで、メインレンズ11と平面視半円形の補助レンズ13の焦点を一致させることができる。尚、補助レンズ13の焦点距離f´は以下に示す式(1)で表される。 Therefore, by making the refractive index of the auxiliary lens 13 smaller than the refractive index of the main lens 11, the focal length f 'of the auxiliary lens 13 is extended, and the main lens 11 is semicircular in plan view by tilting at an inclination angle α. The focus of the auxiliary lens 13 can be matched. The focal length f 'of the auxiliary lens 13 is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この場合には、図8(a)および図8(b)に示されるように、集光ユニット1が1基で占めることができる正方形のうちで最小のものの中に、集光ユニット1と同様の構成で周囲の平面視半円形の補助レンズ13をメインレンズ11と同じ半径R1で平面視円形のレンズは1枚または最大でも2枚しか入ることができない(図8(b)参照)。 In this case, as shown in FIGS. 8 (a) and 8 (b), the smallest one of the squares that can be occupied by one light collecting unit 1 is the same as the light collecting unit 1 With the above configuration, the auxiliary lens 13 in plan view and semicircular in plan view has the same radius R1 as the main lens 11 and can have only one or at most two lenses in plan view that are circular (see FIG. 8B).
 これに対して、図8(a)における前記正方形内のレンズ枚数を合計すると集光ユニット1は平面視円形のレンズに換算して3枚である。 On the other hand, when the number of lenses in the square in FIG. 8A is summed, the number of light collecting units 1 is three in terms of a circular lens in plan view.
 すると、集光ユニット1は平面視円形のレンズを組み合わせる場合よりも、一定の面積を占めることができるレンズの枚数が多く、集光率が高くなる。 Then, the number of lenses capable of occupying a certain area is larger, and the light collection rate is higher, than in the case where the light collecting unit 1 combines a circular lens in plan view.
 したがって、入射光遮断面Pで遮断される入射光を差し引いても、集光ユニット1は平面視円形レンズを組み合わせた集光ユニットに比べ単位面積当たりの集光率を大きく向上させることができるものである。 Therefore, even if the incident light blocked by the incident light blocking surface P is subtracted, the light collecting unit 1 can greatly improve the light collection rate per unit area as compared with the light collecting unit combining a plan view circular lens. It is.
 図9は本発明である集光ユニット1の更に異なる実施の形態を示すものであり、本実施の形態は、平面視半円形の補助レンズ13が非対称両凸レンズで入射側の屈折率が出射側の屈折率よりも小さくなるよう入射側の曲率半径が出射側の曲率半径より大きく形成されている。 FIG. 9 shows still another embodiment of the light collecting unit 1 according to the present invention. In this embodiment, the auxiliary lens 13 having a semicircular shape in plan view is an asymmetric biconvex lens, and the refractive index on the incident side is on the output side. The radius of curvature on the incident side is larger than the radius of curvature on the output side so as to be smaller than the refractive index of.
 また、平面視が半円形の補助レンズ13の枚数は2枚または4枚であり、それらの補助レンズ13の半径R4はメインレンズ11の半径R1と等しく、全体の形状は平面視半円形で平面視面積はメインレンズ11の1/2である。 In addition, the number of auxiliary lenses 13 having a semicircular plan view is two or four, the radius R4 of the auxiliary lenses 13 is equal to the radius R1 of the main lens 11, and the entire shape is a plano semicircle The viewing area is half of that of the main lens 11.
 更に、補助レンズ13の入射面と出射面の屈折率は、補助レンズ13の焦点距離f´´を数1で表される値とし、且つ、メインレンズ11と補助レンズ13の焦点を一致させるとともに、集光可能なレンズ面積を、平面視半円形の補助レンズ13をメインレンズと同じ半径R1で1枚の円形レンズとする場合に集光可能なレンズ面積と比べて増加させるため、図9(b)に示される平面視半円形の補助レンズ13のメインレンズ11の入射面と出射面との境界面に対する傾斜角αが、円形レンズの傾斜角β(図15(b)参照)よりも十分小さくなるよう決定される。 Further, the refractive index of the entrance surface and the exit surface of the auxiliary lens 13 is such that the focal distance f ′ ′ of the auxiliary lens 13 is a value represented by the equation 1, and the focal points of the main lens 11 and the auxiliary lens 13 are matched. In order to increase the lens area capable of collecting light as compared with the lens area capable of collecting light when the auxiliary lens 13 having a semicircular shape in plan view is formed into one circular lens with the same radius R1 as the main lens, FIG. The inclination angle α with respect to the boundary surface between the entrance surface and the exit surface of the main lens 11 of the auxiliary lens 13 in a plan view semicircle shown in b) is sufficiently larger than the inclination angle β of the circular lens (see FIG. 15B) It is decided to be smaller.
 更に説明すると、図9(b)に示されるように前記非対称両凸レンズである平面視半円形の補助レンズ13については入射側の凸レンズを出射側凸レンズに比べて曲率半径を大きくすることで、図9(a)に示されるような平面視半円形の補助レンズ13が入射側と出射側で屈折率が等しい対称両凸レンズの場合に比べ、焦点距離f´を長くでき、前記傾斜角αを小さくできることから集光可能なレンズ面積をより大きくできるとともに、前述の単位面積当たりの集光効率向上により集光ユニットとしての集光量を最大とすることができる。 To explain further, as shown in FIG. 9 (b), the convex lens on the incident side is enlarged for the radius of curvature of the auxiliary lens 13 in a plan view semicircular shape, which is the asymmetrical biconvex lens, as compared with the output side convex lens. The focal length f 'can be made longer and the inclination angle α can be made smaller as compared with the case of a semi-circular auxiliary lens 13 in plan view as shown in FIG. As a result, the lens area capable of collecting light can be further increased, and the above-described improvement of the light collecting efficiency per unit area can maximize the amount of light collected as the light collecting unit.
 また、図9(c)に示されるように平面視半円形の補助レンズ13が非対称両凸レンズで入射側の屈折率が出射側の屈折率よりも大きくなるよう入射側の曲率半径が出射側の曲率半径より小さい場合には、焦点距離f´´は前記対称両凸レンズよりも短くなってしまう。 Further, as shown in FIG. 9C, the curvature radius of the incident side is such that the refractive index on the incident side is larger than the refractive index on the outgoing side, and the auxiliary lens 13 in plan view semicircular is an asymmetric biconvex lens. If it is smaller than the radius of curvature, the focal length f ′ ′ will be shorter than the symmetrical biconvex lens.
 以上により、中央に配置したメインレンズ11の焦点に、周囲の平面視半円形の補助レンズ13の焦点Fを一致させつつ、平面視半円形の補助レンズ13は傾斜による損失は抑えられ、その集光量は平面視半円形の補助レンズ13の全集光量の80%以上になり、円形レンズ換算で集光量は40%以上、平面視半円形の補助レンズ13が4枚で合計は円形レンズ換算で160%以上になり、集光ユニット1全体では合計で260%以上の集光量を得られることから、製造が難しい大型レンズと同等の集光量を集光ユニット1で実現できる。 By the above, while making the focal point F of the surrounding plan view semicircular auxiliary lens 13 coincident with the focal point of the main lens 11 disposed at the center, the loss due to inclination of the plan view semicircular auxiliary lens 13 is suppressed. The amount of light is 80% or more of the total condensed amount of the auxiliary lens 13 in plan view semi-circle, the condensed amount is 40% or more in terms of circular lens and four auxiliary lenses 13 in plan view semi-circle are 160 in total Since the total amount of collected light is 260% or more in the entire light collecting unit 1, the light collecting unit 1 can realize the same amount of light collected as a large lens which is difficult to manufacture.
 尚、平面視が半円形の補助レンズ13は、その焦点がメインレンズ11の焦点と一致するように平面視半円形の補助レンズ13の焦点距離をf´´とした平凸レンズでもよく、入射側と出射側の曲率をメインレンズ11より大きくすることで屈折率を小さくし焦点距離f´を延ばした対称両凸レンズであってもよい。 The auxiliary lens 13 having a semicircular plan view may be a plano-convex lens in which the focal length of the auxiliary lens 13 having a semicircular plan view is f ′ ′ so that the focal point coincides with the focal point of the main lens 11. It may be a symmetrical biconvex lens in which the refractive index is made smaller by making the curvature on the emission side larger than that of the main lens 11, and the focal length f 'is extended.
 図10は本発明である集光ユニット1の中央に配置されるメインレンズ11が非対称両凸レンズで入射側の屈折率が出射側の屈折率よりも小さい場合の好ましい実施の形態を示す概略図である。 FIG. 10 is a schematic view showing a preferred embodiment in the case where the main lens 11 disposed at the center of the light collecting unit 1 of the present invention is an asymmetric biconvex lens and the refractive index on the incident side is smaller than the refractive index on the outgoing side. is there.
 この場合、平面視半円形の補助レンズ13は2枚または4枚で、半径は前述と同様にメインレンズ11と等しく全体の形状は平面視半円形で平面視面積はメインレンズ11の1/2であり、図10(b)に示されるように非対称両凸レンズであるのが好ましい。 In this case, two or four auxiliary lenses 13 in plan view are semicircular, and the radius is equal to that of the main lens 11 in the same manner as described above, and the entire shape is plano semicircular in plan view area 1/2 of the main lens 11. Preferably, as shown in FIG. 10 (b), it is an asymmetric biconvex lens.
 尚、中央に配置されるメインレンズ11は屈折率が入射側と出射側で等しい対称両凸レンズでもよく、入射側の屈折率が出射側の屈折率よりも小さい非対称両凸レンズでもよいし、平面視半円形の補助レンズ13は図10(a)に示されるように両側の屈折率が等しい対称両凸レンズでも良いし、また平凸レンズでもよい。 The main lens 11 disposed at the center may be a symmetrical biconvex lens having the same refractive index on the incident side and the outgoing side, or an asymmetric biconvex lens having a refractive index on the incident side smaller than the refractive index on the emission side. The semicircular auxiliary lens 13 may be a symmetric biconvex lens having equal refractive indices on both sides as shown in FIG. 10A, or may be a planoconvex lens.
 更に説明すると、中央に配置されるメインレンズ11を非対称両凸レンズとするか、対称両凸レンズとするか、平凸レンズとするかにより、メインレンズ11の焦点距離fを調整でき、集光ユニットのサイズを決定するに当たり焦点距離fを長くしたい場合や短くしたい場合に応じて調整することができる。 Further explaining, the focal length f of the main lens 11 can be adjusted by making the main lens 11 disposed at the center as an asymmetric biconvex lens, a symmetrical biconvex lens, or a planoconvex lens, and the size of the condensing unit It can be adjusted according to the case where it is desired to make the focal length f longer or shorter in order to determine.
 そして、図10(b)に示したように中央に配置されるメインレンズ11を非対称両凸レンズにする場合には、焦点距離fを対称両凸レンズの場合より長くでき、平凸レンズの場合より短くできる。 When the main lens 11 disposed at the center is an asymmetric biconvex lens as shown in FIG. 10B, the focal length f can be made longer than in the case of a symmetric biconvex lens and can be made shorter than in the case of a planoconvex lens. .
 加えて、平面視半円形の補助レンズ13を非対称両凸レンズとすることで、平面視半円形の補助レンズ13の傾斜角αを小さくもしつつ、集光量は増加させることができる。 In addition, by making the planar view semicircular auxiliary lens 13 as an asymmetrical biconvex lens, it is possible to increase the amount of light collection while reducing the inclination angle α of the planar view semicircular auxiliary lens 13.
 図11は平面視半円形の補助レンズ13を中央に配置したメインレンズ11の周囲に4枚配置する場合の好ましい実施の形態を示す概略図であり、4枚の平面視半円形の補助レンズ13の配置位置は、中央に配置したメインレンズ11の光軸と入射側及び出射側の境界面との交点を互いの交点とする境界面と同一平面上にある互いに直行する直線が、前記補助レンズ13の平面視半円の弦を垂直に2等分するようにし、且つ、4枚の平面視半円形の補助レンズ13は互いに等間隔に並設する。 FIG. 11 is a schematic view showing a preferred embodiment in the case of arranging four auxiliary lenses 13 in plan view in the center around the main lens 11 disposed in the center, and four auxiliary lenses 13 in plan view with a semicircular shape. In the arrangement position of the auxiliary lens, straight lines on the same plane as the boundary surface having the intersections of the optical axis of the main lens 11 arranged at the center and the boundary surfaces on the incident side and the output side with each other are the auxiliary lens The chords of the 13 plan view semicircles are vertically bisected, and the four plan view semicircle auxiliary lenses 13 are arranged side by side at equal intervals.
 更に説明すると、4枚の平面視半円形の補助レンズ13は平面視弦側を中央に配置したメインレンズ11の方へ向け、更に前記平面視半円形の補助レンズ13の焦点をメインレンズ11の焦点と一致するよう前述と同様傾斜角αで傾ける。 To explain further, the four plan view semicircular auxiliary lenses 13 are directed toward the main lens 11 with the plan view side disposed at the center, and the focal point of the plan view semicircular auxiliary lens 13 is set to the main lens 11. It is inclined at the inclination angle α as described above to coincide with the focal point.
 ここで、メインレンズ11は周囲の四方に前記平面視半円形の補助レンズ13を両レンズの遠近や角度を調整する機能を有するメインレンズ連結用ホルダー46を装着することにより連結し、集光ユニット1とする。 Here, the main lens 11 is connected by mounting the main lens connecting holder 46 having the function of adjusting the distance between the two lenses and the angle of the auxiliary lens 13 of a plan view semicircular shape in the four corners of the periphery. It is assumed to be 1.
 なお、図1乃至図11に記載した集光ユニット1の各実施の形態において、メインレンズ11および補助レンズ12または補助レンズ13は、各レンズを固定するフレーム(図示せず)、支柱(図示せず)等が、光の進路の支障とならない範囲で、焦点距離を様々に調整することが考えられる。 In each embodiment of the light collecting unit 1 described in FIGS. 1 to 11, the main lens 11 and the auxiliary lens 12 or the auxiliary lens 13 are a frame (not shown) for fixing each lens, a support (not shown) It is conceivable to adjust the focal length variously as long as the light path does not interfere with the light path.
 図12は本発明である集光装置2の好ましい実施の形態を示すものであり、例えば前記図1乃至図11に示した集光ユニット1が各焦点位置21を中心として太陽光の集光量が最大となるような半球面上を移動するように配置されているので太陽光の入射量を最大化することができる。尚、集光ユニット1の半球面上を移動させる手段は周知の手段を用いる。 FIG. 12 shows a preferred embodiment of the light collecting device 2 according to the present invention. For example, the light collecting unit 1 shown in FIG. 1 to FIG. As it is arranged to move on the hemispherical surface that is maximized, the amount of incident sunlight can be maximized. The means for moving the hemispherical surface of the light collecting unit 1 uses a known means.
 また、図13は、本発明である集光装置3の異なる実施の形態を示すもので、例えば前記図1乃至図11に示した集光ユニット1が本発明である集光ユニット1を複数、集光装置3の焦点位置31を中心として、半球状に配置した場合の集光装置3の好ましい実施の形態を示す概略図であり、配置する集光ユニット1の数は、目標とする太陽光の集光量に対する集光装置3の大きさに応じて決定する。 Further, FIG. 13 shows another embodiment of the light collecting apparatus 3 according to the present invention. For example, the light collecting unit 1 shown in FIGS. 1 to 11 has a plurality of light collecting units 1 according to the present invention, It is a schematic diagram showing a desirable embodiment of condensing device 3 at the time of arranging hemispherically focusing on focal point position 31 of condensing device 3, the number of condensing units 1 to arrange is the target sunlight It is determined according to the size of the light collecting device 3 with respect to the amount of light collected.
 更に、説明すると、目標とする太陽光の集光量に対して、集光効率が最大となるように、メインレンズ11及び平面視ドーナツ形補助レンズ12の大きさ及びレンズの側面視断面形状を決めるか、もしくはメインレンズ11及び平面視半円形の補助レンズ13の大きさ及びレンズの側面視断面形状を決め、前記目標集光量と決定したレンズサイズから最大の集光量となるように集光ユニット1の数を決定する。 Further, to explain, the sizes of the main lens 11 and the flat-view donut-shaped auxiliary lens 12 and the cross-sectional shape of the lens are determined so that the light collection efficiency is maximized with respect to the target light collection amount. Alternatively, the sizes of the main lens 11 and the auxiliary lens 13 in a plan view semicircle and the sectional shape of the lens in a side view are determined, and the light collecting unit 1 is made the maximum light collecting amount from the lens size determined as the target light collecting amount. Determine the number of
 図14は、本発明である照射装置4の好ましい実施の形態を示す概略図であり、照射装置4は、前記集光ユニット1と、集光する光の損失が少ない鏡面の内壁44を有する管状の集光体41とからなり、前記集光体41は、一方の開口端が集光ユニット1の焦点と一致する入射口42であるとともに、前記集光体41の他方の開口端が前記入射口42から前記集光体41に導入し集光した光を照射する照射口43であり、内壁44は断熱材45に周囲を囲まれており、断熱材45の外周には外壁46が形成されている。 FIG. 14 is a schematic view showing a preferred embodiment of the irradiation device 4 according to the present invention. The irradiation device 4 has a tubular shape having the light collecting unit 1 and a mirror inner wall 44 with little loss of light to be collected. The light collector 41 is an entrance 42 whose one open end coincides with the focal point of the light collection unit 1, and the other open end of the light collector 41 is the light incident side. The inner wall 44 is surrounded by a heat insulating material 45, and an outer wall 46 is formed on the outer periphery of the heat insulating material 45. ing.
 本実施の形態において補助レンズは平面視半円形の補助レンズ13を4枚用いているが、平面視ドーナツ形補助レンズ12を用いても良く、また、枚数についてもこれに限られない。 In the present embodiment, four auxiliary lenses 13 having a semicircular shape in plan view are used as the auxiliary lenses, but a toroidal auxiliary lens 12 in a planar view may be used, and the number of lenses is not limited to this.
 更に詳しく説明すると、太陽光の照射量を大きくしたい場合には集光ユニット1は、メインレンズ11及び平面視半円形の補助レンズ13の半径を大きくし、目標とする照射光量または照射熱量に応じて、構成する全てのレンズのサイズ、側面視断面形状及び屈折率を決定する。 More specifically, when it is desired to increase the irradiation amount of sunlight, the light collecting unit 1 enlarges the radii of the main lens 11 and the auxiliary lens 13 having a semicircular shape in plan view, according to the target irradiation light amount or irradiation heat amount. Then, the size, the sectional shape in a side view and the refractive index of all the constituent lenses are determined.
 また、集光ユニット1は、集光ユニット1のメインレンズ11の四方に設けられた平面視半円形の補助レンズ13との遠近や角度を調整可能なメインレンズ用支柱53及び平面視半円形の補助レンズ13の平面視半円の弧132の側に設けた照射装置4との距離を調整する機能を有する補助レンズ用支柱54とを結合することで支持されるように連結する。 Further, the light collecting unit 1 is a main lens supporting column 53 capable of adjusting the distance and angle with the auxiliary lens 13 of a plan view semi circular provided on four sides of the main lens 11 of the light collecting unit 1 and a plan view semi circular. An auxiliary lens support 54 having a function of adjusting a distance to the irradiation device 4 provided on the side of the arc 132 of the auxiliary lens 13 in a plan view semicircle is connected to be supported by being connected.
 そして、このように前記本発明である照射装置4が、前記集光体41における前記入射口42に、前記メインレンズ11がその光軸を前記集光体41の入射口42に合致するように前記集光体4の入射口42側の開口端に立設されているメインレンズ連結用ホルダー51に保持されているとともに、前記補助レンズ13がその焦点を前記集光体41の入射口42に合致するように前記開口端の前記補助レンズ用支柱54に立設される補助レンズ連結用ホルダー52に保持されている場合には、集光ユニットまたは集光装置のメインレンズ11及び補助レンズ13を確実に且つ調整容易に保持させ照射装置4を容易に実施することができる。 And, as described above, the irradiation device 4 according to the present invention makes the optical axis of the main lens 11 coincide with the entrance 42 of the condenser 41 at the entrance 42 of the condenser 41. The main lens connecting holder 51 erected at the opening end on the entrance 42 side of the light collector 4 is held by the main lens connecting holder 51, and the auxiliary lens 13 focuses on the entrance 42 of the light collector 41. In the case of being held by the auxiliary lens connecting holder 52 erected on the auxiliary lens support 54 at the opening end so as to coincide with each other, the main lens 11 and the auxiliary lens 13 of the light collecting unit or light collecting device The irradiation device 4 can be implemented easily and reliably and easily.
 ここで、前記内壁44は導入した太陽光を反射する光の損失の少ない鏡面の内壁44を有する反射壁であり、また、周囲を断熱材45に囲まれていることから、集光した太陽光の熱エネルギーを外部に逃すことなく照射することや、大きな熱エネルギーを集熱し照射することも可能であり、集光した太陽光の熱エネルギーを損失させることなく伝送することができる。 Here, the inner wall 44 is a reflective wall having a mirror inner wall 44 with little loss of light that reflects the introduced sunlight, and since the periphery is surrounded by the heat insulating material 45, the collected sunlight is It is also possible to irradiate the heat energy of the solar cell without releasing it to the outside, or to collect and irradiate a large heat energy, and to transmit the heat energy of the condensed sunlight without loss.
 なお、集光ユニット1の代わりに集光装置2または集光装置3を用いてもよく、この場合には集光装置2の焦点位置21または集光装置3の焦点位置31に集光体41の入射口42が来るように照射装置4を設置することで、更に大きな集光集熱量を得ることができる。 Note that instead of the light collecting unit 1, the light collecting device 2 or the light collecting device 3 may be used, and in this case, the light collector 41 is placed at the focal position 21 of the light collecting device 2 or the focal position 31 of the light collecting device 3. By setting the irradiation device 4 so that the entrance 42 of the light source 42 comes, it is possible to obtain a larger amount of collected heat.
 また、前記照射装置4では、管状の集光体41は円管でもよいが矩形管でもよく、直線状でもよいがL字型で途中の屈曲部に反射ミラーを設けることで照射口43の開口方向へ入射光を反射してもよく、可撓性を持っており自由に曲げることができ任意の方向へ照射口43を向けて集光した太陽光を照射できてもよい。 Further, in the above-mentioned irradiation device 4, the tubular light collecting body 41 may be a circular pipe or a rectangular pipe, and may be a linear shape, but an L-shaped opening of the irradiation port 43 by providing a reflection mirror at an intermediate bent portion. The incident light may be reflected in a direction, may be flexible, may be freely bent, and may be irradiated with sunlight collected by directing the irradiation port 43 in any direction.
 図15は、本発明である照射装置6の異なる実施の形態を示す概略図であり、照射装置6の全体の構成は図14に示した前記照射装置4と同様であるため詳細な説明は省略するが、入射口が前記集光ユニットの焦点と一致せず、前記焦点以後の拡散する光を導入する位置である点において異なる。 FIG. 15 is a schematic view showing another embodiment of the irradiation device 6 according to the present invention, and the entire configuration of the irradiation device 6 is the same as that of the irradiation device 4 shown in FIG. However, the difference is that the entrance is not at the focal point of the light collecting unit but at a position for introducing diffused light after the focal point.
 すなわち、照射装置6は焦点Fからの距離が異なる位置に集光体61を複数設置して用いられるものであり、集光ユニット1により集光した太陽光の焦点F以後の拡散する光を、複数箇所の異なる光度で利用するものである。 That is, the irradiation device 6 is used by installing a plurality of light collectors 61 at different positions from the focal point F, and the diffused light of the sunlight F collected after the focal point F by the light collection unit 1 is It is used at different locations at multiple locations.
 本実施の形態の照射装置6によれば、異なる光度ごとの特性に応じ太陽光を有効利用して対象への照射を可能とするものであり、例えば照射対象物として生物・微生物・病原体・細菌・細胞・ウィルスなど様々な生態に対し照射し、その結果を調査や研究等に広く役立てることが可能となる。 According to the irradiation device 6 of the present embodiment, it is possible to effectively use the sunlight to irradiate the object according to the characteristics of different light intensity, and, for example, a living object, a microorganism, a pathogen, and a bacteria as the irradiation object -Irradiating cells, viruses, etc. to various ecology, the results can be widely used for research and research.
 図16は、本発明である照射装置7の更に異なる実施の形態を示す概略図であり、照射装置7は、前記集光ユニット1と、集光する光の損失が少ない鏡面の内壁74を有する管状の集光体71とからなり、前記集光体71は、一方の開口端が集光ユニット1の焦点と一致する入射口72であるとともに、前記集光体71の他方の開口端が前記入射口72から前記集光体71に導入し集光した光を照射する照射口73であり、内壁74は断熱材75に周囲を囲まれており、断熱材75の外周には外壁76が形成されている。 FIG. 16 is a schematic view showing still another embodiment of the irradiation device 7 according to the present invention, and the irradiation device 7 has the light collecting unit 1 and a mirror inner wall 74 with little loss of light to be collected. The light collector 71 is a light entrance 71 whose one open end coincides with the focal point of the light collection unit 1 and the other open end of the light collector 71 is the light entrance. The irradiation port 73 is an irradiation port 73 for irradiating the light introduced into the light collector 71 through the entrance port 72 and condensed, the inner wall 74 is surrounded by the heat insulating material 75, and an outer wall 76 is formed on the outer periphery of the heat insulating material 75. It is done.
 太陽光を集光する集光ユニット1,集光装置2または集光装置3と照射装置7との連結は、接続用支柱77によって支持されるように連結する。 The connection between the light collecting unit 1 for collecting sunlight, the light collecting device 2 or the light collecting device 3 and the irradiation device 7 is connected so as to be supported by the connection support 77.
 この照射装置7は、照射口73の向きを調整する転回装置8を有している点で、図14に示した前記照射装置4または図15に示した前記照射装置6と異なる。 The irradiation device 7 differs from the irradiation device 4 shown in FIG. 14 or the irradiation device 6 shown in FIG. 15 in that the irradiation device 7 has a turning device 8 for adjusting the direction of the irradiation port 73.
 詳細に説明すると、転回装置8は、平面視円盤形で上面811の中央部が開口した底面開口の形状であってその中央に集光体71を互いの中心軸を一致させて配置し集光体71の上部を該上部外周面711と前記上面811開口部内周面812との間に配置した複数のばね部材82により支持するケース体81と、前記ケース体81の本体内周面813に形成した環状のレール83と、前記レール83上を走行可能な走行体84と、前記走行体84に一端を固定するとともに他端にリング部材86が一体に取り付けられており電力によって伸縮可能な伸縮部材である電動シリンダ85と、集光体71の入射口72の下方位置の外周面712に取り付けられ、前記リング部材86を周方向に回転可能に保持するための凹部871を設けた円筒状のリング保持部材87と、を有する。 Describing in detail, the turning device 8 has a disk shape in plan view and is in the shape of a bottom opening in which the central portion of the upper surface 811 is open, and arranges the light collectors 71 at the centers with their central axes aligned. The case body 81 is supported by a plurality of spring members 82 disposed between the upper outer peripheral surface 711 and the upper surface 811 opening inner peripheral surface 812 and the main inner peripheral surface 813 of the case body 81 is formed An annular rail 83, a traveling body 84 capable of traveling on the rail 83, and one end fixed to the traveling body 84, and a ring member 86 integrally attached to the other end, and an expandable member expandable by power A cylinder provided with an electric cylinder 85, and an outer peripheral surface 712 below the entrance 72 of the light collector 71, and provided with a recess 871 for holding the ring member 86 rotatably in the circumferential direction With the ring holding member 87, the.
 走行体84は、レール83に上面から接触する上面車輪841と、レール83に側面から接触する側面車輪842を有しており、走行体84に搭載した動力によって各車輪841,842を駆動させることによってレール83上を走行体84が駆動可能としたものである。 The traveling body 84 has an upper surface wheel 841 in contact with the rail 83 from the upper surface, and a side wheel 842 in contact with the rail 83 from the side surface, and drives the wheels 841 and 842 by power mounted on the traveling body 84. As a result, the traveling body 84 can be driven on the rail 83.
 前記動力はモータ844および前記モータ844を作動させるバッテリー845を用いたものであるが、勿論その他任意の駆動源を用いるものとしてもよく、また駆動させる車輪はいずれか片方のみとしてもよい。 The motive power uses the motor 844 and the battery 845 for operating the motor 844. Of course, any other drive source may be used, and only one of the wheels may be driven.
 レール83の各車輪841,842と接触する部分には山形の歯が付けられ、各車輪841,842は外周に山形の歯を形成した、いわゆるラック・ピニオン式の駆動機構を使用しており、より確実性を高めた駆動を可能としているが、勿論平坦なレールおよび通常の車輪を使用するものとしてもよい。 The portions of the rail 83 in contact with the wheels 841 and 842 have chevron teeth, and the wheels 841 and 842 use a so-called rack and pinion type drive mechanism having chevron teeth formed on the outer periphery, A more reliable drive is possible, but of course flat rails and conventional wheels may also be used.
 ケース体81は上側部材814と下側部材815の2部品から構成され、下側部材815に形成したレール83上に走行体84を載置した状態で上側部材814と下側部材815を固定して一体とすることで、走行体84は上側部材814と下側部材815に挟まれることによってレール83上から逸脱せずに走行できる構造としたものである。 The case body 81 is composed of two parts, an upper member 814 and a lower member 815, and the upper member 814 and the lower member 815 are fixed in a state where the traveling body 84 is mounted on a rail 83 formed on the lower member 815. By being integrally formed, the traveling body 84 is structured to be able to travel without being deviated from above the rail 83 by being sandwiched between the upper side member 814 and the lower side member 815.
 上記構成を有する転回装置8は、まず照射口73を向けたい方向を定め、その方向と一致する位置に走行体84を移動させ、電動シリンダ85を収縮させることで、前記電動シリンダ85の収縮に応じてリング部材86およびそれを保持するリング保持部材87が走行体84の方向へ引き寄せられるが、複数のバネ部材82に保持された入射口72の位置は固定されたままであって、照射口73だけを前記向けたい方向へと移動させることができるため、360度どの方向においても容易に希望する方向へと照射口73を向けることが可能となる。 The turning device 8 having the above configuration first determines the direction in which the irradiation port 73 is to be directed, moves the traveling body 84 to a position coincident with the direction, and contracts the electric cylinder 85 to contract the electric cylinder 85. Accordingly, the ring member 86 and the ring holding member 87 holding the same are pulled toward the traveling body 84, but the positions of the entrances 72 held by the plurality of spring members 82 remain fixed. Since it is possible to move only in the desired direction, the irradiation port 73 can be easily directed in the desired direction in any direction of 360 degrees.
 このとき、照射装置7は入射口72がテーパー形状となっていることで、集光体71の角度がもとの垂直状態から変わっても、集光した太陽光の集光体71内への導入に悪影響を及ぼすことがない。 At this time, since the entrance 72 of the irradiation device 7 is tapered, even if the angle of the light collector 71 changes from the original vertical state, the collected sunlight is introduced into the light collector 71. There is no negative impact on the introduction.
1 集光ユニット、11 メインレンズ、12 補助レンズ,12a 第一補助レンズ、12b 第二補助レンズ,12c 第三補助レンズ、121 内周径、122 外周径、131 平面視半円形の補助レンズの平面視半円の弦側、132 平面視半円形の補助レンズの平面視半円の弧、14 メインレンズと同半径の円形レンズ、2 集光ユニットが1基の場合の集光装置、21 集光装置の焦点位置、3 複数の集光ユニットを半球状に配置した集光装置、31 集光装置3の焦点位置、4 照射装置、41 集光体、42 入射口、43 照射口、44 内壁、45 断熱材、51 メインレンズ連結用ホルダー、52 補助レンズ連結用ホルダー、53 メインレンズ用支柱、54 補助レンズ用支柱、6 照射装置、7 照射装置、71 集光体、711 上部外周面、712 外周面、72 入射口、73 照射口、74 内壁、75 断熱材、76 外壁、77 接続用支柱、8 転回装置、81 ケース体、811 上面、812 開口部内周面、813 本体内周面、814 上側部材、815 下側部材、82 ばね部材、83 レール、84 走行体、841 上面車輪、842 側面車輪、844 モータ、845 バッテリー、85 電動シリンダ、86 リング部材、87 リング保持部材、871 凹部、P 入射光遮断面、C メインレンズの中心、R1 メインレンズの半径、R2 平面視ドーナツ形補助レンズの内周半径、R3 平面視ドーナツ形補助レンズの外周半径、R4 平面視半円形補助レンズの半径、α 平面視半円形補助レンズの傾斜角、β メインレンズと同半径の円形レンズの周囲に配置した円形レンズの傾斜角、F メインレンズの焦点位置、f メインレンズの焦点距離、f´ 平面視ドーナツ形補助レンズの焦点距離、f´´ 平面視半円形の補助レンズの焦点距離 Reference Signs List 1 light condensing unit, 11 main lens, 12 auxiliary lens, 12a first auxiliary lens, 12b second auxiliary lens, 12c third auxiliary lens, 121 inner circumferential diameter, 122 outer circumferential diameter, 131 Chord side of semi-viewing circle, arc of plan view semi-circle of auxiliary lens of 132 plan view semi-circle, circular lens of the same radius as 14 main lens, 2 light-gathering device in case of one light-gathering unit, 21 light-gathering Focus position of the device, 3 Focusing device where a plurality of focusing units are arranged in a hemispherical shape, 31 Focus position of the focusing device 3, 4 Irradiator, 41 Focusing body, 42 Incident port, 43 Irradiation port, 44 Inner wall, 45 thermal insulation material, 51 main lens connection holder, 52 auxiliary lens connection holder, 53 main lens support column, 54 auxiliary lens support column, 6 irradiation devices, 7 irradiation 71 light collector, 711 upper outer peripheral surface, 712 outer peripheral surface, 72 incident port, 73 irradiation port, 74 inner wall, 75 heat insulating material, 76 outer wall, 77 connection support, 8 turn device, 81 case body, 811 upper surface, 812 opening inner circumferential surface, 813 body circumferential surface, 814 upper member, 815 lower member, 82 spring member, 83 rail, 84 traveling body, 841 upper wheel, 842 side wheel, 844 motor, 845 battery, 85 electric cylinder, 86 ring member, 87 ring holding member, 871 concave portion, P incident light blocking surface, center of C main lens, radius of R1 main lens, R2 inner circumferential radius of donut-shaped auxiliary lens in plan view, R3 of donut-shaped auxiliary lens in plan view Outer radius, R4 Radius of semi-circular auxiliary lens in plan view, α Planar semi-circular auxiliary lens in plan view Angle of the lens, angle of inclination of the circular lens arranged around the circular lens of the same radius as the β main lens, focal position of the F main lens, focal length of the f main lens, focal distance of the f ′ planar donut auxiliary lens , F ′ ′ focal length of the semi-circular auxiliary lens in plan view

Claims (15)

  1.  中央に配置される平面視円形の凸レンズであるメインレンズとその周囲に1枚以上配置される平面視が非円形の凸レンズである補助レンズとからなり、前記各レンズの入射面に入射する太陽光を前記メインレンズの焦点に収束させることを特徴とする集光ユニット。 It consists of a main lens which is a convex lens of plane view circular arranged at the center, and an auxiliary lens which is a convex lens of one or more around which non-circular plan view is arranged, and sunlight incident on the incident surface of each lens A focusing unit for focusing the light beam on the focal point of the main lens.
  2.  前記補助レンズは、平面視において内周径がメインレンズの径とほぼ同一であるとともに外周径がメインレンズの径よりも大きいドーナツ形状であって、複数個所において垂直方向に切分されていることを特徴とする請求項1記載の集光ユニット。 The auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in plan view and whose outer peripheral diameter is larger than the diameter of the main lens, and is cut vertically at a plurality of locations The condensing unit according to claim 1, characterized in that
  3.  前記補助レンズは、平面視において内周径がメインレンズの径とほぼ同一であるとともに外周径がメインレンズの径よりも大きいドーナツ形状であって、複数個所において垂直方向に切分されている第一補助レンズと、前記第一補助レンズから外側に向かって順次配置され、それぞれの内周が内側に位置する補助レンズの外周とほぼ同一であるドーナツ形状であるとともに、複数個所において垂直方向に切分されている第二以降の補助レンズとからなることを特徴とする請求項1記載の集光ユニット。 The auxiliary lens has a donut shape whose inner peripheral diameter is substantially the same as the diameter of the main lens in a plan view and whose outer peripheral diameter is larger than the diameter of the main lens, and the auxiliary lens is vertically divided at a plurality of locations It has a donut shape which is disposed sequentially from the first auxiliary lens to the outer side sequentially from the first auxiliary lens, and the inner circumference thereof is substantially the same as the outer circumference of the inner auxiliary lens, The condensing unit according to claim 1, comprising a second and subsequent auxiliary lenses divided.
  4.  前記補助レンズが側面視において前記メインレンズと同一線上に配置されていることを特徴とする請求項1、2または3記載の集光装置。 The light collecting apparatus according to claim 1, 2 or 3, wherein the auxiliary lens is disposed on the same line as the main lens in a side view.
  5.  側面視において前記メインレンズが最下位であって、前記補助レンズが外側に向かって順次上方となる位置に配置されていることを特徴とする請求項1、2または3記載の集光装置。 4. The light collecting apparatus according to claim 1, wherein the main lens is at the lowest position in a side view, and the auxiliary lens is disposed at a position to be sequentially upward toward the outer side.
  6.  前記補助レンズは、平面視半円形である凸レンズであって、弦部がメインレンズ側に位置するよう配置されていることを特徴とする請求項1記載の集光ユニット。 The condensing unit according to claim 1, wherein the auxiliary lens is a convex lens having a semicircular shape in plan view, and a chord portion is positioned on a main lens side.
  7.  前記メインレンズと前記補助レンズの屈折率が異なっていることを特徴とする請求項1,2,3,4,5または6記載の集光ユニット。 7. The light collecting unit according to claim 1, wherein the refractive index of the main lens is different from that of the auxiliary lens.
  8.  前記メインレンズおよび補助レンズは両凸レンズであって、それぞれのレンズの入射側の屈折率と出射側の屈折率が異なることを特徴とする請求項1,2,3,4,5,6または7記載の集光ユニット。 The main lens and the auxiliary lens are biconvex lenses, and the refractive index on the incident side and the refractive index on the emission side of each lens are different. Focusing unit as described.
  9.  前記補助レンズ4枚をメインレンズ周囲に等間隔に配置したことを特徴とする請求項6記載の集光ユニット。 7. The light collecting unit according to claim 6, wherein the four auxiliary lenses are arranged at equal intervals around the main lens.
  10.  請求項1,2,3,4,5,6,7,8または9記載の集光ユニットがそれらの焦点を中心として前記メインレンズの光軸が太陽方向を常に向くように半球面上を移動可能な集光装置。 10. The condensing unit according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 moves on the hemispherical surface such that the optical axis of the main lens always points in the direction of the sun centering on their focal point Possible concentrators.
  11.  請求項1,2,3,4,5,6,7,8または9記載の集光ユニットをそれらの焦点を中心として半球状に複数配置してなる集光装置。 A light collecting apparatus comprising a plurality of the light collecting units according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9 arranged in a hemispherical shape with their focal points as centers.
  12.  請求項1,2,3,4,5,6,7,8または9記載の集光ユニット或いは請求項10または11記載の集光装置と、外壁と鏡面である内壁との間に断熱材を有する管状の集光体からなり、前記集光体の一方の開口端が前記焦点と一致する入射口であるとともに、前記集光体の他方の開口端が前記入射口から導入され集光した光を照射する照射口であることを特徴とする照射装置。 A heat insulating material is provided between the condenser unit according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, or the condenser apparatus according to claim 10 or 11, and an outer wall and an inner wall which is a mirror surface. The light collector is made of a tubular light collector, and one open end of the light collector is an entrance that coincides with the focal point, and the other open end of the light collector is condensed and introduced from the entrance. An irradiation port for irradiating the light.
  13.  請求項1,2,3,4,5,6,7,8または9記載の集光ユニット或いは請求項10または11記載の集光装置と、外壁と鏡面である内壁との間に断熱材を有する管状の集光体からなり、前記集光体の一方の開口端が前記焦点以後の拡散していく光を導入する入射口であるとともに、前記集光体の他方の開口端が前記入射口から導入され集光した光を照射する照射口であることを特徴とする照射装置。 A heat insulating material is provided between the condenser unit according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, or the condenser apparatus according to claim 10 or 11, and an outer wall and an inner wall which is a mirror surface. The light collecting body is formed of a tubular light collecting body, and one opening end of the light collecting body is an entrance for introducing diffused light after the focal point, and the other opening end of the light focusing body is the entrance And an irradiation port for irradiating the light introduced from the light source and collected.
  14.  前記照射口の向きを360度変更する転回装置を備えていることを特徴とする請求項12または13記載の照射装置。 The irradiation apparatus according to claim 12, further comprising a turning device that changes the direction of the irradiation port by 360 degrees.
  15.  前記転回装置が、底面および上面の中央部が開口した平面視円盤形であってその中央に前記集光体を互いの中心軸を一致させて配置し前記集光体の上部を該上部外周面と前記上面開口部内周面との間に配置した複数のばね部材により支持するケース体と、前記ケース体の本体内周面に形成した環状のレールと、前記レール上を走行する走行体と、前記走行体と前記集光体とを接続する伸縮部材とを有することを特徴とする請求項14記載の照射装置。 The turning device has a disk shape in plan view in which the central portion of the bottom surface and the top surface is open, and the light collectors are arranged at the centers with their central axes aligned with each other, and the upper outer peripheral surface of the light collector A case body supported by a plurality of spring members disposed between the upper surface opening and the inner peripheral surface, an annular rail formed on the inner peripheral surface of the case body, and a traveling member traveling on the rail; The irradiation apparatus according to claim 14, further comprising an expansion and contraction member connecting the traveling body and the light collector.
PCT/JP2018/044969 2017-12-06 2018-12-06 Light concentrating unit, light concentrating device, and illumination device WO2019112015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506454A JP6829494B2 (en) 2017-12-06 2018-12-06 Irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-234581 2017-12-06
JP2017234581 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019112015A1 true WO2019112015A1 (en) 2019-06-13

Family

ID=66751658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044969 WO2019112015A1 (en) 2017-12-06 2018-12-06 Light concentrating unit, light concentrating device, and illumination device

Country Status (2)

Country Link
JP (1) JP6829494B2 (en)
WO (1) WO2019112015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260172A (en) * 2019-06-26 2019-09-20 广东凯西欧光健康有限公司 A kind of variable focus lens package and zoom lamps and lanterns
CN114908345A (en) * 2022-05-31 2022-08-16 浙江理工大学 Cold spraying system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837609U (en) * 1981-09-08 1983-03-11 日本ゼオン株式会社 Indoor lighting structure
JPH0836102A (en) * 1994-07-22 1996-02-06 Masanobu Inui Point condenser lens
JPH1068904A (en) * 1996-08-28 1998-03-10 Matsushita Electric Works Ltd Sunlight condensing device
JP2000500884A (en) * 1996-05-08 2000-01-25 セルベェイ ロベルト サンタンデール New liquid module lens for solar energy collection
US20080117522A1 (en) * 2005-01-25 2008-05-22 Esteban Perez-Serrano, Ma Isabel Liquid Solar Lens
JP2008243374A (en) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837609U (en) * 1981-09-08 1983-03-11 日本ゼオン株式会社 Indoor lighting structure
JPH0836102A (en) * 1994-07-22 1996-02-06 Masanobu Inui Point condenser lens
JP2000500884A (en) * 1996-05-08 2000-01-25 セルベェイ ロベルト サンタンデール New liquid module lens for solar energy collection
JPH1068904A (en) * 1996-08-28 1998-03-10 Matsushita Electric Works Ltd Sunlight condensing device
US20080117522A1 (en) * 2005-01-25 2008-05-22 Esteban Perez-Serrano, Ma Isabel Liquid Solar Lens
JP2008243374A (en) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260172A (en) * 2019-06-26 2019-09-20 广东凯西欧光健康有限公司 A kind of variable focus lens package and zoom lamps and lanterns
CN114908345A (en) * 2022-05-31 2022-08-16 浙江理工大学 Cold spraying system
CN114908345B (en) * 2022-05-31 2024-02-02 浙江理工大学 Cold spraying system

Also Published As

Publication number Publication date
JP6829494B2 (en) 2021-02-10
JPWO2019112015A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US6620995B2 (en) Non-imaging system for radiant energy flux transformation
US7688525B2 (en) Hybrid primary optical component for optical concentrators
US7442871B2 (en) Photovoltaic modules for solar concentrator
US6971756B2 (en) Apparatus for collecting and converting radiant energy
EP2962149B1 (en) Light-concentrating lens assembly for a solar energy recovery system
US20060274439A1 (en) Optical system using tailored imaging designs
US8355214B2 (en) Light collection apparatus, system and method
ES2880461T3 (en) Optomechanical system to capture and transmit incident light with a variable incidence direction towards at least one collecting element and corresponding procedure
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
WO2019112015A1 (en) Light concentrating unit, light concentrating device, and illumination device
JP2012038954A (en) Condensing photovoltaic power generation system
Fu et al. Evaluation and comparison of different designs and materials for Fresnel lens-based solar concentrators
KR100909444B1 (en) The small size photovoltaic module having fly eye lens for sunlight generate electricity system
KR20210041993A (en) Solar Energy Hybrid Generation System Using Thermoelectric Element
US9244262B2 (en) Low cost focussing system giving high concentrations
Zheng et al. A new optical concentrator design and analysis for rooftop solar applications
CN208656710U (en) Micro high efficiency rate solar modules
CN102608741A (en) Sunlight energy collection and transmission system equipped with fly eye lenses
WO2014066957A1 (en) High concentrator photovoltaic module
US20240102698A1 (en) Solar energy collection system and related methods
KR101121638B1 (en) Sun light condensing equipment
WO2016098337A1 (en) Solar concentrator with asymmetric tracking-integrated optics
KR101469583B1 (en) Apparatus for condensing sunlight
US9349898B2 (en) Optical system provided with aspherical lens for generating electrical energy in a photovoltaic way
KR101118478B1 (en) Secondary concentrator for solar high concentration and easy changeable focal direction

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506454

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886789

Country of ref document: EP

Kind code of ref document: A1