JP2010150107A - Multiple oxide sintered compact, method of manufacturing the same, and application of the same - Google Patents

Multiple oxide sintered compact, method of manufacturing the same, and application of the same Download PDF

Info

Publication number
JP2010150107A
JP2010150107A JP2008332466A JP2008332466A JP2010150107A JP 2010150107 A JP2010150107 A JP 2010150107A JP 2008332466 A JP2008332466 A JP 2008332466A JP 2008332466 A JP2008332466 A JP 2008332466A JP 2010150107 A JP2010150107 A JP 2010150107A
Authority
JP
Japan
Prior art keywords
sintered body
powder
oxide sintered
oxide
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008332466A
Other languages
Japanese (ja)
Inventor
Toshihito Kuramochi
豪人 倉持
Hitoshi Masuko
仁 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008332466A priority Critical patent/JP2010150107A/en
Publication of JP2010150107A publication Critical patent/JP2010150107A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple oxide sintered compact in which irregular color of the inside except the surface of a sintered body is controlled. <P>SOLUTION: The multiple oxide sintered compact includes: zinc oxide; and at least one or more sorts of oxides of elements chosen from Al, Ga, B, Nb, In, Y, and Sc, wherein L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color difference:ΔE<SP>*</SP>measured in a CIE1976 space between a sintered compact surface part in which a baked surface of the sintered body is removed and a sintered body central part is 3.0 or less, has few irregular color, and is excellent in stability of discharge characteristics or the like. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複合酸化物焼結体及びその焼結体からなるスパッタリングターゲットに関するものである。   The present invention relates to a composite oxide sintered body and a sputtering target composed of the sintered body.

錫をドーパントとして含む酸化インジウム膜はITO(Indium Tin Oxide)膜と称され、低抵抗膜が容易に得られるため透明導電膜として広範に利用されている。しかしながら、ITO膜の主原料であるInは、希少金属で高価であるため、この膜を用いたときの低コスト化には限界がある。   An indium oxide film containing tin as a dopant is called an ITO (Indium Tin Oxide) film, and is widely used as a transparent conductive film because a low-resistance film can be easily obtained. However, In, which is the main raw material of the ITO film, is a rare metal and expensive, so there is a limit to reducing the cost when this film is used.

そのため、ITO代替の透明導電膜用材料の開発が盛んに進められており、酸化亜鉛を主成分とする周期律表の第III族元素を含む酸化亜鉛膜は、安価な上に化学的にも安定で、透明性、導電性にも優れていることから注目されている。   Therefore, development of materials for transparent conductive films in place of ITO has been actively promoted, and zinc oxide films containing Group III elements of the periodic table mainly composed of zinc oxide are inexpensive and chemically It is attracting attention because it is stable and has excellent transparency and conductivity.

しかし、酸化亜鉛を含有する焼結体を製造した場合、得られた焼結体の表面と内部に色合いの相違(色むら)が形成される場合がある。色合いが違う部分の導電率には差異が生じるため、材質の均一性が要求されるスパッタリングターゲットとしては好ましくなく、焼結後の工程においてターゲット表面の色むら部分を機械加工等により調整する必要があった。   However, when a sintered body containing zinc oxide is manufactured, a difference in color (uneven color) may be formed on the surface and inside of the obtained sintered body. Since the electrical conductivity of the parts with different hues varies, it is not suitable as a sputtering target that requires uniformity of material, and it is necessary to adjust the uneven color part of the target surface by machining etc. in the post-sintering process. there were.

色むらを抑制する方法として、酸化亜鉛粉末のみを一度400〜800℃で仮焼し、この仮焼した酸化亜鉛粉末と他の成分の粉末を混合する方法が提案されている(例えば特許文献1参照)。また、酸化亜鉛を含有する焼結体を製造する際に、色むら防止剤として希土類元素を含む化合物を添加する製造方法が提案されている(例えば特許文献2参照)。   As a method for suppressing color unevenness, a method is proposed in which only zinc oxide powder is temporarily calcined at 400 to 800 ° C., and the calcined zinc oxide powder and powders of other components are mixed (for example, Patent Document 1). reference). Moreover, when manufacturing the sintered compact containing a zinc oxide, the manufacturing method which adds the compound containing rare earth elements as an uneven color prevention agent is proposed (for example, refer patent document 2).

しかしながら、これらの方法では工程が煩雑になり、薄膜の抵抗率や光学特性に影響が生じることがあった。   However, in these methods, the process becomes complicated and the resistivity and optical characteristics of the thin film may be affected.

特開平9−111444号公報JP-A-9-111444 特開2001−11613号公報JP 2001-11613 A

本発明の課題は、焼き上がり面を除いた焼結体内部の色むらを抑制した複合酸化物焼結体を提供することである。   The subject of this invention is providing the complex oxide sintered compact which suppressed the color nonuniformity inside the sintered compact except a baked surface.

本発明者らは、上記問題を解決するために亜鉛と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素との複合酸化物焼結体について鋭意検討を重ねた結果、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted extensive studies on a composite oxide sintered body of zinc and an element selected from Al, Ga, B, Nb, In, Y, and Sc. The invention has been completed.

本発明の態様は以下の通りである。   Aspects of the present invention are as follows.

(1)亜鉛と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素を少なくとも1種以上含む複合酸化物焼結体において、焼き上がり面を除去した後の焼結体表面部と中心部とのCIE1976空間で測定されるL色差:ΔEが3.0以下であることを特徴とする複合酸化物焼結体。 (1) In the composite oxide sintered body containing zinc and at least one element selected from Al, Ga, B, Nb, In, Y, and Sc, the sintered body surface portion after removing the baked surface L * a * b * color difference measured in the CIE1976 space between the center portion and the center portion: ΔE * is 3.0 or less.

(2)焼結密度が4.70g/cm以上である(1)記載の複合酸化物焼結体。 (2) The composite oxide sintered body according to (1), wherein the sintered density is 4.70 g / cm 3 or more.

(3)酸化亜鉛と酸化アルミニウムとを含んでなる(1)又は(2)記載の複合酸化物焼結体。   (3) The composite oxide sintered body according to (1) or (2), comprising zinc oxide and aluminum oxide.

(4)酸化亜鉛と酸化アルミニウムと、Ga、B、Nb、In、Y、Scから選ばれる元素の酸化物とを少なくとも1種以上含んでなる(1)〜(3)のいずれかに記載の複合酸化物焼結体。   (4) The composition according to any one of (1) to (3), comprising zinc oxide, aluminum oxide, and an oxide of an element selected from Ga, B, Nb, In, Y, and Sc. Composite oxide sintered body.

(5)亜鉛化合物粉末と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素の化合物を少なくとも1種以上含む粉末との混合粉末を、接粉部位を黒鉛系材料以外とした型内に充填し、希ガス雰囲気中、1000〜1400℃の温度でホットプレスすることを特徴とする(1)〜(4)のいずれかに記載の複合酸化物焼結体の製造方法。   (5) A mixed powder of a zinc compound powder and a powder containing at least one compound of an element selected from Al, Ga, B, Nb, In, Y, and Sc, and a contact portion other than a graphite-based material The method for producing a composite oxide sintered body according to any one of (1) to (4), wherein the mold is filled and hot pressed at a temperature of 1000 to 1400 ° C. in a rare gas atmosphere.

(6)希ガスがアルゴンガスであることを特徴とする(5)に記載の複合酸化物焼結体の製造方法。   (6) The method for producing a complex oxide sintered body according to (5), wherein the rare gas is argon gas.

(7)ホットプレスにおける粉末への加圧を700℃以下で開始することを特徴とする(5)又は(6)に記載の複合酸化物焼結体の製造方法。   (7) The method for producing a complex oxide sintered body according to (5) or (6), wherein pressurization of the powder in the hot press is started at 700 ° C. or lower.

(8)(1)〜(4)のいずれかに記載の焼結体をターゲット材として用いることを特徴とするスパッタリングターゲット。   (8) A sputtering target using the sintered body according to any one of (1) to (4) as a target material.

(9)(8)に記載のスパッタリングターゲットを用いて製膜してなる透明導電膜。   (9) A transparent conductive film formed by using the sputtering target according to (8).

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の複合酸化物焼結体は亜鉛と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素少なくとも1種以上含むことを特徴とする。   The composite oxide sintered body of the present invention is characterized by containing zinc and at least one element selected from Al, Ga, B, Nb, In, Y, and Sc.

Al、Ga、B、Nb、In、Y、Scは正三価以上のイオン価数を取り得る元素であり、酸素イオンに4配位又は6配位を仮定したときのイオン半径が0.5〜1.2Åとなる元素である。   Al, Ga, B, Nb, In, Y, and Sc are elements that can have a positive trivalent or higher ionic valence, and have an ionic radius of 0.5 to 5 assuming that the oxygen ions are tetracoordinated or hexacoordinated. 1.2 elements.

このような元素を添加するのは、二価の亜鉛に対して、正三価以上の原子価の高い元素を添加することで、キャリアである電子を生成するとともに、イオン半径が0.5〜1.2Åの元素を選択することで、薄膜を形成した場合に母相の酸化亜鉛のウルツ型の結晶構造を適切にとりやすくなるからである。上記元素の中でもAlは比較的安価であることから、その一成分として好適に用いられる。   Such elements are added by adding an element having a high valence of positive trivalent or higher to divalent zinc, thereby generating electrons as carriers and an ionic radius of 0.5 to 1 This is because, by selecting an element of 2%, it becomes easy to take a wurtzite crystal structure of zinc oxide as a parent phase when a thin film is formed. Among the above elements, Al is relatively inexpensive and is therefore preferably used as one component thereof.

他の各酸化物の量は酸化亜鉛に対し、0.5〜10wt%となることが好ましく、1〜7wt%となることがより好ましい。このような組成とすることで、良好な導電性と透過率を得ることができる。   The amount of each other oxide is preferably 0.5 to 10 wt% and more preferably 1 to 7 wt% with respect to zinc oxide. By setting it as such a composition, favorable electroconductivity and transmittance | permeability can be obtained.

本発明の複合酸化物焼結体は、焼結体の焼き上がり面を除去した後の焼結体表面部と焼結体中心部とのCIE1976空間で測定されるL色差:ΔEが3.0以下であることを特徴とする。 The complex oxide sintered body of the present invention has an L * a * b * color difference measured in the CIE 1976 space between the sintered body surface portion and the sintered body center portion after the sintered surface of the sintered body is removed. ΔE * is 3.0 or less.

とはxyz表色系に基づく色空間であり、L値は明度を表し、aとbは色度座標になっており、色相と彩度を一緒に表している。L値は色に関係なく明るさ(明度)だけを表し、L=0(黒)からL=100(白)までの値を取っており,値が大きいほど白く明るいということになる。aは赤から緑への軸であり、+aは赤方向を−aは緑方向を表し、bは黄から青への軸であり、+bは黄方向を−bは青方向を表している。 L * a * b * is a color space based on the xyz color system, L * value represents lightness, a * and b * are chromaticity coordinates, and represents hue and saturation together. Yes. The L * value represents only brightness (lightness) regardless of the color, and takes values from L = 0 (black) to L = 100 (white), and the larger the value, the brighter the white. a * is the axis from red to green, + a is the red direction, -a is the green direction, b * is the axis from yellow to blue, + b is the yellow direction, -b is the blue direction Yes.

そして、焼結体から焼き上がり面を除去した表面部と中心部におけるL値、a値及びb値を求めた後、ΔEを下記の式から求めることができる。
ΔE=√(ΔL+Δa+Δb) (1)
このΔEが3.0を越えると、色差が目立って感じられるようになり、かつ色差の異なる部分のバルク抵抗が大きく異なる場合が生じ、異常放電が発生しやすくなり、膜特性も悪化するためである。
And after calculating | requiring the L * value, a * value, and b * value in the surface part and center part which removed the baked surface from the sintered compact, (DELTA ) E * can be calculated | required from a following formula.
ΔE * = √ (ΔL 2 + Δa 2 + Δb 2 ) (1)
If this ΔE * exceeds 3.0, the color difference becomes noticeable and the bulk resistance of the portions with different color differences may be greatly different, so that abnormal discharge is likely to occur and the film characteristics are deteriorated. It is.

一般に電気炉や電磁波加熱炉等で焼結した焼結体には、その表面に焼き上がり面が形成される。本発明においては、この焼き上がり面を色差測定が行えるように焼結体の表面から内部方向に研削して取り除き、表面粗さRa0.5μm以下の面とし、この表面においてL値等を測定すればよい。通常は0.05〜0.1mm研削すればよい。取り除く理由としては、焼き上がり表面は凹凸が多く、色差測定を行うことが困難なためである。なお、表面粗さRaはJISのB0601に従って得られる値である。 Generally, a baked surface is formed on the surface of a sintered body sintered in an electric furnace or an electromagnetic heating furnace. In the present invention, this baked surface is ground and removed from the surface of the sintered body in an internal direction so that a color difference measurement can be performed, and the surface roughness Ra is 0.5 μm or less, and the L * value is measured on this surface. do it. Usually, it may be ground at 0.05 to 0.1 mm. The reason for removing it is that the baked surface has many irregularities and it is difficult to measure the color difference. The surface roughness Ra is a value obtained according to JIS B0601.

本発明の複合酸化物焼結体の製造方法は、亜鉛化合物粉末と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素からなる化合物を少なくとも1種以上含む粉末との混合粉末を、接粉部位を黒鉛系材料以外とした型内に充填し、希ガス雰囲気中、1000〜1400℃の温度でホットプレスすることを特徴とする。   The method for producing a composite oxide sintered body of the present invention is a mixed powder of a zinc compound powder and a powder containing at least one compound composed of an element selected from Al, Ga, B, Nb, In, Y, and Sc. Is filled in a mold having a contact part other than the graphite-based material, and hot-pressed at a temperature of 1000 to 1400 ° C. in a rare gas atmosphere.

本発明に用いられる原料粉末は特に限定されるものではないが、ホットプレスによって焼結体を製造することを考慮すると酸化物粉末が好ましく、通常BET表面積の値が2〜20m/gの粉末が好ましく、5〜20m/gの粉末がより好ましい。 Although the raw material powder used in the present invention is not particularly limited, an oxide powder is preferable in consideration of manufacturing a sintered body by hot pressing, and a powder having a BET surface area value of 2 to 20 m 2 / g is usually used. Is preferable, and a powder of 5 to 20 m 2 / g is more preferable.

BET表面積の値が2m/gより小さいと添加成分の分散性が劣る場合があり、BET表面積の値が20m/gより大きいと粉末が嵩高くなり、取扱性が劣る場合がある。 If the value of the BET surface area is less than 2 m 2 / g, the dispersibility of the additive component may be inferior, and if the value of the BET surface area is greater than 20 m 2 / g, the powder may be bulky and the handleability may be inferior.

原料粉末の混合方法は特に限定されないが、均一に混合することが重要である。混合方法としては、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズを用いた乾式、湿式のメディア撹拌型ミルやメディアレスの容器回転式混合、機械撹拌式混合等の混合方法が例示される。具体的には、ボールミル、ビーズミル、アトライタ、振動ミル、遊星ミル、ジェットミル、V型混合機、パドル式混合機、二軸遊星撹拌式混合機等が挙げられる。   The mixing method of the raw material powder is not particularly limited, but it is important to mix uniformly. Examples of the mixing method include a mixing method such as a dry type or wet type media stirring mill using a ball or bead of zirconia, alumina, nylon resin or the like, a medialess container rotating type mixing, or a mechanical stirring type mixing. Specific examples include a ball mill, a bead mill, an attritor, a vibration mill, a planetary mill, a jet mill, a V-type mixer, a paddle mixer, and a twin-shaft planetary agitation mixer.

上記したような混合を行う際は、スラリー中に混合状態を良好にさせるために、添加物、例えば、分散剤と称される有機系添加剤を添加しても良いが、ホットプレスを開始する前に加熱等により燃焼させて粉末中から除去しておくことが必要である。焼結中に炭化して焼結体中に残留し、異常放電の原因となることがあるからである。   When mixing as described above, an additive such as an organic additive called a dispersant may be added in order to improve the mixing state in the slurry, but hot pressing is started. It is necessary to remove it from the powder by burning it before heating. This is because it may carbonize during sintering and remain in the sintered body, causing abnormal discharge.

粉末を混合した後、接粉部位を黒鉛系材料以外とした型内に粉末を充填する。黒鉛系材料以外としては、例えばアルミナ質やジルコニア質のシートやフェルト、粉末等が例示できる。   After the powder is mixed, the powder is filled into a mold having a contact portion other than the graphite-based material. Examples of materials other than graphite-based materials include alumina and zirconia sheets, felts, and powders.

接粉部位を黒鉛系材料以外にすることで、得られた焼結体の周辺部分、表面部分の色むら層を抑制することが可能となる。型の材質は、安価であることから通常黒鉛製の型が用いられることが多いが、アルミナ製やジルコニア製等のセラミックス型を用いた場合にも同様の手法を採用することにより、型からの焼結体の脱型が容易になる等の利点を有する。   By making the contact part other than the graphite-based material, it is possible to suppress the uneven color layer of the peripheral part and the surface part of the obtained sintered body. The material of the mold is usually a graphite mold because it is inexpensive. However, by using a similar method when using a ceramic mold such as alumina or zirconia, There are advantages such as easy demolding of the sintered body.

混合粉末の充填後、ホットプレスを行う。通常、ホットプレスは真空中や窒素等の希ガス以外の不活性ガス雰囲気で行うが、本発明においては希ガス雰囲気で行うことを特徴とする。   After filling the mixed powder, hot pressing is performed. Usually, hot pressing is performed in a vacuum or in an inert gas atmosphere other than a rare gas such as nitrogen. In the present invention, the hot pressing is performed in a rare gas atmosphere.

希ガスとしては、ヘリウム、ネオン、アルゴン等が例示され、希ガスの中では比較的安価でありアルゴンガス雰囲気が好ましい。希ガス雰囲気とすることで、肉厚な焼結体でも内部の色差を小さくすることが可能となる。   Examples of the rare gas include helium, neon, and argon, and the rare gas is relatively inexpensive and an argon gas atmosphere is preferable. By using a rare gas atmosphere, the internal color difference can be reduced even with a thick sintered body.

最高保持温度は1000〜1400℃とし、1100〜1300℃であることがより好ましい。1000℃未満であると焼結が十分でないため、加工中の欠け、割れ等の発生頻度が高くなり、1400℃を超えると、酸化亜鉛の蒸発は多くなってくるとともに、焼結密度が低下してくるので好ましくない。   Maximum holding temperature shall be 1000-1400 degreeC, and it is more preferable that it is 1100-1300 degreeC. If the temperature is lower than 1000 ° C., the sintering is not sufficient, so that the occurrence frequency of chipping and cracking during processing increases. If the temperature exceeds 1400 ° C., the evaporation of zinc oxide increases and the sintering density decreases. Because it comes, it is not preferable.

ホットプレスにおける粉末への加圧は700℃以下で開始することが好ましく、より好ましくは600℃以下である。酸化亜鉛粉末は、粉末粒径等の物性を考慮すると一概には言えないが、通常700℃程度から収縮が開始されるため、その温度よりも低い温度からホットプレスにおける粉末への加圧を開始することが好ましい。これにより、当該複合酸化物焼結体の緻密化が促進されることになる。   Pressurization of the powder in the hot press is preferably started at 700 ° C. or lower, more preferably 600 ° C. or lower. Zinc oxide powder cannot be said unconditionally considering physical properties such as powder particle size, but since shrinkage usually starts from around 700 ° C, pressurization to the powder in the hot press starts from a temperature lower than that temperature. It is preferable to do. Thereby, densification of the complex oxide sintered body is promoted.

本発明の複合酸化物焼結体は、色むらが少ない焼結体であるが、焼結密度が低すぎると取り扱いやスパッタリング時に破損等を起こすことがあるため、焼結密度としては4.70g/cm以上が好ましい。 The composite oxide sintered body of the present invention is a sintered body with little color unevenness, but if the sintered density is too low, it may cause damage during handling or sputtering, so the sintered density is 4.70 g. / Cm 3 or more is preferable.

本発明によれば、酸化亜鉛と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素の酸化物を少なくとも1種以上含む複合酸化物焼結体において、当該焼結体の焼き上がり面を除去した後の焼結体表面部と焼結体中心部とのCIE1976空間で測定されるL色差:ΔEが3.0以下とすることで、色むらが少なく、放電特性等の安定性に優れた複合酸化物焼結体を得ることができる。 According to the present invention, in a composite oxide sintered body containing zinc oxide and at least one oxide of an element selected from Al, Ga, B, Nb, In, Y, and Sc, the sintered body is baked. L * a * b * color difference measured in the CIE 1976 space between the sintered body surface after removing the rising surface and the sintered body center: When ΔE * is 3.0 or less, there is less color unevenness. A composite oxide sintered body having excellent stability such as discharge characteristics can be obtained.

本発明を以下の実施例により具体的に説明するが、本発明はこれに限定されるものではない。
(複合酸化物焼結体の色差の測定)
焼結体表面を#400番砥石を用いて平面研削盤により、その表面粗さRaが0.5μm以下になるまで研削して測定面を作製した。次いで、研削した焼結体表面部及び中心部を分光測色計CM700−d(コニカミノルタ製)を用いて測定し、CIE1976空間で評価した。
The present invention will be specifically described by the following examples, but the present invention is not limited thereto.
(Measurement of color difference of composite oxide sintered body)
The surface of the sintered body was ground with a surface grinder using a # 400 grindstone until the surface roughness Ra became 0.5 μm or less to prepare a measurement surface. Subsequently, the surface part and center part of the ground sintered body were measured using a spectrocolorimeter CM700-d (manufactured by Konica Minolta) and evaluated in the CIE 1976 space.

(実施例1)
BET表面積が4m/g、純度99.8%の酸化亜鉛粉末7760gとBET表面積が14m/g、純度99.99%の酸化アルミニウム粉末240gとを機械撹拌式混合機で5時間混合した。得られた混合粉末を黒鉛製型内の接粉部位をジルコニアフェルトにして充填し、アルゴン雰囲気で1200℃、2時間保持の条件でホットプレスを行った。このときのホットプレスの圧力は200kg/cmとし、500℃から加圧を開始した。得られた複合酸化物焼結体の特性を表1に示す。
Example 1
7760 g of zinc oxide powder having a BET surface area of 4 m 2 / g and a purity of 99.8% and 240 g of aluminum oxide powder having a BET surface area of 14 m 2 / g and a purity of 99.99% were mixed in a mechanically stirred mixer for 5 hours. The obtained mixed powder was filled with zirconia felt as the powder contact portion in the graphite mold, and hot pressed under conditions of 1200 ° C. for 2 hours in an argon atmosphere. The pressure of the hot press at this time was 200 kg / cm 2 and pressurization was started from 500 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

得られた焼結体を4インチφサイズに加工し、下記のスパッタリング条件でスパッタリング評価を行った。放電特性は、30時間放電し、単位時間当たりに発生した異常放電回数として評価した結果、10回未満/時間であった。
(スパッタリング条件)
・装置 :DCマグネトロンスパッタ装置
・到達真空度 :5×10−5Pa
・スパッタリングガス :Ar
・スパッタリングガス圧:0.5Pa
・DCパワー :300W
・スパッタリング時間 :30時間
(実施例2)
黒鉛製型内の接粉部位をアルミナフェルトにして充填した以外は、実施例1と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
The obtained sintered body was processed into a 4 inch φ size and subjected to sputtering evaluation under the following sputtering conditions. As a result of evaluating the number of abnormal discharges generated per unit time after discharging for 30 hours, the discharge characteristics were less than 10 times / hour.
(Sputtering conditions)
-Equipment: DC magnetron sputtering equipment-Ultimate vacuum: 5 x 10-5 Pa
・ Sputtering gas: Ar
・ Sputtering gas pressure: 0.5 Pa
・ DC power: 300W
Sputtering time: 30 hours (Example 2)
Hot pressing was performed under the same conditions as in Example 1 except that the powder contact portion in the graphite mold was filled with alumina felt. Table 1 shows the characteristics of the obtained composite oxide sintered body.

得られた焼結体を4インチφサイズに加工し、実施例1と同様の条件でスパッタリング評価を行った。放電特性は、30時間放電し、単位時間当たりに発生した異常放電回数として評価した結果、10回未満/時間であった。   The obtained sintered body was processed into a 4-inch φ size, and sputtering evaluation was performed under the same conditions as in Example 1. As a result of evaluating the number of abnormal discharges generated per unit time after discharging for 30 hours, the discharge characteristics were less than 10 times / hour.

(実施例3)
最高保持温度を1300℃とした以外は、実施例1と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
(Example 3)
Hot pressing was performed under the same conditions as in Example 1 except that the maximum holding temperature was 1300 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(実施例4)
最高保持温度を1000℃とした以外は、実施例1と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
Example 4
Hot pressing was performed under the same conditions as in Example 1 except that the maximum holding temperature was 1000 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(実施例5)
BET表面積が4m/g、純度99.8%の酸化亜鉛粉末7750gとBET表面積が14m/g、純度99.99%の酸化アルミニウム粉末220g、BET表面積が10m/g、純度99.9%の酸化インジウム30gとを機械撹拌式混合機で5時間混合した。得られた混合粉末を黒鉛製型内に接粉部位をジルコニアフェルトとして充填し、アルゴン雰囲気で1200℃、2時間保持の条件でホットプレスを行った。このときのホットプレスの圧力は200kg/cmとし、500℃から加圧を開始した。得られた複合酸化物焼結体の特性を表1に示す。
(Example 5)
Zinc oxide powder 7750 g with a BET surface area of 4 m 2 / g, purity 99.8%, aluminum oxide powder 220 g with a BET surface area of 14 m 2 / g, purity 99.99%, BET surface area of 10 m 2 / g, purity 99.9 % Indium oxide (30 g) was mixed for 5 hours with a mechanical stirring mixer. The obtained mixed powder was filled in a graphite mold with the contact part as zirconia felt, and hot pressed under conditions of 1200 ° C. and 2 hours in an argon atmosphere. The pressure of the hot press at this time was 200 kg / cm 2 and pressurization was started from 500 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(実施例6)
BET比表面積が4m/g、純度99.8%の酸化亜鉛粉末7600gとBET比表面積が8m/g、純度99.99%の酸化ガリウム粉末400gとを機械撹拌式混合機で5時間混合した。得られた混合粉末を黒鉛製型内の接粉部位をジルコニアフェルトにして充填し、アルゴン雰囲気で1200℃、2時間保持の条件でホットプレスを行った。このときのホットプレスの圧力は200kg/cmとし、500℃から加圧を開始した。得られた複合酸化物焼結体の特性を表1に示す。
(Example 6)
7600 g of zinc oxide powder having a BET specific surface area of 4 m 2 / g and a purity of 99.8% and 400 g of gallium oxide powder having a BET specific surface area of 8 m 2 / g and a purity of 99.99% were mixed for 5 hours with a mechanically stirring mixer. did. The obtained mixed powder was filled with zirconia felt as the powder contact portion in the graphite mold, and hot pressed under conditions of 1200 ° C. for 2 hours in an argon atmosphere. The pressure of the hot press at this time was 200 kg / cm 2 and pressurization was started from 500 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(実施例7)
BET比表面積が4m/g、純度99.8%の酸化亜鉛粉末7840gとBET比表面積が7m/g、純度99.9%の酸化ニオブ粉末160gとを機械撹拌式混合機で5時間混合した。得られた混合粉末を黒鉛製型内の接粉部位をジルコニアフェルトにして充填し、アルゴン雰囲気で1200℃、2時間保持の条件でホットプレスを行った。このときのホットプレスの圧力は200kg/cmとし、500℃から加圧を開始した。得られた複合酸化物焼結体の特性を表1に示す。
(Example 7)
7840 g of zinc oxide powder having a BET specific surface area of 4 m 2 / g and a purity of 99.8% and 160 g of niobium oxide powder having a BET specific surface area of 7 m 2 / g and a purity of 99.9% were mixed for 5 hours with a mechanical stirring mixer. did. The obtained mixed powder was filled with zirconia felt as the powder contact portion in the graphite mold, and hot pressed under conditions of 1200 ° C. for 2 hours in an argon atmosphere. The pressure of the hot press at this time was 200 kg / cm 2 and pressurization was started from 500 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(実施例8)
BET比表面積が4m/g、純度99.8%の酸化亜鉛粉末7680gとBET比表面積が8m/g、純度99.99%の酸化ガリウム粉末240、BET比表面積が10m/g、純度99.9%の酸化イットリウム粉末80gとを機械撹拌式混合機で5時間混合した。得られた混合粉末を黒鉛製型内の接粉部位をジルコニアフェルトにして充填し、アルゴン雰囲気で1200℃、2時間保持の条件でホットプレスを行った。このときのホットプレスの圧力は200kg/cmとし、500℃から加圧を開始した。得られた複合酸化物焼結体の特性を表1に示す。
(Example 8)
7680 g of zinc oxide powder with BET specific surface area of 4 m 2 / g and purity of 99.8%, gallium oxide powder 240 with BET specific surface area of 8 m 2 / g and purity of 99.99%, BET specific surface area of 10 m 2 / g, purity 80 g of 99.9% yttrium oxide powder was mixed with a mechanically stirring mixer for 5 hours. The obtained mixed powder was filled with zirconia felt as the powder contact portion in the graphite mold, and hot pressed under conditions of 1200 ° C. for 2 hours in an argon atmosphere. The pressure of the hot press at this time was 200 kg / cm 2 and pressurization was started from 500 ° C. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(比較例1)
最高保持温度を1000℃、アルゴン雰囲気を真空中とした以外は、実施例1と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
(Comparative Example 1)
Hot pressing was performed under the same conditions as in Example 1 except that the maximum holding temperature was 1000 ° C. and the argon atmosphere was in a vacuum. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(比較例2)
アルゴン雰囲気を真空中とした以外は、実施例1と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
(Comparative Example 2)
Hot pressing was performed under the same conditions as in Example 1 except that the argon atmosphere was in a vacuum. Table 1 shows the characteristics of the obtained composite oxide sintered body.

(比較例3)
アルゴン雰囲気を真空中とした以外は、実施例5と同様の条件でホットプレスを行った。得られた複合酸化物焼結体の特性を表1に示す。
(Comparative Example 3)
Hot pressing was performed under the same conditions as in Example 5 except that the argon atmosphere was in a vacuum. Table 1 shows the characteristics of the obtained composite oxide sintered body.

得られた焼結体を4インチφサイズに加工し、実施例1と同様の条件でスパッタリング評価を行った。放電特性は、30時間放電し、単位時間当たりに発生した異常放電回数として評価した結果、100回/時間以上であった。   The obtained sintered body was processed into a 4-inch φ size, and sputtering evaluation was performed under the same conditions as in Example 1. As a result of evaluating the number of abnormal discharges per unit time after discharging for 30 hours, the discharge characteristics were 100 times / hour or more.

(比較例4)
BET表面積が4m/g、純度99.8%の酸化亜鉛粉末7760gとBET表面積が14m/g、純度99.99%の酸化アルミニウム粉末240gを機械撹拌式混合機で5時間混合した。得られた混合粉末を3.0ton/cmでCIP成形し、1400℃、窒素雰囲気で5時間、常圧で焼結した。得られた複合酸化物焼結体の特性を表2に示す。
(Comparative Example 4)
7760 g of zinc oxide powder having a BET surface area of 4 m 2 / g and a purity of 99.8% and 240 g of aluminum oxide powder having a BET surface area of 14 m 2 / g and a purity of 99.99% were mixed in a mechanically stirred mixer for 5 hours. The obtained mixed powder was CIP-molded at 3.0 ton / cm 2 and sintered at 1400 ° C. in a nitrogen atmosphere for 5 hours at normal pressure. Table 2 shows the characteristics of the obtained composite oxide sintered body.

得られた焼結体を4インチφサイズに加工し、実施例1と同様の条件でスパッタリング評価を行った。放電特性は、30時間放電し、単位時間当たりに発生した異常放電回数として評価した結果、100回/時間以上であった。   The obtained sintered body was processed into a 4-inch φ size, and sputtering evaluation was performed under the same conditions as in Example 1. As a result of evaluating the number of abnormal discharges per unit time after discharging for 30 hours, the discharge characteristics were 100 times / hour or more.

Figure 2010150107
Figure 2010150107

Claims (9)

亜鉛と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素を少なくとも1種以上含む複合酸化物焼結体において、焼き上がり面を除去した後の焼結体表面部と中心部とのCIE1976空間で測定されるL色差:ΔEが3.0以下であることを特徴とする複合酸化物焼結体。 In the composite oxide sintered body containing zinc and at least one element selected from Al, Ga, B, Nb, In, Y, and Sc, the sintered body surface portion and the center portion after removing the baked surface L * a * b * color difference measured in CIE 1976 space: ΔE * is 3.0 or less. 焼結密度が4.70g/cm以上である請求項1記載の複合酸化物焼結体。 The composite oxide sintered body according to claim 1, wherein the sintered density is 4.70 g / cm 3 or more. 酸化亜鉛と酸化アルミニウムとを含んでなる請求項1又は2記載の複合酸化物焼結体。 The composite oxide sintered body according to claim 1 or 2, comprising zinc oxide and aluminum oxide. 酸化亜鉛と酸化アルミニウムと、Ga、B、Nb、In、Y、Scから選ばれる元素の酸化物とを少なくとも1種以上含んでなる請求項1〜3のいずれかに記載の複合酸化物焼結体。 The composite oxide sintered according to any one of claims 1 to 3, comprising zinc oxide, aluminum oxide, and at least one oxide of an element selected from Ga, B, Nb, In, Y, and Sc. body. 亜鉛化合物粉末と、Al、Ga、B、Nb、In、Y、Scから選ばれる元素の化合物を少なくとも1種以上含む粉末との混合粉末を、接粉部位を黒鉛系材料以外とした型内に充填し、希ガス雰囲気中、1000〜1400℃の温度でホットプレスすることを特徴とする請求項1〜4のいずれかに記載の複合酸化物焼結体の製造方法。 A mixed powder of a zinc compound powder and a powder containing at least one compound of an element selected from Al, Ga, B, Nb, In, Y, and Sc is placed in a mold in which the contact portion is other than a graphite-based material. Filling and hot pressing at a temperature of 1000 to 1400 ° C in a rare gas atmosphere, the method for producing a complex oxide sintered body according to any one of claims 1 to 4. 希ガスがアルゴンガスであることを特徴とする請求項5に記載の複合酸化物焼結体の製造方法。 6. The method for producing a complex oxide sintered body according to claim 5, wherein the rare gas is argon gas. ホットプレスにおける粉末への加圧を700℃以下で開始することを特徴とする請求項5又は6に記載の複合酸化物焼結体の製造方法。 The method for producing a complex oxide sintered body according to claim 5 or 6, wherein pressurization of the powder in hot pressing is started at 700 ° C or lower. 請求項1〜4のいずれかに記載の焼結体をターゲット材として用いることを特徴とするスパッタリングターゲット。 A sputtering target using the sintered body according to claim 1 as a target material. 請求項8に記載のスパッタリングターゲットを用いて製膜してなる透明導電膜。 A transparent conductive film formed by using the sputtering target according to claim 8.
JP2008332466A 2008-12-26 2008-12-26 Multiple oxide sintered compact, method of manufacturing the same, and application of the same Pending JP2010150107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332466A JP2010150107A (en) 2008-12-26 2008-12-26 Multiple oxide sintered compact, method of manufacturing the same, and application of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332466A JP2010150107A (en) 2008-12-26 2008-12-26 Multiple oxide sintered compact, method of manufacturing the same, and application of the same

Publications (1)

Publication Number Publication Date
JP2010150107A true JP2010150107A (en) 2010-07-08

Family

ID=42569624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332466A Pending JP2010150107A (en) 2008-12-26 2008-12-26 Multiple oxide sintered compact, method of manufacturing the same, and application of the same

Country Status (1)

Country Link
JP (1) JP2010150107A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179055A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Sputtering target
WO2013065785A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered body, sputtering target, and method for producing same
JP2013159848A (en) * 2012-02-08 2013-08-19 Taiheiyo Cement Corp Sputtering target and method of manufacturing the same
CN108431293A (en) * 2016-01-28 2018-08-21 Jx金属株式会社 Cylinder-shaped ceramic sputtering target material and the cylinder-shaped ceramic sputtering target that one or more cylinder-shaped ceramic sputtering target materials compositions are engaged on backing pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179055A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Sputtering target
WO2013065785A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered body, sputtering target, and method for producing same
JP2013095657A (en) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk Oxide sintered compact and sputtering target, and method for producing the same
JP2013159848A (en) * 2012-02-08 2013-08-19 Taiheiyo Cement Corp Sputtering target and method of manufacturing the same
CN108431293A (en) * 2016-01-28 2018-08-21 Jx金属株式会社 Cylinder-shaped ceramic sputtering target material and the cylinder-shaped ceramic sputtering target that one or more cylinder-shaped ceramic sputtering target materials compositions are engaged on backing pipe

Similar Documents

Publication Publication Date Title
JP6006202B2 (en) In2O3-SnO2-ZnO-based sputtering target
WO2012153522A1 (en) In2o3-zno sputtering target
JP4248833B2 (en) Ceramics and manufacturing method thereof
CN107614741B (en) IZO sintered sputtering target and method for producing same
KR100345083B1 (en) Aluminum nitride sintered body, electronic functional material, and electrostatic chuck
JP2010150107A (en) Multiple oxide sintered compact, method of manufacturing the same, and application of the same
JP2010120803A (en) Multiple oxide sintered compact
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
US20120037502A1 (en) Sintered Body for ZnO-Ga2O3-Based Sputtering Target and Method of Producing the Same
KR100710029B1 (en) Light-colored ESD safe ceramics
KR20160133429A (en) Sintered oxide and transparent conductive oxide film
TWI592383B (en) Indium oxide-based oxide sintering article and method for producing the same
TWI669283B (en) Oxide sintered body and sputtering target material and their manufacturing method
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2010021274A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target, and method for producing thin film
JP2017149636A (en) Oxide sintered body and oxide transparent conductive film
WO2018207414A1 (en) Sn-Zn-O-BASED OXIDE SINTERED BODY AND PRODUCTION METHOD THEREFOR
JP2009302518A (en) Electrostatic chuck
JP2005179129A (en) Conductive titanium oxide sintered compact, sputtering target, translucent member, and image display device
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP2013159848A (en) Sputtering target and method of manufacturing the same
JP5309975B2 (en) Sintered body for transparent conductive film, sputtering target and method for producing the same
KR102659099B1 (en) Plasma etching device parts for semiconductor manufacturing including yttrium-based composite sintered body and manufacturing method thereof
TWI766121B (en) Oxide sintered article and sputtering target