JP2010147263A - Method of manufacturing microstructure and method of manufacturing circuit board - Google Patents

Method of manufacturing microstructure and method of manufacturing circuit board Download PDF

Info

Publication number
JP2010147263A
JP2010147263A JP2008323198A JP2008323198A JP2010147263A JP 2010147263 A JP2010147263 A JP 2010147263A JP 2008323198 A JP2008323198 A JP 2008323198A JP 2008323198 A JP2008323198 A JP 2008323198A JP 2010147263 A JP2010147263 A JP 2010147263A
Authority
JP
Japan
Prior art keywords
organic resin
resin layer
layer
metal
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008323198A
Other languages
Japanese (ja)
Other versions
JP5186663B2 (en
Inventor
Masataka Mizukoshi
正孝 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008323198A priority Critical patent/JP5186663B2/en
Publication of JP2010147263A publication Critical patent/JP2010147263A/en
Application granted granted Critical
Publication of JP5186663B2 publication Critical patent/JP5186663B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technique for stably manufacturing a microstructure using a mold. <P>SOLUTION: The microstructure is manufactured by preparing an organic resin layer of the mold having a three-dimensional microstructure on a surface, forming a metal layer which completely buries the three-dimensional microstructure and forms a common support portion on a surface of the organic resin layer and forming a bond via metal oxide on an interface between the organic resin layer and metal layer, exposing the organic resin layer to a formic acid gas and reducing the metal oxide on the interface with the metal layer with formic acid penetrating the organic resin layer to cut the bond between the metal layer and organic resin layer, peeling the metal layer having the bond cut from the organic resin layer, pressing the metal layer peeled from the organic resin layer into the organic resin layer which is softened, and removing the common support portion of the metal layer above the organic resin layer through chemimechanical polishing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細構造および回路基盤の製造方法に関し、特に剥離工程を含む微細構造および回路基盤の製造方法に関する。   The present invention relates to a microstructure and a circuit board manufacturing method, and more particularly to a microstructure and a circuit board manufacturing method including a peeling process.

半導体集積回路の構成要件であるMOSトランジスタは、年々微細化が進んでいる。MOSトランジスタの微細化と共に配線も微細化され、サブミクロンレベルの配線ピッチが既に実用化されている。   MOS transistors, which are constituent elements of semiconductor integrated circuits, have been miniaturized year by year. With the miniaturization of MOS transistors, the wiring has also been miniaturized, and a wiring pitch on the submicron level has already been put into practical use.

微細化したパターンを作成する工程には、リソグラフィが用いられている。フォトリソグラフィにおいては、感光性レジスト膜にレティクルないしマスクの像を露光し、現像することでレジストパターンを作成し、下地の選択的加工等にレジストパターン用いる。レジストパターンは、各加工プロセス毎にレジスト膜形成、露光、現像工程を介して作成されるため、高精度のレジストパターンは高コストである。電子線リソグラフィにおいては、光ビームの代わりに電子線ビーム、感光性レジスト膜の代わりに電子線レジスト膜を用いる。電子線リソグラフィは高分解能を実現できるが、プロセスのコストは更に上昇する。   Lithography is used in the process of creating a miniaturized pattern. In photolithography, an image of a reticle or mask is exposed on a photosensitive resist film and developed to form a resist pattern, which is used for selective processing of a base. Since the resist pattern is created through a resist film formation, exposure, and development process for each processing process, a highly accurate resist pattern is expensive. In electron beam lithography, an electron beam beam is used instead of a light beam, and an electron beam resist film is used instead of a photosensitive resist film. Although electron beam lithography can achieve high resolution, the cost of the process further increases.

米国特許5,772,905号は、レジスト膜を光や電子線で露光する代わりに、所望パターンを有するモールドをレジスト膜に転写する技術を提案する。形成したい溝、孔に対応する隆起パターンを有するモールドを準備する。PMMA等のレジスト膜にモールドを押し当て、レジスト膜をガラス転位温度105℃以上、例えば200℃に加熱すると共にモールドに圧力を印加し、モールドの隆起パターンをレジスト膜に転写する。モールドの隆起パターンに対応する溝、孔がレジスト膜中に形成される。レジスト膜を降温し、モールドを外した後、溝、孔内のレジスト膜の残渣を酸素プラズマによるアッシングで除去する。   US Pat. No. 5,772,905 proposes a technique for transferring a mold having a desired pattern to a resist film instead of exposing the resist film with light or an electron beam. A mold having a raised pattern corresponding to the groove and hole to be formed is prepared. The mold is pressed against a resist film such as PMMA, the resist film is heated to a glass transition temperature of 105 ° C. or higher, for example, 200 ° C., and pressure is applied to the mold to transfer the raised pattern of the mold to the resist film. Grooves and holes corresponding to the raised pattern of the mold are formed in the resist film. After the temperature of the resist film is lowered and the mold is removed, the residue of the resist film in the grooves and holes is removed by ashing with oxygen plasma.

このようにして、レジスト膜に3次元構造を有するモールドを押し付けることで所望形状のレジストパターンを作成する。この技術は、機械的リソグラフィと呼べる新たな技術であり、モールドを繰り返し使用することにより低コスト化も期待できる。   In this manner, a resist pattern having a desired shape is created by pressing a mold having a three-dimensional structure against the resist film. This technique is a new technique that can be called mechanical lithography, and it can be expected to reduce the cost by repeatedly using the mold.

米国特許5,772,905号公報 半導体集積回路装置を実装するパッケージ配線基板(回路基盤)の配線ピッチも微細化することが望まれる。配線基板は、通常絶縁物の基板上に銅配線パターンを備える。絶縁基板全面上に形成した銅膜の上に配線パターンを有するレジストパターンを形成し、不要部の銅膜をエッチングによって除去するサブトラクト法は、最小線幅35μm程度まで利用される。より微細な配線を形成できるセミアディティブ法においては、絶縁基板上にスパッタリングまたは無電解めっきにより薄い銅シード層を形成し、その上に配線パターンの開口を有するレジストパターンを形成し、露出したシード層の上に銅膜をメッキし、レジストパターンを除去し、露出した銅シード層をエッチング除去して、配線パターンを残す。最小線幅10μm程度までの配線パターン形成に利用される。It is desired to reduce the wiring pitch of a package wiring board (circuit board) on which a semiconductor integrated circuit device is mounted. The wiring board is usually provided with a copper wiring pattern on an insulating substrate. A subtracting method in which a resist pattern having a wiring pattern is formed on a copper film formed on the entire surface of an insulating substrate and an unnecessary portion of the copper film is removed by etching is used up to a minimum line width of about 35 μm. In the semi-additive method that can form finer wiring, a thin copper seed layer is formed on an insulating substrate by sputtering or electroless plating, a resist pattern having an opening of the wiring pattern is formed thereon, and the exposed seed layer A copper film is plated on the substrate, the resist pattern is removed, and the exposed copper seed layer is removed by etching to leave a wiring pattern. It is used for forming a wiring pattern having a minimum line width of about 10 μm.

さらに微細な配線を形成できる方法として、最近インプリント法が提案されている(例えば特許文献2)。配線形状の突起を有する金属プレート(スタンパとも呼ばれる)を準備し、スタンパの突起パターン(雄型)を絶縁基板上の有機樹脂膜に溝パターン(雌型)として転写する。有機樹脂膜上に銅膜をメッキし、有機樹脂膜上の不要部を化学機械研磨(CMP)等により除去し、配線パターンを残す。
特開2005−5721号公報 本発明者は、支持部上に配線形状の隆起パターンを有する金属構造物を絶縁有機樹脂膜に押し込み、その後支持部をCMP等で除去することにより絶縁有機樹脂膜中に銅、アルミニウム等の配線パターンを残すインプラント法を提案した。
An imprint method has recently been proposed as a method for forming finer wiring (for example, Patent Document 2). A metal plate (also called a stamper) having wiring-shaped protrusions is prepared, and the protrusion pattern (male type) of the stamper is transferred as a groove pattern (female type) to the organic resin film on the insulating substrate. A copper film is plated on the organic resin film, and unnecessary portions on the organic resin film are removed by chemical mechanical polishing (CMP) or the like to leave a wiring pattern.
JP, 2005-5721, A The present inventor pushes a metal structure which has a wiring-shaped protruding pattern on a support part into an insulating organic resin film, and then removes a support part by CMP etc. in an insulating organic resin film. Proposed an implant method that leaves a wiring pattern such as copper and aluminum.

有機樹脂膜中へのモールドのインプリント、または金属構造物のインプラントは、新たな技術であり、多くの可能性を有する。但し、この技術は未だ確立していない。特に微細構造を如何に安定に製造するかの点が解決していない。   Imprinting a mold into an organic resin film or implanting a metal structure is a new technology and has many possibilities. However, this technology has not been established yet. In particular, how to stably manufacture a fine structure has not been solved.

本発明の1つの目的は、微細構造を安定に製造できる技術を提供することである。   One object of the present invention is to provide a technique capable of stably producing a microstructure.

本発明の1観点によれば、
表面に3次元微細構造を有するモールドの有機樹脂層を準備する工程と、
前記有機樹脂層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する金属層を形成し、前記有機樹脂層と前記金属層の界面に金属酸化物を介した結合を形成する工程と、
前記有機樹脂層を蟻酸ガスに曝し、前記有機樹脂層を浸透した蟻酸により、前記金属層との界面における金属酸化物を還元し、前記金属層と前記有機樹脂層との結合を切断する工程と、
を含む微細構造の製造方法
が提供される。
According to one aspect of the present invention,
Preparing an organic resin layer of a mold having a three-dimensional microstructure on the surface;
On the surface of the organic resin layer, a metal layer that completely embeds the three-dimensional microstructure and forms a common support portion is formed, and a bond through a metal oxide is bonded to the interface between the organic resin layer and the metal layer. Forming, and
Exposing the organic resin layer to formic acid gas, reducing the metal oxide at the interface with the metal layer with formic acid permeating the organic resin layer, and cutting the bond between the metal layer and the organic resin layer; ,
A method for producing a microstructure comprising

本発明の他の観点によれば、
表面に3次元微細構造を有するマスタの金属層を準備する工程と、
前記金属層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する有機樹脂層を塗布、硬化し、前記金属層と前記有機樹脂層の界面に金属酸化物を介した結合を形成する工程と、
前記有機樹脂層を蟻酸ガスに曝し、前記有機樹脂層を浸透した蟻酸により、前記金属層との界面における金属酸化物を還元し、前記金属層と前記有機樹脂層との結合を切断する工程と、
を含む微細構造の製造方法
が提供される。
According to another aspect of the invention,
Preparing a master metal layer having a three-dimensional microstructure on the surface;
An organic resin layer that completely embeds the three-dimensional microstructure and forms a common support portion is applied and cured on the surface of the metal layer, and a metal oxide is interposed at the interface between the metal layer and the organic resin layer. Forming a bond;
Exposing the organic resin layer to formic acid gas, reducing the metal oxide at the interface with the metal layer with formic acid permeating the organic resin layer, and cutting the bond between the metal layer and the organic resin layer; ,
A method for producing a microstructure comprising

有機樹脂層と金属層との界面における金属酸化物を還元することにより、離型性が得られる。離型剤を用いないので寸法精度を向上させることが可能になる。   Release properties can be obtained by reducing the metal oxide at the interface between the organic resin layer and the metal layer. Since no release agent is used, the dimensional accuracy can be improved.

本発明者は、支持基板上に配線幅0.5μm〜0.9μmのミクロンオーダ以下の配線パターンを有するインプラント用微細配線パターンの製造を種々試みた。配線パターンに対応する、幅ミクロンオーダ以下の溝部を有する有機樹脂層に金属層を埋込み、その後金属層を有機樹脂層から剥離して共通支持層上に3次元配線パターンを有する金属層を形成する方法を種々考察した。一般的に金属と有機材料間の接着は、主に金属酸化物を介在させた化学結合によることが知られている。溝部を有する有機樹脂層に金属層を埋め込む際に、金属層を剥離するために、有機樹脂層の表面に離型作用のある離型剤を薄く塗布し、金属層の有機樹脂層に対する密着を阻害し、離型性を得る。離型剤の塗布厚にムラがあると、微細構造の寸法精度が劣化する。離型剤の塗布もれがあると、金属層を剥離することが困難になる。   The inventor has made various attempts to manufacture a fine wiring pattern for implants having a wiring pattern with a wiring width of 0.5 μm to 0.9 μm and less than a micron order on a support substrate. A metal layer is embedded in an organic resin layer having a groove having a width of the order of micron or less corresponding to the wiring pattern, and then the metal layer is peeled from the organic resin layer to form a metal layer having a three-dimensional wiring pattern on the common support layer. Various methods were discussed. In general, it is known that adhesion between a metal and an organic material is mainly due to a chemical bond in which a metal oxide is interposed. When embedding a metal layer in an organic resin layer having a groove, in order to peel off the metal layer, a release agent having a release action is applied thinly on the surface of the organic resin layer so that the metal layer adheres to the organic resin layer. Inhibits and obtains releasability. If the coating thickness of the release agent is uneven, the dimensional accuracy of the microstructure is degraded. If the release agent is leaked, it is difficult to peel off the metal layer.

以下、図面を参照して、実施例を説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1A−1Hは、実施例1による金属構造物および配線基板の作成方法を示す断面図である。   1A to 1H are cross-sectional views illustrating a method for producing a metal structure and a wiring board according to Example 1. FIG.

図1Aに示すように、ポリメチルメタクリレート(PMMA)等の有機樹脂製の雌型モールド11を準備する。雌型モールド11は、例えば作成しようとする配線パターン形状に対応する溝12を有する。以下、銅配線をインプラントするための銅構造物をめっきによって形成する場合を例にとって説明する。   As shown in FIG. 1A, a female mold 11 made of an organic resin such as polymethyl methacrylate (PMMA) is prepared. The female mold 11 has, for example, grooves 12 corresponding to the wiring pattern shape to be created. Hereinafter, a case where a copper structure for implanting a copper wiring is formed by plating will be described as an example.

図1Bに示すように、雌型モールド11の表面に銅シード層14をスパッタリングによって作成する。銅シード層14の上に電解メッキによって銅層15をメッキする。銅層15は溝12を埋め戻し、かつ物理的支持力を与えるのに十分な共通支持層を形成する厚さとする。有機樹脂モールド11に埋め込まれた銅層15は、界面で金属酸化物16を形成することによって密着性を示す。   As shown in FIG. 1B, a copper seed layer 14 is formed on the surface of the female mold 11 by sputtering. A copper layer 15 is plated on the copper seed layer 14 by electrolytic plating. The copper layer 15 is of a thickness that forms a common support layer sufficient to backfill the grooves 12 and provide physical support. The copper layer 15 embedded in the organic resin mold 11 exhibits adhesion by forming a metal oxide 16 at the interface.

図1Cに示すように、銅層15を形成した雌型モールド11を密閉された気相処理室17内に導入し、蟻酸ガス18を供給する。蟻酸(HCOOH)は、刺激臭の強い有機酸であり、常圧で約101℃に沸点を持つ。モールド11の温度を例えば150℃〜200℃の温度に設定する。蟻酸ガスの濃度は、例えば0.1%〜数%である。蟻酸ガスは、有機樹脂に対する浸透性の高いガスであり、150℃〜200℃の温度で容易に有機樹脂中を浸透し、有機樹脂モールド11と銅層15との界面に達して、金属酸化物16を還元する。   As shown in FIG. 1C, the female mold 11 on which the copper layer 15 is formed is introduced into a hermetically sealed gas phase processing chamber 17 and a formic acid gas 18 is supplied. Formic acid (HCOOH) is an organic acid with a strong pungent odor and has a boiling point of about 101 ° C. at normal pressure. The temperature of the mold 11 is set to a temperature of 150 ° C. to 200 ° C., for example. The concentration of formic acid gas is, for example, 0.1% to several percent. The formic acid gas is a gas having high permeability to the organic resin, easily penetrates into the organic resin at a temperature of 150 ° C. to 200 ° C., reaches the interface between the organic resin mold 11 and the copper layer 15, and becomes a metal oxide. 16 is reduced.

図1Dに示すように、界面の金属酸化物16が消滅すると、有機樹脂モールド11と銅層15は剥離しやすい状態となる。   As shown in FIG. 1D, when the metal oxide 16 at the interface disappears, the organic resin mold 11 and the copper layer 15 are easily peeled off.

図1Eに示すように、銅層15を引き上げることにより、有機樹脂モールド11から微細構造を有する銅層15を剥離することができる。なお微細構造を形成した銅層15は損傷を受けやすい。   As shown in FIG. 1E, the copper layer 15 having a fine structure can be peeled from the organic resin mold 11 by pulling up the copper layer 15. The copper layer 15 having a fine structure is easily damaged.

図1Fに示すように、銅層15を剥離せず、有機樹脂モールド11に収容した状態で保管、搬送することにより、微細構造を形成した銅層15を保護することもできる。有機樹脂層をキャップとすることにより、銅層の酸化を抑制し、微細構造の変形を防止することが可能となる。   As shown in FIG. 1F, the copper layer 15 formed with a fine structure can be protected by storing and transporting the copper layer 15 in a state of being accommodated in the organic resin mold 11 without peeling. By using the organic resin layer as a cap, it is possible to suppress oxidation of the copper layer and prevent deformation of the fine structure.

図1Gに示すように、ガラスエポキシ基板などの絶縁基板19上に、エポキシ樹脂シート等の絶縁有機樹脂膜20を形成し、有機樹脂膜20を加熱して軟化させ、微細配線パターンを形成した銅層15を押し込む。エポキシ樹脂シートとしては、例えば味の素社のABFGX−13等を用いる。必要に応じてアニール処理などを行ない、有機樹脂層20を硬化させる。その後基板を降温する。   As shown in FIG. 1G, an insulating organic resin film 20 such as an epoxy resin sheet is formed on an insulating substrate 19 such as a glass epoxy substrate, and the organic resin film 20 is heated and softened to form a fine wiring pattern. Push in layer 15. As the epoxy resin sheet, for example, ABFGX-13 manufactured by Ajinomoto Co., Inc. is used. An annealing process or the like is performed as necessary to cure the organic resin layer 20. Thereafter, the temperature of the substrate is lowered.

図1Hに示すように、表面から銅層15を化学機械研磨(CMP)し、共通支持部を除去し、絶縁有機樹脂層20を露出させる。絶縁有機樹脂層中に埋め込まれた微細配線15xを有する回路基盤が得られる。   As shown in FIG. 1H, the copper layer 15 is subjected to chemical mechanical polishing (CMP) from the surface, the common support portion is removed, and the insulating organic resin layer 20 is exposed. A circuit board having the fine wiring 15x embedded in the insulating organic resin layer is obtained.

なお、CMPで除去する部分は、物理的支持のために形成されており、配線としては使用しない。物理的支持機能を有する他の金属で形成してもよい。金属として銅を用い、配線パターンを形成する場合を説明したが、作成する金属構造物は配線に限らない。ミクロンオーダ以下の微細構造を有するMEMS(mechanical electrical micro structure 機械電気微細構造)などを作成することもできる。有機樹脂との間に酸素を介した化学結合を形成する金属として、銅の他、銅合金、ニッケル、ニッケル合金、錫、錫合金、亜鉛、亜鉛合金などを用いてもよい。   Note that the portion to be removed by CMP is formed for physical support and is not used as a wiring. You may form with the other metal which has a physical support function. Although the case where the wiring pattern is formed using copper as the metal has been described, the metal structure to be created is not limited to the wiring. A MEMS (mechanical electrical micro structure) having a fine structure of a micron order or less can also be created. In addition to copper, a copper alloy, nickel, a nickel alloy, tin, a tin alloy, zinc, a zinc alloy, or the like may be used as a metal that forms a chemical bond via oxygen with an organic resin.

金属材料層をメッキで堆積する場合を説明したが、メッキに代えて、スパッタ、蒸着、CVDなどを用いてもよい。金属層形成後、必要に応じてCMPを行なって共通支持部の表面を平坦化してもよい。シード層をスパッタリングで形成する場合を説明したが、無電解メッキでシード層を形成してもよい。蟻酸処理は150℃以下の温度で行うこともできるが、処理時間は長くなる。雌型有機樹脂モールドは、有機樹脂膜に雄型金属マスタを押し入れ、剥離することで作成することができる。   Although the case where the metal material layer is deposited by plating has been described, sputtering, vapor deposition, CVD, or the like may be used instead of plating. After forming the metal layer, CMP may be performed as necessary to flatten the surface of the common support portion. Although the case where the seed layer is formed by sputtering has been described, the seed layer may be formed by electroless plating. The formic acid treatment can be performed at a temperature of 150 ° C. or less, but the treatment time becomes longer. The female type organic resin mold can be produced by pushing a male metal master into the organic resin film and peeling it.

図2A−2Gは、実施例2による、金属マスタを用いた雌型樹脂モールドの作成方法を示す断面図である。   2A to 2G are cross-sectional views illustrating a method for producing a female resin mold using a metal master according to Example 2. FIG.

図2Aに示すように、Ni,Ni合金などの耐久性に優れた金属で形成された金属マスタ21を準備する。金属マスタ21は、例えば作成しようとする配線パターン形状に対応する突起構造22を有する。金属マスタ21は、例えばシリコンや石英をホトリソグラフィプロセスでエッチングすることで反転パターンの原版を作り、その原版に形成した凹凸をニッケルメッキ層などに転写することで形成する。マスタは繰り返し使用するため、耐久性に優れたニッケルやニッケル合金で作ることが好ましい。   As shown in FIG. 2A, a metal master 21 made of a metal having excellent durability such as Ni or Ni alloy is prepared. The metal master 21 has a protruding structure 22 corresponding to the wiring pattern shape to be created, for example. The metal master 21 is formed, for example, by etching a silicon or quartz substrate by a photolithographic process to create a reverse pattern master and transferring the irregularities formed on the master onto a nickel plating layer or the like. Since the master is used repeatedly, it is preferably made of nickel or a nickel alloy having excellent durability.

図2Bに示すように、金属マスタ21の表面に液状有機樹脂層22pを塗布し、溶媒を蒸発させる。有機樹脂は、熱硬化性、またはUV(紫外線)硬化性である。   As shown in FIG. 2B, a liquid organic resin layer 22p is applied to the surface of the metal master 21, and the solvent is evaporated. The organic resin is thermosetting or UV (ultraviolet) curable.

図2Cに示すように、有機樹脂層22pを加熱するか、UV照射することにより、硬化した有機樹脂層22にする。有機樹脂層22は、金属マスタ21との界面で金属酸化物16を形成することによって密着性を示す。   As shown in FIG. 2C, the organic resin layer 22p is heated or irradiated with UV to form a cured organic resin layer 22. The organic resin layer 22 exhibits adhesion by forming the metal oxide 16 at the interface with the metal master 21.

図2Dに示すように、有機樹脂層22を形成した金属マスタ21を密閉された気相処理室17内に導入し、蟻酸ガス18を供給する。金属マスタ21、有機樹脂層22の温度を例えば150℃〜200℃の温度に設定する。蟻酸ガスの濃度は、例えば0.1%〜数%である。蟻酸ガスは、150℃〜200℃の温度で容易に有機樹脂層22中を浸透し、有機樹脂層22、金属マスタ21の界面に達して、金属酸化物16を還元する。   As shown in FIG. 2D, the metal master 21 on which the organic resin layer 22 is formed is introduced into the sealed gas phase processing chamber 17 and formic acid gas 18 is supplied. The temperature of the metal master 21 and the organic resin layer 22 is set to a temperature of 150 ° C. to 200 ° C., for example. The concentration of formic acid gas is, for example, 0.1% to several percent. The formic acid gas easily penetrates into the organic resin layer 22 at a temperature of 150 ° C. to 200 ° C., reaches the interface between the organic resin layer 22 and the metal master 21, and reduces the metal oxide 16.

図2Eに示すように、界面の金属酸化物16が消滅すると、有機樹脂層22と金属マスタ21は剥離しやすい状態となる。   As shown in FIG. 2E, when the metal oxide 16 at the interface disappears, the organic resin layer 22 and the metal master 21 are easily peeled off.

図2Fに示すように、有機樹脂層22を引き上げることにより、金属マスタ21から剥離することができる。なお微細構造を形成した有機樹脂層22は損傷を受けやすい。   As shown in FIG. 2F, the organic resin layer 22 can be peeled from the metal master 21 by pulling up. The organic resin layer 22 having a fine structure is easily damaged.

図2Gに示すように、有機樹脂層22を金属マスタ21に嵌め合わせた状態で保管、搬送することにより、微細構造を形成した有機樹脂層22を保護することもできる。   As shown in FIG. 2G, the organic resin layer 22 formed with a fine structure can be protected by storing and transporting the organic resin layer 22 in a state of being fitted to the metal master 21.

以上、実施例に沿って本発明を説明したが、本発明はこれらに限られるものではない。微細構造は配線に限らず、3次元構造を有する微細構造であればよい。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. The fine structure is not limited to wiring, but may be any fine structure having a three-dimensional structure.

と、When, 図1A−1Hは、実施例1による金属構造物および配線基板の作成方法を示す断面図である。1A to 1H are cross-sectional views illustrating a method for producing a metal structure and a wiring board according to Example 1. FIG. と、When, 図2A−2Gは、実施例2による雌型樹脂モールドの作成方法を示す断面図である。2A to 2G are cross-sectional views illustrating a method for producing a female resin mold according to Example 2. FIG.

符号の説明Explanation of symbols

11 有機樹脂製の雌型モールド、
12 溝、
14 銅シード層、
15 銅層、
16 金属酸化物、
17 気相処理室、
18 蟻酸ガス、
19 絶縁基板、
20 絶縁有機樹脂膜、
21 金属マスタ、
22p 液状有機樹脂層、
22 有機樹脂層、
11 Female mold made of organic resin,
12 grooves,
14 Copper seed layer,
15 copper layer,
16 metal oxides,
17 Vapor phase treatment chamber,
18 formic acid gas,
19 Insulating substrate,
20 Insulating organic resin film,
21 Metal Master,
22p Liquid organic resin layer,
22 Organic resin layer,

Claims (6)

表面に3次元微細構造を有するモールドの有機樹脂層を準備する工程と、
前記有機樹脂層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する金属層を形成し、前記有機樹脂層と前記金属層の界面に金属酸化物を介した結合を形成する工程と、
前記有機樹脂層を蟻酸ガスに曝し、前記有機樹脂層を浸透した蟻酸により、前記金属層との界面における金属酸化物を還元し、前記金属層と前記有機樹脂層との結合を切断する工程と、
を含む微細構造の製造方法。
Preparing an organic resin layer of a mold having a three-dimensional microstructure on the surface;
On the surface of the organic resin layer, a metal layer that completely embeds the three-dimensional microstructure and forms a common support portion is formed, and a bond through a metal oxide is bonded to the interface between the organic resin layer and the metal layer. Forming, and
Exposing the organic resin layer to formic acid gas, reducing the metal oxide at the interface with the metal layer with formic acid permeating the organic resin layer, and cutting the bond between the metal layer and the organic resin layer; ,
A method for producing a microstructure including
前記結合を切断した前記金属層を前記有機樹脂層から剥離する工程と、
前記有機樹脂層から剥離した前記金属層を、軟化させた有機樹脂層中に押し込む工程と、
前記金属層の、前記有機樹脂層上方の共通支持部を化学機械研磨により除去する工程と、
をさらに有する請求項1記載の微細構造の製造方法。
Peeling the metal layer from which the bond has been cut off from the organic resin layer;
Pushing the metal layer peeled from the organic resin layer into the softened organic resin layer;
Removing the common support portion of the metal layer above the organic resin layer by chemical mechanical polishing;
The method for producing a microstructure according to claim 1, further comprising:
前記結合を切断した前記金属層を、前記有機樹脂層中に保管する工程、
をさらに有する請求項1記載の微細構造の製造方法。
Storing the metal layer with the bond cut in the organic resin layer;
The method for producing a microstructure according to claim 1, further comprising:
表面に3次元微細構造を有するマスタの金属層を準備する工程と、
前記金属層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する有機樹脂層を塗布、硬化し、前記金属層と前記有機樹脂層の界面に金属酸化物を介した結合を形成する工程と、
前記有機樹脂層を蟻酸ガスに曝し、前記有機樹脂層を浸透した蟻酸により、前記金属層との界面における金属酸化物を還元し、前記金属層と前記有機樹脂層との結合を切断する工程と、
を含む微細構造の製造方法。
Preparing a master metal layer having a three-dimensional microstructure on the surface;
An organic resin layer that completely embeds the three-dimensional microstructure and forms a common support portion is applied and cured on the surface of the metal layer, and a metal oxide is interposed at the interface between the metal layer and the organic resin layer. Forming a bond;
Exposing the organic resin layer to formic acid gas, reducing the metal oxide at the interface with the metal layer with formic acid permeating the organic resin layer, and cutting the bond between the metal layer and the organic resin layer; ,
A method for producing a microstructure including
前記結合を切断した前記有機樹脂層を前記金属層から剥離する工程と、
剥離した前記有機樹脂層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する金属層を形成する工程と、
をさらに有する請求項4記載の微細構造の製造方法。
Peeling the organic resin layer from which the bond has been cut off from the metal layer;
Forming a metal layer that completely embeds the three-dimensional microstructure on the surface of the peeled organic resin layer and also forms a common support;
The method for producing a microstructure according to claim 4, further comprising:
表面に3次元微細構造を有するモールドの有機樹脂層を準備する工程と、
前記有機樹脂層の表面上に、前記3次元微細構造を完全に埋め込み、共通支持部も形成する金属層を形成し、前記有機樹脂層と前記金属層の界面に金属酸化物を介した結合を形成する工程と、
前記有機樹脂層を蟻酸ガスに曝し、前記有機樹脂層を浸透した蟻酸により、前記金属層との界面における金属酸化物を還元し、前記金属層と前記有機樹脂層との結合を切断する工程と、
絶縁有機樹脂層を供えた支持基板の前記絶縁有機樹脂層に前記金属層を埋め込み、前記共通支持部を除去して回路基盤を作成する工程と、
を含む回路基盤の製造方法。
Preparing an organic resin layer of a mold having a three-dimensional microstructure on the surface;
On the surface of the organic resin layer, a metal layer that completely embeds the three-dimensional microstructure and forms a common support portion is formed, and a bond through a metal oxide is bonded to the interface between the organic resin layer and the metal layer. Forming, and
Exposing the organic resin layer to formic acid gas, reducing the metal oxide at the interface with the metal layer with formic acid permeating the organic resin layer, and cutting the bond between the metal layer and the organic resin layer; ,
Embedding the metal layer in the insulating organic resin layer of the support substrate provided with an insulating organic resin layer, removing the common support portion, and creating a circuit board;
A circuit board manufacturing method including:
JP2008323198A 2008-12-19 2008-12-19 Microstructure manufacturing method and circuit board manufacturing method Expired - Fee Related JP5186663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323198A JP5186663B2 (en) 2008-12-19 2008-12-19 Microstructure manufacturing method and circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323198A JP5186663B2 (en) 2008-12-19 2008-12-19 Microstructure manufacturing method and circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2010147263A true JP2010147263A (en) 2010-07-01
JP5186663B2 JP5186663B2 (en) 2013-04-17

Family

ID=42567364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323198A Expired - Fee Related JP5186663B2 (en) 2008-12-19 2008-12-19 Microstructure manufacturing method and circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP5186663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676662B2 (en) 2014-05-29 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Supported resin substrate and method for producing the same and electronic device in which the supported resin substrate is used

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649777A (en) * 1987-07-01 1989-01-13 Toppan Printing Co Ltd Manufacture of decorative display panel
JPH05313369A (en) * 1992-05-12 1993-11-26 Hitachi Ltd Photosetting type resist composition and production of printed circuit board by using the composition
JPH08269691A (en) * 1995-03-31 1996-10-15 Toppan Printing Co Ltd Metal coated film
JP2001230335A (en) * 2000-02-17 2001-08-24 Mitsui Chemicals Inc Method of manufacturing electric circuit board
JP2001320150A (en) * 2000-02-29 2001-11-16 Mitsui Chemicals Inc Wiring board by stamper and manufacturing method thereof
JP2003142530A (en) * 2001-11-08 2003-05-16 Fujitsu Ltd Method for connecting electrode of electronic component and bonding device for conducting the method
JP2003234370A (en) * 2002-02-07 2003-08-22 Fujitsu Ltd Method for connecting electronic component, and connected structure obtained by the same
JP2004221561A (en) * 2002-12-27 2004-08-05 Semiconductor Energy Lab Co Ltd Peeling method
JP2007162068A (en) * 2005-12-13 2007-06-28 Tokyo Electron Ltd Apparatus for manufacturing semiconductor and method of manufacturing semiconductor device
JP2008262996A (en) * 2007-04-10 2008-10-30 Tokyo Electron Ltd Method of manufacturing semiconductor device, and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649777A (en) * 1987-07-01 1989-01-13 Toppan Printing Co Ltd Manufacture of decorative display panel
JPH05313369A (en) * 1992-05-12 1993-11-26 Hitachi Ltd Photosetting type resist composition and production of printed circuit board by using the composition
JPH08269691A (en) * 1995-03-31 1996-10-15 Toppan Printing Co Ltd Metal coated film
JP2001230335A (en) * 2000-02-17 2001-08-24 Mitsui Chemicals Inc Method of manufacturing electric circuit board
JP2001320150A (en) * 2000-02-29 2001-11-16 Mitsui Chemicals Inc Wiring board by stamper and manufacturing method thereof
JP2003142530A (en) * 2001-11-08 2003-05-16 Fujitsu Ltd Method for connecting electrode of electronic component and bonding device for conducting the method
JP2003234370A (en) * 2002-02-07 2003-08-22 Fujitsu Ltd Method for connecting electronic component, and connected structure obtained by the same
JP2004221561A (en) * 2002-12-27 2004-08-05 Semiconductor Energy Lab Co Ltd Peeling method
JP2007162068A (en) * 2005-12-13 2007-06-28 Tokyo Electron Ltd Apparatus for manufacturing semiconductor and method of manufacturing semiconductor device
JP2008262996A (en) * 2007-04-10 2008-10-30 Tokyo Electron Ltd Method of manufacturing semiconductor device, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676662B2 (en) 2014-05-29 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Supported resin substrate and method for producing the same and electronic device in which the supported resin substrate is used

Also Published As

Publication number Publication date
JP5186663B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
TWI279830B (en) Compliant template for UV imprinting
TWI362688B (en) Method of forming a semiconductor device
JP2004071587A (en) Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern
JP2005532576A (en) A novel planarization method for multilayer lithography processes
WO2007030527A2 (en) Photomask for the fabrication of a dual damascene structure and method for forming the same
TW201140650A (en) Pattern formation method
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
CN101135842A (en) Method for copying nano autogram formwork
JP2009523312A5 (en)
KR100803749B1 (en) Manufacturing method of broad stamper
JP5186663B2 (en) Microstructure manufacturing method and circuit board manufacturing method
KR20140092913A (en) Transfer mold manufacturing method, transfer mold manufactured thereby, and component produced by the transfer mold
US10999935B2 (en) Manufacturing method of circuit board
JP5073878B1 (en) Method for manufacturing transfer mold, transfer mold manufactured by the method, and parts manufactured by the transfer mold
JP2012104521A (en) Method of manufacturing circuit board
CN1996141A (en) Impression die with zero film thickness and impression-photoetched pattern transferring method
JP6015140B2 (en) Nanoimprint mold and manufacturing method thereof
JP5073880B1 (en) Method of manufacturing transfer mold and transfer mold
JP2010171109A (en) Imprinting mold precursor and method of manufacturing the imprinting mold precursor
KR20090006703A (en) Method for manufacturing high-aspect-ratio micro structures
JP2007317810A (en) Method for manufacturing metallic wiring
US6962874B2 (en) Method for fabricating semiconductor device
JPH07263379A (en) Method of forming fine structure
JP2005064289A (en) Micro-pattern, method for forming the same, method for producing mold for transferring and forming the same, and the mold
JP5073868B1 (en) Method of manufacturing transfer mold and transfer mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees