JP2010142727A - Electric deionized water producing apparatus - Google Patents

Electric deionized water producing apparatus Download PDF

Info

Publication number
JP2010142727A
JP2010142727A JP2008322349A JP2008322349A JP2010142727A JP 2010142727 A JP2010142727 A JP 2010142727A JP 2008322349 A JP2008322349 A JP 2008322349A JP 2008322349 A JP2008322349 A JP 2008322349A JP 2010142727 A JP2010142727 A JP 2010142727A
Authority
JP
Japan
Prior art keywords
chamber
water
exchanger
cathode
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322349A
Other languages
Japanese (ja)
Other versions
JP4979677B2 (en
Inventor
Keisuke Sasaki
慶介 佐々木
Tomoji Asakawa
友二 浅川
Kazuya Hasegawa
一哉 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008322349A priority Critical patent/JP4979677B2/en
Publication of JP2010142727A publication Critical patent/JP2010142727A/en
Application granted granted Critical
Publication of JP4979677B2 publication Critical patent/JP4979677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric deionized water producing apparatus (EDI) capable of achieving an energy-saving ability in operation, and further obtaining deionized water of excellent quality having a high specific resistance even in treating a large amount of water. <P>SOLUTION: The EDI includes between an anode and a cathode a desalting chamber 150 having a cathode-side small desalting chamber 152 and an anode-side small desalting chamber 154 and concentrating chambers 130 on either side of the desalting chamber 150 with an anion exchange membrane 146 or a cation exchange membrane 142 in between. The anode-side small desalting chamber 154 is filled with an ion exchanger containing an anion exchanger 155 and the cathode-side small desalting chamber 152 with a mixed bed of a cation exchanger 151 and an anion exchanger containing a low-basic anion exchanger 153. A means is provided for supplying water having flowed through the cathode-side small desalting chamber 152 to the anode-side small desalting chamber 154. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電気式脱イオン水製造装置に関する。   The present invention relates to an electric deionized water production apparatus.

脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通水して脱イオンを行う方法が知られている。しかし、この方法ではイオン交換樹脂が飽和したときに、薬剤によって再生を行う必要がある。近年、このような処理操作上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置(以下、EDIという)が実用化されている。   As a method for producing deionized water, a method for deionizing by passing water to be treated through an ion exchange resin is conventionally known. However, in this method, when the ion exchange resin is saturated, it is necessary to regenerate with a drug. In recent years, an electric deionized water production apparatus (hereinafter referred to as EDI) that does not require regeneration with a drug has been put into practical use in order to eliminate such disadvantages in processing operations.

EDIは、電気泳動と電気透析とを組み合わせた純水製造装置である。EDIは、アニオン交換膜とカチオン交換膜との間にイオン交換体を充填し、イオン交換膜の外側に陽極を備える陽極室と、陰極を備える陰極室(以下、陽極と陰極を総じて、電極ということがある)を配置した装置である。EDIによる脱イオン水の製造方法は、電極に直流電圧を印加した状態でイオン交換体層に被処理水を通水することにより、被処理水中のイオン成分をイオン交換体で吸着し、電気泳動にて膜面までイオンを泳動させ、イオン交換膜にて電気透析して濃縮水中へと除去するものである。このEDIは、脱塩室内の異種のイオン交換体の界面(以下、異種イオン交換体界面という)にて生じる電位差により、水の解離反応が進行し、HとOHが生成することで、脱塩室内のイオン交換体を連続して再生するものである。 EDI is a pure water production apparatus that combines electrophoresis and electrodialysis. EDI is filled with an ion exchanger between an anion exchange membrane and a cation exchange membrane, an anode chamber having an anode outside the ion exchange membrane, and a cathode chamber having a cathode (hereinafter, the anode and the cathode are collectively referred to as an electrode). Device). In the method of producing deionized water by EDI, by passing water to be treated through the ion exchanger layer with a DC voltage applied to the electrodes, ion components in the water to be treated are adsorbed by the ion exchanger, and electrophoresis is performed. The ions are migrated to the membrane surface with, and electrodialyzed with an ion exchange membrane to be removed into concentrated water. In this EDI, the dissociation reaction of water proceeds due to a potential difference generated at the interface between different types of ion exchangers (hereinafter referred to as different types of ion exchanger interfaces) in the desalination chamber, and H + and OH are generated. The ion exchanger in the desalting chamber is continuously regenerated.

従来、EDIは、被処理水中のアニオン成分(Cl、HCO 、CO 2−、SiO(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする)等)とカチオン成分(Na、Ca2+、Mg2+等)とを1つの脱塩室内で除去する必要があるため、脱塩室に充填するイオン交換体はアニオン交換体とカチオン交換体との混床形態あるいは複床形態で充填されることが多い。一般的に脱塩室のイオン交換体の充填形態を混床形態とすると、単床形態とした場合に比べて電気抵抗が高くなることが知られている。脱塩室の電気抵抗が高いと、イオン成分濃度が高い水を被処理水として処理する場合や、脱塩室当たりの被処理水の流水量を増大させて処理する場合に、印加する電流値を上げてEDIを運転すると、オームの法則(E=IR)に従い、運転電圧も総じて高くなる。この結果、EDIの運転は、電流×電圧で表される消費電力が大きくなり、高エネルギーとなる。 Conventionally, EDI has an anionic component (Cl , HCO 3 , CO 3 2− , SiO 2 (silica often takes a special form, so that it is displayed differently from general ions). )) And cation components (Na + , Ca 2+ , Mg 2+, etc.) must be removed in one desalting chamber, so that the ion exchanger filled in the desalting chamber is an anion exchanger and a cation exchanger. It is often filled in a mixed bed form or multiple bed form. In general, it is known that when the ion exchanger in the desalting chamber is filled in a mixed bed configuration, the electrical resistance is higher than that in a single bed configuration. When the electrical resistance of the desalination chamber is high, the current value to be applied when treating water with high ionic component concentration as the treated water or when increasing the flow rate of the treated water per desalting chamber When the EDI is operated at a higher value, the operating voltage generally increases in accordance with Ohm's law (E = IR). As a result, the operation of EDI increases the power consumption represented by current × voltage, resulting in high energy.

こうした問題に対し、省エネルギーでEDIを運転するために、EDIの電気抵抗を低減する種々の試みがなされている。例えば、脱塩室に混床形態で充填するアニオン交換体が、II形強塩基性アニオン交換体又は弱塩基性アニオン交換体を含むことで、電気抵抗を低減できることが開示されている(例えば、特許文献1〜3)。また、脱塩室に混床形態で充填するアニオン交換体として、I形強塩基(最強塩基)性アニオン交換体とII形強塩基性アニオン交換体とを併用することで、低い電圧で、比抵抗の高い良好な水質の脱イオン水を得る発明が開示されている(例えば、特許文献4)。さらには、EDIの構造を抜本的に改善し、脱塩室1つ当たりの濃縮室の数を従来の約半分にし、EDIの電気抵抗を著しく低減できる脱塩室2室構造のEDIが開示されている(例えば、特許文献5)。
特表2000−504273号公報 特表2001−500783号公報 特表2002−535128号公報 特許第3895180号公報 特許第3385553号公報
In response to these problems, various attempts have been made to reduce the electrical resistance of EDI in order to operate EDI with energy saving. For example, it is disclosed that an anion exchanger filled in a desalted chamber in a mixed bed form can include a type II strong basic anion exchanger or a weak basic anion exchanger to reduce electrical resistance (for example, Patent Documents 1 to 3). In addition, as an anion exchanger filled in the desalination chamber in a mixed bed form, a combination of a type I strong base (strongest base) type anion exchanger and a type II strong base anion exchanger can be used at a low voltage. An invention for obtaining deionized water with good resistance and good water quality is disclosed (for example, Patent Document 4). Furthermore, an EDI having a two-salt chamber structure is disclosed that drastically improves the EDI structure, reduces the number of concentration chambers per desalting chamber to about half of the conventional one, and can significantly reduce the electrical resistance of EDI. (For example, Patent Document 5).
Special Table 2000-504273 Japanese translation of PCT publication No. 2001-5000783 Special table 2002-535128 gazette Japanese Patent No. 3895180 Japanese Patent No. 3385553

しかしながら、EDIの運転時のさらなる省エネルギー化、処理量の増大、脱イオン水の水質の向上が求められている。EDIの省エネルギー化を図るために、脱塩室に充填するアニオン交換体におけるII形強塩基性アニオン交換体や弱塩基性アニオン交換体の割合を単に増やしたとしても、II形強塩基性アニオン交換体や弱塩基性アニオン交換体は、イオン成分を吸着する能力が低いため被処理水中のイオン成分の除去性能が低くなり、脱イオン水の純度が低下する懸念がある。加えて、脱塩室当たりの処理量を増大させるために、被処理水の通水量を増大させると通水差圧が高くなり、EDIの破損等の原因となることが考えられる。脱塩室の通水差圧を低減するには、脱塩室の厚さを厚くする方法が考えられるが、脱塩室を厚くすると、その厚さに応じて電気抵抗も増大するという問題がある。
そこで本発明は、運転時の省エネルギー化を実現し、かつ、大量処理によっても比抵抗の高い良好な水質の脱イオン水が得られるEDIを目的とする。
However, further energy saving during EDI operation, increased throughput, and improved deionized water quality are required. In order to save energy of EDI, even if the proportion of type II strong base anion exchanger and weak base anion exchanger in the anion exchanger packed in the desalting chamber is simply increased, type II strong base anion exchange Since a body and a weakly basic anion exchanger have a low ability to adsorb ionic components, there is a concern that the performance of removing ionic components from the water to be treated is lowered and the purity of deionized water is lowered. In addition, in order to increase the throughput per desalting chamber, increasing the flow rate of the water to be treated increases the flow differential pressure, which may cause EDI damage and the like. In order to reduce the water flow differential pressure in the desalting chamber, a method of increasing the thickness of the desalting chamber can be considered, but if the desalting chamber is thickened, there is a problem that the electrical resistance increases according to the thickness. is there.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an EDI that realizes energy saving during operation and that can obtain deionized water of good water quality with high specific resistance even by mass treatment.

本発明のEDIは、陽極側のアニオン交換膜と、陰極側のカチオン交換膜と、前記アニオン交換膜と前記カチオン交換膜との間に設けられた中間イオン交換膜と、で区画される小脱塩室にイオン交換体が充填されて脱塩室が構成され、前記脱塩室の両側に前記アニオン交換膜又は前記カチオン交換膜を介して濃縮室が設けられ、前記脱塩室と前記濃縮室とが陰極と陽極との間に配置された電気式脱イオン水製造装置において、前記アニオン交換膜と前記中間イオン交換膜とで区画された陽極側小脱塩室に充填するイオン交換体は、アニオン交換体を含み、前記カチオン交換膜と前記中間イオン交換膜とで区画された陰極側小脱塩室に充填するイオン交換体は、弱塩基性アニオン交換体、中塩基性アニオン交換体、II形強塩基性アニオン交換体からなる群から選択される少なくとも一種(以下、低塩基性アニオン交換体ということがある)を含むアニオン交換体と、カチオン交換体との混床形態であり、前記陰極側小脱塩室を流通した水を前記陽極側小脱塩室に流す送水手段が設けられていることを特徴とする。前記陰極側小脱塩室に充填するアニオン交換体に含まれる弱塩基性アニオン交換体と中塩基性アニオン交換体とII形強塩基性アニオン交換体との合計は、前記アニオン交換体の50体積%を超えていることが好ましく、前記陽極側小脱塩室に充填するイオン交換体は、アニオン交換体の単床形態であることが好ましく、前記中間イオン交換膜はアニオン交換膜であることが好ましい。   The EDI of the present invention comprises a small desorption divided by an anion exchange membrane on the anode side, a cation exchange membrane on the cathode side, and an intermediate ion exchange membrane provided between the anion exchange membrane and the cation exchange membrane. A salt chamber is filled with an ion exchanger to form a desalting chamber, a concentration chamber is provided on both sides of the desalting chamber via the anion exchange membrane or the cation exchange membrane, and the desalting chamber and the concentration chamber In the electric deionized water production apparatus in which is disposed between the cathode and the anode, the ion exchanger filled in the anode-side small desalination chamber partitioned by the anion exchange membrane and the intermediate ion exchange membrane is: An ion exchanger containing an anion exchanger and filled in the cathode-side small desalting chamber partitioned by the cation exchange membrane and the intermediate ion exchange membrane is a weakly basic anion exchanger, a medium basic anion exchanger, II Strongly basic anion exchange It is a mixed bed form of an anion exchanger containing at least one selected from the group consisting of the following (hereinafter sometimes referred to as a low basic anion exchanger) and a cation exchanger, and circulates through the cathode-side small desalting chamber Water feeding means is provided for flowing the treated water into the anode-side small desalting chamber. The total of the weakly basic anion exchanger, medium basic anion exchanger, and type II strongly basic anion exchanger contained in the anion exchanger filled in the cathode-side small desalting chamber is 50 volumes of the anion exchanger. Preferably, the ion exchanger filled in the small anode-side desalination chamber is preferably in the form of a single bed of anion exchanger, and the intermediate ion exchange membrane is an anion exchange membrane. preferable.

本発明のEDIによれば、運転時の省エネルギー化を実現し、かつ、大量処理によっても比抵抗の高い良好な水質の脱イオン水が得られる。   According to the EDI of the present invention, deionized water with good water quality can be obtained which realizes energy saving during operation and has high specific resistance even by mass treatment.

本発明のEDIにおける、運転時の省エネルギー化、及び、水質向上の原理について、図1を用いて説明する。図1は、本発明のEDIにおける、イオン成分の流れを説明する脱塩室150の部分断面図である。図1に示すとおり、脱塩室150は、陰極側小脱塩室152と陽極側小脱塩室154とで構成されている。脱塩室150の両側には、濃縮室130が設けられ、脱塩室150と濃縮室130とが陰極と陽極との間に配置されている。陰極側小脱塩室152は、カチオン交換膜142と中間イオン交換膜144とで区画され、カチオン交換体151と低塩基性アニオン交換体153とが混床形態で充填され形成されている。陽極側小脱塩室154は中間イオン交換膜144とアニオン交換膜146とで区画され、アニオン交換体155が単床形態で充填されている。   The principle of energy saving and water quality improvement during operation in the EDI of the present invention will be described with reference to FIG. FIG. 1 is a partial cross-sectional view of a desalting chamber 150 for explaining the flow of ion components in the EDI of the present invention. As shown in FIG. 1, the desalting chamber 150 includes a cathode side small desalting chamber 152 and an anode side small desalting chamber 154. Concentration chambers 130 are provided on both sides of the desalting chamber 150, and the desalting chamber 150 and the concentration chamber 130 are disposed between the cathode and the anode. The cathode-side small desalting chamber 152 is partitioned by a cation exchange membrane 142 and an intermediate ion exchange membrane 144, and is formed by filling a cation exchanger 151 and a low basic anion exchanger 153 in a mixed bed form. The anode-side small desalting chamber 154 is partitioned by an intermediate ion exchange membrane 144 and an anion exchange membrane 146, and an anion exchanger 155 is filled in a single bed form.

脱イオン水の製造方法について、中間イオン交換膜144をアニオン交換膜とした場合を例にして説明する。まず、陰極と陽極との間に直流電圧を印加し、被処理水Aを陰極側小脱塩室152に流通させる。被処理水Aは陰極側小脱塩室152を流通する間、被処理水A中のNaやCa2+等のカチオン成分がカチオン交換体151に吸着され、吸着されたカチオン成分は陰極に引き寄せられてカチオン交換膜142を透過して濃縮室130に移動する。また、被処理水A中のClやHCO 等のアニオン成分は、低塩基性アニオン交換体153に吸着される。そして、吸着されたアニオン成分は陽極に引き寄せられて中間イオン交換膜144を透過して、陽極側小脱塩室154に移動する。しかし、低塩基性アニオン交換体153はアニオン成分の吸着力が低いため、吸着したアニオン成分は容易に脱着し、被処理水B中に残存した状態で陰極側小脱塩室152から流出する。 The method for producing deionized water will be described with reference to an example in which the intermediate ion exchange membrane 144 is an anion exchange membrane. First, a DC voltage is applied between the cathode and the anode, and the water to be treated A is circulated through the cathode-side small desalting chamber 152. While the water to be treated A flows through the cathode-side small desalting chamber 152, cation components such as Na + and Ca 2+ in the water to be treated A are adsorbed on the cation exchanger 151, and the adsorbed cation components are attracted to the cathode. Then, it passes through the cation exchange membrane 142 and moves to the concentration chamber 130. In addition, anion components such as Cl and HCO 3 in the water to be treated A are adsorbed by the low basic anion exchanger 153. The adsorbed anion component is attracted to the anode, passes through the intermediate ion exchange membrane 144, and moves to the anode-side small desalting chamber 154. However, since the low basic anion exchanger 153 has low anion component adsorption power, the adsorbed anion component is easily desorbed and flows out of the cathode-side small desalting chamber 152 while remaining in the treated water B.

陽極側小脱塩室154に、被処理水Bを流入させる。陽極側小脱塩室154に流入した被処理水Bは、アニオン交換体155内を拡散しながら流通する。この間、被処理水B中のアニオン成分はアニオン交換体155に吸着され、除去される。吸着されたアニオン成分は、陽極に引き寄せられてアニオン交換膜144を透過し、濃縮室130に移動する。こうして、被処理水Aは、陰極側小脱塩室152でカチオン成分が除去され、陽極側小脱塩室154でアニオン成分が除去され、脱イオン水Cとなって、陽極側小脱塩室154から流出する。この間、脱塩室150の異種イオン交換体界面では、水の解離反応が進行する。   The treated water B is caused to flow into the anode side small desalination chamber 154. The treated water B that has flowed into the anode-side small desalting chamber 154 flows while diffusing in the anion exchanger 155. During this time, the anion component in the water to be treated B is adsorbed by the anion exchanger 155 and removed. The adsorbed anion component is attracted to the anode, passes through the anion exchange membrane 144, and moves to the concentration chamber 130. In this way, the cation component is removed from the water to be treated A in the cathode-side small desalination chamber 152, the anion component is removed in the anode-side small desalination chamber 154, and becomes deionized water C. 154 flows out. During this time, the dissociation reaction of water proceeds at the heterogeneous ion exchanger interface of the desalting chamber 150.

低塩基性アニオン交換体153は、I形強塩基(最強塩基)性アニオン交換体等の塩基性が高いものに比べて、低い電圧で異種イオン交換体界面での水の解離反応が進行するといわれている。さらに、陰極側小脱塩室152は混床形態であるため、カチオン交換体151と低塩基性アニオン交換体153との異種イオン交換体界面が多く存在し、陰極側小脱塩室152における電気抵抗は、異種イオン交換体界面で生じる水の解離反応による影響をより大きく受ける。このため、陰極側小脱塩室152に用いるアニオン交換体を低塩基性のアニオン交換体とすることで、異種イオン交換体界面は低塩基性アニオン交換体153とカチオン交換体151とで形成され、低い電圧で水の解離反応が進行でき、EDIを低い電圧で運転することができる。この結果、省エネルギー化が図れる。加えて、電気抵抗が増大する原因となる混床形態の陰極側小脱塩室152の電気抵抗を低くすることで、脱塩室当たりの被処理水の通水量を増大させるために脱塩室を厚くしても、低い電圧で被処理水を大量処理できる。   The low basic anion exchanger 153 is said to undergo a water dissociation reaction at a different ion exchanger interface at a lower voltage than those having a high basicity such as type I strong base (strongest base) anion exchanger. ing. Furthermore, since the cathode-side small desalting chamber 152 is in a mixed-bed form, there are many different types of ion exchanger interfaces between the cation exchanger 151 and the low basic anion exchanger 153, and the electricity in the cathode-side small desalting chamber 152 is The resistance is more greatly affected by the water dissociation reaction that occurs at the interface of the different ion exchangers. For this reason, the anion exchanger used in the cathode-side small desalting chamber 152 is a low basic anion exchanger, so that the heterogeneous ion exchanger interface is formed by the low basic anion exchanger 153 and the cation exchanger 151. The water dissociation reaction can proceed at a low voltage, and the EDI can be operated at a low voltage. As a result, energy saving can be achieved. In addition, by reducing the electrical resistance of the cathode-side small desalination chamber 152 in the mixed bed form, which causes an increase in electrical resistance, the desalination chamber increases the amount of water to be treated per desalting chamber. Even if the thickness is increased, a large amount of water to be treated can be treated at a low voltage.

低塩基性アニオン交換体153は、アニオン成分の吸着力が低いため、被処理水B中には、多くのアニオン成分が残存したままとなる。本発明のEDIは脱塩室2室構造であるため、陰極側小脱塩室152を流通した被処理水Bを陽極側小脱塩室154で再度処理することで、被処理水B中に残存するアニオン成分を高度に除去できる。このため、良好な水質の脱イオン水Cを得ることができる。   Since the low basic anion exchanger 153 has low anion component adsorption power, many anion components remain in the water to be treated B. Since the EDI of the present invention has a two-desalination chamber structure, the treated water B flowing through the cathode-side small desalting chamber 152 is treated again in the anode-side small desalting chamber 154, so that The remaining anion component can be highly removed. For this reason, deionized water C with good water quality can be obtained.

本発明の実施形態の一例について、図2を用いて説明するが、本発明は以下の実施形態に限定されるものではない。図2は、本発明の実施形態にかかるEDI10の断面図である。図2に示すように、EDI10は陰極22と陽極62との間に、複数の脱塩室50が、濃縮室30に挟持されて配置されている。   An example of an embodiment of the present invention will be described with reference to FIG. 2, but the present invention is not limited to the following embodiment. FIG. 2 is a cross-sectional view of the EDI 10 according to the embodiment of the present invention. As shown in FIG. 2, the EDI 10 has a plurality of desalting chambers 50 sandwiched between the concentration chambers 30 between a cathode 22 and an anode 62.

脱塩室50は、陰極側小脱塩室52と陽極側小脱塩室54とで構成されている。陰極側小脱塩室52は、カチオン交換膜42と枠体51と中間イオン交換膜44とが陰極22側から順に配置され、枠体51の開口部にイオン交換体が充填され形成されている。陽極側小脱塩室54は、中間イオン交換膜44と枠体53とアニオン交換膜46とが陰極22側から順に配置され、枠体53の開口部にイオン交換体が充填され形成されている。こうして、脱塩室50は中間イオン交換膜44によって厚さ方向に略二分され、脱塩室50には、中間イオン交換膜44を介して隣接する陰極側小脱塩室52と陽極側小脱塩室54とが設けられている。   The desalting chamber 50 includes a cathode-side small desalting chamber 52 and an anode-side small desalting chamber 54. In the cathode-side small desalination chamber 52, a cation exchange membrane 42, a frame 51, and an intermediate ion exchange membrane 44 are arranged in this order from the cathode 22 side, and an opening of the frame 51 is filled with an ion exchanger. . In the anode-side small desalination chamber 54, an intermediate ion exchange membrane 44, a frame 53, and an anion exchange membrane 46 are arranged in this order from the cathode 22, and the opening of the frame 53 is filled with an ion exchanger. . Thus, the desalting chamber 50 is substantially bisected in the thickness direction by the intermediate ion exchange membrane 44. The desalting chamber 50 is adjacent to the cathode-side small desalting chamber 52 and the anode-side small desalting via the intermediate ion-exchange membrane 44. A salt chamber 54 is provided.

陰極側小脱塩室52には、被処理水流入ライン55と被処理水流出ライン56とが接続されている。被処理水流出ライン56は、図示されない配管により、被処理水流入ライン57と接続されている。陽極側小脱塩室54には、被処理水流入ライン57と脱イオン水流出ライン58とが接続されている。「送水手段」は、被処理水流出ライン56、被処理水流入ライン57、及び、被処理水流出ライン56と被処理水流入ライン57とを接続する図示されない配管で構成されている。陰極22及び陽極62は、図示されない電源と接続されている。   A treated water inflow line 55 and a treated water outflow line 56 are connected to the cathode-side small desalination chamber 52. The treated water outflow line 56 is connected to the treated water inflow line 57 by a pipe (not shown). A treated water inflow line 57 and a deionized water outflow line 58 are connected to the anode side small desalination chamber 54. The “water supply means” includes a treated water outflow line 56, a treated water inflow line 57, and piping (not shown) that connects the treated water outflow line 56 and the treated water inflow line 57. The cathode 22 and the anode 62 are connected to a power source (not shown).

陰極室20は、陰極22と枠体21と仕切り膜24とが、陰極22側から順に配置され、形成されている。陰極室20には、電極水流入ライン23と電極水流出ライン25とが接続されている。陽極室60は、仕切り膜24と枠体61と陽極62とが、陰極22側から順に配置され、形成されている。陽極室60には、電極水流入ライン63と電極水流出ライン65とが接続されている。   In the cathode chamber 20, a cathode 22, a frame body 21, and a partition film 24 are sequentially arranged from the cathode 22 side. An electrode water inflow line 23 and an electrode water outflow line 25 are connected to the cathode chamber 20. In the anode chamber 60, the partition film 24, the frame body 61, and the anode 62 are sequentially arranged from the cathode 22 side. An electrode water inflow line 63 and an electrode water outflow line 65 are connected to the anode chamber 60.

濃縮室30は、脱塩室50の両側にカチオン交換膜42又はアニオン交換膜46を介して枠体31が配置され、形成されている。濃縮室30には、濃縮水流入ライン33と濃縮水流出ライン35とが接続されている。   The concentration chamber 30 is formed by disposing a frame 31 on both sides of the desalting chamber 50 via a cation exchange membrane 42 or an anion exchange membrane 46. A concentrated water inflow line 33 and a concentrated water outflow line 35 are connected to the concentration chamber 30.

イオン交換膜としては大別すると、原料モノマー液を補強体に含浸させた後に重合させ、全体を均質に形成した均質膜と、イオン交換樹脂を溶解成型可能なポリオレフィン系樹脂と共に粉砕成型した不均質膜の2種類がある。本実施形態におけるカチオン交換膜42、アニオン交換膜46はいずれも特に限定されず、EDIの製造の適性や、被処理水の水質、脱イオン水に求める水質、処理量等に応じて選択することができる。   Roughly classified as ion exchange membranes, a homogenous membrane formed by impregnating a raw material monomer solution into a reinforcing body and then polymerized to form a homogeneous whole, and a non-homogeneous material obtained by grinding and pulverizing together with a polyolefin resin capable of dissolving and molding the ion exchange resin There are two types of membranes. The cation exchange membrane 42 and the anion exchange membrane 46 in this embodiment are not particularly limited, and should be selected according to the suitability of EDI production, the quality of water to be treated, the quality of water required for deionized water, the amount of treatment, and the like. Can do.

中間イオン交換膜44は、被処理水の水質、脱イオン水に求める水質、陰極側小脱塩室52又は陽極側小脱塩室54に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜44としては、アニオン交換膜もしくはカチオン交換膜の単一膜、又は、アニオン交換膜とカチオン交換膜との両方を配置した複合膜のいずれであってもよい。中でも、アニオン交換膜もしくはカチオン交換膜の単一膜、又は、バイポーラ膜を用いることが好ましく、被処理水中のアニオン成分を効率的に除去する観点から、アニオン交換膜の単一膜を使用することがより好ましい。なお、複合膜とは、イオン交換膜が極性の異なる領域を有するものをいう。例えば、モザイク膜やバイポーラ膜等が挙げられる。複合膜における、アニオン交換膜とカチオン交換膜との比率は、被処理水の水質や処理目的等によって、適宜設定することができる。   The intermediate ion exchange membrane 44 is selected in consideration of the quality of water to be treated, the water quality required for deionized water, the type of ion exchanger filled in the cathode side small desalination chamber 52 or the anode side small desalination chamber 54, and the like. be able to. The intermediate ion exchange membrane 44 may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane in which both an anion exchange membrane and a cation exchange membrane are arranged. Among them, it is preferable to use an anion exchange membrane or a single membrane of a cation exchange membrane, or a bipolar membrane. From the viewpoint of efficiently removing an anion component in the water to be treated, a single membrane of an anion exchange membrane should be used. Is more preferable. In addition, a composite membrane means what has an area | region where an ion exchange membrane differs in polarity. For example, a mosaic film or a bipolar film can be used. The ratio of the anion exchange membrane to the cation exchange membrane in the composite membrane can be appropriately set depending on the quality of the water to be treated and the purpose of treatment.

陰極側小脱塩室52に充填するイオン交換体は、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、この内、最も汎用的であるイオン交換樹脂を用いることが好ましい。   Examples of the ion exchanger filled in the cathode-side small desalting chamber 52 include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers. Among these, the most general use ion exchange resins are used. preferable.

陰極側小脱塩室52に充填するイオン交換体の充填形態は、アニオン交換体とカチオン交換体との混床形態である。アニオン交換体とカチオン交換体との充填割合は、被処理水の水質、脱イオン水に求める水質、処理水量等を勘案して設定することができ、例えば、アニオン交換体:カチオン交換体=10:90〜80:20(体積比)の範囲で設定することが好ましく、30:70〜50:50の範囲で設定することがより好ましい。上述の範囲であれば、陰極側小脱塩室52において、被処理水中のカチオン成分を効率的に除去できるためである。なお、「混床形態」とは、アニオン交換体とカチオン交換体とが、任意の比率で混合され充填された状態をいう。   The filling form of the ion exchanger filled in the cathode-side small desalting chamber 52 is a mixed bed form of an anion exchanger and a cation exchanger. The filling ratio of the anion exchanger and the cation exchanger can be set in consideration of the quality of the water to be treated, the water quality required for deionized water, the amount of treated water, and the like. For example, anion exchanger: cation exchanger = 10 : It is preferable to set in the range of 90-80: 20 (volume ratio), and it is more preferable to set in the range of 30: 70-50: 50. This is because the cation component in the for-treatment water can be efficiently removed in the cathode-side small desalting chamber 52 within the above range. The “mixed bed form” refers to a state in which an anion exchanger and a cation exchanger are mixed and packed in an arbitrary ratio.

陰極側小脱塩室52に充填するアニオン交換体は、低塩基性アニオン交換体である弱塩基性アニオン交換体、中塩基性アニオン交換体、II形強塩基性アニオン交換体からなる群から選択される少なくとも一種を含むものである。低塩基性アニオン交換体を含むことで、陰極側小脱塩室52において、カチオン交換体と低塩基性アニオン交換体との界面、又は、カチオン交換膜42と低塩基性アニオン交換体との界面で水分解が効率的に行われ、低電圧でEDI10を運転できる。陰極側小脱塩室52に充填するアニオン交換体中の低塩基性アニオン交換体の割合は、被処理水の水質、脱イオン水に求める水質、処理水量等を勘案して設定することができる。例えば、陰極側小脱塩室52に充填するアニオン交換体に含まれる低塩基性アニオン交換体の割合は、50体積%を超えることが好ましく、70体積%以上であることがより好ましく、90体積%以上であることがさらに好ましく、100体積%であってもよい。上記の割合であれば、陰極側小脱塩室52の電圧を大きく低減できるためである。   The anion exchanger filled in the cathode-side small desalting chamber 52 is selected from the group consisting of weakly basic anion exchangers, low basic anion exchangers, medium basic anion exchangers, and type II strongly basic anion exchangers. It contains at least one kind. By including the low basic anion exchanger, in the cathode side small desalting chamber 52, the interface between the cation exchanger and the low basic anion exchanger, or the interface between the cation exchange membrane 42 and the low basic anion exchanger. Thus, water splitting is performed efficiently and the EDI 10 can be operated at a low voltage. The ratio of the low basic anion exchanger in the anion exchanger filled in the cathode-side small desalting chamber 52 can be set in consideration of the quality of the water to be treated, the water quality required for the deionized water, the amount of the treated water, and the like. . For example, the proportion of the low basic anion exchanger contained in the anion exchanger filled in the cathode-side small desalting chamber 52 is preferably more than 50% by volume, more preferably 70% by volume or more, and 90% by volume. % Is more preferable, and may be 100% by volume. This is because the voltage in the cathode-side small desalting chamber 52 can be greatly reduced at the above ratio.

強塩基性アニオン交換体は、例えば、第4級アンモニウム塩基(R−N)等の強塩基性官能基が導入されたアニオン交換体である。第4級アンモニウム塩基は、テトラメチルアミンのようにその窒素に結合する基がアルキル基(例えば、メチル基)だけの場合をI形、例えばトリメチルアミノエタノールのように該窒素に結合する基の中にアルカノール基(例えば、−COH等)を含む場合をII形といい、II形の方がI形よりもアニオン成分に対する吸着力が低い。このようなI形の官能基が導入されたアニオン交換体をI形強塩基(最強塩基)性アニオン交換体といい、II形の官能基が導入されたアニオン交換体をII形強塩基性アニオン交換体という。弱塩基性アニオン交換体は、第1〜3級アミン等の弱塩基性官能基が導入されたアニオン交換体である。中塩基性アニオン交換体は、第4級アンモニウム塩基のような強塩基性官能基と、第1〜3級アミンのような弱塩基性官能基とが、強塩基性官能基数/弱塩基性官能基数で表される比率5/5〜3/7で導入されたアニオン交換体である。なお、陰極側小脱塩室52に充填する低塩基性アニオン交換体は、弱塩基性アニオン交換体又は中塩基性アニオン交換体又はII形強塩基性アニオン交換体を一種単独で使用してもよいし、二種以上を併用してもよい。 Strongly basic anion exchanger, e.g., a quaternary ammonium base (R-N + R 1 R 2 R 3) anion exchanger strongly basic functional group is introduced such. A quaternary ammonium base is a group I in which the group bonded to nitrogen such as tetramethylamine is only an alkyl group (for example, a methyl group), such as trimethylaminoethanol. The case where the alkanol group (for example, —C 2 H 4 OH or the like) is included in Form II is referred to as Form II, and Form II has a lower adsorptive power to anionic components than Form I. Such an anion exchanger into which a type I functional group is introduced is called a type I strong base (strongest base) anion exchanger, and an anion exchanger into which a type II functional group is introduced is a type II strong basic anion. It is called an exchanger. The weakly basic anion exchanger is an anion exchanger into which a weakly basic functional group such as a primary to tertiary amine is introduced. The medium basic anion exchanger has a strong basic functional group such as a quaternary ammonium base and a weak basic functional group such as a primary to tertiary amine. An anion exchanger introduced at a ratio of 5/5 to 3/7 represented by the number of groups. The low basic anion exchanger filled in the cathode-side small desalting chamber 52 may be a weak basic anion exchanger, a medium basic anion exchanger, or a type II strong basic anion exchanger alone. Two or more kinds may be used in combination.

このような低塩基性アニオン交換体の内、II形強塩基性アニオン交換樹脂としてはアンバーライト(商品名)IRA410J、アンバーライト(商品名)IRA411、アンバージェット(商品名)4010(以上、ローム・アンド・ハース社製)、ダイヤイオン(商品名)SA20A、ダイヤイオン(商品名)SA21A、ダイヤイオン(商品名)PA408、ダイヤイオン(商品名)PA412、ダイヤイオン(商品名)PA418(以上、三菱化学株式会社製)、DOWEX MARATHON(商品名)A2、DOWEX(商品名)SAR、DOWEX(商品名)MSA−2(以上、ザ・ダウ・ケミカル・カンパニー製)、Purolite(商品名)A200、Purolite(商品名)A300、Purolite(商品名)A510(以上、ピュロライト社製)等が挙げられる。   Among such low basic anion exchangers, Amberlite (trade name) IRA410J, Amberlite (trade name) IRA411, Amberjet (trade name) 4010 (above, ROHM And Haas Co., Ltd.), Diaion (trade name) SA20A, Diaion (trade name) SA21A, Diaion (trade name) PA408, Diaion (trade name) PA412, Diaion (trade name) PA418 (and above, Mitsubishi) Chemical Co., Ltd.), DOWEX MARATHON (trade name) A2, DOWEX (trade name) SAR, DOWEX (trade name) MSA-2 (above, manufactured by The Dow Chemical Company), Purolite (trade name) A200, Purolite (Product Name) A300, Purolite (Product Name) A510 (above, Purolite Co., Ltd.), and the like.

中塩基性アニオン交換樹脂としてはアンバーライト(商品名)IRA478RF(ローム・アンド・ハース社製)等が挙げられる。弱塩基性アニオン交換樹脂としてはアンバーライト(商品名)IRA67、アンバーライト(商品名)IRA96SB、アンバーライト(商品名)XT6050RF(以上、ローム・アンド・ハース社製)、ダイヤイオン(商品名)WA10、ダイヤイオン(商品名)WA20、ダイヤイオン(商品名)WA21J、ダイヤイオン(商品名)WA30(以上、三菱化学株式会社製)、DOWEX MARATHON(商品名)WBA、DOWEX MARATHON(商品名)WBA2、DOWEX(商品名)66(以上、ザ・ダウ・ケミカル・カンパニー製)、Purolite(商品名)A845、Purolite(商品名)A847、Purolite(商品名)A830、Purolite(商品名)A100、Purolite(商品名)A103S(以上、ピュロライト社製)等が挙げられる。   Examples of the medium basic anion exchange resin include Amberlite (trade name) IRA478RF (Rohm and Haas). As the weakly basic anion exchange resin, Amberlite (trade name) IRA67, Amberlite (trade name) IRA96SB, Amberlite (trade name) XT6050RF (above, manufactured by Rohm and Haas), Diaion (trade name) WA10 , Diaion (trade name) WA20, Diaion (trade name) WA21J, Diaion (trade name) WA30 (above, manufactured by Mitsubishi Chemical Corporation), DOWEX MARATHON (trade name) WBA, DOWEX MARATHON (trade name) WBA2, DOWEX (product name) 66 (above, manufactured by The Dow Chemical Company), Purolite (product name) A845, Purolite (product name) A847, Purolite (product name) A830, Purolite (product name) A100, Purolite ( Product name) A103S (above, manufactured by Purolite).

陰極側小脱塩室52に充填するカチオン交換体の種類は限定されず、強酸性カチオン交換体、弱酸性カチオン交換体のいずれを用いてもよい。なお、陰極側小脱塩室52に充填するカチオン交換体は、強酸性カチオン交換体又は弱酸性カチオン交換体を一種単独で使用してもよいし、二種以上を併用してもよい。   The kind of cation exchanger filled in the cathode-side small desalting chamber 52 is not limited, and either a strong acid cation exchanger or a weak acid cation exchanger may be used. In addition, the cation exchanger with which the cathode side small desalting chamber 52 is filled may use a strong acid cation exchanger or a weak acid cation exchanger alone, or two or more kinds in combination.

このようなカチオン交換体の内、強酸性カチオン交換樹脂としてはアンバーライト(商品名)IR120B、アンバーライト(商品名)IR124(以上、ローム・アンド・ハース社製)、DOWEX MARATHON(商品名)C(ザ・ダウ・ケミカル・カンパニー製)等が挙げられる。   Among such cation exchangers, Amberlite (trade name) IR120B, Amberlite (trade name) IR124 (above, manufactured by Rohm and Haas), DOWEX MARATHON (trade name) C are used as strongly acidic cation exchange resins. (The Dow Chemical Company).

陽極側小脱塩室54に充填するイオン交換体は、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、この内、最も汎用的であるイオン交換樹脂を用いることが好ましい。   Examples of the ion exchanger filled in the anode-side small desalting chamber 54 include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers. Among these, the most general use ion exchange resins are used. preferable.

陽極側小脱塩室54に充填するイオン交換体は、アニオン交換体を含むものである。即ち、陽極側小脱塩室54に充填するイオン交換体の充填形態は、アニオン交換体の単床形態、又は、アニオン交換体とカチオン交換体との混床形態とすることができる。陽極側小脱塩室54では、主に陰極側小脱塩室52で除去できなかった被処理水中のアニオン成分を除去するためである。中でも、陽極側小脱塩室54のイオン交換体の充填形態は、アニオン交換体の単床形態とすることが好ましい。陽極側小脱塩室54をアニオン交換体の単床形態とすることで、陽極側小脱塩室54ではイオン成分の移動方向が一方向となり、電気抵抗が低減され電圧が低くなるためである。陽極側小脱塩室54を混床形態とする場合、アニオン交換体とカチオン交換体との割合は、被処理水の水質、脱イオン水に求める水質を勘案して設定することができる。例えば、陽極側小脱塩室54に充填するイオン交換体に対するアニオン交換体の割合が、50体積%以上、100体積%未満であることが好ましく、80体積%以上100体積%未満であることがより好ましい。   The ion exchanger filled in the anode side small desalting chamber 54 includes an anion exchanger. That is, the filling form of the ion exchanger filled in the anode side small desalting chamber 54 can be a single bed form of an anion exchanger or a mixed bed form of an anion exchanger and a cation exchanger. This is because the anode-side small desalting chamber 54 mainly removes anion components in the water to be treated that could not be removed by the cathode-side small desalting chamber 52. Especially, it is preferable that the filling form of the ion exchanger in the anode side small desalting chamber 54 is a single bed form of the anion exchanger. This is because by making the anode side small desalting chamber 54 a single-bed form of the anion exchanger, the movement direction of the ionic component in the anode side small desalting chamber 54 is one direction, the electrical resistance is reduced and the voltage is lowered. . When the anode-side small desalination chamber 54 is in a mixed bed configuration, the ratio of the anion exchanger to the cation exchanger can be set in consideration of the quality of the water to be treated and the water quality required for deionized water. For example, the ratio of the anion exchanger to the ion exchanger filled in the anode-side small desalting chamber 54 is preferably 50% by volume or more and less than 100% by volume, and preferably 80% by volume or more and less than 100% by volume. More preferred.

陽極側小脱塩室54に充填するアニオン交換体は、被処理水の水質、脱イオン水に求める水質を勘案して決定することができ、I形強塩基(最強塩基)性アニオン交換体、II形強塩基性アニオン交換体、中塩基性アニオン交換体、弱塩基性アニオン交換体のいずれも用いることができる。なお、陽極側小脱塩室54に充填するアニオン交換体は、一種単独で使用してもよいし、二種以上を併用してもよい。   The anion exchanger filled in the anode-side small desalting chamber 54 can be determined in consideration of the quality of the water to be treated and the quality required for the deionized water, and is an I-type strong base (strongest base) anion exchanger, Any of type II strong basic anion exchanger, medium basic anion exchanger, and weak basic anion exchanger can be used. In addition, the anion exchanger with which the anode side small desalting chamber 54 is filled may be used alone or in combination of two or more.

I形強塩基(最強塩基)性アニオン交換体の内、例えばI形強塩基(最強塩基)性アニオン交換樹脂としてアンバーライト(商品名)IRA402BL、アンバージェット(商品名)4002、アンバージェット(商品名)4400(以上、ローム・アンド・ハース社製)、ダイヤイオン(商品名)SA10A、ダイヤイオン(商品名)SA11A、ダイヤイオン(商品名)SA12A(以上、三菱化学株式会社製)、DOWEX MARATHON(商品名)A(ザ・ダウ・ケミカル・カンパニー製)、Purolite(商品名)A400(ピュロライト社製)等が挙げられる。   Among the type I strong base (strongest base) anion exchangers, for example, Amberlite (trade name) IRA402BL, Amberjet (trade name) 4002, Amberjet (trade name) as an I-type strong base (strongest base) anion exchange resin ) 4400 (above, manufactured by Rohm and Haas), Diaion (trade name) SA10A, Diaion (trade name) SA11A, Diaion (trade name) SA12A (above, manufactured by Mitsubishi Chemical Corporation), DOWEX MARATHON ( Product name) A (made by The Dow Chemical Company), Purolite (product name) A400 (made by Purolite), and the like.

陽極側小脱塩室54に充填するカチオン交換体の種類は限定されず、強酸性カチオン交換体、弱酸性カチオン交換体のいずれを用いてもよい。なお、陽極側小脱塩室54に充填するカチオン交換体は、一種単独で使用してもよいし、二種以上を併用してもよい。   The kind of cation exchanger filled in the anode-side small desalting chamber 54 is not limited, and either a strong acid cation exchanger or a weak acid cation exchanger may be used. In addition, the cation exchanger with which the anode side small desalting chamber 54 is filled may be used alone or in combination of two or more.

枠体51、53は、絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製の枠体を挙げることができる。
枠体51、53の厚さは特に限定されることなく、所望する陰極側小脱塩室52、陽極側小脱塩室54の厚さに応じて設定することができる。また、枠体51、53の開口部の面積が大きい場合には、枠体51、53のくりぬかれた空間に支持体を設けてもよい。支持体を設けることで、カチオン交換膜42、中間イオン交換膜44、アニオン交換膜46が湾曲して、イオン交換体の充填量が不均一になることを防止できるためである。前記支持体は、絶縁性を有し、被処理水の流通を妨げない素材であれば特に限定されず、例えば、スリットが設けられた、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製の支持体を挙げることができる。
The frames 51 and 53 are not particularly limited as long as they have insulating properties and do not leak water to be treated. For example, frames made of resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, etc. Can be mentioned.
The thicknesses of the frames 51 and 53 are not particularly limited, and can be set according to the desired thicknesses of the cathode-side small desalting chamber 52 and the anode-side small desalting chamber 54. Moreover, when the area of the opening part of the frame bodies 51 and 53 is large, you may provide a support body in the space where the frame bodies 51 and 53 were hollowed out. By providing the support, it is possible to prevent the cation exchange membrane 42, the intermediate ion exchange membrane 44, and the anion exchange membrane 46 from being curved and the ion exchanger filling amount from becoming uneven. The support is not particularly limited as long as it is a material that has insulating properties and does not hinder the flow of water to be treated. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, etc., provided with slits. The resin-made support body can be mentioned.

陰極側小脱塩室52の厚さは、被処理水や脱イオン水の水質、処理水量、充填するイオン交換体の種類を勘案して設定することができ、例えば、2〜50mmの範囲で設定することが好ましく、3〜30mmとすることがより好ましい。陰極側小脱塩室52の厚さは、薄すぎると通水速度(LV)の上昇によって差圧が高くなり陰極側小脱塩室52の破損を招いたり、運転上の困難を起こすため好ましくない。陰極側小脱塩室52の厚さは、厚すぎると電気抵抗が高くなる。ここで、陰極側小脱塩室52は、低塩基性アニオン交換体が含まれる混床形態であるため、従来の混床形態の脱塩室に比べて電気抵抗が低い。このため、1つの小脱塩室当たりの被処理水の流量を増大させるために、陰極側小脱塩室52の厚さを従来のEDIに比べて厚くすることができる。なお、LVとは、単位面積当たりの流量で、m/hで表される線速度である(以降において同じ)。
陽極側小脱塩室54の厚さは、陰極側小脱塩室52の厚さと同様に、被処理水や脱イオン水の水質、処理水量、充填するイオン交換体の種類を勘案して設定することができる。
The thickness of the cathode-side small desalting chamber 52 can be set in consideration of the quality of the water to be treated and deionized water, the amount of treated water, and the type of ion exchanger to be filled. It is preferable to set, and it is more preferable to set it as 3-30 mm. If the thickness of the cathode-side small desalting chamber 52 is too thin, the differential pressure increases due to an increase in the water flow rate (LV), causing damage to the cathode-side small desalting chamber 52 and causing operational difficulties. Absent. If the thickness of the cathode-side small desalting chamber 52 is too thick, the electric resistance increases. Here, since the cathode-side small desalting chamber 52 has a mixed bed configuration including a low basic anion exchanger, the electrical resistance is lower than that of the conventional mixed bed configuration. For this reason, in order to increase the flow rate of the water to be treated per one small desalting chamber, the thickness of the cathode-side small desalting chamber 52 can be made thicker than that of the conventional EDI. Note that LV is a flow rate per unit area and is a linear velocity expressed in m / h (the same applies hereinafter).
The thickness of the anode-side small desalting chamber 54 is set in consideration of the quality of the water to be treated and deionized water, the amount of treated water, and the type of ion exchanger to be filled, like the thickness of the cathode-side small desalting chamber 52. can do.

濃縮室30は、濃縮水が流通できれば特に限定されず、例えば、枠体31の開口部には、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製のメッシュや、通水性を有する格子状の枠材を設置してもよいし、イオン交換体を充填してもよいし、何も配置しなくてもよい。電気抵抗を低減する観点からは、イオン交換体が充填されていることが好ましい。濃縮室30にイオン交換体を充填する場合、充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、この内、最も汎用的であるイオン交換樹脂を用いることが好ましい。   The concentration chamber 30 is not particularly limited as long as concentrated water can be circulated. For example, the opening of the frame 31 has a mesh made of resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, and water permeability. It is possible to install a grid-like frame member, to fill the ion exchanger, or to dispose nothing. From the viewpoint of reducing electrical resistance, it is preferable that the ion exchanger is filled. In the case of filling the concentration chamber 30 with an ion exchanger, examples of the ion exchanger to be filled include an ion exchange resin, an ion exchange fiber, a monolithic porous ion exchanger, and the like. It is preferable to use a resin.

濃縮室30におけるイオン交換体の充填形態は特に限定されず、被処理水の水質等を勘案して決定することができ、アニオン交換体単床形態、カチオン交換体単床形態、又は、アニオン交換体とカチオン交換体との混床形態、もしくは、複床形態等のいずれも用いることができる。例えば、濃縮室30のアニオン交換膜46面でのスケール生成防止の観点から、アニオン交換体が単床形態で充填されていてもよい。アニオン交換膜46に接するアニオン交換体層を設けることにより、陽極側小脱塩室54から濃縮室30へのアニオン成分の移動が促進され、濃縮室30側のアニオン交換膜46面にアニオン成分が高濃度にて存在して、濃度分極が生じるのを抑制できるためである。   The filling form of the ion exchanger in the concentrating chamber 30 is not particularly limited and can be determined in consideration of the quality of the water to be treated. The anion exchanger single bed form, the cation exchanger single bed form, or the anion exchange Any of the mixed bed form of the body and the cation exchanger, or the multiple bed form can be used. For example, from the viewpoint of preventing scale formation on the anion exchange membrane 46 surface of the concentration chamber 30, the anion exchanger may be filled in a single bed form. By providing the anion exchanger layer in contact with the anion exchange membrane 46, the movement of the anion component from the anode side small desalting chamber 54 to the concentration chamber 30 is promoted, and the anion component is present on the surface of the anion exchange membrane 46 on the concentration chamber 30 side. This is because the presence of a high concentration can suppress the occurrence of concentration polarization.

枠体31の材質は、枠体51と同様である。枠体31の厚さは、所望する濃縮室30の厚さに応じて設定することができる。濃縮室30の厚さは、被処理水の水質、脱イオン水に求める水質を勘案して設定することができ、例えば、2〜20mmの範囲とすることが好ましい。   The material of the frame 31 is the same as that of the frame 51. The thickness of the frame 31 can be set according to the desired thickness of the concentration chamber 30. The thickness of the concentration chamber 30 can be set in consideration of the quality of water to be treated and the quality of water required for deionized water. For example, the thickness is preferably in the range of 2 to 20 mm.

陰極室20は、電極水が流通できる構造であればよい。例えば、枠体21の開口部には、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、ノリル等の樹脂製のメッシュや、通水性を有する格子状の枠材を設置してもよいし、イオン交換体を充填してもよい。陰極室20にイオン交換体を充填する場合、充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、この内、最も汎用的であるイオン交換樹脂を用いることが好ましい。陽極室60は、陰極室20と同様に、電極水が流通できる構造であれば良い。   The cathode chamber 20 only needs to have a structure in which electrode water can flow. For example, a resin mesh such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, noryl, or a grid-like frame material having water permeability may be installed in the opening of the frame body 21, The exchanger may be filled. When the cathode chamber 20 is filled with an ion exchanger, examples of the ion exchanger to be filled include an ion exchange resin, an ion exchange fiber, a monolithic porous ion exchanger, and the like. It is preferable to use a resin. Similarly to the cathode chamber 20, the anode chamber 60 may have a structure in which electrode water can flow.

陰極室20におけるイオン交換体の充填形態は特に限定されず、被処理水の水質等を勘案して決定することができ、アニオン交換体単床形態、カチオン交換体単床形態、又は、アニオン交換体とカチオン交換体との混床形態、もしくは、複床形態等のいずれも用いることができる。陽極室60におけるイオン交換体の充填形態は、陰極室20におけるイオン交換体の充填形態と同様である。   The form of filling the ion exchanger in the cathode chamber 20 is not particularly limited, and can be determined in consideration of the quality of the water to be treated. The anion exchanger single bed form, the cation exchanger single bed form, or the anion exchange Any of the mixed bed form of the body and the cation exchanger, or the multiple bed form can be used. The filling form of the ion exchanger in the anode chamber 60 is the same as the filling form of the ion exchanger in the cathode chamber 20.

陰極22は、陰極としての機能を発揮するものであれば特に限定されず、例えば、板状のステンレスや網状のステンレス、又は、白金、パラジウム、イリジウム等の貴金属、あるいは前記貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。陽極62は、陽極として機能を発揮するものであれば特に限定されないが、電極水中にClが存在する場合には、陽極には塩素発生が起きるため、耐塩素性能を有するものが好ましい。例えば、白金、パラジウム、イリジウム等の貴金属、あるいは前記貴金属をチタン等に被覆した網状あるいは板状の電極を挙げることができる。 The cathode 22 is not particularly limited as long as it functions as a cathode. For example, a plate-like stainless steel, a mesh-like stainless steel, or a noble metal such as platinum, palladium, iridium, or the noble metal is covered with titanium or the like. And a net-like or plate-like electrode. The anode 62 is not particularly limited as long as it functions as an anode. However, when Cl is present in the electrode water, chlorine is generated in the anode, so that the anode 62 has chlorine resistance. For example, a noble metal such as platinum, palladium, iridium, or a net-like or plate-like electrode obtained by coating the noble metal on titanium or the like can be given.

仕切り膜24は、イオン交換膜であれば特に限定されず、被処理水の水質や、EDI10の運転条件等を考慮して選択することができる。例えば、カチオン交換膜又はアニオン交換膜を選択することができる。   The partition membrane 24 is not particularly limited as long as it is an ion exchange membrane, and can be selected in consideration of the quality of the water to be treated, the operating conditions of the EDI 10, and the like. For example, a cation exchange membrane or an anion exchange membrane can be selected.

枠体21の材質は、枠体51と同様である。枠体21の厚さは、所望する陰極室20の厚さに応じて設定することができる。枠体61の材質は、枠体51と同様である。枠体61の厚さは、所望する陽極室60の厚さに応じて設定することができる。   The material of the frame body 21 is the same as that of the frame body 51. The thickness of the frame 21 can be set according to the desired thickness of the cathode chamber 20. The material of the frame body 61 is the same as that of the frame body 51. The thickness of the frame 61 can be set according to the desired thickness of the anode chamber 60.

EDI10を用いた脱イオン水の製造方法について、図2を用いて説明する。まず、電極水流入ライン23から陰極室20に電極水を流入させ、電極水流入ライン63から陽極室60に電極水を流入させる。濃縮水流入ライン33から濃縮室30に濃縮水を流入させる。そして、陰極22と陽極62との間に、直流電圧を印加する。   A method for producing deionized water using EDI 10 will be described with reference to FIG. First, electrode water is caused to flow into the cathode chamber 20 from the electrode water inflow line 23, and electrode water is caused to flow into the anode chamber 60 from the electrode water inflow line 63. The concentrated water is caused to flow into the concentration chamber 30 from the concentrated water inflow line 33. Then, a DC voltage is applied between the cathode 22 and the anode 62.

被処理水を被処理水流入ライン55から陰極側小脱塩室52に流入させる。流入した被処理水は、陰極側小脱塩室52内のイオン交換体内を拡散しながら流通し、被処理水流出ライン56から流出する。この間、被処理水中のNa、Ca2+等のカチオン成分はカチオン交換体に吸着され、Cl、HCO 等のアニオン成分はアニオン交換体に吸着される。同時に、異種イオン交換体界面では、水分解によりOHとHとが生成される。そして、カチオン交換体は、生成したHと、カチオン交換体に吸着されているカチオン成分とが交換され、再生される。カチオン交換体から脱着したカチオン成分は、カチオン交換膜42を透過して、濃縮室30に移動する。濃縮室30に移動したカチオン成分は、濃縮水に取り込まれて濃縮水流出ライン35から排出される。 The treated water is caused to flow from the treated water inflow line 55 to the cathode side small desalination chamber 52. The treated water that has flowed in flows through the ion exchanger inside the cathode-side small desalting chamber 52 while diffusing, and flows out from the treated water outflow line 56. During this time, cation components such as Na + and Ca 2+ in the water to be treated are adsorbed on the cation exchanger, and anion components such as Cl and HCO 3 are adsorbed on the anion exchanger. At the same time, OH and H + are generated by water splitting at the heterogeneous ion exchanger interface. The cation exchanger is regenerated by exchanging the generated H + and the cation component adsorbed on the cation exchanger. The cation component desorbed from the cation exchanger passes through the cation exchange membrane 42 and moves to the concentration chamber 30. The cation component moved to the concentration chamber 30 is taken into the concentrated water and discharged from the concentrated water outflow line 35.

アニオン交換体は、生成したOHと、アニオン交換体に吸着されているアニオン成分とが交換され、再生される。そして、アニオン交換体から脱着したアニオン成分は、中間イオン交換膜44側に移動する。ここで、中間イオン交換膜44がアニオン交換膜の場合には、アニオン交換体から脱着したアニオン成分、及び、陰極側小脱塩室52で生成したOHが陽極62に引き寄せられ、中間イオン交換膜44を透過して陽極側小脱塩室54へ移動する。中間イオン交換膜44がカチオン交換膜又はバイポーラ膜の場合は、アニオン交換体から脱着したアニオン成分、及び、OHは中間イオン交換膜44で反発され、被処理水と共に被処理水流出ライン56から流出する。 The anion exchanger is regenerated by exchanging the produced OH and the anion component adsorbed on the anion exchanger. Then, the anion component desorbed from the anion exchanger moves to the intermediate ion exchange membrane 44 side. Here, when the intermediate ion exchange membrane 44 is an anion exchange membrane, the anion component desorbed from the anion exchanger and the OH produced in the cathode-side small desalting chamber 52 are attracted to the anode 62, and the intermediate ion exchange is performed. It passes through the membrane 44 and moves to the anode side small desalting chamber 54. In the case where the intermediate ion exchange membrane 44 is a cation exchange membrane or a bipolar membrane, the anion component desorbed from the anion exchanger and OH are repelled by the intermediate ion exchange membrane 44 and from the treated water outflow line 56 together with the treated water. leak.

被処理水流出ライン56から流出した被処理水は、図示されない配管と被処理水流入ライン57とを順に経由し、陽極側小脱塩室54に流入する。陽極側小脱塩室54に流入した被処理水は、陽極側小脱塩室54内のイオン交換体内を拡散しながら流通する。この間、被処理水中のアニオン成分はアニオン交換体に吸着される。そして、アニオン交換体は、吸着されたアニオン成分とOHとが交換されて再生する。アニオン交換体から脱着したアニオン成分は、陽極62に引き寄せられアニオン交換膜46を透過し、濃縮室30に移動する。濃縮室30に移動したアニオン成分は、濃縮水に取り込まれて濃縮水流出ライン35から排出される。ここで、中間イオン交換膜44がカチオン交換膜である場合には、陽極側小脱塩室54内のカチオン成分やHが陰極22に引き寄せられ、中間イオン交換膜44を透過して陰極側小脱塩室52に移動する。こうして、被処理水は、カチオン成分とアニオン成分とが高度に除去され、脱イオン水となって脱イオン水流出ライン58から流出する。 The treated water that has flowed out of the treated water outflow line 56 flows into the anode-side small desalination chamber 54 through a pipe (not shown) and the treated water inflow line 57 in order. The treated water that has flowed into the anode-side small desalting chamber 54 flows while diffusing through the ion exchanger in the anode-side small desalting chamber 54. During this time, the anion component in the water to be treated is adsorbed by the anion exchanger. The anion exchanger is regenerated by exchanging the adsorbed anion component and OH . The anion component desorbed from the anion exchanger is attracted to the anode 62, passes through the anion exchange membrane 46, and moves to the concentration chamber 30. The anion component moved to the concentration chamber 30 is taken into the concentrated water and discharged from the concentrated water outflow line 35. Here, when the intermediate ion exchange membrane 44 is a cation exchange membrane, the cation component and H + in the anode side small desalting chamber 54 are attracted to the cathode 22 and permeate the intermediate ion exchange membrane 44 to pass through the cathode side. Move to small desalination chamber 52. In this way, the cation component and the anion component are highly removed from the water to be treated, and deionized water flows out from the deionized water outflow line 58.

電極水流入ライン23から、陰極室20に流入した電極水は、陰極室20内を上昇流で流通する。この間、電極水は、陰極22から発生したH等を取り込んで、電極水流出ライン25から流出する。電極水流入ライン63から陽極室60に流入した電極水は、陽極室60内を上昇流で流通する。この間、電極水は、陽極62から発生したCl、O等を取り込んで、電極水流出ライン65から流出する。 The electrode water that has flowed into the cathode chamber 20 from the electrode water inflow line 23 flows through the cathode chamber 20 in an upward flow. During this time, the electrode water takes in H 2 and the like generated from the cathode 22 and flows out from the electrode water outflow line 25. The electrode water flowing into the anode chamber 60 from the electrode water inflow line 63 flows in the anode chamber 60 in an upward flow. During this time, the electrode water takes in Cl 2 , O 2 and the like generated from the anode 62 and flows out from the electrode water outflow line 65.

被処理水は特に限定されることはないが、工業用水や井水の濁質成分を除濁膜にて除去した水を、逆浸透(RO)膜にて処理した水等が挙げられる。   Although the to-be-processed water is not specifically limited, The water etc. which processed the water which removed the turbid component of industrial water and well water with the turbidity membrane with the reverse osmosis (RO) membrane, etc. are mentioned.

陰極側小脱塩室52内における被処理水の通水量は特に限定されることはなく、充填するイオン交換体中の低塩基性アニオン交換体の割合や、被処理水の水質等を勘案して決定することができる。通水量は空間速度(SV)で表され、SVの単位はイオン交換体の単位体積(L)に対して1時間に流通させる流量(L)であるL/L・h−1で表される(以降において同じ)。一般的に、SVが大きすぎると、陰極側小脱塩室52内では、被処理水中のイオン成分とイオン交換体との接触時間が短くなり、イオン除去性能が低下するおそれがある。しかしながら、陰極側小脱塩室52は、低塩基性アニオン交換体が含まれる混床形態であり、電気抵抗が低い。このため、陰極側小脱塩室52では、低塩基性アニオン交換体を含まない混床形態とした脱塩室と同等の電圧でも、高い電流で多量の被処理水を処理することができる。陰極側小脱塩室52内における被処理水の通水量は、SV=100〜1000L/L・h−1の範囲で設定することが好ましい。陽極側小脱塩室54における被処理水の通水量は、陰極側小脱塩室52内における被処理水の通水量と同様である。 The amount of water to be treated in the cathode-side small desalination chamber 52 is not particularly limited, taking into consideration the proportion of the low basic anion exchanger in the ion exchanger to be filled, the quality of the water to be treated, and the like. Can be determined. The amount of water flow is represented by space velocity (SV), and the unit of SV is represented by L / L · h −1 , which is a flow rate (L) circulated in one hour with respect to the unit volume (L) of the ion exchanger. (The same applies hereinafter). In general, when SV is too large, in the cathode-side small desalting chamber 52, the contact time between the ion component in the water to be treated and the ion exchanger is shortened, and the ion removal performance may be deteriorated. However, the cathode-side small desalting chamber 52 is a mixed bed form containing a low basic anion exchanger and has a low electric resistance. For this reason, in the cathode-side small desalting chamber 52, a large amount of water to be treated can be treated with a high current even at a voltage equivalent to that of the desalting chamber in a mixed bed configuration not including a low basic anion exchanger. The amount of water to be treated in the cathode-side small desalination chamber 52 is preferably set in the range of SV = 100 to 1000 L / L · h −1 . The amount of water to be treated in the anode-side small desalination chamber 54 is the same as the amount of water to be treated in the cathode-side small desalination chamber 52.

濃縮室30内における、濃縮水の流量は特に限定されることはなく、EDI10の能力や、被処理水の水質や処理量を勘案して決定することができる。濃縮水は、濃縮室30に移動してきたイオンを濃縮水内に拡散して、EDI10外へ流出させるという目的を有する。このことから、濃縮水の流量は、被処理水の通水量や、被処理水のイオン濃度、脱イオン水の生産量との関係で決定することが好ましく、例えば、下記(1)式で表される濃縮倍率が3〜20となるように、濃縮水の流量を決定することが好ましい。なお、下記(1)式による濃縮倍率は、被処理水と濃縮水に同一の原水を用いて、かつ脱塩室50中のイオンが全て濃縮室30に移行すると仮定し定義付けられる。   The flow rate of the concentrated water in the concentration chamber 30 is not particularly limited, and can be determined in consideration of the ability of the EDI 10, the quality of the water to be treated, and the amount to be treated. The concentrated water has the purpose of diffusing ions that have moved to the concentration chamber 30 into the concentrated water and flowing out of the EDI 10. Therefore, the flow rate of the concentrated water is preferably determined by the relationship between the flow rate of the water to be treated, the ion concentration of the water to be treated, and the production amount of the deionized water. It is preferable to determine the flow rate of the concentrated water so that the concentration ratio is 3 to 20. The concentration ratio according to the following equation (1) is defined on the assumption that the same raw water is used for the treated water and the concentrated water, and all the ions in the desalting chamber 50 are transferred to the concentration chamber 30.

Figure 2010142727
Figure 2010142727

濃縮水の流量が少なすぎると、濃縮室30に移行したイオン成分の濃度拡散にむらが生じ、イオン交換膜面の濃度分極層が厚くなり、スケール生成のおそれがある。一方、濃縮水の流量が多すぎると、脱イオン水の回収率が低下するため好ましくない。濃縮水に用いる原水は、特に限定されることはなく、被処理水と同じ水源の水を濃縮水の原水として使用しても良いし、脱イオン水や純水等を使用しても良い。   If the flow rate of the concentrated water is too small, the concentration diffusion of the ion component transferred to the concentration chamber 30 becomes uneven, the concentration polarization layer on the surface of the ion exchange membrane becomes thick, and scale may be generated. On the other hand, if the flow rate of concentrated water is too large, the recovery rate of deionized water is not preferable. The raw water used for the concentrated water is not particularly limited, and water from the same water source as the water to be treated may be used as the raw water for the concentrated water, or deionized water or pure water may be used.

陰極室20に流通させる電極水の原水は特に限定されることはなく、被処理水と同じ水源の水を電極水としても良いし、脱塩室50で処理された脱イオン水、比抵抗値0.2〜18.2MΩ・cmの水を電極水としても良い。中でも、脱塩室50で処理された脱イオン水、比抵抗値0.2〜18.2MΩ・cmの水であることが好ましい。陽極室60における電極水の原水は、陰極室20における電極水の原水と同様である。陰極室20、陽極室60における電極水の流量は特に限定されず、印加電圧等に応じて決定することが好ましい。電極水の流量が少なすぎると、発生したH、O、Clガスを充分に排出することが困難となり、電極水の流量が多すぎると、回収率が低下するため、好ましくない。 The raw water of the electrode water circulated in the cathode chamber 20 is not particularly limited, and water from the same water source as the water to be treated may be used as the electrode water, or the deionized water treated in the desalting chamber 50 and the specific resistance value. 0.2 to 18.2 MΩ · cm of water may be used as electrode water. Among these, deionized water treated in the desalting chamber 50 and water having a specific resistance value of 0.2 to 18.2 MΩ · cm are preferable. The raw water of the electrode water in the anode chamber 60 is the same as the raw water of the electrode water in the cathode chamber 20. The flow rate of the electrode water in the cathode chamber 20 and the anode chamber 60 is not particularly limited, and is preferably determined according to the applied voltage or the like. If the flow rate of the electrode water is too small, it will be difficult to sufficiently discharge the generated H 2 , O 2 , and Cl 2 gases, and if the flow rate of the electrode water is too large, the recovery rate is lowered, which is not preferable.

電極水の流通方式は特に限定されず、例えば、陰極室20を流通した電極水を陽極室60に流通させてもよいし、陽極室60を流通した電極水を陰極室20に流通させてもよい。また、例えば、陰極室20と陽極室60とにそれぞれ個別に電極水を流通させ、排水してもよい。   The distribution method of the electrode water is not particularly limited. For example, the electrode water that has circulated through the cathode chamber 20 may be circulated to the anode chamber 60, or the electrode water that has circulated through the anode chamber 60 may be circulated to the cathode chamber 20. Good. Further, for example, the electrode water may be separately circulated through the cathode chamber 20 and the anode chamber 60 and drained.

陰極22と陽極62とに印加する電流は被処理水の水質や、陰極側小脱塩室52及び陽極側小脱塩室54に充填したイオン交換体の種類や充填形態を勘案して設定することができる。例えば、脱塩室50の有効イオン交換膜の面積当たりの電流密度を0.1〜10A/dmの範囲で設定することが好ましい。脱塩室50の「有効イオン交換膜の面積」とは、電流が通される部分である。陰極側小脱塩室52を例に説明すると、カチオン交換膜42の膜面積から、枠体51が接触している面積を除いたものである。 The current applied to the cathode 22 and the anode 62 is set in consideration of the quality of the water to be treated and the type and filling form of the ion exchanger filled in the cathode side small desalination chamber 52 and the anode side small desalination chamber 54. be able to. For example, it is preferable to set the electric current density per area of an effective ion-exchange membrane of the desalting chamber 50 in the range of 0.1 to 10 A / dm 2. The “area of the effective ion exchange membrane” in the desalting chamber 50 is a portion through which an electric current is passed. The cathode-side small desalting chamber 52 will be described as an example. The area of the cation exchange membrane 42 is excluded from the area of contact with the frame 51.

上述のとおり、本発明のEDIは脱塩室2室構造であるため、小脱塩室当たりの濃縮室の数は脱塩室1室構造のEDIの脱塩室当たりの濃縮室の数の約半分になる。このため、EDI全体の電気抵抗を低減でき、導電率が向上しEDI全体の電気抵抗を低減できる。陰極側小脱塩室にはイオン交換体が混床形態で充填されているが、アニオン交換体が低塩基性アニオン交換体を含むため、電気抵抗が低い。加えて、低塩基性アニオン交換体とカチオン交換体との界面では、効率的に水分解が行われる。このため、印加電流値を上げても、低い電圧でEDIを運転することができる。電圧が高い状態でEDIを運転すると、異種イオン交換体界面での発熱等により、部材が劣化し、EDIの処理能力が低下するおそれがある。特にカチオン交換膜、アニオン交換膜、中間イオン交換膜が劣化して破損した場合には、イオン成分が脱塩室と濃縮室との間で漏洩し、脱イオン水の水質が低下する。本発明のEDIでは、低い電圧でEDIを運転できるため、異種イオン交換体界面での発熱等による部材劣化を抑制することができる。   As described above, since the EDI of the present invention has a two-desalination chamber structure, the number of concentrating chambers per small desalting chamber is approximately the same as the number of concentrating chambers per one desalting chamber of EDI in the desalination chamber structure. Halved. For this reason, the electrical resistance of the whole EDI can be reduced, the electrical conductivity can be improved, and the electrical resistance of the whole EDI can be reduced. The cathode-side small desalting chamber is filled with ion exchangers in a mixed bed form, but the electrical resistance is low because the anion exchanger includes a low basic anion exchanger. In addition, water splitting is efficiently performed at the interface between the low basic anion exchanger and the cation exchanger. For this reason, even if the applied current value is increased, the EDI can be operated at a low voltage. If the EDI is operated in a state where the voltage is high, the member may be deteriorated due to heat generation at the interface of the different ion exchangers, and the processing capacity of the EDI may be reduced. In particular, when the cation exchange membrane, the anion exchange membrane, or the intermediate ion exchange membrane deteriorates and is damaged, the ion component leaks between the desalting chamber and the concentration chamber, and the quality of the deionized water is lowered. In the EDI of the present invention, since the EDI can be operated at a low voltage, member deterioration due to heat generation at the interface of the different ion exchanger can be suppressed.

陰極側小脱塩室に充填されている低塩基性アニオン交換体は、アニオン成分に対する吸着力が低いため、陰極側小脱塩室を流通させ処理した水にはアニオン成分が残存する場合が多い。本発明のEDIでは、陰極側小脱塩室で処理した水を陽極側小脱塩室に充填したアニオン交換体に接触させて再度処理することで、被処理水中のアニオン成分を高度に除去することができる。加えて、被処理水中のカチオン成分は、陰極側に設けられた陰極側小脱塩室で高度に除去することができる。この結果、陰極側小脱塩室で処理した水を陽極側小脱塩室で処理することで、カチオン成分とアニオン成分とが高度に除去され、比抵抗の高い良好な水質の脱イオン水を得ることができる。   The low basic anion exchanger filled in the cathode-side small desalting chamber has a low adsorptive power to the anion component, and thus the anion component often remains in the water treated by flowing through the cathode-side small desalting chamber. . In the EDI of the present invention, the water treated in the cathode-side small desalting chamber is contacted with the anion exchanger filled in the anode-side small desalting chamber and treated again to highly remove the anion component in the water to be treated. be able to. In addition, the cationic component in the water to be treated can be highly removed in the cathode-side small desalting chamber provided on the cathode side. As a result, by treating the water treated in the cathode-side small desalting chamber in the anode-side small desalting chamber, the cation component and the anion component are highly removed, and deionized water with good water quality having high specific resistance is obtained. Obtainable.

陰極側小脱塩室に充填するアニオン交換体に含まれる低塩基性アニオン交換体の割合は、好ましくは50体積%を超え、より好ましくは70体積%以上、さらに好ましくは90体積%以上とすることで、低い電圧でも異種イオン交換体界面における水分解の効率を上げることができる。さらに、陽極側小脱塩室に充填するイオン交換体をアニオン交換体の単床形態とすることで、陽極側小脱塩室の電気抵抗を低減できる。このため、脱塩室全体の電気抵抗を低減でき、より低い電圧で高い電流を流すことができる。この結果、脱塩室当たりの処理量を増大させることができ、脱塩室を厚くし、脱塩室内での通水差圧の上昇を抑制しながら良好な水質を維持することができる。   The proportion of the low basic anion exchanger contained in the anion exchanger filled in the cathode-side small desalting chamber is preferably more than 50% by volume, more preferably 70% by volume or more, and further preferably 90% by volume or more. Thus, the efficiency of water splitting at the interface of the different ion exchangers can be increased even at a low voltage. Furthermore, the electric resistance of an anode side small desalination chamber can be reduced by making the ion exchanger with which an anode side small desalination chamber is filled into the single bed form of an anion exchanger. For this reason, the electrical resistance of the entire desalting chamber can be reduced, and a high current can be passed at a lower voltage. As a result, the amount of treatment per desalting chamber can be increased, the desalting chamber can be thickened, and good water quality can be maintained while suppressing an increase in the water flow differential pressure in the desalting chamber.

本発明は上述の実施形態に限定されるものではない。
上述の実施形態では、陰極側小脱塩室及び陽極側小脱塩室共に、被処理水を下降流で流通しているが、被処理水の流通方向はこれに限られず、上昇流であってもよいし、陰極側小脱塩室と陽極側小脱塩室とで流通方向が異なっていてもよい。
The present invention is not limited to the above-described embodiment.
In the above-described embodiment, the water to be treated is circulated in a downward flow in both the cathode-side small desalination chamber and the anode-side small desalination chamber. Alternatively, the flow direction may be different between the cathode-side small desalting chamber and the anode-side small desalting chamber.

上述の実施形態では、濃縮水を下降流で流通しているが、濃縮水の流通方向は上昇流であってもよいし、濃縮室毎に異なっていてもよい。また、上述の実施形態では、電極水を上昇流で流通しているが、電極水の流通方向は下降流であってもよいし、陰極室と陽極室とで異なっていてもよい。   In the above-described embodiment, the concentrated water is circulated in a downward flow, but the flow direction of the concentrated water may be an upward flow or may be different for each concentration chamber. In the above-described embodiment, the electrode water is circulated in an upward flow, but the flow direction of the electrode water may be a downward flow, or may be different between the cathode chamber and the anode chamber.

上述の実施形態では、3枚の脱塩室が陰極と陽極との間に配置されているが、本発明はこれに限定されず、脱塩室の数は1枚又は2枚であってもよいし、4枚以上であってもよい。   In the above-described embodiment, three desalting chambers are arranged between the cathode and the anode. However, the present invention is not limited to this, and the number of desalting chambers may be one or two. It may be four or more.

上述の実施形態では、陰極室を形成する仕切り膜を介して隣接する濃縮室が設けられているが、該濃縮室を省略し、陰極室が濃縮室を兼ねていてもよい。同様に、陽極室を形成する仕切り膜を介して隣接する濃縮室を省略し、陽極室が濃縮室を兼ねていてもよい。   In the above-described embodiment, the concentration chambers adjacent to each other through the partition film forming the cathode chamber are provided. However, the concentration chamber may be omitted, and the cathode chamber may also serve as the concentration chamber. Similarly, the adjacent concentrating chamber may be omitted through the partition film forming the anode chamber, and the anode chamber may also serve as the concentrating chamber.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
(測定方法)
<水質評価:導電率、比抵抗>
水質評価には導電率ならびに比抵抗を用いた。不純物を全く含んでいない水の場合、25℃の水における導電率の理論値は0.055μS/cm、比抵抗の理論値は18.2MΩ・cmとなる。脱イオン水の水質は、比抵抗が18.2MΩ・cmに近づき、かつ高ければ高いほど水質としては清浄であると評価できる。脱イオン水の水質評価は、比抵抗をもって行った。
導電率は、導電率計(873CC、FOXBORO社製)を用いて測定した。また、比抵抗は、比抵抗計(873RS、FOXBORO社製)を用いて測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
(Measuring method)
<Water quality evaluation: conductivity, specific resistance>
For water quality evaluation, conductivity and specific resistance were used. In the case of water containing no impurities, the theoretical value of conductivity in water at 25 ° C. is 0.055 μS / cm, and the theoretical value of specific resistance is 18.2 MΩ · cm. As for the water quality of deionized water, the specific resistance approaches 18.2 MΩ · cm, and the higher, the higher the water quality. Deionized water quality was evaluated with specific resistance.
The conductivity was measured using a conductivity meter (873CC, manufactured by FOXBORO). The specific resistance was measured using a specific resistance meter (873RS, manufactured by FOXBORO).

(実施例1)
図2に示すEDI10と同様の、中間イオン交換膜で、陰極側小脱塩室と陽極側小脱塩室とに区画されている3枚の脱塩室が設けられ、該脱塩室の両側に濃縮室が設けられ、脱塩室と濃縮室とが、陰極と陽極との間に配置されたEDIを下記仕様にて作製して、EDI−Aを得た。得られたEDI−Aは、陰極側小脱塩室に充填されたアニオン交換体中の低塩基性アニオン交換体の割合が100体積%のものである。このEDI−Aについて、下記運転条件にて連続運転を行った。被処理水は、陰極側小脱塩室に下降流で流通させた後、陽極側小脱塩室に下降流で流通させた。濃縮水は、各濃縮室に下降流で流通させて排水し、電極水は、陰極室と陽極室にそれぞれ上昇流で流通させて排水した。運転開始後、200時間毎に運転電圧、電極間の電気抵抗、及び、脱イオン水の比抵抗を測定し、その結果を表1、図3、4に示す。
Example 1
3 is an intermediate ion exchange membrane similar to the EDI 10 shown in FIG. 2, and is provided with three desalting chambers divided into a cathode-side small desalting chamber and an anode-side small desalting chamber. EDI-A was obtained by preparing EDI in which a concentration chamber was provided, and a desalting chamber and a concentration chamber were disposed between the cathode and the anode according to the following specifications. In the obtained EDI-A, the proportion of the low basic anion exchanger in the anion exchanger filled in the cathode-side small desalting chamber is 100% by volume. This EDI-A was continuously operated under the following operating conditions. The water to be treated was circulated in a downward flow to the cathode-side small desalination chamber and then circulated in a downward flow to the anode-side small desalination chamber. Concentrated water was circulated and discharged to each concentrating chamber in a downward flow, and electrode water was circulated and discharged to the cathode chamber and the anode chamber respectively. After starting the operation, the operating voltage, the electrical resistance between the electrodes, and the specific resistance of deionized water were measured every 200 hours, and the results are shown in Table 1 and FIGS.

<EDI仕様>
(1)カチオン交換膜:株式会社アストム製
(2)中間イオン交換膜:株式会社アストム製、アニオン交換膜
(3)アニオン交換膜:株式会社アストム製
(4)仕切り膜:陰極室の仕切り膜;株式会社アストム製、アニオン交換膜,陽極室の仕切り膜;株式会社アストム製、カチオン交換膜
(5)陰極側小脱塩室:高さ300mm、幅80mm、厚さ5mm
(6)陽極側小脱塩室:高さ300mm、幅80mm、厚さ5mm
(7)陰極側小脱塩室の充填イオン交換体:II形強塩基性アニオン交換樹脂(ローム・アンド・ハース社製)50体積%、強酸性カチオン交換樹脂(ローム・アンド・ハース社製)50体積%の混床形態
(8)陽極側小脱塩室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂(ローム・アンド・ハース社製)の単床形態
(9)濃縮室:高さ300mm、幅80mm、厚さ4mm
(10)濃縮室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂(ローム・アンド・ハース社製)の単床形態
(11)陰極室:高さ300mm、幅80mm、厚さ4mm
(12)陰極室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂の単床形態
(13)陽極室:高さ300mm、幅80mm、厚さ4mm
(14)陽極室の充填イオン交換体:強酸性カチオン交換樹脂の単床形態
<EDI specifications>
(1) Cation exchange membrane: manufactured by Astom Co., Ltd. (2) Intermediate ion exchange membrane: manufactured by Astom Co., Ltd., anion exchange membrane (3) Anion exchange membrane: manufactured by Astom Co., Ltd. (4) Partition membrane: Partition membrane of cathode chamber; Astom Co., Ltd., anion exchange membrane, partition membrane of anode chamber; Astom Co., Ltd., cation exchange membrane (5) Cathode-side small desalination chamber: height 300 mm, width 80 mm, thickness 5 mm
(6) Anode-side small desalination chamber: height 300 mm, width 80 mm, thickness 5 mm
(7) Cathode-side small desalination chamber filled ion exchanger: type II strongly basic anion exchange resin (Rohm and Haas) 50% by volume, strongly acidic cation exchange resin (Rohm and Haas) 50% by volume mixed bed form (8) Packed ion exchanger in anode side small desalination chamber: Single bed form of type I strong base (strongest base) anion exchange resin (Rohm and Haas) (9) Concentration chamber: height 300mm, width 80mm, thickness 4mm
(10) Filling ion exchanger in the concentration chamber: single-floor form of type I strong base (strongest base) anion exchange resin (Rohm and Haas) (11) Cathode chamber: height 300 mm, width 80 mm, thickness 4mm
(12) Filling ion exchanger in cathode chamber: single-floor form of type I strong base (strongest base) anion exchange resin (13) Anode chamber: height 300 mm, width 80 mm, thickness 4 mm
(14) Filling ion exchanger in the anode chamber: single bed form of strongly acidic cation exchange resin

<運転条件>
(1)被処理水の導電率:10〜15μS/cm(RO膜透過水)
(2)被処理水の比抵抗:0.066〜0.1MΩ・cm
(3)被処理水流量:72L/h(脱塩室1枚当たり24L/h)
(4)陰極側小脱塩室SV:200L/L・h−1
(5)陽極側小脱塩室SV:200L/L・h−1
(6)濃縮水の原水の導電率:10〜15μS/cm(RO膜透過水)
(7)濃縮水流量:8L/h
(8)電極水の原水の比抵抗:比抵抗が5MΩ・cmを超える水
(9)電極水流量:10L/h
(10)運転電流値:1A
(11)電流密度:0.42A/dm
<Operating conditions>
(1) Conductivity of water to be treated: 10 to 15 μS / cm (RO membrane permeate)
(2) Specific resistance of water to be treated: 0.066 to 0.1 MΩ · cm
(3) Processed water flow rate: 72 L / h (24 L / h per desalting chamber)
(4) Cathode-side small desalination chamber SV: 200 L / L · h −1
(5) Anode-side small desalination chamber SV: 200 L / L · h −1
(6) Conductivity of concentrated water: 10-15 μS / cm (RO membrane permeate)
(7) Concentrated water flow rate: 8 L / h
(8) Specific resistance of raw water of electrode water: Water whose specific resistance exceeds 5 MΩ · cm (9) Flow rate of electrode water: 10 L / h
(10) Operating current value: 1A
(11) Current density: 0.42 A / dm 2

(実施例2)
陰極側小脱塩室の充填イオン交換体をI形強塩基(最強塩基)性アニオン交換樹脂(ローム・アンド・ハース社製)22.5体積%、II形強塩基性アニオン交換樹脂(ローム・アンド・ハース社製)27.5体積%、強酸性カチオン交換樹脂(ローム・アンド・ハース社製)50体積%の混床形態とした以外は、EDI−Aと同様の仕様にて、EDI−Bを得た。こうして得られたEDI−Bは、陰極側小脱塩室に充填したアニオン交換体中の低塩基性アニオン交換体の割合が55体積%のものである。このEDI−Bを用いて、実施例1と同様の運転条件で連続運転を行った。200時間毎に運転電圧、電極間の電気抵抗、及び、脱イオン水の比抵抗を測定し、その結果を表1、図3、4に示す。
(Example 2)
Filled ion exchanger in the cathode side small desalting chamber is 22.5% by volume of type I strong base (strongest base) anion exchange resin (Rohm & Haas), type II strong base anion exchange resin (Rohm EDI-, with the same specifications as EDI-A, except that the mixed-bed form was 27.5% by volume and made by strong acid cation exchange resin (Rohm and Haas) 50% by volume. B was obtained. The EDI-B thus obtained has a low basic anion exchanger ratio of 55% by volume in the anion exchanger filled in the cathode-side small desalting chamber. Using this EDI-B, continuous operation was performed under the same operation conditions as in Example 1. The operating voltage, the electrical resistance between the electrodes, and the specific resistance of deionized water were measured every 200 hours, and the results are shown in Table 1 and FIGS.

比較例1、2に用いた脱塩室1室構造のEDIについて、図6を用いて説明する。
図6は、EDI900の断面図である。EDI900は、陰極室920と陽極室960との間に、3枚の脱塩室950と、脱塩室950の両側に設けられた濃縮室930とが配置されている。陰極室920は、陰極922と、枠体921と、仕切り膜924とが陰極922側から順に配置され形成されている。陽極室960は、仕切り膜924と、枠体961と、陽極962とが陰極922側から順に配置され形成されている。陰極室920には電極水流入ライン923と、電極水流出ライン925とが接続され、陽極室960には、電極水流入ライン963と電極水流出ライン965とが接続されている。
The EDI having a single desalination chamber structure used in Comparative Examples 1 and 2 will be described with reference to FIG.
FIG. 6 is a cross-sectional view of EDI 900. In the EDI 900, between a cathode chamber 920 and an anode chamber 960, three desalting chambers 950 and concentration chambers 930 provided on both sides of the desalting chamber 950 are arranged. The cathode chamber 920 includes a cathode 922, a frame body 921, and a partition film 924 arranged in this order from the cathode 922 side. In the anode chamber 960, a partition film 924, a frame body 961, and an anode 962 are sequentially arranged from the cathode 922 side. An electrode water inflow line 923 and an electrode water outflow line 925 are connected to the cathode chamber 920, and an electrode water inflow line 963 and an electrode water outflow line 965 are connected to the anode chamber 960.

脱塩室950は、カチオン交換膜942と、枠体951と、アニオン交換膜946とが陰極922側から順に配置され、枠体951の開口部にイオン交換体が充填され形成されている。脱塩室950には、被処理水流入ライン955と、脱イオン水流出ライン958とが接続されている。濃縮室930は、脱塩室950の両側に、枠体931が配置され形成されている。濃縮室930には濃縮水流入ライン933と、濃縮水流出ライン935とが接続されている。   In the desalting chamber 950, a cation exchange membrane 942, a frame body 951, and an anion exchange membrane 946 are arranged in this order from the cathode 922 side, and an opening of the frame body 951 is filled with the ion exchanger. A treated water inflow line 955 and a deionized water outflow line 958 are connected to the desalting chamber 950. The concentration chamber 930 is formed by disposing a frame body 931 on both sides of the desalting chamber 950. A concentrated water inflow line 933 and a concentrated water outflow line 935 are connected to the concentration chamber 930.

(比較例1)
EDI900と同様のEDIを下記仕様にて、3枚の脱塩室を配置して作成し、EDI−Cを得た。EDI−Cを用いて、脱塩室内の被処理水の空間速度をSV=200L/L・h−1とした以外は、実施例1と同様の運転条件で連続運転を行った。運転に際し、被処理水は脱塩室を下降流で流通させ、脱イオン水を得た。濃縮水は、各濃縮室に下降流で流通させて排水し、電極水は、陰極室と陽極室とにそれぞれ上昇流で流通させて排水した。運転開始後、200時間毎に運転電圧、電極間の電気抵抗、及び、脱イオン水の比抵抗を測定し、その結果を表1、図3、4に示す。
(Comparative Example 1)
EDI similar to EDI900 was prepared by arranging three desalting chambers with the following specifications to obtain EDI-C. Using EDI-C, continuous operation was performed under the same operating conditions as in Example 1 except that the space velocity of the water to be treated in the desalting chamber was set to SV = 200 L / L · h −1 . During operation, the water to be treated was circulated in the desalting chamber in a downward flow to obtain deionized water. Concentrated water was circulated and drained to each concentrating chamber in a downward flow, and electrode water was circulated and drained to the cathode chamber and the anode chamber, respectively. After starting the operation, the operating voltage, the electrical resistance between the electrodes, and the specific resistance of deionized water were measured every 200 hours, and the results are shown in Table 1 and FIGS.

<EDI仕様>
(1)カチオン交換膜:株式会社アストム製
(2)アニオン交換膜:株式会社アストム製
(3)仕切り膜:陰極室の仕切り膜;株式会社アストム製、アニオン交換膜,陽極室の仕切り膜;株式会社アストム製、カチオン交換膜
(4)脱塩室:高さ300mm、幅80mm、厚さ5mm
(5)脱塩室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂(ローム・アンド・ハース社製)50体積%、強酸性カチオン交換樹脂(ローム・アンド・ハース社製)50体積%の混床形態
(6)濃縮室:高さ300mm、幅80mm、厚さ4mm
(7)濃縮室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂(ローム・アンド・ハース社製)の単床形態
(8)陰極室:高さ300mm、幅80mm、厚さ4mm
(9)陰極室の充填イオン交換体:I形強塩基(最強塩基)性アニオン交換樹脂の単床形態
(10)陽極室:高さ300mm、幅80mm、厚さ4mm
(11)陽極室の充填イオン交換体:強酸性カチオン交換樹脂の単床形態
<EDI specifications>
(1) Cation exchange membrane: manufactured by Astom Co., Ltd. (2) Anion exchange membrane: manufactured by Astom Co., Ltd. (3) Partition membrane: Partition membrane of cathode chamber; Astom Co., Ltd., anion exchange membrane, partition membrane of anode chamber; Stock Cation exchange membrane manufactured by Astom Co., Ltd. (4) Desalination chamber: height 300mm, width 80mm, thickness 5mm
(5) Deionization chamber filled ion exchanger: Form I strong base (strongest base) anion exchange resin (Rohm and Haas) 50% by volume, strongly acidic cation exchange resin (Rohm and Haas) ) 50% by volume mixed bed form (6) Concentration chamber: height 300mm, width 80mm, thickness 4mm
(7) Packing ion exchanger in the concentration chamber: single-floor form of type I strong base (strongest base) anion exchange resin (Rohm and Haas) (8) Cathode chamber: height 300 mm, width 80 mm, thickness 4mm
(9) Filling ion exchanger in cathode chamber: single-floor form of type I strong base (strongest base) anion exchange resin (10) Anode chamber: height 300 mm, width 80 mm, thickness 4 mm
(11) Filling ion exchanger in the anode chamber: single bed form of strongly acidic cation exchange resin

(比較例2)
脱塩室の充填イオン交換体をII形強塩基性アニオン交換樹脂(ローム・アンド・ハース社製)50体積%、強酸性カチオン交換樹脂(ローム・アンド・ハース社製)50体積%の混床形態とした以外はEDI−Cと同様の仕様にて、EDI−Dを得た。EDI−Dを用いて、比較例1と同様の運転条件で連続運転を行った。200時間毎に運転電圧、電極間の電気抵抗、及び、脱イオン水の比抵抗を測定し、その結果を表1、図3、4に示す。
(Comparative Example 2)
The packed ion exchanger in the desalting chamber is a mixed bed of 50% by volume of type II strongly basic anion exchange resin (Rohm and Haas) and 50% by volume of strongly acidic cation exchange resin (Rohm and Haas). EDI-D was obtained with the same specifications as EDI-C except that the form was adopted. Using EDI-D, continuous operation was performed under the same operation conditions as in Comparative Example 1. The operating voltage, the electrical resistance between the electrodes, and the specific resistance of deionized water were measured every 200 hours, and the results are shown in Table 1 and FIGS.

Figure 2010142727
Figure 2010142727

表1に示すとおり、実施例1では、運転開始1000時間後の運転電圧は12.65Vであり、運転開始後200〜1000時間における運転電圧の上昇は、2.48Vであった。実施例2では、運転開始1000時間後の運転電圧は18.90Vであり、運転開始後200〜1000時間における運転電圧の上昇は、5.40Vであった。比較例2では、運転開始1000時間後の運転電圧が11.72Vであり、運転開始後200〜1000時間における電圧上昇は2.39Vであった。一方、比較例1では、運転開始1000時間後の運転電圧は23Vを超えており、実施例1又は比較例2の1.8倍以上、実施例2の約1.2倍の運転電圧となっていた。加えて、比較例1では、運転開始後200〜1000時間における運転電圧の上昇は約7.5Vであり、実施例1又は比較例2の約3倍、実施例2の約1.4倍であった。このことから、混床形態として充填するアニオン交換体中に低塩基性アニオン交換体が含まれる場合には、I形強塩基(最強塩基)性アニオン交換体のみが含まれる場合に比べて、低電圧での運転が安定的にできることが判った。   As shown in Table 1, in Example 1, the operating voltage 1000 hours after the start of operation was 12.65V, and the increase in the operating voltage 200 to 1000 hours after the start of operation was 2.48V. In Example 2, the operation voltage 1000 hours after the start of operation was 18.90 V, and the increase in the operation voltage 200 to 1000 hours after the start of operation was 5.40 V. In Comparative Example 2, the operating voltage 1000 hours after the start of operation was 11.72 V, and the voltage increase from 200 to 1000 hours after the start of operation was 2.39 V. On the other hand, in Comparative Example 1, the operating voltage 1000 hours after the start of operation exceeds 23 V, which is 1.8 times or more that of Example 1 or Comparative Example 2 and about 1.2 times that of Example 2. It was. In addition, in Comparative Example 1, the increase in operating voltage in 200 to 1000 hours after the start of operation is about 7.5 V, about 3 times that of Example 1 or Comparative Example 2, and about 1.4 times that of Example 2. there were. Therefore, when the low basic anion exchanger is included in the anion exchanger packed as a mixed bed form, it is lower than the case where only the type I strong base (strongest base) anion exchanger is included. It was found that operation with voltage can be performed stably.

図3は、横軸に運転時間をとり、縦軸に電気抵抗をとり、EDIの運転時間と電気抵抗との関係を表すグラフである。凡例(a)は実施例1における結果、凡例(b)は実施例2における結果、凡例(c)は比較例1における結果、凡例(d)は比較例2における結果をそれぞれ表す。
表1、図3に示すとおり、運転開始後200〜1000時間において、電気抵抗は実施例1では10.17〜12.71Ωで推移し、実施例2では13.50〜18.90Ωで推移し、比較例2では9.33〜11.74Ωで推移していた。これに対し、比較例1では15.71〜23.23Ωという、高い水準で推移していた。この結果は、実施例1、2及び比較例2は、比較例1よりも運転電圧が低くなることを裏付けている。
FIG. 3 is a graph showing the relationship between EDI operating time and electrical resistance, with the operating time on the horizontal axis and the electrical resistance on the vertical axis. Legend (a) shows the results in Example 1, Legend (b) shows the results in Example 2, Legend (c) shows the results in Comparative Example 1, and Legend (d) shows the results in Comparative Example 2, respectively.
As shown in Table 1 and FIG. 3, in 200 to 1000 hours after the start of operation, the electrical resistance changed at 10.17 to 12.71Ω in Example 1, and at 13.50 to 18.90Ω in Example 2. In Comparative Example 2, the transition was from 9.33 to 11.74Ω. On the other hand, Comparative Example 1 had a high level of 15.71 to 23.23Ω. This result confirms that the operating voltages of Examples 1 and 2 and Comparative Example 2 are lower than those of Comparative Example 1.

図4は、横軸に運転時間をとり、縦軸に比抵抗をとり、EDIの運転時間と脱イオン水の比抵抗との関係を表すグラフである。凡例(a)は実施例1における結果、凡例(b)は実施例2における結果、凡例(c)は比較例1における結果、凡例(d)は比較例2における結果をそれぞれ表す。
表1、図4に示すとおり、実施例1は運転開始1000時間後の脱イオン水の比抵抗が18.12MΩ・cmであり、運転開始後200〜1000時間における脱イオン水の比抵抗は、17.42〜18.19MΩ・cmであった。実施例2は運転開始1000時間後の脱イオン水の比抵抗が17.20MΩ・cmであり、運転開始後200〜1000時間における脱イオン水の比抵抗は、17.20〜18.00MΩ・cmであった。一方、比較例1では、運転開始1000時間後の脱イオン水の比抵抗が2.20MΩ・cmであり、比較例2では、運転開始1000時間後の脱イオン水の比抵抗が2.03MΩ・cmであった。これらの結果から、図4に示すように、II形強塩基性アニオン交換樹脂を含むイオン交換体を混床形態で充填した陰極側小脱塩室と、I形強塩基(最強塩基)性アニオン交換樹脂を単床形態で充填した陽極側小脱塩室との順に被処理水を流通させて処理するEDI−Aは、極めて高い水質の脱イオン水を安定的に製造できることが判った。
FIG. 4 is a graph showing the relationship between the operation time of EDI and the specific resistance of deionized water, with the operation time on the horizontal axis and the specific resistance on the vertical axis. Legend (a) shows the results in Example 1, Legend (b) shows the results in Example 2, Legend (c) shows the results in Comparative Example 1, and Legend (d) shows the results in Comparative Example 2, respectively.
As shown in Table 1 and FIG. 4, in Example 1, the specific resistance of deionized water 1000 hours after the start of operation is 18.12 MΩ · cm, and the specific resistance of deionized water 200 to 1000 hours after the start of operation is 17.42-18.19 MΩ · cm. In Example 2, the specific resistance of deionized water 1000 hours after the start of operation is 17.20 MΩ · cm, and the specific resistance of deionized water 200 to 1000 hours after the start of operation is 17.20 to 18.00 MΩ · cm. Met. On the other hand, in Comparative Example 1, the specific resistance of deionized water 1000 hours after the start of operation is 2.20 MΩ · cm, and in Comparative Example 2, the specific resistance of deionized water 1000 hours after the start of operation is 2.03 MΩ · cm. cm. From these results, as shown in FIG. 4, a cathode-side small desalting chamber filled with an ion exchanger containing a type II strong basic anion exchange resin in a mixed bed form, and a type I strong base (strongest base) anion It was found that EDI-A, in which treated water is circulated in the order of the anode-side small desalination chamber filled with the exchange resin in a single bed form, can stably produce deionized water with extremely high water quality.

(実施例3)
実施例1で作製したEDI−Aを用い、実施例1と同様にしてEDI−Aを連続運転した。運転開始600時間後の運転電圧、電気抵抗、脱イオン水の比抵抗を測定し、その結果を表2に示す。
(Example 3)
Using EDI-A produced in Example 1, EDI-A was continuously operated in the same manner as in Example 1. The operating voltage, electric resistance, and specific resistance of deionized water 600 hours after the start of operation were measured, and the results are shown in Table 2.

(実施例4)
被処理水流量を216L/h(脱塩室1枚当たり72L/h、陰極側小脱塩室SV=600L/L・h−1、陽極側小脱塩室SV=600L/L・h−1)、濃縮水流量24L/h、印加電流3A、電流密度1.25A/dmとした以外は、実施例3と同様にしてEDI−Aを連続運転した。運転開始600時間後の運転電圧、電気抵抗、脱イオン水の比抵抗を測定し、その結果を表2に示す。
Example 4
Processed water flow rate is 216 L / h (72 L / h per desalting chamber, cathode side small desalting chamber SV = 600 L / L · h −1 , anode side small desalting chamber SV = 600 L / L · h −1 ), EDI-A was continuously operated in the same manner as in Example 3 except that the flow rate of concentrated water was 24 L / h, the applied current was 3 A, and the current density was 1.25 A / dm 2 . The operating voltage, electric resistance, and specific resistance of deionized water 600 hours after the start of operation were measured, and the results are shown in Table 2.

(実施例5)
被処理水流量を288L/h(脱塩室1枚当たり96L/h、陰極側小脱塩室SV=800L/L・h−1、陽極側小脱塩室SV=800L/L・h−1)、濃縮水流量32L/h、印加電流4A、電流密度1.67A/dmとした以外は、実施例3と同様にしてEDI−Aを連続運転した。運転開始600時間後の運転電圧、電気抵抗、脱イオン水の比抵抗を測定し、その結果を表2に示す。
(Example 5)
Processed water flow rate is 288 L / h (96 L / h per desalination chamber, cathode side small desalination chamber SV = 800 L / L · h −1 , anode side small desalination chamber SV = 800 L / L · h −1 ), EDI-A was continuously operated in the same manner as in Example 3 except that the flow rate of concentrated water was 32 L / h, the applied current was 4 A, and the current density was 1.67 A / dm 2 . The operating voltage, electric resistance, and specific resistance of deionized water 600 hours after the start of operation were measured, and the results are shown in Table 2.

Figure 2010142727
Figure 2010142727

図5は、運転開始600時間後の陰極側小脱塩室ならびに陽極側小脱塩室における被処理水の空間速度(SV)と脱イオン水の比抵抗との関係、及び、陰極側小脱塩室ならびに陽極側小脱塩室における被処理水の空間速度(SV)とEDIの電気抵抗との関係を表すグラフである。凡例(e)は脱イオン水の比抵抗を示し、凡例(f)はEDI−Aの電気抵抗を示す。
表2、図5の実施例5の結果に示すように、EDI−Aは、実施例3の4倍量(小脱塩室のSV=800L/L・h−1)の被処理水を通水しても、脱イオン水は、11MΩ・cmの良好な水質を維持していた。ここで、脱塩室における被処理水の通水量をSV=200L/L・h−1で運転した比較例1では、運転開始600時間後の脱イオン水の比抵抗が1.98MΩ・cmであったこと(表1参照)を考慮すると、本発明のEDI−Aは、被処理水のSVを上げても、即ち、通水量を増大させても、脱塩室1室型のEDIよりも比抵抗の高い良好な水質の脱イオン水が得られることが判った。
FIG. 5 shows the relationship between the space velocity (SV) of treated water and the specific resistance of deionized water in the cathode side small desalination chamber and anode side small desalination chamber 600 hours after the start of operation, and the cathode side small desalting chamber. It is a graph showing the relationship between the space velocity (SV) of the to-be-processed water in a salt chamber and an anode side small desalination chamber, and the electrical resistance of EDI. Legend (e) shows the specific resistance of deionized water, and legend (f) shows the electrical resistance of EDI-A.
As shown in Table 2 and the results of Example 5 in FIG. 5, EDI-A passes 4 times the amount of treated water (SV = 800 L / L · h −1 in the small desalination chamber) of Example 3; Even with water, the deionized water maintained a good water quality of 11 MΩ · cm. Here, in Comparative Example 1 in which the amount of water to be treated in the demineralization chamber was operated at SV = 200 L / L · h −1 , the specific resistance of deionized water 600 hours after the start of operation was 1.98 MΩ · cm. Considering the fact (see Table 1), the EDI-A of the present invention is superior to the EDI of the desalination chamber type even if the SV of the water to be treated is increased, that is, the water flow rate is increased. It was found that deionized water with high specific resistance and good water quality can be obtained.

加えて、実施例5の電気抵抗が18.2Ωであり、比較例1の運転開始600時間後における電気抵抗が20.61Ω(表1参照)であったことから、本発明のEDI−Aは、被処理水の流量を増大させても、低電圧で効率的に、良好な水質の脱イオン水が得られることが判った。   In addition, since the electrical resistance of Example 5 was 18.2Ω and the electrical resistance after 600 hours of operation of Comparative Example 1 was 20.61Ω (see Table 1), EDI-A of the present invention was It was found that even if the flow rate of the water to be treated was increased, deionized water with good water quality could be obtained efficiently at a low voltage.

本発明のEDIにおけるイオン成分の流れを説明する脱塩室の部分断面図である。It is a fragmentary sectional view of the desalination chamber explaining the flow of the ion component in EDI of the present invention. 本発明の実施形態の一例であるEDIの断面図である。It is sectional drawing of EDI which is an example of embodiment of this invention. 実施例1、2及び比較例1、2におけるEDIの運転時間と電気抵抗との関係を示すグラフである。It is a graph which shows the relationship between the operating time of EDI and the electrical resistance in Examples 1 and 2 and Comparative Examples 1 and 2. 実施例1、2及び比較例1、2におけるEDIの運転時間と脱イオン水の比抵抗との関係を示すグラフである。It is a graph which shows the relationship between the operation time of EDI and the specific resistance of deionized water in Examples 1 and 2 and Comparative Examples 1 and 2. 実施例3〜5における、被処理水の通水速度と脱イオン水の比抵抗との関係、及び、被処理水の通水速度とEDIの電気抵抗との関係を示すグラフである。It is a graph which shows the relationship between the water flow rate of to-be-processed water and the specific resistance of deionized water in Examples 3-5, and the relationship between the water flow rate of to-be-processed water and the electrical resistance of EDI. 比較例に用いたEDIの断面図である。It is sectional drawing of EDI used for the comparative example.

符号の説明Explanation of symbols

10、900 電気式脱イオン水製造装置
22、922 陰極
30、130、930 濃縮室
42、142、942 カチオン交換膜
44、144 中間イオン交換膜
46、146、946 アニオン交換膜
50、150、950 脱塩室
52、152 陰極側小脱塩室
54、154 陽極側小脱塩室
56 被処理水流出ライン
57 被処理水流入ライン
62、962 陽極
151 カチオン交換体
153 低塩基性アニオン交換体
155 アニオン交換体
10,900 Electric deionized water production apparatus 22,922 Cathode 30,130,930 Concentration chamber 42,142,942 Cation exchange membrane 44,144 Intermediate ion exchange membrane 46,146,946 Anion exchange membrane 50,150,950 Desorption Salt chamber 52, 152 Cathode side small desalination chamber 54, 154 Anode side small desalination chamber 56 Untreated water outflow line 57 Untreated water inflow line 62, 962 Anode 151 Cation exchanger 153 Low basic anion exchanger 155 Anion exchange body

Claims (4)

陽極側のアニオン交換膜と、陰極側のカチオン交換膜と、前記アニオン交換膜と前記カチオン交換膜との間に設けられた中間イオン交換膜と、で区画される小脱塩室にイオン交換体が充填されて脱塩室が構成され、前記脱塩室の両側に前記アニオン交換膜又は前記カチオン交換膜を介して濃縮室が設けられ、前記脱塩室と前記濃縮室とが陰極と陽極との間に配置された電気式脱イオン水製造装置において、
前記アニオン交換膜と前記中間イオン交換膜とで区画された陽極側小脱塩室に充填するイオン交換体は、アニオン交換体を含み、
前記カチオン交換膜と前記中間イオン交換膜とで区画された陰極側小脱塩室に充填するイオン交換体は、弱塩基性アニオン交換体、中塩基性アニオン交換体、II形強塩基性アニオン交換体からなる群から選択される少なくとも一種を含むアニオン交換体と、カチオン交換体との混床形態であり、
前記陰極側小脱塩室を流通した水を前記陽極側小脱塩室に流す送水手段が設けられていることを特徴とする、電気式脱イオン水製造装置。
An ion exchanger in a small desalting chamber partitioned by an anion exchange membrane on the anode side, a cation exchange membrane on the cathode side, and an intermediate ion exchange membrane provided between the anion exchange membrane and the cation exchange membrane And a concentrating chamber is provided on both sides of the desalting chamber via the anion exchange membrane or the cation exchange membrane, and the desalting chamber and the concentrating chamber include a cathode and an anode. In the electric deionized water production apparatus arranged between
The ion exchanger filled in the anode-side small desalting chamber partitioned by the anion exchange membrane and the intermediate ion exchange membrane includes an anion exchanger,
The ion exchanger filled in the cathode-side small desalting chamber partitioned by the cation exchange membrane and the intermediate ion exchange membrane is a weakly basic anion exchanger, a medium basic anion exchanger, or a type II strong basic anion exchange. It is a mixed bed form of an anion exchanger containing at least one selected from the group consisting of bodies and a cation exchanger,
An electrical deionized water production apparatus, characterized in that water supply means is provided for flowing water flowing through the cathode-side small desalting chamber to the anode-side small desalting chamber.
前記陰極側小脱塩室に充填するアニオン交換体に含まれる弱塩基性アニオン交換体と中塩基性アニオン交換体とII形強塩基性アニオン交換体との合計は、前記アニオン交換体の50体積%を超えている、請求項1に記載の電気式脱イオン水製造装置。   The total of the weakly basic anion exchanger, medium basic anion exchanger, and type II strongly basic anion exchanger contained in the anion exchanger filled in the cathode-side small desalting chamber is 50 volumes of the anion exchanger. The electrical deionized water production apparatus according to claim 1, wherein the percentage exceeds%. 前記陽極側小脱塩室に充填するイオン交換体は、アニオン交換体の単床形態である、請求項1又は2に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein the ion exchanger filled in the anode-side small demineralization chamber is a single-bed form of an anion exchanger. 前記中間イオン交換膜はアニオン交換膜である、請求項1〜3のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 3, wherein the intermediate ion exchange membrane is an anion exchange membrane.
JP2008322349A 2008-12-18 2008-12-18 Electric deionized water production equipment Expired - Fee Related JP4979677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322349A JP4979677B2 (en) 2008-12-18 2008-12-18 Electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322349A JP4979677B2 (en) 2008-12-18 2008-12-18 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2010142727A true JP2010142727A (en) 2010-07-01
JP4979677B2 JP4979677B2 (en) 2012-07-18

Family

ID=42563713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322349A Expired - Fee Related JP4979677B2 (en) 2008-12-18 2008-12-18 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP4979677B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200698A (en) * 2013-04-01 2014-10-27 オルガノ株式会社 Electric deionized water manufacturing apparatus
CN113401985A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Membrane, membrane stack, device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321773A (en) * 2000-05-15 2001-11-20 Japan Organo Co Ltd Apparatus and method for making electro-deionized water
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP3385553B2 (en) * 1999-03-25 2003-03-10 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP2007245120A (en) * 2006-03-20 2007-09-27 Japan Organo Co Ltd Electrically operated apparatus for producing deionized water
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
JP2008068198A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Electrodeionization apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385553B2 (en) * 1999-03-25 2003-03-10 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP2001321773A (en) * 2000-05-15 2001-11-20 Japan Organo Co Ltd Apparatus and method for making electro-deionized water
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2007245120A (en) * 2006-03-20 2007-09-27 Japan Organo Co Ltd Electrically operated apparatus for producing deionized water
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
JP2008068198A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Electrodeionization apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200698A (en) * 2013-04-01 2014-10-27 オルガノ株式会社 Electric deionized water manufacturing apparatus
CN113401985A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Membrane, membrane stack, device and method
CN113401985B (en) * 2020-03-16 2024-01-26 广东栗子科技有限公司 Membrane, membrane stack, device and method

Also Published As

Publication number Publication date
JP4979677B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
EP2208523B1 (en) Electrodeionization device with hydrodynamic flow splitting
JP4363587B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP5015990B2 (en) Electric deionized water production equipment
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
JP5295927B2 (en) Electric deionized water production equipment
JP5145305B2 (en) Electric deionized water production equipment
JP4609924B2 (en) Electric deionized water production equipment
JP4250922B2 (en) Ultrapure water production system
JP5114307B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
WO2012108310A1 (en) Electric device for producing deionized water
JP4979677B2 (en) Electric deionized water production equipment
JP2009208046A (en) Apparatus for producing electrodeionization water
JP6163078B2 (en) Desalination method and desalting apparatus
US8529759B2 (en) Electric deionized water production apparatus
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP2011121027A (en) Electric type deionized water producing apparatus
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
CN111615497B (en) Electric deionizing device for producing deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees