JP2010140895A - Solid oxide fuel cell, and fuel cell module having the same - Google Patents

Solid oxide fuel cell, and fuel cell module having the same Download PDF

Info

Publication number
JP2010140895A
JP2010140895A JP2009256881A JP2009256881A JP2010140895A JP 2010140895 A JP2010140895 A JP 2010140895A JP 2009256881 A JP2009256881 A JP 2009256881A JP 2009256881 A JP2009256881 A JP 2009256881A JP 2010140895 A JP2010140895 A JP 2010140895A
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
current collector
air electrode
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256881A
Other languages
Japanese (ja)
Other versions
JP5413808B2 (en
Inventor
Yasuyuki Niimi
泰之 新美
Akira Kawakami
晃 川上
Dai Momiyama
大 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009256881A priority Critical patent/JP5413808B2/en
Publication of JP2010140895A publication Critical patent/JP2010140895A/en
Application granted granted Critical
Publication of JP5413808B2 publication Critical patent/JP5413808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a solid oxide fuel cell wherein its initial power-generating performance is high and its initial power-generating durability is also good, by using its air-electrode current collecting body containing Ag and a perovskite type oxide within a specific ratio, in the solid oxide fuel cell which is formed so that its current flows in its axial direction. <P>SOLUTION: The solid oxide fuel cell includes a fuel electrode 6, an electrolyte 18 disposed in the fuel electrode, an air electrode 20 disposed in the electrolyte, and a current collecting portion 44a disposed in the air electrode, and is formed so that its current flows in its axial direction. Further, the current collecting portion has Ag and a perovskite type oxide. Moreover, the perovskite type oxide is contained in the current collecting portion, within a quantitative scope wherein its weight ratio to Ag exceeds zero and is smaller than 0.114. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池セル、及びそれを備えてなる燃料電池モジュールに関する。   The present invention relates to a solid oxide fuel cell and a fuel cell module including the same.

従来から、管状の燃料電池セルを有する燃料電池が知られている(例えば、特開2007−95442号公報(特許文献1)参照)。この従来知られた固体酸化物形燃料電池セルの空気極は、銀ペーストが塗布されて形成され、当該銀は空気に露出している。   Conventionally, a fuel cell having a tubular fuel cell is known (see, for example, Japanese Patent Application Laid-Open No. 2007-95442 (Patent Document 1)). The air electrode of this conventionally known solid oxide fuel cell is formed by applying a silver paste, and the silver is exposed to the air.

また、特開2005−50636号公報(特許文献2)には、平板状の固体酸化物形燃料電池セルが記載され、この固体酸化物形燃料電池セルの内側の空気極コンタクト材料は、セパレーターと空気極に挟まれている。空気極コンタクト材料は、銀粉体または銀合金粉体と、ペロブスカイト型酸化物粉体とを少なくとも含んでなる。その混合比は、銀粉体または銀合金粉体:ペロブスカイト型酸化物粉体=90:10重量%〜30:70重量%の範囲が好ましく、より好適には、銀粉体または銀合金粉体:ペロブスカイト型酸化物粉体=70:30重量%〜50:50重量%の範囲とされ、この空気極コンタクト材料によれば、単セル本来の発電性能を大きく損なうことなく、空気環境下での発電性能に優れ、単セルの破壊も抑制可能であると記載されている。   Japanese Patent Laying-Open No. 2005-50636 (Patent Document 2) describes a flat solid oxide fuel cell, and an air electrode contact material inside the solid oxide fuel cell is a separator. It is sandwiched between air electrodes. The air electrode contact material comprises at least silver powder or silver alloy powder and perovskite oxide powder. The mixing ratio is preferably silver powder or silver alloy powder: perovskite oxide powder = 90: 10 wt% to 30:70 wt%, more preferably silver powder or silver alloy powder. : Perovskite-type oxide powder = 70: 30 wt% to 50:50 wt%, and according to this air electrode contact material, the air cell's original power generation performance is not greatly impaired, and it can be used in an air environment. It is described that it has excellent power generation performance and can suppress the destruction of a single cell.

しかし、本発明者らの得た知見によれば、この先行技術に記載の空気極用コンタクト材料、すなわち銀粉体または銀合金粉体と、ペロブスカイト型酸化物粉体とを少なくとも含む組成を固体酸化物形燃料電池の集電部に適用した場合、ペロブスカイト型酸化物の添加量が多いため電気抵抗が増し、発電性能が低かった。更には、ペロブスカイト型酸化物粉体の含有率が低くなると、空気極コンタクト層の多孔質性が失われ、空気雰囲気下での性能が低下するとともに固着により単セルが破壊し易くなる傾向があった。空気極コンタクト層の多孔性が失われることにより、発電耐久性能も低下する傾向が見られた。   However, according to the knowledge obtained by the present inventors, the air electrode contact material described in the prior art, that is, a composition containing at least a silver powder or a silver alloy powder and a perovskite oxide powder is solid. When applied to the current collector of an oxide fuel cell, the amount of perovskite oxide added was large, resulting in increased electrical resistance and poor power generation performance. Furthermore, when the content of the perovskite type oxide powder is low, the porosity of the air electrode contact layer is lost, and the performance in the air atmosphere tends to deteriorate, and the single cell tends to be easily broken due to fixation. It was. There was a tendency for the power generation durability to decrease due to the loss of the porosity of the air electrode contact layer.

また、特開2002−216807号公報(特許文献3)には、平板状の固体酸化物形燃料電池セルが記載され、この固体酸化物形燃料電池セルの内側の空気極集電体は、セパレーターと空気極に挟まれている。この固体酸化物形燃料電池セルの空気極集電体は、銀の素地中に酸化物が分散した分散強化型銀多孔質体からなっている。   Japanese Patent Application Laid-Open No. 2002-216807 (Patent Document 3) describes a flat solid oxide fuel cell, and an air current collector inside the solid oxide fuel cell is a separator. And is sandwiched between air electrodes. The air electrode current collector of the solid oxide fuel cell is composed of a dispersion-strengthened silver porous body in which an oxide is dispersed in a silver substrate.

しかしながら、この先行技術には銀および酸化物とを特定の存在比で含む空気極集電体の開示はあるものの、セルの隣接方向へ集電部を介して電流が流れており、セルの軸方向に電流を流す場合の開示はない。   However, although this prior art discloses an air electrode current collector containing silver and oxide in a specific abundance ratio, current flows through the current collector in the adjacent direction of the cell, and the axis of the cell There is no disclosure when current flows in the direction.

特開2007−95442号公報JP 2007-95442 A 特開2005−50636号公報JP-A-2005-50636 特開2002−216807号公報JP 2002-216807 A

本発明者らは、今般、銀およびペロブスカイト型酸化物を特定の存在比で含む空気極集電体を、セルの軸方向に電流を流す場合の固体酸化物形燃料電池セルに適用することにより、初期発電性能が高く、発電耐久性能が良好な固体酸化物形燃料電池セルが実現できるとの知見を得た。本発明はかかる知見に基づくものである。   The present inventors have recently applied an air electrode current collector containing silver and a perovskite oxide in a specific abundance ratio to a solid oxide fuel cell in the case where a current flows in the axial direction of the cell. The inventors have obtained knowledge that a solid oxide fuel cell having high initial power generation performance and good power generation durability performance can be realized. The present invention is based on such knowledge.

従って、本発明は、初期発電性能が高く、発電耐久性能が良好な固体酸化物形燃料電池セルの提供をその目的としている。   Accordingly, an object of the present invention is to provide a solid oxide fuel cell having high initial power generation performance and good power generation durability performance.

そして、本発明による固体酸化物形燃料電池セルは、燃料極と、前記燃料極に配置される電解質と、前記電解質に配置される空気極と、前記空気極に配置される集電部と、を備える固体酸化物形燃料電池セルであって、前記固体酸化物形燃料電池セルは前記固体酸化物形燃料電池セルの軸方向に電流が流れるように形成され、さらに前記集電部はAgとペロブスカイト型酸化物とを備える集電部であり、前記集電部における前記ペロブスカイト型酸化物量は前記Agに対して重量比で0を超え0.114より小さい範囲で含んでなることを特徴とするものである。   The solid oxide fuel cell according to the present invention includes a fuel electrode, an electrolyte disposed on the fuel electrode, an air electrode disposed on the electrolyte, a current collector disposed on the air electrode, A solid oxide fuel cell, wherein the solid oxide fuel cell is formed such that current flows in an axial direction of the solid oxide fuel cell, and the current collector is Ag and A current collector comprising a perovskite oxide, wherein the amount of the perovskite oxide in the current collector is greater than 0 and less than 0.114 by weight with respect to Ag. Is.

また、本発明によれば、上記本発明による固体酸化物形燃料電池セルを備えてなる燃料電池モジュールが提供される。 Moreover, according to this invention, the fuel cell module provided with the solid oxide fuel cell by the said this invention is provided.

本発明によれば、初期発電性能が高く、発電耐久性能が良好な固体酸化物形燃料電池セルを提供可能となる。   According to the present invention, it is possible to provide a solid oxide fuel cell having high initial power generation performance and good power generation durability performance.

本発明の一つの態様による固体酸化物形燃料電池セルを示す図である。1 is a diagram showing a solid oxide fuel cell according to one embodiment of the present invention. 本発明の別の態様による固体酸化物形燃料電池セルユニットを示す図である。It is a figure which shows the solid oxide fuel cell unit by another aspect of this invention. 図2における燃料極端子の例を示す図である。It is a figure which shows the example of the fuel electrode terminal in FIG. 図2における空気極端子の例を示す図である。It is a figure which shows the example of the air electrode terminal in FIG. 本発明は別の態様による固体酸化物形燃料電池セルユニットを示す図である 。The present invention is a diagram showing a solid oxide fuel cell unit according to another embodiment.

本発明による燃料電池セルとは、空気極に配置される集電部が後記する要件を満たすものであること以外は、燃料極と、電解質と、空気極とを少なくとも備えてなる、当業界において通常固体酸化物形燃料電池セルと分類または理解されるものと同一のものを意味する。   In the industry, the fuel cell according to the present invention includes at least a fuel electrode, an electrolyte, and an air electrode, except that the current collector disposed in the air electrode satisfies the requirements described later. Usually means the same as those classified or understood as solid oxide fuel cells.

本発明において、空気極に配置される集電部は、Agとペロブスカイト型酸化物とを含んでいる。そして、本発明にあっては、このペロブスカイト型酸化物をAgに対して、重量比で、0を超え0.114より小さい範囲で含んでなり、好ましくは0を超え0.095以下であり、より好ましくは0を超え0.090以下である。ここで、比は、この集電部表面または断面を電子線マイクロアナライザー(EPMA)分析により求めることができる。 In the present invention, the current collector disposed in the air electrode contains Ag and a perovskite oxide. In the present invention, the perovskite oxide is contained in a weight ratio with respect to Ag in a range of more than 0 and less than 0.114, preferably more than 0 and 0.095 or less, More preferably, it is more than 0 and 0.090 or less. Here, the ratio can be determined by electron beam microanalyzer (EPMA) analysis of the current collector surface or cross section.

本発明において、ペロブスカイト型酸化物は好ましくはLa0.6Sr0.4Co0.2Fe0.8O3である。また、本発明の好ましい態様によれば、集電部を構成する酸化物は空気極の組成と同一のものであり、その具体例としては、SrおよびCaから選ばれる少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、およびCuから選ばれる少なくとも一種をドープしたランタンフェライト、またはSr、Fe、Ni、およびCuから選ばれる少なくとも一種をドープしたサマリウムコバルトまたは銀が挙げられる。 In the present invention, the perovskite oxide is preferably La0.6Sr0.4Co0.2Fe0.8O3. Further, according to a preferred aspect of the present invention, the oxide constituting the current collector has the same composition as the air electrode, and specific examples thereof include lanthanum manganes doped with at least one selected from Sr and Ca. Examples thereof include lanthanum ferrite doped with at least one selected from knight, Sr, Co, Ni, and Cu, or samarium cobalt or silver doped with at least one selected from Sr, Fe, Ni, and Cu.

本発明において集電部は多孔性であり、その孔より空気を取り入れ、発電に利用する。集電部を通過した酸素が空気極に供給され、良好な発電性能が得られる。また、本発明にあっては、集電部の導電性が空気極よりも高く、その結果、集電性能を向上させることができる。本発明において集電部の多孔性は空隙率であらわした場合20〜80%程度で有る。空隙率は、例えば、測定するサンプルの断面を樹脂包埋して研磨し、鏡面が出たサンプル断面表面をSEMにて撮影し、撮影像を画像解析して得ることができる。 In the present invention, the current collector is porous, and air is taken in through the holes and used for power generation. Oxygen that has passed through the current collector is supplied to the air electrode, and good power generation performance is obtained. Moreover, in this invention, the electrical conductivity of a current collection part is higher than an air electrode, As a result, current collection performance can be improved. In the present invention, the porosity of the current collector is about 20 to 80% in terms of porosity. The porosity can be obtained, for example, by embedding and polishing a cross section of a sample to be measured, photographing the sample cross section surface having a mirror surface with an SEM, and analyzing the photographed image.

以下、添付図面を参照しながら本発明を説明する。説明の理解を容易にするため、各図面において特に断らない限り同一の符号は同一の構成要素を意味する。 The present invention will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same reference numerals denote the same components unless otherwise specified in the drawings.

図1は、本実施形態に係る固体酸化物形燃料電池セルの断面図である。   FIG. 1 is a cross-sectional view of a solid oxide fuel cell according to this embodiment.

図1において、燃料電池セルユニット1は、固体酸化物形燃料電池セル6と、その両端に燃料極端子24と空気極端子26を配置してなる。この態様では、固体酸化物形燃料電池セルは、1本の固体酸化物形燃料電池セル6(管状体)からなり、固体酸化物形燃料電池セル6は、円筒形である。   In FIG. 1, the fuel cell unit 1 includes a solid oxide fuel cell 6 and a fuel electrode terminal 24 and an air electrode terminal 26 disposed at both ends thereof. In this aspect, the solid oxide fuel cell is composed of one solid oxide fuel cell 6 (tubular body), and the solid oxide fuel cell 6 is cylindrical.

固体酸化物形燃料電池セル6は、酸化剤ガスにさらされている面から集電部44a、空気極20、電解質18、そして燃料極16の積層構造になっており、燃料極16の内側に構成される燃料ガスの通路となる貫通流路15を有している。集電部44aは固体酸化物形燃料電池セル6の他方の端部6bに固定された空気極端子26に接続されている。空気極20全体又は一部は、集電部44aで覆われており、空気極で発生した電気は、集電部44aのセルの軸方向に流れ、空気極端子26から電気を取り出す。なおセルの軸方向とは、貫通流路15に流れる燃料ガスの方向と同一方向を示す。即ち、図中の矢印Aの方向を示す。   The solid oxide fuel cell 6 has a stacked structure of a current collector 44 a, an air electrode 20, an electrolyte 18, and a fuel electrode 16 from the surface exposed to the oxidant gas. It has a through-flow passage 15 serving as a fuel gas passage. The current collector 44 a is connected to the air electrode terminal 26 fixed to the other end 6 b of the solid oxide fuel cell 6. The whole or a part of the air electrode 20 is covered with a current collector 44 a, and electricity generated at the air electrode flows in the axial direction of the cell of the current collector 44 a and takes out electricity from the air electrode terminal 26. The axial direction of the cell indicates the same direction as the direction of the fuel gas flowing through the through passage 15. That is, the direction of arrow A in the figure is shown.

一方、固体酸化物形燃料電池セル6の一方の端部6aに固定された燃料極端子24は、燃料極16と接しており、燃料極16で発生した電気を燃料極端子24から取り出す。   On the other hand, the fuel electrode terminal 24 fixed to one end 6 a of the solid oxide fuel cell 6 is in contact with the fuel electrode 16, and electricity generated at the fuel electrode 16 is taken out from the fuel electrode terminal 24.

集電部44aは、上記要件を満たすものとされる。本発明の好ましい態様によれば、集電部44aの厚さは、0.1〜50μmであることが好ましく、より好ましくは0.5〜30μmである。   The current collector 44a is assumed to satisfy the above requirements. According to the preferable aspect of this invention, it is preferable that the thickness of the current collection part 44a is 0.1-50 micrometers, More preferably, it is 0.5-30 micrometers.

燃料極16は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレートとの混合体、の少なくとも一種から形成される。   The fuel electrode 16 is, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and a mixture of Ni and ceria doped with at least one selected from rare earth elements. And a mixture of Ni and lanthanum gallate doped with at least one selected from Sr, Mg, Co, Fe, and Cu.

電解質18は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。   The electrolyte 18 is, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, and lanthanum gallate doped with at least one selected from Sr and Mg. It is formed from at least one kind.

空気極20は、例えば、Sr、Caから選ばれる少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれる少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれる少なくとも一種をドープしたサマリウムコバルト、銀、などの少なくとも一種から形成される。   The air electrode 20 is selected from, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni, and Cu, Sr, Fe, Ni, and Cu. It is formed from at least one of samarium cobalt, silver, etc. doped with at least one.

燃料極16の厚さは、通常は1〜5mm程度であり、電解質18の厚さは、通常は1〜100μm程度であり、空気極20の厚さは、通常は1〜50μm程度である。 The thickness of the fuel electrode 16 is usually about 1 to 5 mm, the thickness of the electrolyte 18 is usually about 1 to 100 μm, and the thickness of the air electrode 20 is usually about 1 to 50 μm.

固体酸化物形燃料電池セル6の一方の端部6aに、燃料極16が電解質18及び空気極20に対して突出した燃料極突出周面16aと、電解質18が空気極20に対して突出した電解質突出周面18aとが設けられ、燃料極突出周面16a及び電解質突出周面18aは、固体酸化物形燃料電池セル6の外周面を構成している。固体酸化物形燃料電池セル6の他方の端部6bを含む残部の外周面は、空気極20が集電部44aで覆われている。この態様では、燃料極突出周面16aは、燃料極16と電気的に通じる燃料極外周面21でもある。   A fuel electrode protruding peripheral surface 16a in which the fuel electrode 16 protrudes from the electrolyte 18 and the air electrode 20 and an electrolyte 18 protrudes from the air electrode 20 at one end 6a of the solid oxide fuel cell 6. An electrolyte protruding peripheral surface 18 a is provided, and the fuel electrode protruding peripheral surface 16 a and the electrolyte protruding peripheral surface 18 a constitute an outer peripheral surface of the solid oxide fuel cell 6. The air electrode 20 is covered with a current collector 44 a on the remaining outer peripheral surface including the other end 6 b of the solid oxide fuel cell 6. In this embodiment, the fuel electrode protruding peripheral surface 16 a is also the fuel electrode outer peripheral surface 21 that is in electrical communication with the fuel electrode 16.

燃料極端子24は、燃料極外周面21を全周にわたって外側から覆うように配置され且つそれと電気的に接続された本体部分24aと、固体酸化物形燃料電池セル6から遠ざかるように固体酸化物形燃料電池セル6の長手方向に延びる管状部分24bとを有している。好ましくは、本体部分24a及び管状部分24bは、円筒形であり且つ同心に配置され、管状部分24bの管径は、本体部分24aの管径よりも細い。本体部分24a及び管状部分24bは、貫通流路15と連通し且つ外部と通じる接続流路24cを有している。本体部分24aと管状部分24bとの間の段部24dは、燃料極16の端面16bと当接している。   The fuel electrode terminal 24 is disposed so as to cover the outer peripheral surface 21 of the fuel electrode from the outside over the entire circumference and is electrically connected to the main body portion 24 a, and the solid oxide so as to be away from the solid oxide fuel cell 6. The tubular fuel cell 6 has a tubular portion 24b extending in the longitudinal direction. Preferably, the body portion 24a and the tubular portion 24b are cylindrical and arranged concentrically, and the tube diameter of the tubular portion 24b is smaller than the tube diameter of the body portion 24a. The main body portion 24a and the tubular portion 24b have a connection channel 24c that communicates with the through channel 15 and communicates with the outside. A step portion 24 d between the main body portion 24 a and the tubular portion 24 b is in contact with the end face 16 b of the fuel electrode 16.

またこの態様にあっては、空気極端子26は、空気極外周面22を全周にわたって外側から覆うように配置され且つそれと電気的に接続された本体部分26aと、固体酸化物形燃料電池セル6から遠ざかるように固体酸化物形燃料電池セル6の長手方向に延びる管状部分26bとを有している。好ましくは、本体部分26a及び管状部分26bは、円筒形であり且つ同心であり、管状部分26bの管径は、本体部分26aの管径よりも細い。本体部分26a及び管状部分26bは、貫通流路15と連通し且つ外部と通じる接続流路26cを有している。本体部分26aと管状部分26bとの間の段部26dは、環状の絶縁部材28を介して集電部44a、空気極20、電解質18及び燃料極16の端面16cと当接している。   In this embodiment, the air electrode terminal 26 is disposed so as to cover the outer peripheral surface 22 of the air electrode from the outside over the entire circumference and is electrically connected to the body portion 26a, and the solid oxide fuel cell. And a tubular portion 26 b extending in the longitudinal direction of the solid oxide fuel cell 6 so as to be away from the fuel cell 6. Preferably, the body portion 26a and the tubular portion 26b are cylindrical and concentric, and the tube diameter of the tubular portion 26b is smaller than the tube diameter of the body portion 26a. The main body portion 26a and the tubular portion 26b have a connection channel 26c that communicates with the through channel 15 and communicates with the outside. A step portion 26 d between the main body portion 26 a and the tubular portion 26 b is in contact with the current collector 44 a, the air electrode 20, the electrolyte 18, and the end surface 16 c of the fuel electrode 16 via the annular insulating member 28.

燃料極端子24及び空気極端子26の管状部分24b、26bは、好ましくは、それらの外輪郭断面形状が同一である。更に好ましくは、燃料極端子24及び空気極端子26の全体形状が同一である。燃料極端子24及び空気極端子26は、例えばAg、ステンレス鋼、ニッケル基合金、クロム基合金などの耐熱金属である。   The tubular portions 24b and 26b of the fuel electrode terminal 24 and the air electrode terminal 26 preferably have the same outer contour cross-sectional shape. More preferably, the fuel electrode terminal 24 and the air electrode terminal 26 have the same overall shape. The fuel electrode terminal 24 and the air electrode terminal 26 are heat-resistant metals such as Ag, stainless steel, nickel-base alloy, and chromium-base alloy.

燃料極端子24と固体酸化物形燃料電池セル6、及び空気極端子26と燃料電池セル6とは、その全周にわたって導電性のシール材32によってシールされ且つ固定されている。   The fuel electrode terminal 24 and the solid oxide fuel cell 6, and the air electrode terminal 26 and the fuel cell 6 are sealed and fixed by a conductive sealing material 32 over the entire circumference.

一方の端部6aにおいて、燃料極突出周面16a及び電解質突出周面18aは、固体酸化物形燃料電池セル6の全周にわたって延び、互いに長手方向Aに隣接している。また、燃料極突出周面16aは、固体酸化物形燃料電池セル6の先端部6cに位置している。燃料極突出周面16aと電解質突出周面18aとの間の境界34は、燃料極端子24の本体部分24aの内部にあり、電解質突出周面18と集電部突出周面44との間の境界36は、本体部分24aの外側に位置している。また、電解質突出周面18aは、燃料極突出周面16aに向かって薄肉となるテーパ部18bを有している。   At one end 6a, the fuel electrode protruding peripheral surface 16a and the electrolyte protruding peripheral surface 18a extend over the entire circumference of the solid oxide fuel cell 6 and are adjacent to each other in the longitudinal direction A. Further, the fuel electrode protruding peripheral surface 16 a is located at the front end portion 6 c of the solid oxide fuel cell 6. A boundary 34 between the fuel electrode protruding peripheral surface 16a and the electrolyte protruding peripheral surface 18a is inside the main body portion 24a of the fuel electrode terminal 24, and between the electrolyte protruding peripheral surface 18 and the current collector protruding peripheral surface 44. The boundary 36 is located outside the main body portion 24a. The electrolyte projecting peripheral surface 18a has a tapered portion 18b that becomes thinner toward the fuel electrode projecting peripheral surface 16a.

一方の端部6aにおいて、シール材32は、燃料極突出周面16a及び電解質突出周面18aに跨がって全周にわたって延び、燃料極端子24の本体部分24aに充填され、電解質突出周面18aを介して空気極20と間隔をおいている。また、他方の端部6bにおいて、シール材32は、空気極突出周面20aの上を全周にわたって延び、空気極端子26の本体部分26aと絶縁部材28との間の空間に充填されている。シール材32は、燃料極16と作用するガスの領域、即ち、貫通流路15及び接続流路24c、26cと、空気極20と作用するガスの領域とを仕切るように設けられている。シール材32は、例えば、銀、銀とガラスの混合物、金、ニッケル、銅、チタンなどを含む各種ロウ材である。   At one end 6a, the sealing material 32 extends over the entire circumference across the fuel electrode protruding peripheral surface 16a and the electrolyte protruding peripheral surface 18a, and is filled in the main body portion 24a of the fuel electrode terminal 24. It is spaced from the air electrode 20 via 18a. At the other end 6b, the sealing material 32 extends over the entire circumference of the air electrode protruding peripheral surface 20a and fills the space between the main body portion 26a of the air electrode terminal 26 and the insulating member 28. . The sealing material 32 is provided so as to partition the gas region acting with the fuel electrode 16, that is, the gas flow region acting with the air electrode 20 from the through flow channel 15 and the connection flow channels 24 c and 26 c. The sealing material 32 is various brazing materials including, for example, silver, a mixture of silver and glass, gold, nickel, copper, and titanium.

ここで固体酸化物形燃料電池の作動原理を以下に記す。空気極側に酸化剤ガスを流し、燃料極側に燃料ガス(H2、COなど)を流すと酸化剤ガス中の酸素が、空気極と固体電解質との界面近傍で酸素イオンに変わり、この酸素イオンが固体電解質を通って燃料極に達する。そして燃料ガスと酸素イオンが反応して水および二酸化炭素になる。これらの反応は(1)、(2)および(3)式で表される。発生した電子は、空気極または燃料極へと移動し、端子に集電されるので、電流は管状セルの長軸方向を流れることになる。空気極と燃料極を外部回路で接続することによって、外部に電気を取り出すことが出来る。
H 2 + O 2 - → H 2 O+ 2 e - (1)
C O+ O 2 - → C O 2 + 2 e - (2)
1 / 2 O2 + 2 e - → O 2 - (3)
Here, the operation principle of the solid oxide fuel cell will be described. When oxidant gas is flowed to the air electrode side and fuel gas (H2, CO, etc.) is flowed to the fuel electrode side, oxygen in the oxidant gas changes to oxygen ions near the interface between the air electrode and the solid electrolyte. Ions reach the fuel electrode through the solid electrolyte. The fuel gas and oxygen ions react to form water and carbon dioxide. These reactions are represented by the formulas (1), (2) and (3). The generated electrons move to the air electrode or the fuel electrode and are collected at the terminal, so that the current flows in the long axis direction of the tubular cell. By connecting the air electrode and the fuel electrode with an external circuit, electricity can be taken out to the outside.
H 2 + O 2-→ H 2 O + 2 e-(1)
C O + O 2-→ CO 2 + 2 e-(2)
1/2 O2 + 2 e-→ O 2-(3)

より具体的には、図1において燃料極16と作用するガス(燃料ガス)を、貫通流路15及び接続流路24c、26cに通す。また、空気極20と作用するガス(酸化剤ガス)を、空気極20の周りに流す。それにより、固体酸化物形燃料電池セル6が作動する。また、燃料極16の電気をシール材32及び燃料極端子24を介して取出し、空気極20の電気をシール材32及び空気極端子26を介して取出す。   More specifically, the gas (fuel gas) that acts on the fuel electrode 16 in FIG. 1 is passed through the through passage 15 and the connection passages 24c and 26c. In addition, a gas (oxidant gas) that acts on the air electrode 20 flows around the air electrode 20. Thereby, the solid oxide fuel cell 6 operates. Further, the electricity of the fuel electrode 16 is taken out via the sealing material 32 and the fuel electrode terminal 24, and the electricity of the air electrode 20 is taken out via the sealing material 32 and the air electrode terminal 26.

図2は、本発明の別の態様による固体酸化物形燃料電池セルユニットの例である。このセルユニット2はセル7と2つの端子からなっている。セルの構成は、内部に貫通流路を有する燃料極支持体の外側に配置された固体電解質と、該固体電解質の外側に配置された空気極とから構成され、空気極の更に外側には集電部が配置されたものである。固体酸化物形燃料電池セル7には一方の端部56aと他方の端部56bを備え、他方の端部56bの内側に燃料極端子104、および外側に空気極端子106の2つの端子が設けられている。図3は、内側の燃料極端子104を示す。燃料極端子104は、燃料極の貫通流路に挿入され、燃料極と接する。燃料極端子104は、中心部に固体酸化物形燃料電池セル7との接触面積を増やすため略円筒形をしている。図4は、外側の空気極端子106を示す。空気極端子106は、空気極の外側に覆われた集電部144aと接する。空気極端子106は、中心部に固体酸化物形燃料電池セル7を挿入できるように略円筒形をしている。それぞれの端子は、Ag、ステンレス鋼、ニッケル基合金、クロム基合金などの耐熱金属からなり、金属の持つバネ力により端子とセルが固定される。図1の仕様と同様に空気極側に酸化剤ガスを流し、燃料極側に燃料ガス(H2、COなど)を流した時、空気極と燃料極で電気が発生し、それぞれの端子に集電されるので、電流は管状セルの軸方向を流れることになる。   FIG. 2 is an example of a solid oxide fuel cell unit according to another aspect of the present invention. The cell unit 2 includes a cell 7 and two terminals. The cell is composed of a solid electrolyte disposed outside a fuel electrode support having a through-flow passage inside, and an air electrode disposed outside the solid electrolyte. The electric part is arranged. The solid oxide fuel cell 7 is provided with one end 56a and the other end 56b. The fuel electrode terminal 104 is provided inside the other end 56b, and two terminals, the air electrode terminal 106, are provided outside. It has been. FIG. 3 shows the inner fuel electrode terminal 104. The fuel electrode terminal 104 is inserted into the through-flow passage of the fuel electrode and is in contact with the fuel electrode. The fuel electrode terminal 104 has a substantially cylindrical shape in order to increase the contact area with the solid oxide fuel cell 7 at the center. FIG. 4 shows the outer cathode terminal 106. The air electrode terminal 106 is in contact with the current collector 144a covered outside the air electrode. The air electrode terminal 106 has a substantially cylindrical shape so that the solid oxide fuel cell 7 can be inserted into the center thereof. Each terminal is made of a heat-resistant metal such as Ag, stainless steel, nickel-base alloy, or chromium-base alloy, and the terminal and the cell are fixed by the spring force of the metal. As with the specifications in Fig. 1, when an oxidant gas is flowed to the air electrode side and a fuel gas (H2, CO, etc.) is flowed to the fuel electrode side, electricity is generated at the air electrode and the fuel electrode and collected at each terminal. As it is energized, current will flow in the axial direction of the tubular cell.

更に、図5は、本発明の別様の態様による固体酸化物形燃料電池セルユニット3である。セルの構成は、内部に貫通流路を有する燃料極支持体の外側に配置された固体電解質と、該固体電解質の外側に配置された空気極とから構成され、空気極の更に外側には集電部が配置されたものである。固体酸化物形燃料電池セル8には一方の端部66aと他方の端部66bをもち、一方の端部66aには電解質が空気極に対して突出した電解質突出部214を備える。空気極端子206であるAgワイヤは、集電部244aの外周に巻きつけられ、固体酸化物形燃料電池セル8の中心付近に形成されている。外周に巻きつける位置は、中心付近に限定されず、固体酸化物形燃料電池セル8の他方の端部66bでも良い。燃料極端子204は、貫通流路の内径より大きな円筒状のAgメッシュを備えている。燃料極端子204は、固体酸化物形燃料電池セル8に一方の端部66aから10〜100mmの深さまで挿入し、Agメッシュのバネ力により燃料極と接している。図1の仕様と同様に空気極側に酸化剤ガスを流し、燃料極側に燃料ガス(H2、COなど)を流した時、空気極と燃料極で電気が発生し、それぞれの端子に集電されるので、電流は管状セルの軸方向を流れることになる。   FIG. 5 shows a solid oxide fuel cell unit 3 according to another embodiment of the present invention. The cell is composed of a solid electrolyte disposed outside a fuel electrode support having a through-flow passage inside, and an air electrode disposed outside the solid electrolyte. The electric part is arranged. The solid oxide fuel cell 8 has one end portion 66a and the other end portion 66b, and one end portion 66a includes an electrolyte protrusion 214 in which an electrolyte protrudes from the air electrode. The Ag wire that is the air electrode terminal 206 is wound around the outer periphery of the current collector 244 a and is formed near the center of the solid oxide fuel cell 8. The position wound around the outer periphery is not limited to the vicinity of the center, and may be the other end 66b of the solid oxide fuel cell 8. The fuel electrode terminal 204 includes a cylindrical Ag mesh larger than the inner diameter of the through channel. The fuel electrode terminal 204 is inserted into the solid oxide fuel cell 8 to a depth of 10 to 100 mm from one end 66a, and is in contact with the fuel electrode by the spring force of Ag mesh. As with the specifications in Fig. 1, when an oxidant gas is flowed to the air electrode side and a fuel gas (H2, CO, etc.) is flowed to the fuel electrode side, electricity is generated at the air electrode and the fuel electrode and collected at each terminal As it is energized, current will flow in the axial direction of the tubular cell.

これまで説明してきたのは固体酸化物形燃料電池セルであるが、周囲が断熱容器に覆われ、酸化剤ガスにさらされた固体酸化物形燃料電池セルを備えた固体酸化物形燃料電池モジュールに適用されても良い。   What has been described so far is a solid oxide fuel cell, but the solid oxide fuel cell module includes a solid oxide fuel cell that is surrounded by a heat insulating container and exposed to an oxidant gas. May be applied.

また、本発明にあって固体酸化物形燃料電池セルは円筒形状に限定されず、扁平形状などに適用されても良く、セルの軸方向に電流が流れる構成であればよい。   In the present invention, the solid oxide fuel cell is not limited to a cylindrical shape, and may be applied to a flat shape or the like as long as a current flows in the axial direction of the cell.

本発明による固体酸化物形燃料電池セルは、公知の方法に従って、適宜製造することができる。空気極に配置される集電部も公知の方法に類似する方法によって形成されてよいが、好ましい製造方法は以下の通りである。まず、銀および酸化物の粉体を用意し、最終的な集電部の組成と同一となる量を秤とる。これを樹脂とともに溶剤に混合したコーティング液とする。このコーティング液を空気極に塗布し、乾燥後、焼成して集電体を形成する。コーティング液の空気極への塗布は、ラリーコート法、テープキャスティング法、ドクターブレード法、スクリーン印刷法、スピンコート法、スプレー法、フローコート法、ロールコート法ならびにこれらを併用して行うことが出来る。また、ここで樹脂としては、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる。また、溶剤としては、エタノール、メタノール、α-テルピネオール、ジヒドロターピネオール、n-メチル-2-ピロリドン、ベンジルアルコール、トルエン、アセトニトリル、2-フェノキシエタノール、およびそれらの混合溶剤が挙げられる。コーティング液の空気極への塗布量は、最終的な集電部の厚さを考慮して適宜決定されてよい。また、乾燥は、50〜150℃程度で0.5〜5時間行い、さらに焼成は400〜800℃程度で0.5〜5時間行うことが好ましい。 The solid oxide fuel cell according to the present invention can be appropriately manufactured according to a known method. Although the current collection part arrange | positioned at an air electrode may be formed by the method similar to a well-known method, the preferable manufacturing method is as follows. First, silver and oxide powders are prepared, and an amount that is the same as the final composition of the current collector is weighed. This is a coating liquid mixed with a resin in a solvent. This coating solution is applied to the air electrode, dried, and baked to form a current collector. The coating liquid can be applied to the air electrode by using a rally coating method, a tape casting method, a doctor blade method, a screen printing method, a spin coating method, a spray method, a flow coating method, a roll coating method, or a combination thereof. . In addition, examples of the resin include urethane resin, acrylic resin, epoxy resin, and phenol resin. Examples of the solvent include ethanol, methanol, α-terpineol, dihydroterpineol, n-methyl-2-pyrrolidone, benzyl alcohol, toluene, acetonitrile, 2-phenoxyethanol, and mixed solvents thereof. The amount of coating liquid applied to the air electrode may be appropriately determined in consideration of the final thickness of the current collector. The drying is preferably performed at about 50 to 150 ° C. for 0.5 to 5 hours, and the firing is preferably performed at about 400 to 800 ° C. for 0.5 to 5 hours.

以下、実施例を挙げて、本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
まず、燃料極支持体を以下の通り製造した。すなわち、N i O粉末と、(ZrO2)0.90(Y2O3)0.10(以下、YSZと略称する)粉末の混合物を湿式混合法で作製後、熱処理、粉砕を行い燃料極支持体原料粉末を得た。NiO粉末とYSZ粉末の混合比は重量比で65/35とした。該粉末を押出し成形法によって円筒状成形体を作製した。成形体を900℃で熱処理して燃料極支持体の仮焼体とした。
Example 1
First, a fuel electrode support was manufactured as follows. That is, a mixture of NiO powder and (ZrO2) 0.90 (Y2O3) 0.10 (hereinafter abbreviated as YSZ) powder was prepared by a wet mixing method, followed by heat treatment and pulverization to obtain a fuel electrode support raw material powder. The mixing ratio of NiO powder and YSZ powder was 65/35 by weight. A cylindrical molded body was produced by extruding the powder. The molded body was heat-treated at 900 ° C. to obtain a calcined body of the fuel electrode support.

この燃料極支持体の表面に、スラリーコート法により固体電解質を成膜し、1300℃で焼成した。固体電解質が形成された燃料極支持体は、焼成後の寸法で、外径10.4mm、肉厚1.5mm、有効セル長100mmとした。   A solid electrolyte film was formed on the surface of the fuel electrode support by a slurry coating method and fired at 1300 ° C. The fuel electrode support on which the solid electrolyte was formed had dimensions after firing, an outer diameter of 10.4 mm, a wall thickness of 1.5 mm, and an effective cell length of 100 mm.

次に固体電解質の表面にスラリーコート法により空気極を形成し、1100℃で焼成した。表1に示すように空気極としてLa0.6Sr0.4Co0.2Fe0.8O3(以下、LSCFと略称する)を用いた。なお、空気極の面積は、25.2cm2になるようにした。   Next, an air electrode was formed on the surface of the solid electrolyte by a slurry coating method and fired at 1100 ° C. As shown in Table 1, La0.6Sr0.4Co0.2Fe0.8O3 (hereinafter abbreviated as LSCF) was used as the air electrode. The area of the air electrode was 25.2 cm2.

次に空気極の上に以下のコーティング液を塗布して集電部を形成した。コーティング液として、樹脂と溶剤と金属粉とを含んでなるものを用意した。具体的には、樹脂としてウレタン樹脂を、溶剤としてn-メチル-2-ピロリドン(NMP)とベンジルアルコールを50:50の混合溶剤を、導電性金属としての金属粉としてAgを、酸化物として空気極材料と同一のLa0.6Sr0.4Co0.2Fe0.8O3(LSCF)を用意した。金属粉と酸化物を合わせて100重量%としたとき、表1に示す重量%(Ag92.0重量%、LSCF8.0重量%)となるよう秤量した。樹脂、溶剤、金属粉、および酸化物粉を混合し、攪拌した。ここで、表1における添加材料の重量%とは、集電部を100重量%としたときに含まれる金属粉(Ag)と酸化物(LSCF)の重量%を示す。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.087であった。 Next, the following coating liquid was applied on the air electrode to form a current collector. A coating liquid containing a resin, a solvent and a metal powder was prepared. Specifically, urethane resin as a resin, n-methyl-2-pyrrolidone (NMP) and benzyl alcohol as a solvent in a 50:50 mixed solvent, Ag as a metal powder as a conductive metal, air as an oxide La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), which is the same as the electrode material, was prepared. When the total amount of the metal powder and the oxide was 100% by weight, it was weighed so as to be the weight% shown in Table 1 (Ag 92.0% by weight, LSCF 8.0% by weight). Resin, solvent, metal powder, and oxide powder were mixed and stirred. Here, the weight% of the additive material in Table 1 represents the weight% of the metal powder (Ag) and oxide (LSCF) contained when the current collector is 100% by weight. The ratio of the perovskite oxide in the current collector was 0.087 by weight with respect to Ag.

得られたコーティング液を、固体酸化物形燃料電池セルに、スクリーン印刷法により塗布した後、80℃で30分乾燥し、室温にて冷却後700℃1時間焼成して、空気極の外側に集電部を形成した固体酸化物形燃料電池セルを得た。よって、集電部は、AgとLSCFを備える膜となった。より詳しくは、集電部はAg92.0重量%、LSCF8.0重量%の膜になった。   The obtained coating solution is applied to a solid oxide fuel cell by screen printing, then dried at 80 ° C. for 30 minutes, cooled at room temperature and baked at 700 ° C. for 1 hour, outside the air electrode. A solid oxide fuel cell having a current collector was obtained. Therefore, the current collector was a film comprising Ag and LSCF. More specifically, the current collector became a film of Ag 92.0% by weight and LSCF 8.0% by weight.

得られた集電部のAgと LSCFを含有する合金の割合を、このセル集電部表面および断面をEPMA分析により求めた。この割合は、表1に示されるとおりであった。   The ratio of the alloy containing Ag and LSCF in the obtained current collector was determined by EPMA analysis of the surface and cross section of this cell current collector. This ratio was as shown in Table 1.

(実施例2)
表1に示すように集電部の金属粉と酸化物粉をAg98.0重量%、LSCF2.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.020であった。
(Example 2)
As shown in Table 1, the current collector was placed outside the air electrode in the same manner as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 98.0 wt% and LSCF 2.0 wt%. A solid oxide fuel cell was obtained. The ratio of the perovskite oxide in the current collector was 0.020 by weight with respect to Ag.

(実施例3)
表1に示すように集電部の金属粉と酸化物粉をAg99.5重量%、LSCF0.5重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.005であった。
(Example 3)
As shown in Table 1, the current collector was placed outside the air electrode in the same manner as in Example 1 except that the metal powder and oxide powder in the current collector were Ag 99.5 wt% and LSCF 0.5 wt%. A solid oxide fuel cell was obtained. The ratio of the perovskite oxide in the current collector was 0.005 by weight with respect to Ag.

(実施例4)
表1に示すように集電部の金属粉と酸化物粉をAg90.0重量%、Pd2.0重量%、LSCF8.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.089であった。
Example 4
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 90.0 wt%, Pd 2.0 wt%, and LSCF 8.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.089 by weight with respect to Ag.

(実施例5)
表1に示すように集電部の金属粉と酸化物粉をAg92.0重量%、 Pd2.0重量%、LSCF6.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.065であった。
(Example 5)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 92.0 wt%, Pd 2.0 wt%, and LSCF 6.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.065 by weight with respect to Ag.

(実施例6)
表1に示すように集電部の金属粉と酸化物粉をAg94.0重量%、 Pd2.0重量%、LSCF4.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.043であった。
(Example 6)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 94.0 wt%, Pd 2.0 wt%, and LSCF 4.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.043 by weight with respect to Ag.

(実施例7)
表1に示すように集電部の金属粉と酸化物粉をAg96.0重量%、 Pd2.0重量%、LSCF2.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.021であった。
(Example 7)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 96.0 wt%, Pd 2.0 wt%, and LSCF 2.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.021 by weight with respect to Ag.

(実施例8)
表1に示すように集電部の金属粉と酸化物粉をAg97.0重量%、 Pd2.0重量%、LSCF1.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.010であった。
(Example 8)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag 97.0 wt%, Pd 2.0 wt%, and LSCF 1.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.010 by weight with respect to Ag.

(実施例9)
表1に示すように集電部の金属粉と酸化物粉をAg97.5重量%、 Pd2.0重量%、LSCF0.5重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.005であった。
Example 9
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder in the current collector were 97.5 wt% Ag, 2.0 wt% Pd, and 0.5 wt% LSCF. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.005 by weight with respect to Ag.

(比較例1)
表1に示すように集電部の金属粉と酸化物粉をAg100重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.000であった。
(Comparative Example 1)
As shown in Table 1, a solid oxide fuel cell having a current collector disposed outside the air electrode in the same manner as in Example 1 except that the metal powder and oxide powder in the current collector were 100% by weight Ag. Got. The ratio of the perovskite oxide in the current collector was 0.000 by weight with respect to Ag.

(比較例2)
表1に示すように集電部の金属粉と酸化物粉をAg88.0重量%、 Pd2.0重量%、LSCF10.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.114であった。
(Comparative Example 2)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder in the current collector were Ag88.0 wt%, Pd2.0 wt%, and LSCF10.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.114 by weight with respect to Ag.

(比較例3)
表1に示すように集電部の金属粉と酸化物粉をAg68.0重量%、 Pd2.0重量%、LSCF30.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.441であった。
(Comparative Example 3)
As shown in Table 1, the outside of the air electrode was the same as in Example 1 except that the metal powder and oxide powder of the current collector were Ag68.0 wt%, Pd2.0 wt%, and LSCF30.0 wt%. Thus, a solid oxide fuel cell having a current collector disposed therein was obtained. The ratio of the perovskite oxide in the current collector was 0.441 by weight with respect to Ag.

(比較例4)
表1に示すように集電部の金属粉と酸化物粉を調整した。具体的にはAg98.0重量%、 ペロブスカイト型酸化物でない酸化物として、NiOがAgに対して2.0重量%に相当するようにNi2.0重量%にした以外は、実施例1と同様にして空気極の外側に集電部を配置した固体酸化物形燃料電池セルを得た。集電部におけるペロブスカイト型酸化物の割合は、Agに対して重量比で0.000であった。
(Comparative Example 4)
As shown in Table 1, the metal powder and oxide powder of the current collector were prepared. Specifically, Ag was 98.0% by weight, and it was the same as Example 1 except that NiO was changed to 2.0% by weight so that NiO corresponds to 2.0% by weight with respect to Ag. A solid oxide fuel cell having a current collector disposed outside the air electrode was obtained. The ratio of the perovskite oxide in the current collector was 0.000 by weight with respect to Ag.

(評価方法)
1.固体酸化物形燃料電池セルの発電耐久性能評価
燃料をH2 とN2の混合ガスとして、発電を行った。燃料利用率は75%とした。酸化剤ガスは空気とした。測定温度は700℃ とし、電流密度0.3A/cm2での発電電位を測定した。初期の発電電位からの変化率を電位低下率とした。耐久100時間後の電位低下率は、固体酸化物形燃料電池セルの発電性能維持性能を示しており、電位低下率が低い値ほど固体酸化物形燃料電池セル性能が良いといえる。
(Evaluation methods)
1. Evaluation of power generation durability performance of solid oxide fuel cells Power was generated using a mixed gas of H2 and N2. The fuel utilization rate was 75%. The oxidant gas was air. The power generation potential was measured at a measurement temperature of 700 ° C. and a current density of 0.3 A / cm 2. The rate of change from the initial power generation potential was taken as the potential drop rate. The potential decrease rate after 100 hours of durability indicates the power generation performance maintaining performance of the solid oxide fuel cell, and the lower the potential decrease rate, the better the solid oxide fuel cell performance.

表1に本発明の実施例および比較例の評価結果を示す。 Table 1 shows the evaluation results of Examples and Comparative Examples of the present invention.

Figure 2010140895
Figure 2010140895

表1を用い、実施例、比較例について説明する。実施例1〜3は、集電部のAgにLSCFを加えた結果、比較例1の集電部Ag100重量%に比べ1%/100hr以上耐久性が向上した。発電耐久性能が良好な集電部である実施例1〜3をSEM(走査型電子顕微鏡)にて微構造観察をしたところ、集電部表面及び断面に多くの気孔が観察された。集電部気孔により、集電部を通過した酸素が空気極に十分な酸素を供給し、良好な発電性能が得られた。比較例1は、電位低下率が1%/100 hr以上の高い値を示し、SEM(走査型電子顕微鏡)にて微構造観察をしたところ、集電部表面及び断面に多くの気孔が限りなくゼロに近い状態が観察された。集電部の緻密化により空気極に酸素が供給されず、発電耐久性能が低下した。更に実施例4〜9では、発電耐久性能が良好であった。特に実施例6〜8は、100時間後の発電耐久性能を示す電位低下率が0.18%台と良好な結果を示した。
それに対して比較例2〜4は、100時間後の電位低下率が1.0%以上と高い値を示した。比較例2〜3は、LSCFの添加量が多いため、基材である空気極LSCFとの密着性が損なわれたため電位低下率が上昇した。また、比較例4はペロブスカイト型酸化物を用いていないため、電位低下率が上昇した。
Examples and comparative examples will be described with reference to Table 1. In Examples 1 to 3, as a result of adding LSCF to Ag of the current collector, durability was improved by 1% / 100 hr or more compared to 100% by weight of the current collector Ag of Comparative Example 1. When Example 1 to 3 which is a current collection part with favorable power generation durability performance was observed with a SEM (scanning electron microscope), many pores were observed on the surface and cross section of the current collection part. Oxygen that passed through the current collector provided sufficient oxygen to the air electrode by the current collector pores, and good power generation performance was obtained. Comparative Example 1 shows a high value of the potential drop rate of 1% / 100 hr or more, and when the microstructure was observed with an SEM (scanning electron microscope), many pores were found on the current collector surface and cross section. A state close to zero was observed. Due to the densification of the current collector, oxygen was not supplied to the air electrode, and the power generation durability decreased. Furthermore, in Examples 4 to 9, the power generation durability performance was good. In particular, Examples 6 to 8 showed good results with the potential drop rate indicating the power generation durability performance after 100 hours being on the order of 0.18%.
On the other hand, Comparative Examples 2 to 4 showed a high potential drop rate of 1.0% or more after 100 hours. In Comparative Examples 2 to 3, since the amount of LSCF added was large, the adhesion with the air electrode LSCF as the base material was impaired, and the potential decrease rate increased. Moreover, since the comparative example 4 did not use the perovskite oxide, the potential decrease rate increased.

1…燃料電池セルユニット、6…固体酸化物形燃料電池セル(固体酸化物形燃料電池セル体)、6a…一方の端部、6b…他方の端部、15…貫通流路、16…燃料極、16a…燃料極突出周面、18…電解質、20…空気極、21…燃料極外周面、22…空気極外周面、24…燃料極端子、24b…管状部分、24c…接続流路、26…空気極端子、26b…管状部分、26c…接続流路、32…シール材、44a…集電部、 2…燃料電池セルユニット、7…固体酸化物形燃料電池セル、56a…一方の端部、56b…他方の端部、144a…集電部、104…燃料極端子、106…空気極端子、 3…燃料電池セルユニット、8…固体酸化物形燃料電池セル、66a…一方の端部、66b…他方の端部、244a…集電部、204…燃料極端子、206…空気極端子、214…電解質突出部   DESCRIPTION OF SYMBOLS 1 ... Fuel cell unit, 6 ... Solid oxide fuel cell (solid oxide fuel cell body), 6a ... One end, 6b ... The other end, 15 ... Through flow path, 16 ... Fuel Electrode, 16a ... Fuel electrode protruding peripheral surface, 18 ... Electrolyte, 20 ... Air electrode, 21 ... Fuel electrode outer peripheral surface, 22 ... Air electrode outer peripheral surface, 24 ... Fuel electrode terminal, 24b ... Tubular portion, 24c ... Connection flow path, 26 ... Air electrode terminal, 26b ... Tubular portion, 26c ... Connection flow path, 32 ... Sealing material, 44a ... Current collector, 2 ... Fuel cell unit, 7 ... Solid oxide fuel cell, 56a ... One end , 56b ... the other end, 144a ... the current collector, 104 ... the fuel electrode terminal, 106 ... the air electrode terminal, 3 ... the fuel cell unit, 8 ... the solid oxide fuel cell, 66a ... one end 66b ... the other end, 244a ... current collector, 204 ... fuel Electrode terminal, 206 ... Air electrode terminal, 214 ... Electrolyte protrusion

Claims (6)

燃料極と、前記燃料極に配置される電解質と、前記電解質に配置される空気極と、前記空気極に配置される集電部と、を備える固体酸化物形燃料電池セルであって、
前記固体酸化物形燃料電池セルは前記固体酸化物形燃料電池セルの軸方向に電流が流れるように形成され、
さらに前記集電部はAgとペロブスカイト型酸化物とを備える集電部であり、前記集電部における前記ペロブスカイト型酸化物量は前記Agに対して重量比で0を超え0.114より小さい範囲で含んでなることを特徴とする固体酸化物形燃料電池セル。
A solid oxide fuel cell comprising: a fuel electrode; an electrolyte disposed on the fuel electrode; an air electrode disposed on the electrolyte; and a current collector disposed on the air electrode,
The solid oxide fuel cell is formed such that current flows in the axial direction of the solid oxide fuel cell,
Further, the current collector is a current collector comprising Ag and a perovskite oxide, and the amount of the perovskite oxide in the current collector is in a range of more than 0 and less than 0.114 by weight with respect to Ag. A solid oxide fuel cell characterized by comprising.
前記ペロブスカイト型酸化物が、SrおよびCaから選ばれる少なくとも一種をドープ
したランタンマンガナイト、Sr、Co、Ni、およびCuから選ばれる少なくとも一種
をドープしたランタンフェライト、またはSr、Fe、Ni、およびCuから選ばれる少
なくとも一種をドープしたサマリウムコバルトまたは銀である、請求項1に記載の固体酸
化物形燃料電池セル。
The perovskite oxide is lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni, and Cu, or Sr, Fe, Ni, and Cu. The solid oxide fuel cell according to claim 1, which is samarium cobalt or silver doped with at least one selected from the group consisting of:
前記ペロブスカイト型酸化物が、La0.6Sr0.4Co0.2Fe0.8O3である、請求項1に記載の固体酸化物形燃料電池セル。   The solid oxide fuel cell according to claim 1, wherein the perovskite oxide is La0.6Sr0.4Co0.2Fe0.8O3. 前記酸化物が前記空気極と同一組成である、請求項1に記載の固体酸化物形燃料電池セル。   The solid oxide fuel cell according to claim 1, wherein the oxide has the same composition as the air electrode. 前記Agと前記酸化物と比が、0を超え0.095以下の範囲にある、請求項1に記載の固体酸化物形燃料電池セル。   2. The solid oxide fuel cell according to claim 1, wherein a ratio of the Ag and the oxide is in a range of more than 0 and 0.095 or less. 請求項1に記載の固体酸化物形燃料電池セルを備えてなる固体酸化物形燃料電池モジュール。 A solid oxide fuel cell module comprising the solid oxide fuel cell according to claim 1.
JP2009256881A 2008-11-11 2009-11-10 Solid oxide fuel cell and fuel cell module including the same Expired - Fee Related JP5413808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256881A JP5413808B2 (en) 2008-11-11 2009-11-10 Solid oxide fuel cell and fuel cell module including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008288467 2008-11-11
JP2008288467 2008-11-11
JP2009256881A JP5413808B2 (en) 2008-11-11 2009-11-10 Solid oxide fuel cell and fuel cell module including the same

Publications (2)

Publication Number Publication Date
JP2010140895A true JP2010140895A (en) 2010-06-24
JP5413808B2 JP5413808B2 (en) 2014-02-12

Family

ID=42350827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256881A Expired - Fee Related JP5413808B2 (en) 2008-11-11 2009-11-10 Solid oxide fuel cell and fuel cell module including the same

Country Status (1)

Country Link
JP (1) JP5413808B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016693A (en) * 2010-06-07 2012-01-26 Sumitomo Electric Ind Ltd Gas decomposition element, ammonia decomposition element, power-generating device, and electrochemical reaction device
JP2012069389A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell body, fuel cell unit, fuel cell stack and fuel cell comprising them
EP2610953A1 (en) 2011-12-29 2013-07-03 Toto Ltd. Solid oxide fuel battery cell
US8865367B2 (en) 2010-06-07 2014-10-21 Sumitomo Electric Industries, Ltd. Gas decomposition component
JP2015053143A (en) * 2013-09-05 2015-03-19 三菱重工業株式会社 Reduction treatment apparatus and reduction treatment method
US9136552B2 (en) 2010-06-07 2015-09-15 Sumitomo Electric Industries, Ltd. Gas decomposition component, ammonia decomposition component, power generation apparatus, electrochemical reaction apparatus, and method for producing gas decomposition component
CN108110273A (en) * 2016-11-25 2018-06-01 中国科学院大连化学物理研究所 Tubular solid oxide fuel cells collecting member and its application
JP2019215978A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, cell stack, and cell stack device
JP2019215980A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, cell stack, and cell stack device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2007095442A (en) * 2005-09-28 2007-04-12 Toto Ltd Solid oxide fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2007095442A (en) * 2005-09-28 2007-04-12 Toto Ltd Solid oxide fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016693A (en) * 2010-06-07 2012-01-26 Sumitomo Electric Ind Ltd Gas decomposition element, ammonia decomposition element, power-generating device, and electrochemical reaction device
US8865367B2 (en) 2010-06-07 2014-10-21 Sumitomo Electric Industries, Ltd. Gas decomposition component
US9136552B2 (en) 2010-06-07 2015-09-15 Sumitomo Electric Industries, Ltd. Gas decomposition component, ammonia decomposition component, power generation apparatus, electrochemical reaction apparatus, and method for producing gas decomposition component
JP2012069389A (en) * 2010-09-24 2012-04-05 Toto Ltd Fuel cell body, fuel cell unit, fuel cell stack and fuel cell comprising them
EP2610953A1 (en) 2011-12-29 2013-07-03 Toto Ltd. Solid oxide fuel battery cell
JP2015053143A (en) * 2013-09-05 2015-03-19 三菱重工業株式会社 Reduction treatment apparatus and reduction treatment method
CN108110273A (en) * 2016-11-25 2018-06-01 中国科学院大连化学物理研究所 Tubular solid oxide fuel cells collecting member and its application
CN108110273B (en) * 2016-11-25 2020-08-04 中国科学院大连化学物理研究所 Tubular solid oxide fuel cell current collecting component and application thereof
JP2019215978A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, cell stack, and cell stack device
JP2019215980A (en) * 2018-06-12 2019-12-19 日本碍子株式会社 Metal member for electrochemical cell, cell stack, and cell stack device

Also Published As

Publication number Publication date
JP5413808B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5418975B2 (en) Solid oxide fuel cell and fuel cell module including the same
JP5413808B2 (en) Solid oxide fuel cell and fuel cell module including the same
JP5834914B2 (en) Solid oxide fuel cell
US9780382B2 (en) Fuel cell, fuel cell stack, and fuel cell apparatus
JP4623994B2 (en) Fuel cell
CN107112564B (en) Battery structure, method for manufacturing same, and fuel cell
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
JP4130135B2 (en) Surface treatment method for current collecting member
JP5273584B2 (en) Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module including the same
JP4173029B2 (en) Current collector
JP4508592B2 (en) Fuel cell manufacturing method
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP3894103B2 (en) Current collector material for solid oxide fuel cells
JP2009289657A (en) Solid oxide fuel cell unit, and fuel cell module having the same
JP6939177B2 (en) Anode for solid oxide fuel cell and its manufacturing method and solid oxide fuel cell
CA2560769C (en) Electrolyte electrode assembly and method of producing the same
JP2010135283A (en) Solid oxide fuel cell, and manufacturing method thereof
JP2010102867A (en) Solid oxide fuel battery cell and fuel battery module equipped with it
JP4906794B2 (en) Cell stack and solid oxide fuel cell
JP2006261001A (en) Solid oxide type fuel cell
JP2005235657A (en) Solid-oxide fuel cell
JP2005276536A (en) Solid oxide fuel cell
JP2004265731A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5413808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131103

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees