JP2007095442A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2007095442A
JP2007095442A JP2005281934A JP2005281934A JP2007095442A JP 2007095442 A JP2007095442 A JP 2007095442A JP 2005281934 A JP2005281934 A JP 2005281934A JP 2005281934 A JP2005281934 A JP 2005281934A JP 2007095442 A JP2007095442 A JP 2007095442A
Authority
JP
Japan
Prior art keywords
cell
current collecting
cells
solid oxide
collecting terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005281934A
Other languages
Japanese (ja)
Inventor
Naoki Watanabe
直樹 渡邉
Satoshi Matsuoka
聡 松岡
Akira Kawakami
晃 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005281934A priority Critical patent/JP2007095442A/en
Publication of JP2007095442A publication Critical patent/JP2007095442A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell stack exerting a high characteristic by uniforming a gas flow flowing outside a cell. <P>SOLUTION: A first pair of first and second cells 10 adjacent to each other are fitted to a nozzle part 23. Then, silver paste is applied to an end of a fuel electrode support body of the first cell 10 and an air electrode (circumferential surface) of the second cell 10. A rod-like part 34 of a first collector terminal 31 of a connector 30 is inserted into an end (upper end) of the first cell 10 and a second collector terminal 32 formed into a ring-like shape is overlaid on the air electrode. After the first pair of cells 10 are serially connected to each other like that, a third cell 10 is inserted into a nozzle part 23 next to the second cell 10 and the fuel electrode of the second cell is connected to the air electrode of the third cell by using an another connector. By sequentially connecting the cells in series to one another like that, this fuel cell stack where all the cells constituting the stack are connected in series to one another can be provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池スタックに関する。   The present invention relates to a solid oxide fuel cell stack.

燃料電池は複数のスタックを接続して構成される。大きな電流を得たい場合にはスタックを並列接続し、大きな電圧を得たい場合には直列接続する。   A fuel cell is configured by connecting a plurality of stacks. Connect the stacks in parallel to obtain a large current, and connect them in series to obtain a large voltage.

前記スタックは複数のセルから構成される。セルには平板型と円筒型のものがある。特許文献1には平板型セルとして、燃料極、電解質および空気極をこの順に積層した隔壁によって、扁平ボックス状をなす基体内を2つの空間に分け、一方の空間に燃料ガス(水素)を他方の空間に空気を送り込む構造が開示され、また円筒型セルとして、円筒型の空気極基体管の外側にインターコネクタ、電解質層、燃料極を形成した構造が開示されている。   The stack is composed of a plurality of cells. There are flat type and cylindrical type cells. In Patent Document 1, a flat cell is divided into two spaces by a partition wall in which a fuel electrode, an electrolyte, and an air electrode are stacked in this order, and a fuel gas (hydrogen) is divided into one space. And a structure in which an interconnector, an electrolyte layer, and a fuel electrode are formed outside a cylindrical air electrode base tube as a cylindrical cell.

平板型セル同士は並列接続、直列接続のいずれも簡単に接続できるが、円筒型セルの場合に隣接するセル同士を直列接続するには、セルの外周面に外側の電極とは電気的に絶縁されたインターコネクタを露出させるなど構造が複雑になる。このため、円筒型セルによって構成されるスタック内では、セルを並列接続し、このスタックを直列接続して必要な電圧を得るようにしている。特に、上記特許文献1の図7Bでは、円筒型セルを集合したスタックを複数個直列接続した場合に、軸方向に長くなるのを防止するため、途中で折り返す構成が提案されている。   Flat cells can be easily connected in parallel or in series, but in the case of a cylindrical cell, in order to connect adjacent cells in series, the outer surface of the cell is electrically insulated from the outer electrode. The structure becomes complicated, for example, the exposed interconnector is exposed. For this reason, in a stack composed of cylindrical cells, cells are connected in parallel, and the stacks are connected in series to obtain a necessary voltage. In particular, in FIG. 7B of Patent Document 1, a configuration is proposed in which a plurality of stacks of cylindrical cells are connected in series in order to prevent the stack from being elongated in the axial direction.

また、特許文献2〜4にも円筒型セルの接続構造が開示されている。これら先行技術にはいずれもセルの側面の電極同士を集電部材で接続する並列接続と、セルの側面の電極とインターコネクタを集電部材で接続する直列接続が開示されており、集電部材の形状は特許文献2では平面視でZ字状をなし、特許文献3ではスリット状をなし、特許文献4では帯状をなしている。   Also, Patent Documents 2 to 4 disclose connection structures of cylindrical cells. Each of these prior arts discloses a parallel connection in which the electrodes on the side surfaces of the cell are connected by a current collecting member, and a serial connection in which the electrode on the side surface of the cell and the interconnector are connected by a current collecting member. In Patent Document 2, the shape is Z-shaped in plan view, in Patent Document 3 is a slit shape, and in Patent Document 4 is a band shape.

特開2002−289249号公報JP 2002-289249 A 特開2003−282127号公報JP 2003-282127 A 特開2003−282101号公報JP 2003-282101 A 特開2003−297396号公報JP 2003-297396 A

例えば、超小型の燃料電池の場合には、スタックを複数個直列に接続せずに、1つのスタックで燃料電池として使用することが考えられる。このような場合に、スタックを構成するセルを並列接続していたのでは必要な電圧を確保することができない。   For example, in the case of an ultra-small fuel cell, it is conceivable to use a stack as a fuel cell without connecting a plurality of stacks in series. In such a case, if the cells constituting the stack are connected in parallel, a necessary voltage cannot be ensured.

円筒型セルの長さ方向に沿って、インターコネクタを形成すれば隣接する円筒型セル同士を簡単に接続することができるが、インターコネクタを形成すると構造が複雑になり、また接続作業も面倒であり、更にスタックとした後に剥離した場合に修理ができないなど多くの問題がある。   If an interconnector is formed along the length direction of the cylindrical cell, adjacent cylindrical cells can be easily connected to each other. However, if an interconnector is formed, the structure becomes complicated and the connection work is troublesome. In addition, there are many problems such as failure to repair when peeling after stacking.

また、隣接するセルのうち、一方のセルのインターコネクタと他方のセルの外周面の電極とを直接接続する構造ではセル間の隙間が小さくなり、またセルの軸方向の中間部を集電部材で接続する構造では、セルの外側空間が狭くなる。その結果、燃料ガス(または空気)の流通に支障が生じ、燃料電池として均一な特性が得られない。   Moreover, in the structure in which the interconnector of one cell and the electrode on the outer peripheral surface of the other cell are directly connected among adjacent cells, the gap between the cells is reduced, and the intermediate portion in the axial direction of the cell is a current collecting member. In the structure of connecting with, the outer space of the cell becomes narrow. As a result, the flow of fuel gas (or air) is hindered, and uniform characteristics as a fuel cell cannot be obtained.

上記の課題を解決するため、本発明は、複数の円筒型セルが集合して構成される固体酸化物形燃料電池スタックにおいて、各セルの長さ方向の端部には燃料極または空気極の一方に接続される第1の集電端子が設けられ、各セルの側面には燃料極または空気極の他方に接続される第2の集電端子が設けられ、互いに隣接するセルの前記第1の集電端子と第2の集電端子とが電気的に接続することで複数のセル全体が直列接続された構成とした。   In order to solve the above-described problems, the present invention provides a solid oxide fuel cell stack constituted by a plurality of cylindrical cells assembled, and a fuel electrode or an air electrode is provided at the end in the length direction of each cell. A first current collecting terminal connected to one side is provided, and a second current collecting terminal connected to the other of the fuel electrode or the air electrode is provided on the side surface of each cell, and the first of the cells adjacent to each other is provided. The plurality of cells were connected in series by electrically connecting the current collecting terminal and the second current collecting terminal.

前記第1の集電端子としては、セルの端部に差し込まれる棒状部を備えたものとし、隣接する前記第2の集電端子は、セルの長さ方向において交互に配置することで干渉するのが避けられ、更に前記第2の集電端子としては、セルを抱持するリング状にすることが考えられる。また、隣接する2つのセルの一方のセルの第1の集電端子と他方のセルの第2の集電端子とを導電性連結部材にて一体化してコネクタとしておくことが好ましい。 The first current collecting terminal is provided with a rod-like portion inserted into an end portion of the cell, and the adjacent second current collecting terminals interfere with each other by being alternately arranged in the cell length direction. Further, it is conceivable that the second current collecting terminal has a ring shape for holding the cell. In addition, it is preferable that the first current collecting terminal of one cell of the two adjacent cells and the second current collecting terminal of the other cell are integrated by a conductive connecting member to be a connector.

本発明によれば、スタックを構成する複数のセルが直列に接続されているので、1つのスタックで大きな電圧を得ることができる。そして、先行技術に示されるような集電部材がセル間の隙間を狭めることがないので、セル外側を流れる燃料ガス(または空気)の流れが阻害されず、均一な流れになるので、高性能のスタックを得ることができる。   According to the present invention, since a plurality of cells constituting the stack are connected in series, a large voltage can be obtained with one stack. And since the current collecting member as shown in the prior art does not narrow the gap between the cells, the flow of the fuel gas (or air) flowing outside the cells is not obstructed and becomes a uniform flow. You can get a stack of.

また、第1の集電端子がセルの端部に差し込まれる棒状部を備えたものとし、第2の集電端子をセルを抱持するリング状にすることで、スタックの組み立ておよび分解が簡単になり、修理やメンテナンスも楽になる。特に隣接する2つのセルの一方のセルの第1の集電端子と他方のセルの第2の集電端子とを導電性連結部材にて一体化しておけば、更に取り扱いが簡単になる。   In addition, it is assumed that the first current collecting terminal is provided with a rod-like portion that is inserted into the end portion of the cell, and the second current collecting terminal is formed in a ring shape that holds the cell, so that assembly and disassembly of the stack can be easily performed. This makes repairs and maintenance easier. In particular, if the first current collecting terminal of one of the two adjacent cells and the second current collecting terminal of the other cell are integrated by a conductive connecting member, handling is further simplified.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る固体酸化物形燃料電池スタックの全体斜視図、図2はセル単体の斜視図、図3はセルの径方向拡大断面図、図4はヘッダーの斜視図、図5はヘッダーの側面透視図、図6はスタックの接続状態を説明した平面図、図7はスタックの接続状態を説明した側面図、図8(a)〜(d)はコネクタの斜視図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 is an overall perspective view of a solid oxide fuel cell stack according to the present invention, FIG. 2 is a perspective view of a single cell, FIG. 3 is an enlarged sectional view of the cell in the radial direction, FIG. 4 is a perspective view of a header, and FIG. 6 is a side perspective view of the header, FIG. 6 is a plan view illustrating the connection state of the stack, FIG. 7 is a side view illustrating the connection state of the stack, and FIGS. 8A to 8D are perspective views of the connector.

固体酸化物形燃料電池スタック1は、複数の円筒型セル10と、この円筒型セル10に燃料ガス(水素)を供給するヘッダー20と、隣接する2本の円筒型セル10を直列接続するコネクタ30にて構成される。以下に各構成部材の詳細を説明する。   The solid oxide fuel cell stack 1 includes a plurality of cylindrical cells 10, a header 20 for supplying fuel gas (hydrogen) to the cylindrical cells 10, and a connector for connecting two adjacent cylindrical cells 10 in series. 30. Details of each component will be described below.

円筒型セル10は支持体11の外側に燃料極(触媒層)12が形成され、この燃料極12の外側に2層状の固体電解質層13が形成され、この固体電解質層13の外側に空気極(触媒層)14が形成されている。そして、円筒型セル10の長さ方向の両端部には空気極(触媒層)14が形成されず、固体電解質層13が露出している。
上記円筒型セル10の作製方法の一例を以下に説明する。
In the cylindrical cell 10, a fuel electrode (catalyst layer) 12 is formed outside the support 11, a two-layered solid electrolyte layer 13 is formed outside the fuel electrode 12, and an air electrode is formed outside the solid electrolyte layer 13. (Catalyst layer) 14 is formed. And the air electrode (catalyst layer) 14 is not formed in the both ends of the length direction of the cylindrical cell 10, but the solid electrolyte layer 13 is exposed.
An example of a method for producing the cylindrical cell 10 will be described below.

(円筒型セルの作製)
NiO粉末と、(ZrO0.90(Y0.10組成のYSZ粉末との混合物を湿式混合法で作製後、熱処理、粉砕を行い燃料極支持体原料粉末を得た。NiO粉末とYSZ粉末の混合比は重量比で65/35とし、該粉末を押出し成形法によって円筒状成形体を作製し、この円筒状成形体を900℃で熱処理して仮焼体とした。そして、仮焼体の表面に、スラリーコート法によって燃料極反応触媒層、固体電解質層を構成する第1および第2の層の順で成形することで得られた積層成形体を1300℃で共焼成した。尚、共焼成後の積層成形体の寸法は、外径5mm、肉厚1mm、有効セル長110mmであった。次いで、セルの両端に幅10mmずつマスキングを行い、固体電解質層の表面に、スラリーコート法により空気極を成形し、1100℃で焼成した。
(Production of cylindrical cell)
A mixture of NiO powder and YSZ powder having a composition of (ZrO 2 ) 0.90 (Y 2 O 3 ) 0.10 was prepared by a wet mixing method, followed by heat treatment and pulverization to obtain a fuel electrode support raw material powder. The mixing ratio of the NiO powder and the YSZ powder was 65/35 by weight. A cylindrical molded body was produced by extruding the powder, and the cylindrical molded body was heat treated at 900 ° C. to obtain a calcined body. Then, the laminated molded body obtained by molding the fuel electrode reaction catalyst layer and the first and second layers constituting the solid electrolyte layer in this order on the surface of the calcined body at 1300 ° C. by slurry coating. Baked. The dimensions of the laminated molded body after co-firing were an outer diameter of 5 mm, a wall thickness of 1 mm, and an effective cell length of 110 mm. Next, both ends of the cell were masked by 10 mm in width, an air electrode was formed on the surface of the solid electrolyte layer by a slurry coating method, and fired at 1100 ° C.

(燃料極反応触媒層スラリーの作製)
NiO粉末とGd0.1Ce0.9の組成のGDC10粉末との混合物を共沈法で作製後、熱処理を行い燃料極反応触媒層粉末を得た。NiO粉末とGDC10粉末の混合比は重量比で50/50とした。平均粒子径は0.5μmとなるよう調節した。該粉末40重量部を溶媒100重量部、バインダー2重量部、分散剤1重量部、消泡剤1重量部とを混合した後、十分攪拌してスラリーを調整した。
(Preparation of fuel electrode reaction catalyst layer slurry)
A mixture of NiO powder and GDC10 powder having a composition of Gd 0.1 Ce 0.9 O 2 was prepared by a coprecipitation method, and then heat-treated to obtain a fuel electrode reaction catalyst layer powder. The mixing ratio of NiO powder and GDC10 powder was 50/50 by weight. The average particle size was adjusted to 0.5 μm. After mixing 40 parts by weight of the powder with 100 parts by weight of the solvent, 2 parts by weight of the binder, 1 part by weight of the dispersant, and 1 part by weight of the antifoaming agent, the slurry was prepared by sufficiently stirring.

(固体電解質層(第1の層)スラリーの作製)
第1の層の材料は、La0.4Ce0.6の組成のLDC40粉末を用いた。LDC40粉末40重量部を溶媒100重量部、バインダー2重量部、分散剤1重量部、消泡剤1重量部とを混合した後、十分攪拌してスラリーを調整した。
(Preparation of solid electrolyte layer (first layer) slurry)
As the material of the first layer, LDC40 powder having a composition of La 0.4 Ce 0.6 O 2 was used. A slurry was prepared by mixing 40 parts by weight of LDC 40 powder with 100 parts by weight of a solvent, 2 parts by weight of a binder, 1 part by weight of a dispersant, and 1 part by weight of an antifoaming agent.

(固体電解質層(第2の層)スラリーの作製)
第2の層の材料は、La0.8Sr0.2Ga0.8Mg0.2の組成のLSGM粉末を用いた。LSGM粉末40重量部を溶媒100重量部、バインダー2重量部、分散剤1重量部、消泡剤1重量部とを混合した後、十分攪拌してスラリーを調整した。
(Preparation of solid electrolyte layer (second layer) slurry)
As the material of the second layer, LSGM powder having a composition of La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 was used. After mixing 40 parts by weight of the LSGM powder with 100 parts by weight of the solvent, 2 parts by weight of the binder, 1 part by weight of the dispersant and 1 part by weight of the antifoaming agent, the slurry was prepared by sufficiently stirring.

(空気極スラリーの作製)
空気極の材料は、La0.8Sr0.4Co0.8Fe0.2の組成のLSCF粉末を用いた。該粉末40重量部を溶媒100重量部、バインダー2重量部、分散剤1重量部、消泡剤1重量部とを混合した後、十分攪拌してスラリーを調整した。
(Preparation of air electrode slurry)
As the material for the air electrode, LSCF powder having a composition of La 0.8 Sr 0.4 Co 0.8 Fe 0.2 O 3 was used. After mixing 40 parts by weight of the powder with 100 parts by weight of the solvent, 2 parts by weight of the binder, 1 part by weight of the dispersant, and 1 part by weight of the antifoaming agent, the slurry was prepared by sufficiently stirring.

前記ヘッダー20は、インコネル製の中空の箱型形状をなし、側面にはガス供給管21が接続され、表面には絶縁層22が形成され、更に前記セル10の基端部が嵌合するノズル部23が上方に向かって突出している。   The header 20 has a hollow box shape made of Inconel, a gas supply pipe 21 is connected to the side surface, an insulating layer 22 is formed on the surface, and a nozzle to which the base end of the cell 10 is fitted The part 23 protrudes upward.

上記絶縁層22を形成するには、ヘッダーを1100℃で1時間焼成してヘッダー表面に酸化物被膜を形成し、この酸化物被膜の上にスラリーコート法によりセラミック膜を形成し、800℃で1時間焼成して絶縁層22を得た。   In order to form the insulating layer 22, the header is baked at 1100 ° C. for 1 hour to form an oxide film on the header surface, and a ceramic film is formed on the oxide film by a slurry coating method at 800 ° C. The insulating layer 22 was obtained by firing for 1 hour.

前記コネクタ30は第1の集電端子31、第2の集電端子32、これら第1の集電端子31と第2の集電端子32を電気的に接続する板状をなす導電性連結部材33から構成される。   The connector 30 includes a first current collecting terminal 31, a second current collecting terminal 32, and a conductive connecting member having a plate shape for electrically connecting the first current collecting terminal 31 and the second current collecting terminal 32. 33.

第1の集電端子31は、隣接する2つのセルのうちの一方のセル10の上端に露出する燃料極(触媒層)12に銀ペーストを用いて電気的に接続され、またセル10の端部に差し込まれる棒状部34を備えている。この棒状部34は装着の際の位置決めと装着後の抜け止めを図っている。また、棒状部34は内部に燃料ガスが流れる流路34aが貫通して形成されている。   The first current collecting terminal 31 is electrically connected using a silver paste to the fuel electrode (catalyst layer) 12 exposed at the upper end of one of the two adjacent cells 10. The rod-shaped part 34 inserted in a part is provided. This rod-shaped portion 34 is intended for positioning during mounting and retaining after mounting. Further, the rod-like portion 34 is formed with a passage 34a through which fuel gas flows.

棒状部34の長さはセルの内径よりも長く且つセルの電解質露出部と同じかそれよりも短くすることが好ましい。セルの内径よりも長くすることで確実に抜けにくくなり、また、電解質露出部と同じかそれよりも短くすることでセルの内側に十分な電極露出面を確保できる。例えば、セル10の寸法として、外径5mm、内径3mm、両端の電解質露出部10mmとした場合には、棒状部34については、外径2.8mm、内径2.6mm、長さ10mmとする。   The length of the rod-shaped portion 34 is preferably longer than the inner diameter of the cell and equal to or shorter than the electrolyte exposed portion of the cell. By making it longer than the inner diameter of the cell, it is difficult to be surely removed, and by making it the same as or shorter than the electrolyte exposed portion, a sufficient electrode exposed surface can be secured inside the cell. For example, when the cell 10 has an outer diameter of 5 mm, an inner diameter of 3 mm, and an electrolyte exposed portion of 10 mm at both ends, the rod-shaped portion 34 has an outer diameter of 2.8 mm, an inner diameter of 2.6 mm, and a length of 10 mm.

また第2の集電端子32はセル10を抱持するリング状をなし空気極14に銀ペーストを用いて電気的に接続されている。集電端子32の形状はリング状に限らず、セル10を抱持できる形状であればよく、例えば一端が開いたCリング状であってもよい。
例えば、前記と同じセルの場合には、この集電端子32の寸法については、外径8mm、内径6mm、長さ8mmとする。
The second current collecting terminal 32 has a ring shape for holding the cell 10 and is electrically connected to the air electrode 14 using silver paste. The shape of the current collecting terminal 32 is not limited to the ring shape, and may be any shape that can hold the cell 10.
For example, in the case of the same cell as described above, the current collecting terminal 32 has an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 8 mm.

ここで、図8(a)〜(d)に示すように、コネクタ30は全て同じ形状をしているのではなく、本実施例にあっては4種類のコネクタ30を用いている。4種類のコネクタ30の主な相違点は導電性連結部材33の長さと向きであり、本実施例にあっては、異なる4種類のコネクタを用意することで、図7にも示したように、隣接するコネクタ30の第2の集電端子32同士がセルの長さ方向で交互に配置されており、セル間隔を狭めていっても隣接する第2の集電端子32同士が接触することがないようにしている。   Here, as shown in FIGS. 8A to 8D, the connectors 30 are not all in the same shape, and in this embodiment, four types of connectors 30 are used. The main difference between the four types of connectors 30 is the length and orientation of the conductive connecting member 33. In this embodiment, four different types of connectors are prepared, as shown in FIG. The second current collecting terminals 32 of the adjacent connectors 30 are alternately arranged in the cell length direction, and the adjacent second current collecting terminals 32 are in contact with each other even if the cell interval is narrowed. There is no such thing.

以上のスタックを組み立てるには、先ず、ヘッダー10表面の絶縁層22とセル10の端部とが嵌合するノズル部23にガラスペーストを塗布し、最初の隣り合う1本目と2本目のセル10をノズル部23に嵌合する。   In order to assemble the above stack, first, glass paste is applied to the nozzle portion 23 in which the insulating layer 22 on the surface of the header 10 and the end portion of the cell 10 are fitted, and the first adjacent first and second cells 10 are applied. Is fitted to the nozzle portion 23.

次いで、1本目のセル10の燃料極支持体の端部と2本目のセル10の空気極(外周面)に銀ペーストを塗布する。そして、コネクタ30の第1の集電端子31の棒状部34を1本目のセル10の端部(上端部)に差込み、リング状をなす第2の集電端子32を空気極に外嵌する。   Next, a silver paste is applied to the end of the fuel electrode support of the first cell 10 and the air electrode (outer peripheral surface) of the second cell 10. And the rod-shaped part 34 of the 1st current collection terminal 31 of the connector 30 is inserted in the edge part (upper end part) of the 1st cell 10, and the 2nd current collection terminal 32 which makes | forms a ring shape is externally fitted to an air electrode. .

このようにして、最初の2本のセル10を直列接続したならば、3本目のセル10を2本目のセル10の隣のノズル部23に嵌合し、別のコネクタを用いて第2の
セルの燃料極と3本目のセルの空気極とを接続する。このように順番に直列接続することで、スタックを構成するセルが全て直列接続された燃料電池スタックが得られる。
In this way, if the first two cells 10 are connected in series, the third cell 10 is fitted into the nozzle portion 23 adjacent to the second cell 10, and the second cell 10 is connected using another connector. The fuel electrode of the cell and the air electrode of the third cell are connected. By connecting in series in this way, a fuel cell stack in which all the cells constituting the stack are connected in series is obtained.

本発明に係る固体酸化物形燃料電池スタックの全体斜視図Overall perspective view of a solid oxide fuel cell stack according to the present invention セル単体の斜視図Perspective view of a single cell セルの径方向拡大断面図Expanded sectional view of the cell in the radial direction ヘッダーの斜視図Perspective view of header ヘッダーの側面透視図Side perspective view of header スタックの接続状態を説明した平面図Plan view explaining stack connection スタックの接続状態を説明した側面図Side view explaining stack connection (a)〜(d)は、第1の集電端子と第2の集電端子とを導電性連結部材にて一体化したコネクタの斜視図(A)-(d) is a perspective view of the connector which integrated the 1st current collection terminal and the 2nd current collection terminal with the conductive connection member.

符号の説明Explanation of symbols

1…固体酸化物形燃料電池スタック
10…円筒型セル
11…支持体
12…燃料極(触媒層)
13…固体電解質層
14…空気極(触媒層)
20…ヘッダー
21…ガス供給管
22…絶縁層
23…ノズル部
30…コネクタ
31…第1の集電端子
32…第2の集電端子
33…導電性連結部材
34…棒状部
DESCRIPTION OF SYMBOLS 1 ... Solid oxide fuel cell stack 10 ... Cylindrical cell 11 ... Support body 12 ... Fuel electrode (catalyst layer)
13 ... Solid electrolyte layer 14 ... Air electrode (catalyst layer)
DESCRIPTION OF SYMBOLS 20 ... Header 21 ... Gas supply pipe 22 ... Insulating layer 23 ... Nozzle part 30 ... Connector 31 ... 1st current collection terminal 32 ... 2nd current collection terminal 33 ... Conductive connection member 34 ... Rod-shaped part

Claims (4)

複数の円筒型セルが集合して構成される固体酸化物形燃料電池スタックにおいて、各セルの長さ方向の端部には燃料極または空気極の一方に接続される第1の集電端子が設けられ、各セルの側面には燃料極または空気極の他方に接続される第2の集電端子が設けられ、互いに隣接するセルの前記第1の集電端子と第2の集電端子とが電気的に接続することで複数のセル全体が直列接続されていることを特徴とする固体酸化物形燃料電池スタック。 In a solid oxide fuel cell stack configured by a plurality of cylindrical cells being assembled, a first current collecting terminal connected to one of a fuel electrode and an air electrode is provided at an end portion in the length direction of each cell. A second current collecting terminal connected to the other of the fuel electrode and the air electrode is provided on a side surface of each cell, and the first current collecting terminal and the second current collecting terminal of the cells adjacent to each other; A plurality of cells are connected in series by electrically connecting the solid oxide fuel cell stacks. 請求項1に記載の固体酸化物形燃料電池スタックにおいて、隣接する前記第2の集電端子が、セルの長さ方向において交互に配置されていることを特徴とする固体酸化物形燃料電池スタック。 2. The solid oxide fuel cell stack according to claim 1, wherein the adjacent second current collecting terminals are alternately arranged in a cell length direction. 3. . 請求項1または請求項2に記載の固体酸化物形燃料電池スタックにおいて、前記第1の集電端子はセルの端部に差し込まれる棒状部を備え、前記第2の集電端子はセルを抱持するリング状をなしていることを特徴とする固体酸化物形燃料電池スタック。 3. The solid oxide fuel cell stack according to claim 1, wherein the first current collecting terminal includes a rod-like portion inserted into an end portion of the cell, and the second current collecting terminal holds the cell. A solid oxide fuel cell stack characterized by having a ring shape. 請求項1乃至請求項3のいずれかに記載の固体酸化物形燃料電池スタックにおいて、隣接する2つのセルの一方のセルの第1の集電端子と他方のセルの第2の集電端子とは導電性連結部材にて一体化したコネクタとなっていることを特徴とする固体酸化物形燃料電池スタック。

The solid oxide fuel cell stack according to any one of claims 1 to 3, wherein a first current collecting terminal of one cell of two adjacent cells and a second current collecting terminal of the other cell Is a connector integrated with a conductive connecting member, a solid oxide fuel cell stack.

JP2005281934A 2005-09-28 2005-09-28 Solid oxide fuel cell Pending JP2007095442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281934A JP2007095442A (en) 2005-09-28 2005-09-28 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281934A JP2007095442A (en) 2005-09-28 2005-09-28 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2007095442A true JP2007095442A (en) 2007-04-12

Family

ID=37980893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281934A Pending JP2007095442A (en) 2005-09-28 2005-09-28 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2007095442A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129717A (en) * 2007-11-23 2009-06-11 Toto Ltd Fuel cell stack, fuel cell module including the same, fuel cell including the same, and method for manufacturing fuel cell module
JP2010009945A (en) * 2008-06-27 2010-01-14 Toto Ltd Fuel cell unit
JP2010015807A (en) * 2008-07-03 2010-01-21 Toto Ltd Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module equipped with the same
JP2010055862A (en) * 2008-08-27 2010-03-11 Toto Ltd Fuel cell unit
EP2178145A1 (en) 2008-10-16 2010-04-21 Toto Ltd. Solid Oxide Fuel Cell and Fuel Cell Module Comprising such a Solid Oxide Fuel Cell
JP2010140895A (en) * 2008-11-11 2010-06-24 Toto Ltd Solid oxide fuel cell, and fuel cell module having the same
KR101055464B1 (en) 2009-09-10 2011-08-08 삼성전기주식회사 Solid Oxide Fuel Cells and Solid Oxide Fuel Cell Bundles
JP2011210632A (en) * 2010-03-30 2011-10-20 Toto Ltd Cell assembly of fuel cell
EP2610953A1 (en) 2011-12-29 2013-07-03 Toto Ltd. Solid oxide fuel battery cell
US8617761B2 (en) 2009-08-04 2013-12-31 Samsung Electro-Mechanics Co., Ltd. Fuel cell having current-collectable manifold
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack
JP2018129245A (en) * 2017-02-10 2018-08-16 Toto株式会社 Fuel cell unit and fuel cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312170A (en) * 1989-05-25 1990-12-27 Fujikura Ltd Connecting tool for fuel cell and structure of fuel cell
JPH0334258A (en) * 1989-06-30 1991-02-14 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte type fuel battery
JPH11111314A (en) * 1997-10-03 1999-04-23 Kansai Electric Power Co Inc:The Cathode collecting structure for solid electrolyte fuel cell, and solid electrolyte fuel cell power generating module using the same
JP2002075404A (en) * 2000-08-30 2002-03-15 Kyocera Corp Solid electrolyte fuel battery cell and its power generating device
JP2002289249A (en) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology Stack structural body for solid electrolytic fuel cell
JP2002313374A (en) * 2001-04-09 2002-10-25 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2004349140A (en) * 2003-05-23 2004-12-09 Nissan Motor Co Ltd Cell body for tubular single-chamber fuel cell and its manufacturing method
JP2005135595A (en) * 2003-10-28 2005-05-26 Toto Ltd Solid oxide fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312170A (en) * 1989-05-25 1990-12-27 Fujikura Ltd Connecting tool for fuel cell and structure of fuel cell
JPH0334258A (en) * 1989-06-30 1991-02-14 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte type fuel battery
JPH11111314A (en) * 1997-10-03 1999-04-23 Kansai Electric Power Co Inc:The Cathode collecting structure for solid electrolyte fuel cell, and solid electrolyte fuel cell power generating module using the same
JP2002075404A (en) * 2000-08-30 2002-03-15 Kyocera Corp Solid electrolyte fuel battery cell and its power generating device
JP2002289249A (en) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology Stack structural body for solid electrolytic fuel cell
JP2002313374A (en) * 2001-04-09 2002-10-25 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2004349140A (en) * 2003-05-23 2004-12-09 Nissan Motor Co Ltd Cell body for tubular single-chamber fuel cell and its manufacturing method
JP2005135595A (en) * 2003-10-28 2005-05-26 Toto Ltd Solid oxide fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129717A (en) * 2007-11-23 2009-06-11 Toto Ltd Fuel cell stack, fuel cell module including the same, fuel cell including the same, and method for manufacturing fuel cell module
JP2010009945A (en) * 2008-06-27 2010-01-14 Toto Ltd Fuel cell unit
JP2010015807A (en) * 2008-07-03 2010-01-21 Toto Ltd Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module equipped with the same
JP2010055862A (en) * 2008-08-27 2010-03-11 Toto Ltd Fuel cell unit
EP2178145A1 (en) 2008-10-16 2010-04-21 Toto Ltd. Solid Oxide Fuel Cell and Fuel Cell Module Comprising such a Solid Oxide Fuel Cell
US8722278B2 (en) 2008-10-16 2014-05-13 Toto Ltd. Solid oxide fuel cell and fuel cell module comprising the solid oxide fuel cell
JP2010140895A (en) * 2008-11-11 2010-06-24 Toto Ltd Solid oxide fuel cell, and fuel cell module having the same
US8617761B2 (en) 2009-08-04 2013-12-31 Samsung Electro-Mechanics Co., Ltd. Fuel cell having current-collectable manifold
KR101055464B1 (en) 2009-09-10 2011-08-08 삼성전기주식회사 Solid Oxide Fuel Cells and Solid Oxide Fuel Cell Bundles
JP2011210632A (en) * 2010-03-30 2011-10-20 Toto Ltd Cell assembly of fuel cell
EP2610953A1 (en) 2011-12-29 2013-07-03 Toto Ltd. Solid oxide fuel battery cell
JP2018098081A (en) * 2016-12-14 2018-06-21 Toto株式会社 Solid oxide fuel cell stack
JP2018129245A (en) * 2017-02-10 2018-08-16 Toto株式会社 Fuel cell unit and fuel cell stack

Similar Documents

Publication Publication Date Title
JP2007095442A (en) Solid oxide fuel cell
US7803491B2 (en) Solid electrolyte fuel cell configuration
JP5132878B2 (en) Fuel cell, fuel cell stack and fuel cell
JP2008071710A (en) Fuel cell stack, and fuel battery containing it
JP4741815B2 (en) Cell stack and fuel cell
JP5116184B1 (en) Fuel cell structure
JP5117627B1 (en) Fuel cell structure
JP2005190981A (en) Fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5437169B2 (en) Horizontally Striped Solid Oxide Fuel Cell Stack, Horizontally Striped Solid Oxide Fuel Cell Bundle, and Fuel Cell
JP5214956B2 (en) Electrochemical reactor stack and manufacturing method thereof
JP5061408B2 (en) STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL
JP2008243751A (en) Tube unit cell of solid oxide fuel cell, solid oxide fuel cell bundle, and solid oxide fuel cell module
JP4781823B2 (en) Cylindrical horizontal stripe fuel cell
US7264899B2 (en) Fuel cell
JP2012014850A (en) Lateral stripe type solid oxide fuel battery cell stack, lateral stripe type solid oxide fuel battery bundle, and fuel battery
JP2005166529A (en) Cell stack and fuel cell
JP4594035B2 (en) Fuel cell and fuel cell
JP5449076B2 (en) Fuel cell
JP3722927B2 (en) Method for manufacturing solid electrolyte fuel cell assembly unit and solid electrolyte fuel cell assembly
JP2007080756A (en) Electrochemical device
JP2005190980A (en) Fuel battery
JP3174603U (en) Lead wire connection structure of stacked solid oxide fuel cell
JP2013175307A (en) Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
JP5417551B2 (en) Fuel cell structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207