JP2010139679A - 液晶装置の製造装置および液晶装置の製造方法 - Google Patents

液晶装置の製造装置および液晶装置の製造方法 Download PDF

Info

Publication number
JP2010139679A
JP2010139679A JP2008315309A JP2008315309A JP2010139679A JP 2010139679 A JP2010139679 A JP 2010139679A JP 2008315309 A JP2008315309 A JP 2008315309A JP 2008315309 A JP2008315309 A JP 2008315309A JP 2010139679 A JP2010139679 A JP 2010139679A
Authority
JP
Japan
Prior art keywords
liquid crystal
light source
crystal device
manufacturing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008315309A
Other languages
English (en)
Inventor
Naoki Tomikawa
直樹 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008315309A priority Critical patent/JP2010139679A/ja
Publication of JP2010139679A publication Critical patent/JP2010139679A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】液晶パネルの配向方向と偏光板の光学軸との位置ズレを低減する液晶装置の製造
装置および製造方法を提供すること。
【解決手段】液晶装置の製造装置100は、液晶パネル50を保持する保持部110と、
基準偏光子113を液晶パネル50に対向させて保持する保持部112と、偏光板45を
液晶パネル50に対向させて保持する保持部114と、液晶パネル50と基準偏光子11
3とを対向する面内で回転させる回転機構116,118と、保持部112の保持部11
0とは反対側に配置された光源120と、光源120との間に保持部110と保持部11
2と保持部114とを挟んで光源120に対向配置されており、光源120から照射され
基準偏光子113と液晶パネル50と偏光板45とを透過した光126の強度を測定する
測定部129と、を備え、光源120から照射される光125は略平行光であることを特
徴とする。
【選択図】図5

Description

本発明は、液晶装置の製造装置および液晶装置の製造方法に関する。
液晶装置は、対向配置された一対の基板の間に液晶層が挟持された液晶パネルと、液晶
パネルの少なくとも一方の表面に配置された偏光板とを備えている。液晶装置は、偏光光
を利用して表示を行うため、液晶層における液晶分子の配向方向と、偏光板の光学軸とが
所定の位置関係となるように設定されている。したがって、液晶パネルに偏光板を貼り付
ける工程において、液晶パネルと偏光板との所定の配置位置にずれが生じると、所望の光
学特性(コントラスト等)が得られず表示品質の低下を招くこととなる。
そこで、液晶パネルの一方の基板に設けられたアライメントマークを基準にして、偏光
板の外形との位置合わせを行う方法が提案されている(例えば、特許文献1参照)。しか
しながら、上記特許文献1に記載された方法では、アライメントマークと偏光板の外形と
で位置合わせを行うため、偏光板の外形と光学軸とのずれがある場合、液晶パネルに対し
て偏光板の光学軸を正確に位置合わせすることが難しいという課題がある。
これに対して、光源から照射され基準偏光子と液晶パネルとを透過した光の強度、およ
び基準偏光子と偏光板とを透過した光の強度を測定することにより、基準偏光子の光学軸
を基準にして液晶パネルの配向方向と偏光板の光学軸との位置合わせを光学的に行う方法
が提案されている(例えば、特許文献2および特許文献3参照)。
特開2000−221461号公報 特開平8−201801号公報 特開2003−107452号公報
ところで、このように基準偏光子と液晶パネル、および基準偏光子と偏光板とを透過し
た光の強度を測定して位置合わせを行う場合、光源からどのような光を照射するかが位置
合わせの精度に少なからず影響を及ぼすと考えられる。しかしながら、上記特許文献2お
よび特許文献3に記載された方法では、位置合わせに用いる光源やその光源から照射され
る光について具体的に開示されていない。それゆえに、より高精度な位置合わせを可能と
する光源の構成や光の照射方法が求められている。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の
形態または適用例として実現することが可能である。
[適用例1]本適用例に係る液晶装置の製造装置は、互いに対向して配置された一対の
基板と前記一対の基板の間に挟持された液晶層とを備えた液晶パネルと、前記液晶パネル
の少なくとも一方の表面に配置された光学フィルムと、を備えた液晶装置の製造装置であ
って、前記液晶パネルを保持する第1の保持部と、前記第1の保持部の一方の側に配置さ
れており、基準偏光子を前記液晶パネルに対向させて保持する第2の保持部と、前記第1
の保持部の他方の側に配置されており、前記光学フィルムを前記液晶パネルに対向させて
保持する第3の保持部と、前記第1の保持部と前記第2の保持部と前記第3の保持部との
うちの少なくとも2つに設けられており、前記液晶パネルと前記基準偏光子と前記光学フ
ィルムとのうちの少なくとも2つを対向する面内で回転させる回転機構と、前記第2の保
持部の前記第1の保持部とは反対側または前記第3の保持部の前記第1の保持部とは反対
側に配置された光源と、前記光源との間に前記第1の保持部と前記第2の保持部と第3の
保持部とを挟んで前記光源に対向配置されており、前記光源から照射され前記基準偏光子
と前記液晶パネルと前記光学フィルムとを透過した光の強度を測定する測定部と、を備え
、前記光源から照射される光は略平行光であることを特徴とする。
この構成によれば、基準偏光子と液晶パネルと光学フィルムとを透過した光の強度の測
定結果に基づいて、基準偏光子の光学軸を基準にして液晶パネルの配向方向と光学フィル
ムの光学軸との位置合わせを行う。ここで、光源から照射される光は略平行光であるので
、光束の範囲において略同一の角度で基準偏光子と液晶パネルと光学フィルムとに入射す
る。このため、光源から照射された光が透過する光路上における基準偏光子の光学軸と液
晶パネルの配向方向と光学フィルムの光学軸との位置関係、および液晶層の層厚は光束の
範囲において略同一である。したがって、透過した光の強度の測定結果に基づく位置合わ
せを精度良く行うことができる。
[適用例2]上記適用例に係る液晶装置の製造装置であって、前記光源はメタルハライ
ド光源であり、前記メタルハライド光源から射出される光を略平行化する平行化手段をさ
らに備えていてもよい。
この構成によれば、光源がメタルハライド光源であるので、高輝度であるとともに安定
した光量の光が得られる。
[適用例3]上記適用例に係る液晶装置の製造装置であって、前記平行化手段はコリメ
ートレンズであってもよい。
この構成によれば、光源から射出される光をコリメートレンズにより集光して略平行化
することができる。
[適用例4]上記適用例に係る液晶装置の製造装置であって、前記平行化手段は凹部を
有する反射鏡であってもよい。
この構成によれば、光源から射出される光を凹部を有する反射鏡により反射して略平行
化することができる。
[適用例5]上記適用例に係る液晶装置の製造装置であって、前記光源はレーザー光源
であってもよい。
この構成によれば、光源がレーザー光源であるので、略平行光が得られる。
[適用例6]上記適用例に係る液晶装置の製造装置であって、前記レーザー光源は直線
偏光を射出し、前記第2の保持部は、前記第1の保持部の前記レーザー光源側に配置され
ており、前記第2の保持部と前記レーザー光源との間に配置された1/4波長板をさらに
備え、前記1/4波長板の遅相軸は、前記レーザー光源から射出される前記直線偏光の偏
光軸に対して45度の角度をなすように配置されていてもよい。
この構成によれば、レーザー光源から射出される光が直線偏光である場合、1/4波長
板を通すことで直線偏光が円偏光に変換される。このため、光源側に配置した基準偏光子
を回転させることによりその光学軸の角度が変化しても、基準偏光子を透過する光の強度
は変化しない。これにより、基準偏光子の光学軸を基準にして液晶パネルの配向方向と光
学フィルムの光学軸との位置合わせを行う際に、透過した光の強度を安定した精度で測定
できる。
[適用例7]上記適用例に係る液晶装置の製造装置であって、前記光源から照射される
前記光は、可視光領域の波長を有していてもよい。
この構成によれば、液晶装置を照明するバックライトとほぼ同じ波長帯域の光を照射す
るので、実使用に近い条件で液晶パネルの配向方向と光学フィルムの光学軸との位置合わ
せを行うことができる。
[適用例8]上記適用例に係る液晶装置の製造装置であって、前記光源から照射される
前記光は、470nm〜650nmの波長を有していてもよい。
この構成によれば、視感度が高い波長帯域の光を照射するので、位置合わせをより精度
良く行うことができる。
[適用例9]上記適用例に係る液晶装置の製造装置であって、前記光源から照射される
前記光は、531nm〜556nmの波長を有していてもよい。
この構成によれば、明所視における標準比視感度が最大となる555nmに近い波長帯
域の光を照射するので、位置合わせをさらに精度良く行うことができる。
[適用例10]上記適用例に係る液晶装置の製造装置であって、前記光源から照射され
る前記光は、531nm〜533nmの波長を有していてもよい。
この構成によれば、レーザー光の第2高調波(中心波長が532nm)を使用して、位
置合わせを精度良く行うことができる。
[適用例11]本適用例に係る液晶装置の製造方法は、互いに対向して配置された一対
の基板と、前記一対の基板の間に挟持された液晶層と、を備えた液晶パネルを用意する工
程と、前記液晶パネルの前記一対の基板のうちの一方の外側に基準偏光子を対向配置する
とともに、前記一対の基板のうちの他方の外側に第1の光学フィルムを対向配置した状態
で、前記基準偏光子と前記液晶パネルと前記第1の光学フィルムとを透過するように光源
から光を照射し、前記基準偏光子と前記液晶パネルと前記第1の光学フィルムとのうちの
少なくとも2つを対向する面内で回転させて、前記基準偏光子と前記液晶パネルと前記第
1の光学フィルムとを透過した光の強度を測定する第1の工程と、前記透過した前記光の
強度の測定結果に基づいて前記基準偏光子に対する前記液晶パネルと前記第1の光学フィ
ルムとの対向する面内における相対的な位置関係を決定し、前記第1の光学フィルムを前
記液晶パネルの前記他方の表面に貼り付ける第2の工程と、を含み、前記光源から照射さ
れる前記光は略平行光であることを特徴とする。
この方法によれば、基準偏光子と液晶パネルと第1の光学フィルムとを透過した光の強
度の測定結果に基づいて、基準偏光子の光学軸を基準にして液晶パネルの配向方向と第1
の光学フィルムの光学軸との位置合わせを行う。ここで、光源から照射される光は略平行
光であるので、光束の範囲において略同一の角度で基準偏光子と液晶パネルと第1の光学
フィルムとに入射する。このため、光源から照射された光が透過する光路上における基準
偏光子の光学軸と液晶パネルの配向方向と第1の光学フィルムの光学軸との位置関係、お
よび液晶層の層厚は光束の範囲において略同一である。したがって、透過した光の強度の
測定結果に基づく位置合わせを精度良く行うことができる。
[適用例12]上記適用例に係る液晶装置の製造方法であって、前記光源はメタルハラ
イド光源であり、前記メタルハライド光源から射出される光を、平行化手段を用いて略平
行化して照射してもよい。
この方法によれば、光源がメタルハライド光源であるので、高輝度であるとともに安定
した光量の光が得られる。
[適用例13]上記適用例に係る液晶装置の製造方法であって、前記平行化手段はコリ
メートレンズであってもよい。
この方法によれば、光源から射出される光をコリメートレンズにより集光して略平行化
することができる。
[適用例14]上記適用例に係る液晶装置の製造方法であって、前記平行化手段は凹部
を有する反射鏡であってもよい。
この方法によれば、光源から射出される光を凹部を有する反射鏡により反射して略平行
化することができる。
[適用例15]上記適用例に係る液晶装置の製造方法であって、前記光源はレーザー光
源であってもよい。
この方法によれば、光源がレーザー光源であるので、略平行光を照射できる。
[適用例16]上記適用例に係る液晶装置の製造方法であって、前記レーザー光源は直
線偏光を射出し、前記レーザー光源から射出される前記直線偏光を、遅相軸が前記直線偏
光の偏光軸に対して45度の角度をなすように配置された1/4波長板を通して、前記基
準偏光子に照射してもよい。
この方法によれば、レーザー光源から射出される光が直線偏光である場合、1/4波長
板を通すことにより直線偏光を円偏光に変換することができる。このため、光源側に配置
した基準偏光子を回転させることによりその光学軸の角度が変化しても、基準偏光子を透
過する光の強度は変化しないので、透過した光の強度を安定した精度で測定できる。
[適用例17]上記適用例に係る液晶装置の製造方法であって、前記光源から照射され
る前記光は、可視光領域の波長を有していてもよい。
この方法によれば、液晶装置を照明するバックライトに近い波長帯域の光を照射するの
で、実使用に近い条件で位置合わせを行うことができる。
[適用例18]上記適用例に係る液晶装置の製造方法であって、前記光源から照射され
る前記光は、470nm〜650nmの波長を有していてもよい。
この方法によれば、視感度が高い波長帯域の光を照射するので、位置合わせをより精度
良く行うことができる。
[適用例19]上記適用例に係る液晶装置の製造方法であって、前記光源から照射され
る前記光は、531nm〜556nmの波長を有していてもよい。
この方法によれば、明所視における標準比視感度が最大となる555nmに近い波長帯
域の光を照射するので、位置合わせをさらに精度良く行うことができる。
[適用例20]上記適用例に係る液晶装置の製造方法であって、前記光源から照射され
る前記光は、531nm〜533nmの波長を有していてもよい。
この方法によれば、レーザー光の第2高調波(中心波長が532nm)を使用して、位
置合わせを精度良く行うことができる。
[適用例21]上記適用例に係る液晶装置の製造方法であって、前記第2の工程の後に
、前記液晶パネルの前記第1の光学フィルムが貼り付けられた側とは反対側に第2の光学
フィルムを対向配置した状態で、前記第1の光学フィルムと前記液晶パネルと前記第2の
光学フィルムとを透過するように前記光源から光を照射し、前記液晶パネルと前記第2の
光学フィルムとのうちの少なくとも1つを対向する面内で回転させて、前記第1の光学フ
ィルムと前記液晶パネルと前記第2の光学フィルムとを透過した光の強度を測定する第3
の工程と、前記透過した前記光の強度の測定結果に基づいて前記液晶パネルに対する前記
第2の光学フィルムの対向する面内における相対的な位置関係を決定し、前記第2の光学
フィルムを前記液晶パネルの前記反対側に貼り付ける第4の工程と、をさらに含んでいて
もよい。
この方法によれば、第1の光学フィルムと液晶パネルと第2の光学フィルムとを透過し
た光の強度の測定結果に基づいて、液晶パネルの配向方向と第2の光学フィルムの光学軸
との位置合わせを精度良く行うことができる。
以下に、本実施の形態について図面を参照して説明する。なお、参照する各図面におい
て、構成をわかりやすく示すため、各構成要素の層厚や寸法の比率、角度等は適宜異なら
せてあり、誇張されている場合もある。
<液晶装置>
まず、本実施の形態に係る液晶装置の製造装置および液晶装置の製造方法を用いて製造
される液晶装置の一例について図を参照して説明する。図1は、液晶装置の一例の概略構
成を示す図である。詳しくは、図1(a)は平面図であり、図1(b)は図1(a)中の
A−A’線に沿った断面図である。図2は、液晶装置の一例の画素の構成を説明する図で
ある。詳しくは、図2(a)は観察側(対向基板側)から見たときの画素の構成を示す平
面図であり、図2(b)は観察側から見たときの液晶パネルの配向方向を示す図である。
図3は、図2(a)中のB−B’線に沿った断面図である。図4は液晶装置の一例の光学
設計条件を示す図である。なお、図2(a)では対向基板の図示を省略している。
液晶装置の一例としての液晶装置1は、例えば、スイッチング素子としてTFT(Thin
Film Transistor:薄膜トランジスター)素子を備えたアクティブマトリクス型の液晶装
置であるとともに、FFS(Fringe-Field Switching)方式の透過型の液晶装置である。
図1(a)および(b)に示すように、液晶装置1は、液晶パネル50を備えている。
液晶パネル50は、互いに対向して配置された一対の基板としての素子基板10と対向基
板30と、素子基板10と対向基板30との間に挟持された液晶層40とを備えている。
素子基板10と対向基板30とは、枠状のシール剤41を介して対向して貼り合わされて
いる。液晶層40は、素子基板10と対向基板30とシール剤41とによって囲まれた空
間に封入されている。
液晶装置1は、液晶パネル50の両外側に配置された、第1の光学フィルムとしての偏
光板45と、第2の光学フィルムとしての偏光板44とを備えている。偏光板45は、対
向基板30の液晶層40とは反対側の面に配置されている。偏光板44は、素子基板10
の液晶層40とは反対側の面に配置されている。また、図示しないが、偏光板44の側に
は、偏光板44に対向して、例えば白色LED(発光ダイオード)からなり、可視光領域
の波長の光を射出するバックライト等の照明装置が配置されている。
素子基板10は、対向基板30より大きく、一部が対向基板30に対して張り出した状
態で貼り合わされている。この張り出した部位には、液晶層40を駆動するためのドライ
バーIC42が実装されている。液晶装置1は、液晶層40が封入された表示領域2にお
いて表示を行う。
図2(a)に示すように、表示領域2には、走査線12と信号線14とが交差するよう
に形成され、走査線12と信号線14との交差に対応して画素4が設けられている。画素
4は、互いに隣り合う画素4同士の間に間隔が空くようにマトリクス状に配置されている
。画素4は、赤(R)、緑(G)、青(B)のいずれかの表示に寄与し、R、G、Bの各
表示に寄与する3つの画素4から1つの画素群が構成されている。液晶装置1では、各画
素群において3つの画素4のそれぞれの輝度を適宜変えることで、種々の色の表示を行う
ことができる。
画素4には、画素電極16と、画素電極16との間で横電界を発生させるための共通電
極18と、画素電極16を制御するためのTFT素子20とが設けられている。
画素電極16は、矩形状に形成されており、複数のスリット状の開口部16aを有して
いる。スリット状の開口部16aは、例えば信号線14の延在方向に沿う方向に、互いに
平行に形成されている。画素電極16は、絶縁層24(図3参照)を貫通するコンタクト
ホール24aを介して、TFT素子20のドレイン電極20dに電気的に接続されている
。画素電極16は、透光性を有する導電材料からなり、例えばITO(Indium Tin Oxide
)からなる。
共通電極18は、矩形状に形成されており、画素電極16に平面的に重なるように設け
られている。共通電極18は、一辺部において共通配線17に重なっており、この部分で
共通配線17に電気的に接続されている。共通電極18は、透光性を有する導電材料から
なり、例えばITOからなる。
TFT素子20は、ゲート電極20gと半導体層20aとソース電極20sとドレイン
電極20dとを備えている。ゲート電極20gは、走査線12の一部である。半導体層2
0aは、ゲート電極20gに平面的に重なる位置に形成されている。ソース電極20sは
、信号線14から分岐した部分であり、その一部が半導体層20aの一部(ソース側)を
覆うように形成されている。ドレイン電極20dは、一部が半導体層20aの一部(ドレ
イン側)を覆うように形成されている。
図3に示すように、素子基板10は、基板11を基体として構成されており、基板11
上に、TFT素子20と、共通配線17と、共通電極18と、ゲート絶縁層22と、絶縁
層24と、画素電極16と、配向膜28とを備えている。基板11は、透光性を有する材
料からなり、例えば、ガラス、石英、樹脂等からなる。
基板11の液晶層40側には、ゲート電極20gと、共通配線17と、共通電極18と
が形成されている。ゲート絶縁層22は、基板11とゲート電極20gと共通配線17と
共通電極18とを覆うように形成されている。ゲート絶縁層22上には、半導体層20a
とソース電極20sとドレイン電極20dとが形成されている。
絶縁層24は、ゲート絶縁層22と、半導体層20aと、ソース電極20sと、ドレイ
ン電極20dとを覆うように形成されている。画素電極16は、絶縁層24上に形成され
ている。画素電極16と共通電極18とはゲート絶縁層22と絶縁層24とを介して対向
しており、画素電極16と共通電極18との間に挟まれたゲート絶縁層22と絶縁層24
とを誘電体膜とする保持容量が形成されている。
素子基板10では、画素電極16と共通電極18との間に電圧が印加されると、スリッ
ト状の開口部16aおよびその周辺に横電界が発生する。この横電界によって、液晶層4
0の液晶分子の配向が制御される。なお、画素電極16と共通電極18との配置はこの形
態に限定されない。共通電極18が画素電極16よりも液晶層40側に配置されていても
よい。このような構成の場合は、共通電極18がスリット状の開口部を有することとなる
素子基板10の液晶層40に接する側には配向膜28が形成されている。配向膜28は
、例えばポリイミド樹脂からなる。配向膜28の表面には、例えば、信号線14の延在方
向に対して時計回りの方向に5度の角度をなす方向を配向方向28a(図2(b)参照)
として、ラビング処理等の配向処理が施されている。
次に、対向基板30は、液晶装置1の観察側に位置している。対向基板30は、基板3
1を基体として構成されており、基板31上に、遮光層32と、カラーフィルター層34
と、オーバーコート層35と、配向膜36とを備えている。
基板31は、透光性を有する材料からなり、例えば、ガラス、石英、樹脂等からなる。
遮光層32とカラーフィルター層34とは、基板31上に形成されている。遮光層32は
、基板31上の隣り合う画素4同士の間の領域に配置されている。カラーフィルター層3
4は、画素4の領域に対応して配置されている。カラーフィルター層34は、例えばアク
リル樹脂等からなり、R、G、Bの各色に対応する色材を含有している。オーバーコート
層35は、遮光層32とカラーフィルター層34とを覆うように形成されている。
対向基板30の液晶層40に接する側には配向膜36が形成されている。配向膜36は
、例えばポリイミド樹脂からなる。配向膜36の表面には、例えば、観察側から見て信号
線14の延在方向に対して時計回りの方向に5度の角度をなす方向を配向方向36a(図
2(b)参照)として、配向膜28のラビングの向きとは180度異なる向きに、ラビン
グ処理等の配向処理が施されている。
液晶層40は、素子基板10と対向基板30との間に配置されている。液晶層40の液
晶分子は、画素電極16と共通電極18との間に電界が発生していない状態(オフ状態)
では、配向膜28と配向膜36とに施された配向処理によって規制される方向、すなわち
配向方向28a,36aに沿って配向する。また、液晶層40の液晶分子は、画素電極1
6と共通電極18との間に電界が発生している状態(オン状態)では、開口部16aの延
在方向と直交する方向に発生する電界に沿って配向する。このように、液晶層40では、
オフ状態とオン状態とで液晶分子をツイストさせることにより、配向状態を制御している
次に、図4を参照して、液晶装置1の光学設計条件について説明する。偏光板44,4
5は、光学軸としての透過軸および吸収軸を有している。図4(a)に、偏光板44の透
過軸44tと偏光板45の透過軸45tとを示す。透過軸44tと透過軸45tとは、互
いに直交するように配置されている。
図4(b)に示すように、画素電極16のスリット状の開口部16aは、信号線14の
延在方向に沿って延在している。オン状態において画素電極16と共通電極18との間に
発生する電界の方向は、信号線14の延在方向と直交する方向、すなわち走査線12の延
在方向に沿った方向である。
素子基板10側の配向膜28には、例えば、信号線14の延在方向に対して時計回り方
向に5度の角度をなす方向を配向方向28aとしてラビング処理が施されている。対向基
板30側の配向膜36には、信号線14の延在方向に対して時計回り方向に5度の角度を
なす方向を配向方向36aとして、配向膜28のラビングの向きとは180度異なる向き
にラビング処理が施されている。したがって、配向膜28,36のラビング方向、すなわ
ち液晶層40オフ状態における配向方向28a,36aは、開口部16aの延在方向に対
して時計回り方向に5度の角度をなす方向となる。以下、配向膜28,36のラビング方
向も28a,36aと表記する。
偏光板44の透過軸44tはラビング方向28a,36aと平行であり、偏光板45の
透過軸45tはラビング方向28a,36aと直交している。透過軸44t,45tとラ
ビング方向28a,36aとがこのような所定の位置に配置された場合、液晶装置1は、
オフ状態において照明装置から入射した光が遮断されて暗表示となる。したがって、液晶
装置1はノーマリーブラックモードである。なお、透過軸44tがラビング方向28a,
36aと直交しており、透過軸45tがラビング方向28a,36aに平行であってもよ
い。
ところで、配向膜28,36のラビング方向28a,36aに対する偏光板44,45
の透過軸44t,45tの相対的な位置関係にずれが生じると、オフ状態において入射し
た光が少量ではあるが透過してしまい、表示のコントラスト低下を招くこととなる。この
ため、配向膜28,36のラビング方向28a,36aと偏光板44,45の透過軸44
t,45tとを光学設計上の所定の位置に合わせることが求められる。横電界によって液
晶分子の配向を制御するFFS方式の液晶装置1では、より高精度に位置合わせを行うこ
とが表示品質を確保する上で重要である。
なお、液晶装置1において、画素電極16の開口部16aの延在方向、配向膜28,3
6のラビング方向28a,36a、透過軸44t,45tの角度等の光学設計条件は、上
記の形態に限定されるものではない。
(第1の実施形態)
<液晶装置の製造装置>
次に、第1の実施形態に係る液晶装置の製造装置について図を参照して説明する。図5
は、第1の実施形態に係る液晶装置の製造装置の概略構成を示す図であるとともに、第1
の実施形態に係る偏光板の貼り付け方法を説明する図である。
本実施形態に係る液晶装置の製造装置100は、図5に示すように、第1の保持部とし
ての保持部110と、第2の保持部としての保持部112と、第3の保持部としての保持
部114と、回転機構116,118と、光源120と、測定部129とを備えている。
保持部110は、液晶パネル50を保持する。保持部112は、保持部110の一方の
側に配置されており、基準偏光子113を液晶パネル50に対向するように保持する。保
持部114は、液晶パネル50の他方の側に配置されており、偏光板45(または偏光板
44(図7参照))を液晶パネル50に対向するように保持する。
基準偏光子113は、液晶パネル50の配向方向(ラビング方向)28a,36aと偏
光板45の透過軸45t(または偏光板44の透過軸44t)との位置合わせを行う際の
基準として用いられる。基準偏光子113は、光学軸としての透過軸(図示しない)を有
しており、通常の偏光板よりも高い偏光度を有している。基準偏光子113は、例えば、
平面形状が円形である。基準偏光子113の平面形状は、矩形等の他の形状であってもよ
い。
保持部110と保持部112と保持部114とは、例えば、吸着孔を有しており、液晶
パネル50、基準偏光子113、偏光板45(または偏光板44)を吸着固定して保持す
る。保持部110と保持部112と保持部114とは、液晶パネル50と基準偏光子11
3と偏光板45とを互いに平行に保持するように構成されている。
保持部110と保持部112と保持部114とは、少なくとも一部が透光性を有する部
材で構成されている。これにより、光源120から照射される光125は、保持部110
と保持部112と保持部114とを透過する。保持部110と保持部112と保持部11
4とは、光125が透過する光路上に光125を透過させる貫通孔等を有していてもよい
。なお、液晶装置の製造装置100は、保持部112を光源120から照射される光12
5の光路外に移動する機構を備えていてもよい。
回転機構116は、保持部110に設けられており、液晶パネル50の表面の法線方向
を回転軸として、保持部110に保持された液晶パネル50を回転させる。回転機構11
8は、保持部112に設けられており、基準偏光子113の表面の法線方向を回転軸とし
て、保持部112に保持された基準偏光子113を回転させる。回転機構116と回転機
構118とは、例えば、ステップモーター等を内蔵しており、0.1度程度の角度単位で
回転する。回転機構116,118により液晶パネル50と基準偏光子113とを個別に
回転させることで、液晶パネル50と基準偏光子113と偏光板45との対向する面内で
の相対的な位置関係を調整することができる。
光源120は、保持部112を臨む側に配置されている。本実施形態では、光源120
としてメタルハライド光源を用いている。メタルハライド光源を用いることで、光源12
0から高輝度であるとともに安定した光量の光が得られる。また、メタルハライド光源が
射出する光は可視光領域の波長を有しており、白色LEDからなるバックライトに近い波
長帯域の光が得られる。
光源120と保持部112との間には、平行化手段としてのコリメートレンズ121が
配置されている。光源120から射出される光は拡散光であるが、この光をコリメートレ
ンズ121により集光して略平行化する。これにより、基準偏光子113と液晶パネル5
0と偏光板45とに照射する光125を略平行光にすることができる。
測定部129は、光源120との間に保持部112(基準偏光子113)と、保持部1
10(液晶パネル50)と、保持部114(偏光板45)とを挟んで、光源120に対向
配置されている。測定部129は、例えば、Si(シリコン)からなるフォトダイオード
を受光素子として含んでいる。測定部129は、基準偏光子113と、液晶パネル50と
、偏光板45とを透過した光126を受光し、光126の強度を電気信号に変換して測定
する。測定部129は、フォトダイオードの代わりに輝度計等を含み、光126の輝度を
測定する構成であってもよい。
なお、光源120は、光源120から照射される光125が液晶パネル50の法線方向
から入射するように、保持部110(液晶パネル50)に対して相対的に配置されている
ことが望ましい。これは、液晶装置1のコントラストが、通常輝度計を用いて液晶装置1
の正面の法線方向から測定されるからである。光源120と測定部129との位置関係は
、図面上において上下逆であってもよい。
<液晶装置の製造方法>
次に、第1の実施形態に係る液晶装置の製造方法について図を参照して説明する。図6
は、第1の実施形態に係る液晶装置の製造方法を説明するフローチャートである。図7は
、第1の実施形態に係る偏光板の貼り付け方法を説明する図である。図8は、液晶分子が
ツイストしている場合の偏光板の位置関係を説明する図である。図9は、明所視における
標準比視感度曲線を示す図である。
図6において、工程P11および工程P12は素子基板10を製造する工程であり、工
程P21および工程P22は対向基板30を製造する工程である。工程P11および工程
P12と、工程P21および工程P22とはそれぞれ独立に行われる。工程P31および
工程P32は、素子基板10と対向基板30とを組み合わせて液晶パネル50を用意する
工程である。工程P33は、一対の偏光板44,45を液晶パネル50に貼り付ける工程
である。なお、これらの工程のうち詳述しない工程においては、公知の技術を適用するこ
とができる。
まず、素子基板10を製造する工程と対向基板30を製造する工程とを説明する。工程
P11では、基板11上にTFT素子20、共通配線17、共通電極18、ゲート絶縁層
22、絶縁層24、画素電極16等を形成する。
続いて、工程P12では、これらの素子、電極等が形成された素子基板10の表面に配
向膜28を形成し、配向膜28の表面に図4(b)に示す配向方向(ラビング方向)28
aに沿って配向処理(ラビング処理)を施す。
次に、工程P21では、基板31上に遮光層32、カラーフィルター層34、オーバー
コート層35等を形成する。続いて、工程P22では、対向基板30の表面に配向膜36
を形成し、配向膜36の表面に図4(b)に示す配向方向(ラビング方向)36aに沿っ
て配向処理(ラビング処理)を施す。
次に、工程P31では、素子基板10と対向基板30との貼り合わせを行う。貼り合わ
せは、素子基板10または対向基板30にシール剤41を塗布し、アライメントをした後
、素子基板10と対向基板30とを接触させ、圧着して行われる。続いて、工程P32で
は、シール剤41の開口部(注入口)から素子基板10と対向基板30との間に液晶を注
入し、注入口を封止する。以上により、液晶パネル50が用意される。
次に、図5、図7、図8、および図9を参照して、工程P33における偏光板の貼り付
け方法を詳しく説明する。工程P33は、偏光板45を配置する第1の工程と、偏光板4
5を液晶パネル50に貼り付ける第2の工程と、偏光板44を配置する第3の工程と、偏
光板44を液晶パネル50に貼り付ける第4の工程とを含んでいる。これらの工程におい
て、液晶装置の製造装置100を用いて液晶パネル50に対する偏光板44,45の配置
位置を決定する。
第1の工程では、図5に示すように、素子基板10側が保持部110に接するように、
液晶パネル50を保持部110により保持する。また、保持部112により、基準偏光子
113を液晶パネル50に対向するように保持する。そして、保持部110に対して保持
部112とは反対側に位置する保持部114により、偏光板45を液晶パネル50に対向
するように保持する。
続いて、保持部112を臨む側に配置された光源120から射出されコリメートレンズ
121を通して略平行化された光125を、基準偏光子113と液晶パネル50と偏光板
45とに順次入射させる。このとき、光125を液晶パネル50の法線方向から入射させ
ることが好ましい。そして、基準偏光子113と液晶パネル50と偏光板45とを対向さ
せた状態を維持しながら、回転機構116,118により基準偏光子113と液晶パネル
50とを対向する面内で回転させる。そして、基準偏光子113と液晶パネル50と偏光
板45とを透過した光126を測定部129で受光し光126の強度を測定する。
次に、第2の工程では、光126の強度の測定結果に基づいて光126の強度が最小と
なるように、液晶パネル50と偏光板45との対向する面内における相対的な位置関係を
調整する。このとき、基準偏光子113の透過軸(図示しない)に配向膜28のラビング
方向28a(図4(b)参照)が平行になり、かつ、配向膜36のラビング方向36a(
図4(b)参照)に対して偏光板45の透過軸45t(図4(b)参照)が直交する所定
の位置において、光126の強度が最小となる。つまり、光126の強度が最小となる位
置が、コントラストが最大となる位置である。
光126の強度が最小となったところで、液晶パネル50と偏光板45との相対的な位
置関係を決定し、偏光板45を液晶パネル50の対向基板30に貼り付ける。このとき、
液晶パネル50と偏光板45との相対的な位置関係を保った状態で、一方が他方に接する
ように、保持部110または保持部114を移動させて貼り付ける。保持部110と保持
部114との双方を移動させてもよい。
このように、基準偏光子113を基準にして、液晶パネル50に対して偏光板45を光
学的に位置合わせして液晶パネル50に貼り付けるので、液晶パネル50と偏光板45と
を外形基準で貼り付ける場合に比べて、精度良く位置合わせして貼り付けを行うことがで
きる。
次に、第3の工程では、図7に示すように、対向基板30側(偏光板45)が保持部1
10に接するように、液晶パネル50を保持部110により保持する。そして、保持部1
14により、偏光板44を液晶パネル50に対向するように保持する。なお、第3の工程
では、基準偏光子113を用いないので、保持部112(図5参照)を光源120から照
射される光125の光路外に移動する。保持部112が移動可能に構成されていない場合
は、保持部112から基準偏光子113を取り外してもよい。
続いて、光源120から射出されコリメートレンズ121を通して略平行化された光1
25を、偏光板45が貼り付けられた液晶パネル50と偏光板44とに順次入射させる。
そして、液晶パネル50と偏光板44とを対向させた状態を維持しながら、回転機構11
6により液晶パネル50を偏光板44に対向する面内で回転させる。そして、偏光板45
と液晶パネル50と偏光板44とを透過した光126を測定部129で受光し光126の
強度を測定する。
次に、第4の工程では、光126の強度の測定結果に基づいて光126の強度が最小と
なるように、液晶パネル50と偏光板44との対向する面内における相対的な位置関係を
調整する。このとき、配向膜28のラビング方向28a(図4(b)参照)に偏光板44
の透過軸44t(図4(b)参照)が平行になる所定の位置において、光126の強度が
最小となる。
光126の強度が最小となったところで、液晶パネル50と偏光板44との相対的な位
置関係を決定し、偏光板44を液晶パネル50の素子基板10に貼り付ける。このように
、偏光板45が光学的に位置合わせして貼り付けられた液晶パネル50に、偏光板44を
光学的に位置合わせして貼り付けるので、精度良く位置合わせして貼り付けを行うことが
できる。以上により液晶装置1が完成する。
ところで、液晶パネル50において、配向膜28のラビング方向28aと配向膜36の
ラビング方向36aとが平行からずれている場合がある。このようなずれは、例えば、工
程P12の素子基板10の配向処理におけるラビング方向28aのずれ、あるいは工程P
22の対向基板30の配向処理におけるラビング方向36aのずれや、工程P31の素子
基板10と対向基板30との貼り合わせにおける相対的な位置ずれ等により生じる。
ラビング方向28aとラビング方向36aとが平行からずれていると、液晶層40内の
液晶分子は、ラビング方向28aとラビング方向36aとの間のずれに応じてツイストす
る。そうすると、第2の工程において、基準偏光子113と液晶パネル50と偏光板45
とを透過した光126の強度が最小となる(コントラストが最大となる)ときの、基準偏
光子113の透過軸と配向膜28のラビング方向28aとの位置関係、および偏光板45
の透過軸45tと配向膜36のラビング方向36aとの位置関係は、図4(b)に示す光
学設計上の所定の位置からずれることとなる。
これは、一般に、液晶分子がツイストしている液晶層40中に直線偏光が入射すると、
液晶分子のツイストに応じて入射した光の偏光状態がわずかに変化して、入射時の直線偏
光の偏光方向から長軸方向が若干ずれた楕円偏光となって液晶層40から射出されるため
である。
このように液晶層40内の液晶分子がツイストしている場合について、図8(a)およ
び(b)を参照して説明する。図8(a)に示すように、液晶パネル50において、配向
膜28のラビング方向28aと配向膜36のラビング方向36aとが平行からずれている
ものとする。ラビング方向28aとラビング方向36aとの相互のずれ角度をφtとする
と、液晶分子のツイスト角度はφtとなる。なお、図8(a)に示すラビング方向28a
とラビング方向36aとは、互いに入れ替わっていてもよい。
図8(b)に示すように、偏光板44の透過軸44tが開口部16aの延在方向に対し
て時計回り方向になす角度をφpとし、偏光板45の透過軸45tが開口部16aの延在
方向に対して時計回り方向になす角度をφaとする。透過軸44tと透過軸45tとがな
す角度をφdとすると、φd=|φa−φp|である。
偏光板44,45が光学設計上の所定の位置に配置されている場合、透過軸44tと透
過軸45tとがなす角度φdは90度である。一方、図8(a)に示すように液晶層40
内の液晶分子がツイストしている場合、上述した通り、コントラストが最大となるように
配置された偏光板44の透過軸44tと偏光板45の透過軸45tとがなす角度φdは、
90度とは異なる角度となる。
そこで、液晶分子がツイストしている場合において、偏光板44,45をコントラスト
が最大となるように配置したときの、光学設計上の所定の位置における角度φdに対する
ずれ角度と、液晶層40の屈折率異方性Δn、液晶層40の層厚d、光源120から照射
される光125の波長λ等との関係について、ジョーンズ行列法による液晶パネル50の
光学特性の計算から導出した。
上述の計算の結果によれば、液晶層40内の液晶分子がツイストしている場合における
透過軸44tと透過軸45tとがなす角度φdの、光学設計上の所定の位置における角度
φdに対するずれ角度|φa−φp|−90は、液晶分子のツイスト角度φtに比例する
。この比例定数をkとすれば、|φa−φp|−90=kφtであるので、比例定数k=
(|φa−φp|−90)/φtとなる。
表1に、液晶層40のリタデーションΔnd、すなわち液晶層40の屈折率異方性Δn
と層厚dとの積と、照射される光125の波長λとを変化させたときの比例定数kの値を
示す。表1に示すように、リタデーションΔndを300nm〜390nmまで4段階で
変化させ、波長λを405nm〜650nmまで6段階で変化させて、それぞれの条件に
おける比例定数kを算出している。
Figure 2010139679
ここで、図9に示すように、明所視における標準比視感度曲線において、波長λが55
5nmのときに標準比視感度が最大となる。このため、一般に、液晶装置のコントラスト
は波長が555nmの光で評価される。また、波長λが470nmおよび650nmのと
きに、標準比視感度が波長555nmにおける最大値の10%となる。したがって、47
0nm〜650nmは、可視光領域の中で比視感度が高い波長帯域である。
表1に示すように、比例定数kは液晶層40のリタデーションΔndに依存しており、
リタデーションΔndが大きくなるにしたがって比例定数kは小さくなる。また、比例定
数kは波長λにも依存しており、波長λが大きくなるにしたがって比例定数kは大きくな
る。なお、波長λが555nmよりも大きい側における比例定数kの変化率は、波長λが
555nmよりも小さい側における比例定数kの変化率に比べて大きくなっている。なお
、表1において、リタデーション△ndが300nmで波長λが650nmにおける比例
定数kは、他と桁数が異なる大きな値となるため「E」と表記している。
ところで、光源120から照射される光125が液晶パネル50の法線方向に対して斜
めの方向から入射する場合、光125が液晶パネル50の法線方向から入射する場合に比
べて、光125が透過する光路上における基準偏光子113の透過軸と液晶パネル50の
配向方向28a,36aと偏光板45の透過軸45tとの位置関係、および液晶層40の
層厚は異なる。
比例定数kは液晶層40のリタデーションΔndに依存するので、斜めの方向から入射
する光125が透過する光路上において液晶層40の層厚dが厚くなると、比例定数kが
変化する。このため、光126の強度が最小となる(コントラストが最大となる)ときの
液晶パネル50と偏光板45との位置関係は、光125の入射角度によって異なることと
なる。
ここで、光源120から照射される光125が拡散光であると、光源120から離れる
にしたがって光束が広がるので、液晶パネル50への入射角度にばらつきが生じてしまう
。このため、光125の光束の中心が液晶パネル50の法線方向に沿って入射するように
光源120を配置しても、光125の光束の範囲において液晶パネル50の法線方向に対
して斜めの方向から入射する光が存在することとなる。この結果、基準偏光子113と液
晶パネル50と偏光板45とを透過した光126の強度の測定精度が低下する。
本実施形態では、光源120から照射される光125は略平行光であり、光源120か
ら離れても光束が広がらないので、液晶パネル50への入射角度がばらつかない。このた
め、光源120から照射される光125の光束の中心が液晶パネル50の法線方向に沿う
ように配置すれば、光125はその光束の範囲において液晶パネル50の法線方向に沿っ
て入射する。したがって、液晶層40内の液晶分子がツイストしている場合であっても、
基準偏光子113と液晶パネル50と偏光板45とを透過した光126の強度の測定結果
に基づく位置合わせを精度良く行うことができる。
また、表1に示す結果より、比例定数kは波長λに依存する。したがって、液晶分子の
ツイスト角度に合わせて偏光板45を最適な位置関係になるように精度良く配置するには
、光源120から照射される光125は波長帯域が狭い方が好ましい。また、光源120
から照射される光125の波長は、比視感度が高い470nm〜650nmの帯域にある
ことが好ましく、標準比視感度が最大となる波長であり一般に液晶装置のコントラスト評
価に用いられる555nmの付近の帯域にあることがより好ましい。
なお、光源120から射出される光125は可視光領域の波長を有しているが、特定の
波長帯域の光をカットする光学フィルターを通すことにより、より波長帯域が狭い光を照
射させるようにしてもよい。
上記第1の実施形態によれば、以下の効果が得られる。
(1)第2の工程において、基準偏光子113を基準にして、液晶パネル50に対して
偏光板45を光学的に位置合わせして偏光板45を液晶パネル50に貼り付ける。また、
第4の工程において、偏光板45が光学的に位置合わせして貼り付けられた液晶パネル5
0に、偏光板44を光学的に位置合わせして貼り付ける。これにより、液晶パネル50と
偏光板44,45とを外形基準で貼り付ける場合に比べて、精度良く位置合わせして貼り
付けを行うことができる。
(2)第2の工程において、光源120から照射される光125は略平行光であるので
、略同一の角度で基準偏光子113と液晶パネル50と偏光板45とに入射する。このた
め、光源120から照射された光125が透過する光路上における基準偏光子113の光
学軸と液晶パネル50の配向方向28a,36aと偏光板45の透過軸45tとの位置関
係、および液晶層40の層厚は略同一である。また、第4の工程においても、同様である
。したがって、液晶パネル50の配向方向28a,36aが平行からずれ、液晶層40内
の液晶分子がツイストしている場合であっても、透過した光126の強度の測定結果に基
づく位置合わせを精度良く行うことができる。
(3)光源120がメタルハライド光源であるので、高輝度であるとともに安定した光
量の光が得られる。また、光源120から照射される光125が可視光領域の波長を有し
ているので、実使用に近い条件で液晶パネル50の配向方向28a,36aと偏光板44
,45との位置合わせを行うことができる。
なお、本実施形態では偏光板45の貼り付けを先に行いその後に偏光板44の貼り付け
を行ったが、偏光板44の貼り付けを先に行いその後に偏光板45の貼り付けを行っても
よい。また、本実施形態の液晶装置の製造装置および製造方法は、液晶装置1において、
偏光板44の透過軸44tが配向膜28,36のラビング方向と直交しており、偏光板4
5の透過軸45tが配向膜28,36のラビング方向に平行である場合にも適用できる。
(第2の実施形態)
<液晶装置の製造装置>
次に、第2の実施形態に係る液晶装置の製造装置について図を参照して説明する。図1
0は、第2の実施形態に係る液晶装置の製造装置の概略構成を示す図であるとともに、第
2の実施形態に係る偏光板の貼り付け方法を説明する図である。
第2の実施形態に係る液晶装置の製造装置は、第1の実施形態に係る液晶装置の製造装
置に対して、光源がレーザー光源である点が異なっているが、その他の構成は同じである
。第1の実施形態と共通する構成要素については、同一の符号を付し重複する説明を省略
する。
図10に示すように、第2の実施形態に係る液晶装置の製造装置200は、保持部11
0,112,114と、回転機構116,118と、光源122と、測定部129とを備
えている。
光源122は、保持部112を臨む側に配置されている。本実施形態では、光源122
としてレーザー光源を用いている。光源122は、例えば、半導体レーザー励起固体(Di
ode Pumped Solid State:DPSS)Nd:YAGレーザー光源であり、532nmを中
心波長とし±1nm程度の振幅を有する第2高調波(Second Harmonic Generation:SH
G)の直線偏光のレーザー光を射出する。光源122にレーザー光源を用いることで、光
源122から略平行光が得られるため、コリメートレンズ等の平行化手段が不要となる。
光源122と保持部112との間には、1/4波長板123が配置されている。1/4
波長板123は、その遅相軸が光源122の偏光軸に対して45度の角度をなすように配
置されている。光源122から射出される直線偏光は、1/4波長板123を通すことで
円偏光に変換され光125として照射される。なお、光源122から射出されるレーザー
光が直線偏光でない場合は、1/4波長板123は配置されていなくてもよい。
<液晶装置の製造方法>
次に、第2の実施形態に係る液晶装置の製造方法について図10を参照して説明する。
第2の実施形態では、液晶装置の製造装置200を用いて液晶パネル50に対する偏光板
44,45の配置位置を決定する。
第2の実施形態に係る液晶装置の製造方法は、第1の実施形態に係る液晶装置の製造方
法と同じであるが、第1の実施形態と同様の効果が得られる他に、光源がレーザー光源で
あることで第1の実施形態とは一部異なる効果を奏するので、この点について説明する。
第1の実施形態と共通する構成要素については、同一の符号を付し重複する説明を省略す
る。
図10に示すように、第1の工程では、光源122から射出され1/4波長板123を
通して円偏光に変換された光125を、基準偏光子113と液晶パネル50と偏光板45
とに順次入射させる。第2の工程では、第1の実施形態と同様に基準偏光子113と液晶
パネル50とを対向する面内で回転させて、基準偏光子113と液晶パネル50と偏光板
45とを透過した光126を測定部129で受光し、光126の強度が最小となったとこ
ろで、液晶パネル50と偏光板45との相対的な位置関係を決定し、偏光板45を液晶パ
ネル50の対向基板30に貼り付ける。
ここで、光源122から射出される光125が直線偏光である場合、1/4波長板12
3を通すことで直線偏光が円偏光に変換される。このため、光源122側に位置する基準
偏光子113を回転させることによりその光学軸の角度が変化しても、基準偏光子113
を透過する光の強度は変化しない。これにより、基準偏光子113の光学軸を基準にして
液晶パネル50の配向方向28a,36aと偏光板45の透過軸45tとの位置合わせを
行う際に、安定した精度で光126の強度を測定できる。
次に、図示を省略するが、第3の工程では、光源122から射出され1/4波長板12
3を通して円偏光に変換された光125を、偏光板45が貼り付けられた液晶パネル50
と偏光板44とに順次入射させる。第4の工程では、第1の実施形態と同様に、偏光板4
5と液晶パネル50と偏光板44とを透過した光126の強度が最小となったところで、
液晶パネル50と偏光板44との相対的な位置関係を決定し、偏光板44を液晶パネル5
0の素子基板10に貼り付ける。
本実施形態では、光源122がレーザー光源である。レーザー光源は、波長、位相、お
よび方向が揃った光を射出する。したがって、光源122が射出する光は略平行光であり
、第1の実施形態における光源120(メタルハライド光源)から射出される光をコリメ
ートレンズ121により集光して略平行化する場合に比べて、より平行度が高い光125
を照射できる。
また、光源122が射出する光はより高い直進性を有しているので、光源122と測定
部129との間の距離がより離れていても、測定部129で受光される光126の強度の
減衰が少ない。これにより、光源122と測定部129との間の距離を変更しても、安定
した精度で光126の強度を測定できる。また、第1の実施形態に比べて、測定できる光
の強度のレンジがより狭い素子または機器を測定部129に用いることが可能となる。
さらに、光源122から照射される光125は中心波長532nmで振幅が±1nm程
度であるので、波長帯域が531nm〜533nm程度となる。したがって、第1の実施
形態における光源120から照射される光125に比べて、光源122から照射される光
125は波長帯域が格段に狭く単一波長とみなしてもよい程度である。
また、光源122から照射される光125は、標準比視感度が最大となる555nmに
近い波長帯域を有している。表1に示すように、波長λが532nmの場合と555nm
の場合とで比例定数kは大きく異なっておらず、例えば、Δndが360nmの場合、波
長λが532nmの場合と555nmの場合との比例定数kの差異は10%程度である。
したがって、光源122から照射される光125によれば、波長が555nmの場合に近
い測定精度が得られる。
これらにより、本実施形態の構成によれば、第1の実施形態に比べて、液晶パネル50
と偏光板44,45との位置合わせを格段に精度良く行うことができる。
なお、光源122として、上述のレーザー光源とは異なる他のレーザー光源を用いても
よい。その場合、レーザー光源から射出される光の中心波長が532nm〜555nm、
すなわち波長帯域が531nm〜556nm程度の範囲にあることが好ましい。
以上、本発明の実施形態について説明したが、上記実施形態に対しては、本発明の趣旨
から逸脱しない範囲で様々な変形を加えることができる。変形例としては、例えば以下の
ようなものが考えられる。
(変形例1)
第1の実施形態の液晶装置の製造装置100では、光源120から射出される光を略平
行化する平行化手段としてコリメートレンズ121を用いたが、この形態に限定されない
。コリメートレンズ以外の平行化手段を用いて、光源120から射出される光を略平行化
してもよい。図11は、変形例1に係る液晶装置の製造装置を説明する図である。
図11に示すように、変形例1に係る液晶装置の製造装置300は、コリメートレンズ
に代わる平行化手段として、凹部を有する反射鏡124を備えている。液晶装置の製造装
置300において、光源120から射出される光は反射鏡124の凹部で反射されて集光
される。これにより、反射鏡124で反射され略平行化された反射光が、光125として
基準偏光子113と液晶パネル50と偏光板45とに照射される。
なお、光源120と反射鏡124とは、反射鏡124で反射された反射光である光12
5が液晶パネル50の法線方向から入射するとともに、光125の光路上に光源120が
位置しないように配置される。
このような構成の液晶装置の製造装置300においても、第1の実施形態に係る液晶装
置の製造方法を適用でき、第1の実施形態と同様の効果が得られる。
(変形例2)
上記実施形態の液晶装置の製造装置100,200では、回転機構116が保持部11
0に設けられており、回転機構118が保持部112に設けられていたが、この形態に限
定されない。工程P33の第1の工程および第2の工程において、液晶パネル50と基準
偏光子113と偏光板45とのうちの少なくとも2つを対向する面内で回転させて相対的
な位置関係を調整可能に構成されていればよい。
より具体的には、回転機構116,118に加えて、保持部114に設けられ偏光板4
5の表面の法線方向を回転軸として偏光板45を回転させる回転機構をさらに有していて
もよい。このような構成によれば、液晶パネル50と基準偏光子113と偏光板45との
3つを必要に応じて回転させて位置関係を調整することが可能となり、第3の工程および
第4の工程においては液晶パネル50と偏光板44とを回転させることが可能となる。
また、保持部114に回転機構が設けられる代わりに、回転機構116,118のいず
れか1つが設けられていない構成であってもよい。なお、第2の実施形態において、回転
機構118が設けられていない場合は、基準偏光子113が回転しないので、1/4波長
板123を配置しなくてもよい。
(変形例3)
上記実施形態では、液晶装置1は光学フィルムとして偏光板44,45を備えた構成で
あったが、光学フィルムの構成はこの形態に限定されない。光学フィルムは、偏光板の他
に液晶パネルや偏光板の光学補償を行うことにより、液晶装置の表示における視野角の拡
大、背景色の着色の補償等を図るための位相差板等の光学補償フィルムを備えていてもよ
い。このような構成の光学フィルムであっても、上記実施形態の液晶装置の製造装置およ
び液晶装置の製造方法を適用して、光学フィルムの貼り付けを行うことができる。
(変形例4)
上記の実施形態では、液晶装置1がFFS方式の透過型の液晶装置であったが、この形
態に限定されない。液晶装置1は、FFS方式と同様に横電界により液晶分子の配向制御
を行うIPS(In-Plane Switching)方式の液晶装置であってもよい。また、液晶装置1
は、半透過反射型や反射型の液晶装置であってもよい。液晶装置1がこれらの方式の液晶
装置であっても、上記実施形態の液晶装置の製造装置および液晶装置の製造方法を適用す
ることができる。
液晶装置の一例の概略構成を示す図。 液晶装置の一例の画素の構成を説明する図。 図2(a)中のB−B’線に沿った断面図。 液晶装置の一例の光学設計条件を示す図。 第1の実施形態に係る液晶装置の製造装置の概略構成を示す図であるとともに、第1の実施形態に係る偏光板の貼り付け方法を説明する図。 第1の実施形態に係る液晶装置の製造方法を説明するフローチャート。 第1の実施形態に係る偏光板の貼り付け方法を説明する図。 液晶分子がツイストしている場合の偏光板の位置関係を説明する図。 標準比視感度曲線を示す図。 第2の実施形態に係る液晶装置の製造装置の概略構成を示す図であるとともに、第2の実施形態に係る偏光板の貼り付け方法を説明する図。 変形例1に係る液晶装置の製造装置を説明する図。
符号の説明
1…液晶装置、2…表示領域、4…画素、10…素子基板、11…基板、12…走査線
、14…信号線、16…画素電極、16a…開口部、17…共通配線、18…共通電極、
20…TFT素子、20a…半導体層、20d…ドレイン電極、20g…ゲート電極、2
0s…ソース電極、22…ゲート絶縁層、24…絶縁層、24a…コンタクトホール、2
8,36…配向膜、28a,36a…配向方向、30…対向基板、31…基板、32…遮
光層、34…カラーフィルター層、35…オーバーコート層、40…液晶層、41…シー
ル剤、42…ドライバーIC、44,45…偏光板、44t,45t…透過軸、50…液
晶パネル、100,200,300…液晶装置の製造装置、110,112,114…保
持部、113…基準偏光子、116,118…回転機構、120,122…光源、121
…コリメートレンズ、123…1/4波長板、124…反射鏡、125,126…光、1
29…測定部。

Claims (21)

  1. 互いに対向して配置された一対の基板と前記一対の基板の間に挟持された液晶層とを備
    えた液晶パネルと、前記液晶パネルの少なくとも一方の表面に配置された光学フィルムと
    、を備えた液晶装置の製造装置であって、
    前記液晶パネルを保持する第1の保持部と、
    前記第1の保持部の一方の側に配置されており、基準偏光子を前記液晶パネルに対向さ
    せて保持する第2の保持部と、
    前記第1の保持部の他方の側に配置されており、前記光学フィルムを前記液晶パネルに
    対向させて保持する第3の保持部と、
    前記第1の保持部と前記第2の保持部と前記第3の保持部とのうちの少なくとも2つに
    設けられており、前記液晶パネルと前記基準偏光子と前記光学フィルムとのうちの少なく
    とも2つを対向する面内で回転させる回転機構と、
    前記第2の保持部の前記第1の保持部とは反対側または前記第3の保持部の前記第1の
    保持部とは反対側に配置された光源と、
    前記光源との間に前記第1の保持部と前記第2の保持部と第3の保持部とを挟んで前記
    光源に対向配置されており、前記光源から照射され前記基準偏光子と前記液晶パネルと前
    記光学フィルムとを透過した光の強度を測定する測定部と、を備え、
    前記光源から照射される光は略平行光であることを特徴とする液晶装置の製造装置。
  2. 請求項1に記載の液晶装置の製造装置であって、
    前記光源はメタルハライド光源であり、
    前記メタルハライド光源から射出される光を略平行化する平行化手段をさらに備えたこ
    とを特徴とする液晶装置の製造装置。
  3. 請求項2に記載の液晶装置の製造装置であって、
    前記平行化手段はコリメートレンズであることを特徴とする液晶装置の製造装置。
  4. 請求項2に記載の液晶装置の製造装置であって、
    前記平行化手段は凹部を有する反射鏡であることを特徴とする液晶装置の製造装置。
  5. 請求項1に記載の液晶装置の製造装置であって、
    前記光源はレーザー光源であることを特徴とする液晶装置の製造装置。
  6. 請求項5に記載の液晶装置の製造装置であって、
    前記レーザー光源は直線偏光を射出し、
    前記第2の保持部は、前記第1の保持部の前記レーザー光源側に配置されており、
    前記第2の保持部と前記レーザー光源との間に配置された1/4波長板をさらに備え、
    前記1/4波長板の遅相軸は、前記レーザー光源から射出される前記直線偏光の偏光軸
    に対して45度の角度をなすように配置されていることを特徴とする液晶装置の製造装置
  7. 請求項1から6のいずれか一項に記載の液晶装置の製造装置であって、
    前記光源から照射される前記光は、可視光領域の波長を有することを特徴とする液晶装
    置の製造装置。
  8. 請求項7に記載の液晶装置の製造装置であって、
    前記光源から照射される前記光は、470nm〜650nmの波長を有することを特徴
    とする液晶装置の製造装置。
  9. 請求項8に記載の液晶装置の製造装置であって、
    前記光源から照射される前記光は、531nm〜556nmの波長を有することを特徴
    とする液晶装置の製造装置。
  10. 請求項9に記載の液晶装置の製造装置であって、
    前記光源から照射される前記光は、531nm〜533nmの波長を有することを特徴
    とする液晶装置の製造装置。
  11. 互いに対向して配置された一対の基板と、前記一対の基板の間に挟持された液晶層と、
    を備えた液晶パネルを用意する工程と、
    前記液晶パネルの前記一対の基板のうちの一方の外側に基準偏光子を対向配置するとと
    もに、前記一対の基板のうちの他方の外側に第1の光学フィルムを対向配置した状態で、
    前記基準偏光子と前記液晶パネルと前記第1の光学フィルムとを透過するように光源から
    光を照射し、前記基準偏光子と前記液晶パネルと前記第1の光学フィルムとのうちの少な
    くとも2つを対向する面内で回転させて、前記基準偏光子と前記液晶パネルと前記第1の
    光学フィルムとを透過した光の強度を測定する第1の工程と、
    前記透過した前記光の強度の測定結果に基づいて前記基準偏光子に対する前記液晶パネ
    ルと前記第1の光学フィルムとの対向する面内における相対的な位置関係を決定し、前記
    第1の光学フィルムを前記液晶パネルの前記他方の表面に貼り付ける第2の工程と、を含
    み、
    前記光源から照射される前記光は略平行光であることを特徴とする液晶装置の製造方法
  12. 請求項11に記載の液晶装置の製造方法であって、
    前記光源はメタルハライド光源であり、
    前記メタルハライド光源から射出される光を、平行化手段を用いて略平行化して照射す
    ることを特徴とする液晶装置の製造方法。
  13. 請求項12に記載の液晶装置の製造方法であって、
    前記平行化手段はコリメートレンズであることを特徴とする液晶装置の製造方法。
  14. 請求項12に記載の液晶装置の製造方法であって、
    前記平行化手段は凹部を有する反射鏡であることを特徴とする液晶装置の製造方法。
  15. 請求項11に記載の液晶装置の製造方法であって、
    前記光源はレーザー光源であることを特徴とする液晶装置の製造方法。
  16. 請求項15に記載の液晶装置の製造方法であって、
    前記レーザー光源は直線偏光を射出し、
    前記レーザー光源から射出される前記直線偏光を、遅相軸が前記直線偏光の偏光軸に対
    して45度の角度をなすように配置された1/4波長板を通して、前記基準偏光子に照射
    することを特徴とする液晶装置の製造方法。
  17. 請求項11から16のいずれか一項に記載の液晶装置の製造方法であって、
    前記光源から照射される前記光は、可視光領域の波長を有することを特徴とする液晶装
    置の製造方法。
  18. 請求項17に記載の液晶装置の製造方法であって、
    前記光源から照射される前記光は、470nm〜650nmの波長を有することを特徴
    とする液晶装置の製造方法。
  19. 請求項18に記載の液晶装置の製造方法であって、
    前記光源から照射される前記光は、531nm〜556nmの波長を有することを特徴
    とする液晶装置の製造方法。
  20. 請求項19に記載の液晶装置の製造方法であって、
    前記光源から照射される前記光は、531nm〜533nmの波長を有することを特徴
    とする液晶装置の製造方法。
  21. 請求項11から20のいずれか一項に記載の液晶装置の製造方法であって、
    前記第2の工程の後に、
    前記液晶パネルの前記第1の光学フィルムが貼り付けられた側とは反対側に第2の光学
    フィルムを対向配置した状態で、前記第1の光学フィルムと前記液晶パネルと前記第2の
    光学フィルムとを透過するように前記光源から光を照射し、前記液晶パネルと前記第2の
    光学フィルムとのうちの少なくとも1つを対向する面内で回転させて、前記第1の光学フ
    ィルムと前記液晶パネルと前記第2の光学フィルムとを透過した光の強度を測定する第3
    の工程と、
    前記透過した前記光の強度の測定結果に基づいて前記液晶パネルに対する前記第2の光
    学フィルムの対向する面内における相対的な位置関係を決定し、前記第2の光学フィルム
    を前記液晶パネルの前記反対側に貼り付ける第4の工程と、
    をさらに含むことを特徴とする液晶装置の製造方法。
JP2008315309A 2008-12-11 2008-12-11 液晶装置の製造装置および液晶装置の製造方法 Withdrawn JP2010139679A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315309A JP2010139679A (ja) 2008-12-11 2008-12-11 液晶装置の製造装置および液晶装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315309A JP2010139679A (ja) 2008-12-11 2008-12-11 液晶装置の製造装置および液晶装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010139679A true JP2010139679A (ja) 2010-06-24

Family

ID=42349892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315309A Withdrawn JP2010139679A (ja) 2008-12-11 2008-12-11 液晶装置の製造装置および液晶装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010139679A (ja)

Similar Documents

Publication Publication Date Title
JP5521305B2 (ja) 液晶装置の製造方法および液晶装置
KR100789512B1 (ko) 액정 표시 소자
US9664945B2 (en) Display apparatus
KR19990077709A (ko) 반사형 표시 장치
KR100787899B1 (ko) 반사형 액정표시장치용 기판 및 그것을 이용한 반사형액정표시장치
WO2015104927A1 (ja) 液晶表示装置
JP2010139760A (ja) 表示装置
JP2010096948A (ja) 光学フィルム、液晶装置の製造方法
JP2010113109A (ja) 電気光学装置の製造方法
JP5254477B2 (ja) 液晶表示装置
JP2010139679A (ja) 液晶装置の製造装置および液晶装置の製造方法
KR101398556B1 (ko) 반투과형 액정 표시 장치
JP2005257904A (ja) 液晶表示装置
JP2011081231A (ja) 液晶装置用基板および液晶装置の製造方法、並びに液晶装置、電子機器
JP2010160384A (ja) 液晶装置の製造方法
JP2001066598A (ja) 反射型液晶表示装置
JP2010072394A (ja) 液晶装置の製造方法
JP5397989B2 (ja) 液晶表示装置
US9804438B2 (en) Liquid crystal display device
KR20190004869A (ko) 표시 장치
JP2010145898A (ja) 液晶装置の製造装置および液晶装置の製造方法
JP5252849B2 (ja) 液晶表示装置
JP2009086185A (ja) 液晶表示素子
JP4477608B2 (ja) 反射型液晶表示装置用基板およびそれを用いた反射型液晶表示装置
JP4492814B2 (ja) 反射型液晶表示装置用基板およびそれを用いた反射型液晶表示装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306