JP2010138791A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP2010138791A
JP2010138791A JP2008315669A JP2008315669A JP2010138791A JP 2010138791 A JP2010138791 A JP 2010138791A JP 2008315669 A JP2008315669 A JP 2008315669A JP 2008315669 A JP2008315669 A JP 2008315669A JP 2010138791 A JP2010138791 A JP 2010138791A
Authority
JP
Japan
Prior art keywords
sensor
air
fuel ratio
output
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008315669A
Other languages
Japanese (ja)
Inventor
Katsuhiro Shoda
勝博 正田
Keiji Teramura
圭司 寺村
Kentaro Maki
健太郎 牧
Toshinori Okano
俊紀 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008315669A priority Critical patent/JP2010138791A/en
Publication of JP2010138791A publication Critical patent/JP2010138791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To furthermore reduce HC and CO emissions by adjusting a correction amount to instantaneously shift a control center of air-fuel ratio feedback control to a lean side. <P>SOLUTION: This air-fuel ratio control device includes: a correction amount calculation section comparing output of a rear O<SB>2</SB>sensor with a determining value to determine whether the output of the sensor is rich or lean and calculating a correction amount FACF for displacing a center of air-fuel ratio control according to a determination result; a correction amount adjustment section comparing the output of the rear O<SB>2</SB>sensor with a threshold on a richer side than the determination value, and shifting the center of control to the lean side by subtracting the correction amount FACF by a subtracted value FACFOFM when the output of the sensor reaches the threshold; and an air-fuel ratio control section controlling feedback control over an air-fuel ratio based on the output of a front O<SB>2</SB>sensor and the correction amount FACF. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、触媒による排気ガス浄化能率を保つ目的で実施される空燃比の制御に関する。   The present invention relates to air-fuel ratio control performed for the purpose of maintaining exhaust gas purification efficiency by a catalyst.

一般に、自動車等の排気通路には、内燃機関から排出される排気ガス中に含まれるHC、CO及びNOxを酸化/還元して無害化する触媒が装着されている。HC、CO及びNOxの全てを効率よく浄化するには、空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収束させる必要がある。 Generally, the exhaust passage such as an automobile, HC contained in the exhaust gas discharged from an internal combustion engine, a catalyst to detoxify by oxidation / reduction of CO and NO x are mounted. In order to efficiently purify all of HC, CO, and NO x , it is necessary to make the air-fuel ratio converge to a certain range near the theoretical air-fuel ratio called a window.

そのために、触媒の上流及び下流にそれぞれO2センサを配し、フロント、リア両センサの出力信号を用いる二重のフィードバックループを構築して空燃比を制御することが行われる(例えば、下記特許文献を参照)。従前の空燃比制御方法では、リアO2センサの出力がリッチであるかリーンであるかを判定し、その判定結果に応じて補正量FACFを算出する。補正量FACFは、フロントO2センサの出力を参照した空燃比フィードバック制御における制御中心をリーン側あるいはリッチ側に変位させ、触媒内での空燃比をウィンドウ内に維持する役割を果たす。 For this purpose, an O 2 sensor is arranged upstream and downstream of the catalyst, and a double feedback loop using the output signals of both the front and rear sensors is constructed to control the air-fuel ratio (for example, the following patents) See literature). In the conventional air-fuel ratio control method, it is determined whether the output of the rear O 2 sensor is rich or lean, and the correction amount FACF is calculated according to the determination result. The correction amount FACF serves to maintain the air-fuel ratio in the catalyst within the window by displacing the control center in the air-fuel ratio feedback control referring to the output of the front O 2 sensor to the lean side or the rich side.

近時では、強化された排気ガス規制に対応して、触媒のOSC(酸素吸蔵能力)が大きくなる傾向にある。OSCが大きいと、触媒の上流で空燃比が変動したとしても、リアO2センサの出力信号にはすぐには変化が現れない。それ故、リアO2センサの出力がリーンからリッチへの遷移を示したときには既に触媒内の酸素が不足してしまっており、HC及びCOの浄化能率が低下してこれらの排出量が増加することがあった。
特許第2790896号公報 特許第2912478号公報 特開2007−187119号公報
Recently, the OSC (oxygen storage capacity) of the catalyst tends to increase in response to the stricter exhaust gas regulations. If the OSC is large, even if the air-fuel ratio fluctuates upstream of the catalyst, the output signal of the rear O 2 sensor does not change immediately. Therefore, when the output of the rear O 2 sensor shows a transition from lean to rich, the oxygen in the catalyst is already insufficient, and the purification efficiency of HC and CO is reduced, and these emissions are increased. There was a thing.
Japanese Patent No. 2790896 Japanese Patent No. 2912478 JP 2007-187119 A

上述の問題に鑑みてなされた本発明は、HC及びCOの排出量の一層の低減を図ることを所期の目的としている。   The present invention, which has been made in view of the above problems, is intended to further reduce HC and CO emissions.

本発明では、内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられるフロントO2センサと、前記触媒の下流に設けられるリアO2センサと、前記リアO2センサの出力を所定の判定値と比較してセンサ出力がリッチであるかリーンであるかを判定し、その判定結果に応じて空燃比の制御中心を変位させるための補正量を算出する補正量算出部と、前記リアO2センサの出力を前記判定値よりもリッチ側にある閾値と比較して、センサ出力がその閾値に達しているときに、前記補正量を前記制御中心がリーン側に変位する方向に加減する補正量加減部と、前記フロントO2センサの出力及び前記補正量を基に空燃比のフィードバック制御を行う空燃比制御部とを具備する空燃比制御装置を構成した。 In the present invention, the front O 2 sensor provided upstream of the exhaust gas purifying catalyst mounted in the exhaust passage of the internal combustion engine, the rear O 2 sensor provided downstream of the catalyst, and the output of the rear O 2 sensor A correction amount calculating unit that determines whether the sensor output is rich or lean by comparing with a predetermined determination value, and calculates a correction amount for displacing the control center of the air-fuel ratio according to the determination result; The direction in which the control center is displaced to the lean side when the output of the rear O 2 sensor is compared with the threshold value on the rich side with respect to the determination value and the sensor output has reached the threshold value. An air-fuel ratio control device is provided that includes a correction amount adjustment unit that adjusts to and from the air-fuel ratio, and an air-fuel ratio control unit that performs feedback control of the air-fuel ratio based on the output of the front O 2 sensor and the correction amount.

周知の通り、O2センサは排気ガス中の酸素濃度に応じた電圧信号を出力する。O2センサの出力特性は、ウィンドウの範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、非線形なZ特性曲線を描く。 As is well known, the O 2 sensor outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas. The output characteristic of the O 2 sensor shows a steep slope with a large output change rate with respect to the air-fuel ratio in the window range, and gradually approaches a low saturation value in a lean region where the air-fuel ratio is larger than that, and a rich region where the air-fuel ratio is small Now draw a non-linear Z-characteristic curve that is asymptotic to the high-order saturation value.

その上で、リアO2センサの出力について詳細に調べると、空燃比リッチの状態が継続し、触媒内の酸素が不足してHCやCOの排出量が増大する状況では、リアO2センサの出力がオーバーシュート的に高い値を示すことが確認された。このことを利用して、本発明では、リアO2センサの出力がリッチ/リーンの判定値よりも高い閾値に到達した際に、補正量を加減して空燃比フィードバック制御の制御中心を即時にリーン側にシフトするようにした。これにより、HC及びCOの浄化能率の低下を抑制でき、特に触媒のOSCが大きい場合におけるHC、COの一時的な排出増を回避することが可能になる。 Then, when the output of the rear O 2 sensor is examined in detail, in a situation where the air-fuel ratio rich state continues and the amount of HC and CO emissions increases due to insufficient oxygen in the catalyst, the rear O 2 sensor It was confirmed that the output showed a high overshoot value. By utilizing this fact, in the present invention, when the output of the rear O 2 sensor reaches a threshold value that is higher than the rich / lean judgment value, the correction amount is adjusted and the control center of the air-fuel ratio feedback control is immediately set. Shifted to the lean side. Accordingly, it is possible to suppress a decrease in the purification efficiency of HC and CO, and it is possible to avoid a temporary increase in HC and CO emissions particularly when the catalyst OSC is large.

本発明によれば、HC及びCOの排出量の一層の低減を図り得る。   According to the present invention, HC and CO emissions can be further reduced.

本発明の一実施形態を、図面を参照して説明する。図1に1気筒の構成を概略的に示した内燃機関100は、例えば自動車に搭載されるものである。内燃機関100の吸気系1には、アクセルペダル(図示せず)の踏込量に応じて開閉するスロットルバルブ11を設けており、スロットルバルブ11の下流にはサージタンク13を一体に有する吸気マニホルド12を取り付けている。シリンダ2上部に形成される燃焼室21の天井部には点火プラグ8を、吸気マニホルド12の吸気ポート側端部には燃料噴射弁3を、それぞれ設けている。   An embodiment of the present invention will be described with reference to the drawings. An internal combustion engine 100 schematically showing the configuration of one cylinder in FIG. 1 is mounted on, for example, an automobile. The intake system 1 of the internal combustion engine 100 is provided with a throttle valve 11 that opens and closes according to the amount of depression of an accelerator pedal (not shown), and an intake manifold 12 that integrally has a surge tank 13 downstream of the throttle valve 11. Is attached. A spark plug 8 is provided at the ceiling of the combustion chamber 21 formed at the top of the cylinder 2, and a fuel injection valve 3 is provided at the end of the intake manifold 12 on the intake port side.

内燃機関100の排気系5には、排気マニホルド51を取り付け、かつ排気ガス浄化用の三元触媒52を装着している。そして、触媒52の上流にフロントO2センサ53を、下流にリアO2センサ54を、それぞれ設けている。これらO2センサ53、54は、排気ガスに接触して反応することにより、排気ガス中の酸素濃度に応じた電圧信号を出力する。 An exhaust manifold 51 is attached to the exhaust system 5 of the internal combustion engine 100, and a three-way catalyst 52 for exhaust gas purification is attached. A front O 2 sensor 53 is provided upstream of the catalyst 52 and a rear O 2 sensor 54 is provided downstream. These O 2 sensors 53 and 54 output a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas.

吸気系1と排気系5との間は、EGR(排気ガス再循環)装置6を介して接続する。EGR装置6は、始端が排気マニホルド51に連通し終端がサージタンク13に連通するEGR通路61と、EGR通路61上に設けた外部EGRバルブ62とを要素とする。   The intake system 1 and the exhaust system 5 are connected via an EGR (exhaust gas recirculation) device 6. The EGR device 6 includes an EGR passage 61 having a start end communicating with the exhaust manifold 51 and a terminal end communicating with the surge tank 13, and an external EGR valve 62 provided on the EGR passage 61.

内燃機関100の運転制御を司るECU(電子制御装置)4は、中央演算装置41、記憶装置42、入力インタフェース43、出力インタフェース44等を有するマイクロコンピュータシステムである。入力インタフェース43には、吸気負圧を検出する圧力センサ71から出力される吸気負圧信号a、エンジン回転数を検出する回転数センサ72から出力される回転数信号b、車速を検出する車速センサ73から出力される車速信号c、アイドルスイッチ74から出力されるIDL信号d、冷却水温を検出する水温センサ76から出力される水温信号f、燃焼圧の変化によりノッキングの状態を検出するノッキングセンサ75から出力されるノッキング信号e、吸気カムシャフト91の端部にあるタイミングセンサ93から出力されるクランク角度信号及び気筒判別用信号g、排気カムシャフト92の端部にあるタイミングセンサ94から240°CA(クランク角度)回転毎に出力される排気カム信号h、フロントO2センサ53から出力される上流側空燃比信号i、リアO2センサ54から出力される下流側空燃比信号j等が入力される。 An ECU (electronic control unit) 4 that controls operation of the internal combustion engine 100 is a microcomputer system having a central processing unit 41, a storage unit 42, an input interface 43, an output interface 44, and the like. The input interface 43 includes an intake negative pressure signal a output from a pressure sensor 71 that detects intake negative pressure, a rotation speed signal b output from a rotation speed sensor 72 that detects engine rotation speed, and a vehicle speed sensor that detects vehicle speed. 73, a vehicle speed signal c output from the idle switch 74, an IDL signal d output from the idle switch 74, a water temperature signal f output from the water temperature sensor 76 for detecting the cooling water temperature, and a knocking sensor 75 for detecting the knocking state based on a change in combustion pressure. From the timing sensor 93 at the end of the intake camshaft 91, the cylinder discrimination signal g from the timing sensor 93 at the end of the intake camshaft 91, and 240 ° CA from the timing sensor 94 at the end of the exhaust camshaft 92. (Crank angle) Exhaust cam signal h output at each rotation, output from front O 2 sensor 53 The upstream air-fuel ratio signal i and the downstream air-fuel ratio signal j output from the rear O 2 sensor 54 are input.

出力インタフェース44からは、燃料噴射弁3に対して燃料噴射信号n、点火プラグ8に対して点火信号m、EGRバルブ62に対してバルブ開度信号o等を出力する。   From the output interface 44, a fuel injection signal n is output to the fuel injection valve 3, an ignition signal m is output to the spark plug 8, a valve opening signal o is output to the EGR valve 62, and the like.

中央演算装置41は、予め記憶装置42に格納されているプログラムを解釈、実行し、以て内燃機関100の燃焼噴射制御、EGR制御等を実行する。即ち、内燃機関100の運転制御に必要な各種情報a、b、c、d、e、f、g、h、i、jを入力インタフェース43を介して取得し、それらに基づいて制御入力である燃料噴射量、点火時期、EGRバルブ62の開度等を算出して、制御入力に対応した制御信号m、n、oを出力インタフェース44を介して印加する。   The central processing unit 41 interprets and executes a program stored in advance in the storage device 42, thereby executing combustion injection control, EGR control, and the like of the internal combustion engine 100. That is, various information a, b, c, d, e, f, g, h, i, and j necessary for operation control of the internal combustion engine 100 are acquired through the input interface 43, and control input is based on them. The fuel injection amount, the ignition timing, the opening degree of the EGR valve 62, and the like are calculated, and control signals m, n, and o corresponding to the control input are applied via the output interface 44.

空燃比制御に関して詳記する。本実施形態において、ECU4は、プログラムに従い上記ハードウェア資源を作動し、図2に示す空燃比制御部401、補正量算出部402及び補正量加減部403としての機能を発揮する。   The air-fuel ratio control will be described in detail. In the present embodiment, the ECU 4 operates the hardware resources according to a program, and exhibits functions as the air-fuel ratio control unit 401, the correction amount calculation unit 402, and the correction amount adjustment unit 403 shown in FIG.

空燃比制御部401は、混合気の空燃比を制御する。具体的には、まず、吸気負圧信号a、回転数信号b等から吸入空気量を算出して基本噴射量TPを決定する。次いで、この基本噴射量TPを、上流側空燃比信号iに応じて定まるフィードバック補正係数FAFで補正し、さらには内燃機関100の状況に応じて定まる各種補正係数Kや燃料噴射弁3の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(燃料噴射弁3に対する通電時間)Tを算定する。燃料噴射時間Tは、T=TP×FAF×K+TAUVとなる。しかして、燃料噴射時間Tだけ燃料噴射弁3に信号nを入力、燃料噴射弁3を開弁して吸気系1に燃料を噴射させる。   The air-fuel ratio control unit 401 controls the air-fuel ratio of the air-fuel mixture. Specifically, first, the basic injection amount TP is determined by calculating the intake air amount from the intake negative pressure signal a, the rotation speed signal b, and the like. Next, the basic injection amount TP is corrected with a feedback correction coefficient FAF determined according to the upstream air-fuel ratio signal i, and various correction coefficients K determined according to the state of the internal combustion engine 100 and invalid injection of the fuel injection valve 3. The final fuel injection time (energization time for the fuel injection valve 3) T is calculated in consideration of the time TAUV. The fuel injection time T is T = TP × FAF × K + TAUV. Accordingly, the signal n is input to the fuel injection valve 3 for the fuel injection time T, the fuel injection valve 3 is opened, and fuel is injected into the intake system 1.

空燃比制御部401による、上流側空燃比信号iを参照したフィードバック制御は、例えば冷却水温が所定温度以上で、燃料カット中でなく、パワー増量中でなく、内燃機関100の始動から所定時間が経過し、フロントO2センサ53が活性中、圧力センサ71が正常である、等の諸条件が全て成立している場合に行う。 The feedback control with reference to the upstream air-fuel ratio signal i by the air-fuel ratio control unit 401 is performed, for example, when the cooling water temperature is equal to or higher than a predetermined temperature, the fuel is not being cut, the power is not being increased, and a predetermined time has elapsed from the start of the internal combustion engine 100. This is performed when all the conditions such as the elapse of time and the front O 2 sensor 53 being active and the pressure sensor 71 being normal are satisfied.

図3に示すように、空燃比制御部401は、フロントO2センサ53の出力電圧iを所定の判定値と比較して、判定値よりも高ければリッチ、判定値よりも低ければリーンと判定する。そして、センサ出力iがリーンからリッチに切り替わったときには、リッチ判定遅延時間TDRの経過を待って、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。その後、補正係数FAFを所定時間当たりリーン積分値KIMだけ逓減させる。補正係数FAFの減少に伴い、燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。 As shown in FIG. 3, the air-fuel ratio control unit 401 compares the output voltage i of the front O 2 sensor 53 with a predetermined determination value, and determines that it is rich if it is higher than the determination value and lean if it is lower than the determination value. To do. When the sensor output i is switched from lean to rich, the feedback correction coefficient FAF is decreased by the skip value RSM after the rich determination delay time TDR has elapsed. Thereafter, the correction coefficient FAF is decreased by a lean integral value KIM per predetermined time. As the correction coefficient FAF decreases, the fuel injection amount is reduced, and the air-fuel ratio of the air-fuel mixture moves toward lean.

あるいは、センサ出力iがリッチからリーンに切り替わったときには、リーン判定遅延時間TDLの経過を待って、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。その後、補正係数FAFを所定時間当たりリッチ積分値KIPだけ逓増させる。補正係数FAFの増加に伴い、燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。   Alternatively, when the sensor output i is switched from rich to lean, the feedback correction coefficient FAF is increased by the skip value RSP after the lean determination delay time TDL has elapsed. Thereafter, the correction coefficient FAF is increased by the rich integral value KIP per predetermined time. As the correction coefficient FAF increases, the fuel injection amount is increased and the air-fuel ratio of the air-fuel mixture becomes richer.

遅延時間TDR、TDLは、制御中心補正量FACFに応じて増減する。図4に、補正量FACFと遅延時間TDR、TDLとの関係を例示する。補正量FACFが大きくなるほど、リッチ判定遅延時間TDRは延長され、リーン判定遅延時間TDLは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果として、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御の制御中心がリッチ側に変位する。   The delay times TDR and TDL increase or decrease according to the control center correction amount FACF. FIG. 4 illustrates the relationship between the correction amount FACF and the delay times TDR and TDL. As the correction amount FACF increases, the rich determination delay time TDR is extended and the lean determination delay time TDL is shortened. In this case, the time when the feedback correction coefficient FAF starts to decrease is delayed, and the time when the feedback correction coefficient FAF starts to increase increases. As a result, the fuel injection amount increases on average, and the control center of the air-fuel ratio feedback control is displaced to the rich side.

他方、補正量FACFが小さくなるほど、リッチ判定遅延時間TDRは短縮され、リーン判定遅延時間TDLは延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果として、燃料噴射量が平均的に減ることとなり、空燃比フィードバック制御の制御中心がリーン側に変位する。   On the other hand, the smaller the correction amount FACF, the shorter the rich determination delay time TDR and the lean determination delay time TDL. Then, the time when the feedback correction coefficient FAF starts to decrease from the increase is advanced, and the time when the feedback correction coefficient FAF starts to increase is delayed. As a result, the fuel injection amount decreases on average, and the control center of the air-fuel ratio feedback control is displaced to the lean side.

補正量算出部402は、上記の制御中心補正量FACFを算出する。補正量算出部402による、下流側空燃比信号jを参照したフィードバック制御は、例えば冷却水温が所定温度以上で、空燃比制御部401による空燃比フィードバック制御の開始から所定時間が経過し、フロントO2センサ53が活性してから所定時間が経過し、過渡期の燃料補正量が所定値を下回り、アイドリング状態で車速が0または非アイドリング状態で所定の運転領域にある、等の諸条件が全て成立している場合に行う。 The correction amount calculation unit 402 calculates the control center correction amount FACF. In the feedback control with reference to the downstream air-fuel ratio signal j by the correction amount calculation unit 402, for example, the cooling water temperature is equal to or higher than a predetermined temperature, and a predetermined time elapses from the start of the air-fuel ratio feedback control by the air-fuel ratio control unit 401. 2 All the conditions such as the predetermined time has elapsed since the sensor 53 was activated, the fuel correction amount in the transition period is less than the predetermined value, the vehicle speed is 0 in the idling state, or in the predetermined operating range in the non-idling state, etc. Performed if established.

図5に示すように、補正量算出部402は、リアO2センサ54の出力電圧jを所定の判定値と比較して、判定値よりも高ければリッチ、判定値よりも低ければリーンと判定する。そして、センサ出力jがリッチである間は、制御中心補正量FACFを所定時間当たりリーン積分値FACFKIMだけ逓減させる。既に述べたように、補正量FACFの減少に伴い、空燃比フィードバック制御の制御中心はリーンへと向かう。 As shown in FIG. 5, the correction amount calculation unit 402 compares the output voltage j of the rear O 2 sensor 54 with a predetermined determination value, and determines that it is rich if it is higher than the determination value and lean if it is lower than the determination value. To do. While the sensor output j is rich, the control center correction amount FACF is gradually decreased by the lean integral value FACFKIM per predetermined time. As already described, as the correction amount FACF decreases, the control center of the air-fuel ratio feedback control moves toward lean.

逆に、センサ出力jがリーンである間は、制御中心補正量FACFを所定時間当たりリッチ積分値FACFKIPだけ逓増させる。補正量FACFの増加に伴い、空燃比フィードバック制御の制御中心はリッチへと向かう。   Conversely, while the sensor output j is lean, the control center correction amount FACF is increased by the rich integral value FACFKIP per predetermined time. As the correction amount FACF increases, the control center of the air-fuel ratio feedback control becomes richer.

その上で、補正量加減部403は、リアO2センサ54の出力電圧jを上記の判定値よりも高い閾値と比較し、センサ出力jがその閾値に達しているときに、制御中心補正量FACFを加減して空燃比フィードバック制御の制御中心をリーン側にシフトさせる。 After that, the correction amount adjusting unit 403 compares the output voltage j of the rear O 2 sensor 54 with a threshold value higher than the determination value, and when the sensor output j has reached the threshold value, the control center correction amount. The control center of the air-fuel ratio feedback control is shifted to the lean side by adjusting the FACF.

図5に示しているように、空燃比リッチの状態が継続し、触媒52内の酸素が不足してHCやCOの排出量が増大する状況では、リアO2センサ54の出力jがオーバーシュート的に高い値を示す。その出力電圧値は、リーン/リッチの判定値(図示例では、0.7V)を超越する。このような状況に際して、本実施形態では、制御中心補正量FACFを減算値FACFOFMだけ減算する。減算値FACFOFMは、リアO2センサ54の出力jの多寡に応じて増減する。具体的には、出力電圧jが高くなるほど、減算値FACFOFMは大きくなり、故に制御中心補正量FACFは減少する。出力電圧jが閾値(図示例では、0.8V)を下回るとき、減算値FACFOFMは0となる。 As shown in FIG. 5, in a situation where the air-fuel ratio rich state continues and the amount of HC and CO emissions increases due to insufficient oxygen in the catalyst 52, the output j of the rear O 2 sensor 54 overshoots. High value. The output voltage value exceeds the lean / rich determination value (0.7 V in the illustrated example). In such a situation, in the present embodiment, the control center correction amount FACF is subtracted by the subtraction value FACFOFM. The subtraction value FACFOFM increases or decreases in accordance with the output j of the rear O 2 sensor 54. Specifically, as the output voltage j increases, the subtraction value FACFOFM increases, and therefore the control center correction amount FACF decreases. When the output voltage j is lower than the threshold value (0.8 V in the illustrated example), the subtraction value FACFOFM becomes zero.

図5中、実線は補正量FACFを減じた場合を示し、破線は補正量FACFを減じなかった場合を示している。後者に比して前者の方が、HC、COの排出が少なくなる。   In FIG. 5, the solid line indicates the case where the correction amount FACF is reduced, and the broken line indicates the case where the correction amount FACF is not reduced. Compared to the latter, the former emits less HC and CO.

図6に、制御中心補正量FACFの算定処理の手順を示す。ECU4は、リアO2センサ54の出力jがリッチであるかリーンであるかを判定し(ステップS1)、リッチであれば補正量FACFをリーン積分値FACFKIMだけ減算し(ステップS2)、リーンであれば補正量FACFをリッチ積分値FACFKIPだけ加算する(ステップS3)。さらに、リアO2センサ54の出力jが閾値を上回っているならば(ステップS4)、その出力値jの多寡に応じた減算値FACFOFMを決定して(ステップS5)、補正量FACFを減算値FACFOFMだけ減算する(ステップS6)。ECU4は、以上のステップS1ないしS6を反復的に実行する。 FIG. 6 shows a procedure for calculating the control center correction amount FACF. The ECU 4 determines whether the output j of the rear O 2 sensor 54 is rich or lean (step S1). If the output j is rich, the ECU 4 subtracts the correction amount FACF by the lean integral value FACFKIM (step S2). If there is, the correction amount FACF is added by the rich integral value FACFKIP (step S3). Further, if the output j of the rear O 2 sensor 54 exceeds the threshold value (step S4), a subtraction value FACFOFM corresponding to the output value j is determined (step S5), and the correction amount FACF is subtracted from the subtraction value. Only FACFOFM is subtracted (step S6). The ECU 4 repeatedly executes the above steps S1 to S6.

本実施形態によれば、内燃機関100の排気通路5に装着された触媒52の上流に設けられるフロントO2センサ53と、前記触媒52の下流に設けられるリアO2センサ54と、前記リアO2センサ54の出力jを所定の判定値と比較してセンサ出力jがリッチであるかリーンであるかを判定し、その判定結果に応じて空燃比の制御中心を変位させるための補正量FACFを算出する補正量算出部402と、前記リアO2センサ54の出力jを前記判定値よりもリッチ側にある閾値と比較して、センサ出力jがその閾値に達しているときに、前記補正量FACFを前記制御中心がリーン側に変位する方向に加減する補正量加減部403と、前記フロントO2センサ53の出力i及び前記補正量FACFを基に空燃比のフィードバック制御を行う空燃比制御部401とを具備する空燃比制御装置を構成したため、触媒52のOSCが大きくなったことに付随するリアO2センサ54の出力jの変化の遅れの問題を有効に回避でき、HC及びCOの排出量の低減に資する。触媒52のOSCが大きくなれば、その分だけ混合気の空燃比の上下動に対するロバスト性が向上し、排気ガス浄化能率を高く保つことが可能となる。 According to this embodiment, the front O 2 sensor 53 provided upstream of the catalyst 52 mounted in the exhaust passage 5 of the internal combustion engine 100, the rear O 2 sensor 54 provided downstream of the catalyst 52, and the rear O 2 The output j of the sensor 54 is compared with a predetermined determination value to determine whether the sensor output j is rich or lean, and the correction amount FACF for displacing the control center of the air-fuel ratio according to the determination result When the sensor output j has reached the threshold value, the correction amount calculation unit 402 for calculating the output j and the output j of the rear O 2 sensor 54 are compared with a threshold value on the richer side than the determination value. A correction amount adjusting unit 403 that adjusts the amount FACF in a direction in which the control center is displaced toward the lean side, and an air-fuel ratio feedback control based on the output i of the front O 2 sensor 53 and the correction amount FACF. Since the air-fuel ratio control device including the air-fuel ratio control unit 401 is configured, the problem of delay in the change of the output j of the rear O 2 sensor 54 accompanying the increase in the OSC of the catalyst 52 can be effectively avoided. And contribute to the reduction of CO emissions. If the OSC of the catalyst 52 is increased, the robustness against the vertical movement of the air-fuel ratio of the air-fuel mixture is improved accordingly, and the exhaust gas purification efficiency can be kept high.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、リアO2センサ54の出力電圧jが所定閾値以上にリッチとなったとき、制御中心補正量FACF(ひいては、遅延時間TDR、TDN)を加減するようにしていたが、これ以外に、リッチ積分KIP及び/またはリーン積分KIMを加減することによってフィードバック制御中心をリーン側にシフトするということも考えられる。並びに、スキップ値RSP及び/またはRSMを加減することによってフィードバック制御中心をリーン側にシフトするということも考えられる。 The present invention is not limited to the embodiment described in detail above. For example, in the above embodiment, when the output voltage j of the rear O 2 sensor 54 becomes richer than a predetermined threshold, the control center correction amount FACF (and thus the delay times TDR and TDN) is adjusted. In addition, it is also conceivable to shift the feedback control center to the lean side by adjusting the rich integral KIP and / or the lean integral KIM. It is also conceivable to shift the feedback control center to the lean side by adjusting the skip value RSP and / or RSM.

その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit, the processing procedure, and the like can be variously modified without departing from the spirit of the present invention.

本発明の一実施形態の空燃比制御装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the air fuel ratio control apparatus of one Embodiment of this invention. 同実施形態の空燃比制御装置のブロック線図。The block diagram of the air fuel ratio control apparatus of the embodiment. フロントO2センサの出力を参照した空燃比フィードバック制御の模様を示すタイミング図。Timing diagram illustrating the pattern of the air-fuel ratio feedback control with reference to the output of the front O 2 sensor. 制御中心補正量FACFと遅延時間TDR、TDLとの関係を例示するグラフ。The graph which illustrates the relationship between control center correction amount FACF and delay time TDR, TDL. リアO2センサの出力を参照した空燃比フィードバック制御の模様を示すタイミング図。Timing diagram illustrating the pattern of the air-fuel ratio feedback control with reference to the output of the rear O 2 sensor. ECUが実行する処理の手順を示すフロー図。The flowchart which shows the procedure of the process which ECU performs.

符号の説明Explanation of symbols

401…空燃比制御部
402…補正量算出部
403…補正量加減部
53…フロントO2センサ
54…リアO2センサ
401 ... air-fuel ratio control unit 402 ... correction amount calculating unit 403 ... correction amount adjustment part 53 ... front O 2 sensor 54 ... rear O 2 sensor

Claims (1)

内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられるフロントO2センサと、
前記触媒の下流に設けられるリアO2センサと、
前記リアO2センサの出力を所定の判定値と比較してセンサ出力がリッチであるかリーンであるかを判定し、その判定結果に応じて空燃比の制御中心を変位させるための補正量を算出する補正量算出部と、
前記リアO2センサの出力を前記判定値よりもリッチ側にある閾値と比較して、センサ出力がその閾値に達しているときに、前記補正量を前記制御中心がリーン側に変位する方向に加減する補正量加減部と、
前記フロントO2センサの出力及び前記補正量を基に空燃比のフィードバック制御を行う空燃比制御部と
を具備する空燃比制御装置。
A front O 2 sensor provided upstream of an exhaust gas purifying catalyst mounted in an exhaust passage of the internal combustion engine;
A rear O 2 sensor provided downstream of the catalyst;
The output of the rear O 2 sensor is compared with a predetermined determination value to determine whether the sensor output is rich or lean, and a correction amount for displacing the control center of the air-fuel ratio is determined according to the determination result. A correction amount calculation unit for calculating,
The output of the rear O 2 sensor is compared with a threshold value on the richer side than the determination value, and when the sensor output reaches the threshold value, the correction amount is shifted in a direction in which the control center is displaced to the lean side. A correction amount adjustment unit to adjust,
An air-fuel ratio control device comprising an air-fuel ratio control unit that performs air-fuel ratio feedback control based on the output of the front O 2 sensor and the correction amount.
JP2008315669A 2008-12-11 2008-12-11 Air-fuel ratio control device Pending JP2010138791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008315669A JP2010138791A (en) 2008-12-11 2008-12-11 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008315669A JP2010138791A (en) 2008-12-11 2008-12-11 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JP2010138791A true JP2010138791A (en) 2010-06-24

Family

ID=42349127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008315669A Pending JP2010138791A (en) 2008-12-11 2008-12-11 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP2010138791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241574A (en) * 2011-05-18 2012-12-10 Daihatsu Motor Co Ltd Control device of internal combustion engine
JP2013002430A (en) * 2011-06-22 2013-01-07 Daihatsu Motor Co Ltd Control device of internal combustion engine
US20150089927A1 (en) * 2013-10-02 2015-04-02 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487846A (en) * 1987-09-30 1989-03-31 Japan Electronic Control Syst Air-fuel ratio control device for internal combustion engine
JPH10103139A (en) * 1996-10-01 1998-04-21 Nissan Motor Co Ltd Air-fuel ratio control device for engine
JP2790896B2 (en) * 1990-04-03 1998-08-27 ダイハツ工業株式会社 Air-fuel ratio control method for internal combustion engine
JP2912478B2 (en) * 1991-07-26 1999-06-28 ダイハツ工業株式会社 Air-fuel ratio control method for internal combustion engine
JP2001132514A (en) * 1999-11-01 2001-05-15 Tokyo Gas Co Ltd Exhaust emission control device for internal combustion engine and control method therefor
JP2005120870A (en) * 2003-10-15 2005-05-12 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2007187119A (en) * 2006-01-16 2007-07-26 Daihatsu Motor Co Ltd Air-fuel ratio control method of internal combustion engine
JP2008157132A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487846A (en) * 1987-09-30 1989-03-31 Japan Electronic Control Syst Air-fuel ratio control device for internal combustion engine
JP2790896B2 (en) * 1990-04-03 1998-08-27 ダイハツ工業株式会社 Air-fuel ratio control method for internal combustion engine
JP2912478B2 (en) * 1991-07-26 1999-06-28 ダイハツ工業株式会社 Air-fuel ratio control method for internal combustion engine
JPH10103139A (en) * 1996-10-01 1998-04-21 Nissan Motor Co Ltd Air-fuel ratio control device for engine
JP2001132514A (en) * 1999-11-01 2001-05-15 Tokyo Gas Co Ltd Exhaust emission control device for internal combustion engine and control method therefor
JP2005120870A (en) * 2003-10-15 2005-05-12 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2007187119A (en) * 2006-01-16 2007-07-26 Daihatsu Motor Co Ltd Air-fuel ratio control method of internal combustion engine
JP2008157132A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241574A (en) * 2011-05-18 2012-12-10 Daihatsu Motor Co Ltd Control device of internal combustion engine
JP2013002430A (en) * 2011-06-22 2013-01-07 Daihatsu Motor Co Ltd Control device of internal combustion engine
US20150089927A1 (en) * 2013-10-02 2015-04-02 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of internal combustion engine
US9677490B2 (en) 2013-10-02 2017-06-13 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP2014066154A (en) Control device of internal combustion engine
JP2010138791A (en) Air-fuel ratio control device
JP5843478B2 (en) Control device for internal combustion engine
JP4424248B2 (en) In-cylinder injection internal combustion engine control device
JP5832156B2 (en) Control device for internal combustion engine
JP5072812B2 (en) Air-fuel ratio control device
JP2007077913A (en) Fuel injection control device for internal combustion engine
JP6961307B2 (en) Internal combustion engine control device
JP2007187119A (en) Air-fuel ratio control method of internal combustion engine
JP4356249B2 (en) Exhaust gas purification device for internal combustion engine
JP7143032B2 (en) Control device for internal combustion engine
JP5794788B2 (en) Air-fuel ratio control device
JP6153344B2 (en) Air-fuel ratio control device
JP5004935B2 (en) Air-fuel ratio control method for internal combustion engine
JP2009024496A (en) Air-fuel ratio control system of internal combustion engine
JP4858493B2 (en) Exhaust purification catalyst deterioration judgment device
JP4103334B2 (en) Air-fuel ratio control device for internal combustion engine
JP4382717B2 (en) Control device for internal combustion engine
JP6188364B2 (en) Air-fuel ratio control device
JP2022142962A (en) Control device of internal combustion engine
JP2022142961A (en) Control device of internal combustion engine
JP2021139340A (en) Internal combustion engine control device
JP2022133865A (en) Control device for internal combustion engine
JP5084708B2 (en) Air-fuel ratio control method for internal combustion engine
JP4510319B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204