JP6188364B2 - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP6188364B2
JP6188364B2 JP2013056274A JP2013056274A JP6188364B2 JP 6188364 B2 JP6188364 B2 JP 6188364B2 JP 2013056274 A JP2013056274 A JP 2013056274A JP 2013056274 A JP2013056274 A JP 2013056274A JP 6188364 B2 JP6188364 B2 JP 6188364B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
output
catalyst
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013056274A
Other languages
Japanese (ja)
Other versions
JP2014181599A (en
Inventor
昌吾 樋口
昌吾 樋口
康高 有本
康高 有本
哲郎 大西
哲郎 大西
丹 功
功 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2013056274A priority Critical patent/JP6188364B2/en
Publication of JP2014181599A publication Critical patent/JP2014181599A/en
Application granted granted Critical
Publication of JP6188364B2 publication Critical patent/JP6188364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関における燃料噴射量を制御する空燃比制御装置に関する。   The present invention relates to an air-fuel ratio control device that controls a fuel injection amount in an internal combustion engine.

一般に、内燃機関の排気通路には、内燃機関から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、排気ガスの空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収束させる必要がある。そのために、触媒の上流及び下流にそれぞれフロントO2センサ、リアO2センサを配し、それらO2センサの出力信号を用いる二重のフィードバックループを構築して、空燃比をフィードバック制御する。 Generally, in the exhaust passage of an internal combustion engine, harmful substances HC contained in the exhaust gas discharged from an internal combustion engine, CO, three-way catalyst to harmless by oxidation / reduction of NO x is mounted. In order to efficiently purify all of HC, CO, and NO x , it is necessary to make the air-fuel ratio of the exhaust gas converge to a certain range near the stoichiometric air-fuel ratio called a window. For this purpose, a front O 2 sensor and a rear O 2 sensor are arranged upstream and downstream of the catalyst, respectively, and a double feedback loop using the output signals of these O 2 sensors is constructed to feedback control the air-fuel ratio.

下記特許文献に記載の空燃比制御装置は、図5に示すように、触媒の上流側のガスの空燃比を検出するフロントO2センサの出力電圧を目標となる電圧値(鎖線で表す)と比較して、その目標値よりも高ければリッチ、その目標値よりも低ければリーンと判定する。そして、フロントO2センサの出力がリーンからリッチに切り替わったときに、リッチ判定遅延時間TDRの経過を待って、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。その後、補正係数FAFを所定時間あたりリーン積分値KIMだけ逓減させる。補正係数FAFの減少に伴い、燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。 As shown in FIG. 5, the air-fuel ratio control device described in the following patent document has an output voltage of a front O 2 sensor that detects the air-fuel ratio of the gas upstream of the catalyst as a target voltage value (represented by a chain line). In comparison, if it is higher than the target value, it is determined to be rich, and if it is lower than the target value, it is determined to be lean. When the output of the front O 2 sensor is switched from lean to rich, the feedback correction coefficient FAF is decreased by the skip value RSM after the rich determination delay time TDR has elapsed. Thereafter, the correction coefficient FAF is decreased by a lean integral value KIM per predetermined time. As the correction coefficient FAF decreases, the fuel injection amount is reduced, and the air-fuel ratio of the air-fuel mixture moves toward lean.

フロントO2センサの出力がリッチからリーンに切り替わったときには、リーン判定遅延時間TDLの経過を待って、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。その後、補正係数FAFを所定時間あたりリッチ積分値KIPだけ逓増させる。補正係数FAFの増加に伴い、燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。 When the output of the front O 2 sensor is switched from rich to lean, the feedback correction coefficient FAF is increased by the skip value RSP after the lean determination delay time TDL has elapsed. Thereafter, the correction coefficient FAF is increased by the rich integral value KIP per predetermined time. As the correction coefficient FAF increases, the fuel injection amount is increased and the air-fuel ratio of the air-fuel mixture becomes richer.

遅延時間TDR、TDLは、触媒の下流におけるガスの空燃比の度合いを表す指標値FACFに応じて増減する。下記特許文献に記載の空燃比制御装置は、図3に示すように、触媒の下流側のガスの空燃比を検出するリアO2センサの出力電圧を目標となる電圧値(鎖線で表す)と比較して、その目標値よりも高ければリッチ、その目標値よりも低ければリーンと判定する。リアO2センサの出力がリッチである間は、指標値FACFを所定時間あたりリーン積分値FACFKIMだけ逓減させる。図6に示すように、指標値FACFが大きくなるほど、リッチ判定遅延時間TDR(実線で表す)は延長し、リーン判定遅延時間TDL(破線で表す)は短縮する。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比の制御中心がリッチ側に変位する。 The delay times TDR and TDL increase / decrease according to an index value FACF indicating the degree of the air / fuel ratio of the gas downstream of the catalyst. As shown in FIG. 3, the air-fuel ratio control device described in the following patent document has an output voltage of a rear O 2 sensor that detects an air-fuel ratio of gas downstream of the catalyst as a target voltage value (represented by a chain line). In comparison, if it is higher than the target value, it is determined to be rich, and if it is lower than the target value, it is determined to be lean. While the output of the rear O 2 sensor is rich, the index value FACF is decreased by a lean integrated value FACFKIM per predetermined time. As shown in FIG. 6, as the index value FACF increases, the rich determination delay time TDR (represented by a solid line) is extended, and the lean determination delay time TDL (represented by a broken line) is shortened. In this case, the time when the feedback correction coefficient FAF starts to decrease is delayed, and the time when the feedback correction coefficient FAF starts to increase increases. As a result, the fuel injection amount increases on average, and the control center of the air-fuel ratio is displaced to the rich side.

逆に、リアO2センサの出力がリーンである間は、指標値FACFを所定時間あたりリッチ積分値FACFKIPだけ逓増させる。指標値FACFが小さくなるほど、リッチ判定遅延時間TDRは短縮し、リーン判定遅延時間TDLは延長する。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、空燃比の制御中心がリーン側に変位する。 Conversely, while the output of the rear O 2 sensor is lean, the index value FACF is increased by the rich integrated value FACFKIP per predetermined time. As the index value FACF decreases, the rich determination delay time TDR decreases and the lean determination delay time TDL increases. Then, the time when the feedback correction coefficient FAF starts to decrease from the increase is advanced, and the time when the feedback correction coefficient FAF starts to increase is delayed. As a result, the fuel injection amount decreases on average, and the control center of the air-fuel ratio is displaced to the lean side.

下記特許文献に開示された制御手法では、リッチ判定遅延時間TDR、またはリーン判定遅延時間TDLが長くなったときに、フィードバック補正係数FAFの振動の周期が延びることとなる。補正係数FAFの振動周期が延びることは、触媒の上流におけるガスの空燃比がウィンドウから外れている期間が長くなることを意味し、有害物質HC及びCOまたはNOxの一時的な排出増を招く懸念が残る。 In the control method disclosed in the following patent document, when the rich determination delay time TDR or the lean determination delay time TDL becomes longer, the period of oscillation of the feedback correction coefficient FAF is extended. The extension of the oscillation cycle of the correction coefficient FAF means that the period during which the air-fuel ratio of the gas upstream of the catalyst is out of the window becomes longer, and causes a temporary increase in emission of harmful substances HC and CO or NO x. Concerns remain.

加えて、遅延時間TDR、TDLの増減調整による空燃比制御中心の変化のダイナミックレンジが小さい(空燃比制御中心の上下動が、理論空燃比に極近い狭小な範囲内に留まる)。それ故、リアO2センサの出力が明らかなリッチまたはリーンを示した、即ち触媒に吸蔵していた酸素が枯渇したか触媒の最大酸素吸蔵能力まで酸素が充満したときに、ガスの空燃比をリーン化またはリッチ化するための補正制御の応答性が遅いと言える。これもやはり、HC及びCOまたはNOxの排出増につながる。 In addition, the dynamic range of the change in the air-fuel ratio control center by adjusting the increase / decrease in the delay times TDR and TDL is small (the vertical movement of the air-fuel ratio control center remains within a narrow range very close to the theoretical air-fuel ratio). Therefore, when the rear O 2 sensor output shows clear rich or lean, that is, when the oxygen stored in the catalyst is depleted or the oxygen is filled up to the maximum oxygen storage capacity of the catalyst, the air-fuel ratio of the gas is reduced. It can be said that the response of the correction control for leaning or enrichment is slow. This is also again leads to an increase emission of HC and CO or NO x.

特開2013−002430号公報JP2013-002430A

本発明は、触媒による有害物質HC、CO、NOxの浄化能率を高く保ち、これら有害物質の排出量の一層の削減を図ることを所期の目的とする。 An object of the present invention is to maintain a high purification efficiency of harmful substances HC, CO, and NO x by a catalyst and to further reduce the emission amount of these harmful substances.

本発明では、内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流及び下流に設けられた空燃比センサの出力を参照して空燃比をフィードバック制御するものであって、触媒の上流の空燃比センサの出力と比較するべき目標値を、触媒の下流の空燃比センサの出力に基づく空燃比の度合いを表す指標値に応じて上下させることとし、触媒の下流の空燃比センサの出力とその目標値とを比較して、当該出力が目標値よりもリッチである間は前記指標値を単位時間あたり所定のリーン積分値だけ逓減させ、当該出力が目標値よりもリーンである間は前記指標値を単位時間あたり所定のリッチ積分値だけ逓増させる積分のみを行い、前記指標値の変化量に対する、触媒の上流の空燃比センサの出力と比較するべき前記目標値の変化量の比を、前記指標値が理論空燃比周辺の範囲内にあるときにはより小さく、前記指標値が当該理論空燃比周辺の範囲からリーン側またはリッチ側に偏倚しているときにはより大きく設定した空燃比制御装置を構成した。 In the present invention, the air-fuel ratio is feedback-controlled with reference to the outputs of the air-fuel ratio sensors provided upstream and downstream of the exhaust gas purifying catalyst mounted in the exhaust passage of the internal combustion engine. The target value to be compared with the output of the air-fuel ratio sensor is increased or decreased according to an index value representing the degree of air-fuel ratio based on the output of the air-fuel ratio sensor downstream of the catalyst, and the output of the air-fuel ratio sensor downstream of the catalyst And the target value, while the output is richer than the target value, the index value is decremented by a predetermined lean integral value per unit time, while the output is leaner than the target value performs only integral for gradually increasing the index value by a predetermined rich integration value per unit time, with respect to the amount of change in the index value, the ratio of the change amount of the target value to be compared with the output of the air-fuel ratio sensor upstream of the catalyst The air-fuel ratio control apparatus is configured to be smaller when the index value is within the range around the theoretical air-fuel ratio and larger when the index value is deviated from the range around the theoretical air-fuel ratio toward the lean side or the rich side. did.

本発明によれば、触媒による有害物質HC、CO、NOxの浄化能率を高く保ち、これら有害物質の排出量の一層の削減を図り得る。 According to the present invention, it is possible to maintain a high purification efficiency of the harmful substances HC, CO, and NO x by the catalyst and to further reduce the emission amount of these harmful substances.

本発明の一実施形態における内燃機関及び制御装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the internal combustion engine and control apparatus in one Embodiment of this invention. 同実施形態の空燃比制御装置による、フロントO2センサの出力と補正量FAFとの相関を示すタイミング図。FIG. 4 is a timing chart showing the correlation between the output of the front O 2 sensor and the correction amount FAF by the air-fuel ratio control apparatus of the same embodiment. 同実施形態の空燃比制御装置による、リアO2センサの出力と指標値FACFとの相関を示すタイミング図。By the air-fuel ratio control apparatus of the embodiment, a timing diagram illustrating the correlation between the output and the index value FACF rear O 2 sensor. 同実施形態の空燃比制御装置による、指標値FACFとフロントO2センサの出力の目標値との関係を示すグラフ。By the air-fuel ratio control apparatus of the embodiment, the graph showing the relationship between the target value of the output index values FACF and the front O 2 sensor. 従来の空燃比フィードバック制御における、フロントO2センサの出力と補正量FAFとの相関を示すタイミング図。Timing diagram illustrating a conventional air-fuel ratio feedback control, the correlation between the output of the front O 2 sensor and the correction amount FAF. 従来の空燃比フィードバック制御における、指標値FACFと遅延時間TDR、TDLとの関係を示すグラフ。The graph which shows the relationship between index value FACF and delay time TDR, TDL in the conventional air-fuel ratio feedback control.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式ガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition gasoline engine and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated by burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

さらに、排気通路4における触媒41の上流及び/または下流に、排気通路を流通する排気ガスの空燃比を検出するための空燃比センサ43、44を設置してある。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。本実施形態では、触媒41の上流側及び下流側の各空燃比センサ43、44について、排気ガス中の酸素濃度に応じた電圧信号を出力するO2センサを想定している。O2センサ43、44の出力特性は、ウィンドウの範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比が大きいリーン領域では低位飽和値に漸近し、空燃比が小さいリッチ領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。 Further, air-fuel ratio sensors 43 and 44 for detecting the air-fuel ratio of the exhaust gas flowing through the exhaust passage are installed upstream and / or downstream of the catalyst 41 in the exhaust passage 4. Each of the air-fuel ratio sensors 43 and 44 may be an O 2 sensor having a non-linear output characteristic with respect to the air-fuel ratio of the exhaust gas, or a linear A / F sensor having an output characteristic proportional to the air-fuel ratio of the exhaust gas. There may be. In the present embodiment, an O 2 sensor that outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas is assumed for each of the upstream and downstream air-fuel ratio sensors 43 and 44 of the catalyst 41. The output characteristics of the O 2 sensors 43 and 44 show a large and steep slope of the output change rate with respect to the air-fuel ratio in the window range, and asymptotically approach the low saturation value in the lean region where the air-fuel ratio is larger than that. In a small rich region, a so-called Z characteristic curve that draws an asymptotic approach to a high saturation value is drawn.

本実施形態の空燃比制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 that is an air-fuel ratio control apparatus of the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度として検出するセンサから出力されるアクセル開度信号c、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、機関の冷却水温を検出する水温センサから出力される冷却水温信号e、触媒41の上流側における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle and engine speed of the crankshaft, and depression of an accelerator pedal. An accelerator opening signal c output from a sensor that detects the amount or the opening of the throttle valve 32 as an accelerator opening, and a temperature / pressure sensor that detects the intake air temperature and intake pressure in the intake passage 3 (especially the surge tank 33). Is output from an air-fuel ratio sensor 43 that detects the air-fuel ratio of the exhaust gas upstream of the catalyst 41. The air-fuel ratio signal f to be output and the air-fuel ratio output from the air-fuel ratio sensor 44 for detecting the air-fuel ratio of the exhaust gas downstream of the catalyst 41 The ratio signal g, a cam angle signal h or the like to be output from the cam angle sensor is input in a plurality of cam angle of the intake camshaft or an exhaust camshaft.

出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k等を出力する。   From the output interface, an ignition signal i is output to the igniter of the spark plug 12, a fuel injection signal j is output to the injector 11, an opening operation signal k is output to the throttle valve 32, and the like.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミングといった運転パラメータを決定する。運転パラメータの決定手法自体は、既知のものを採用することが可能である。ECU0は、運転パラメータ及びユーザの操作に対応した各種制御信号i、j、kを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the intake volume. Then, operating parameters such as required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, and ignition timing are determined. As the operation parameter determination method itself, a known method can be adopted. The ECU 0 applies various control signals i, j, and k corresponding to operation parameters and user operations via an output interface.

以降、空燃比のフィードバック制御に関して詳記する。本実施形態のECU0は、フィードバックコントローラとして機能し、気筒1に充填される混合気の空燃比を制御する。具体的には、まず、吸気圧及び吸気温、エンジン回転数等から吸気量を算出して基本噴射量TPを決定する。次いで、この基本噴射量TPを、触媒41の上流側の空燃比に応じて定まるフィードバック補正係数FAFで補正し、さらには内燃機関の状況に応じて定まる各種補正係数Kやインジェクタ36の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間(インジェクタ11に対する通電時間)Tを算定する。燃料噴射時間Tは、T=TP×FAF×K+TAUVとなる。そして、燃料噴射時間Tだけインジェクタ11に信号jを入力、インジェクタ11を開弁して燃料を噴射させる。   Hereinafter, the air-fuel ratio feedback control will be described in detail. The ECU 0 of the present embodiment functions as a feedback controller and controls the air-fuel ratio of the air-fuel mixture that fills the cylinder 1. Specifically, first, the basic injection amount TP is determined by calculating the intake air amount from the intake pressure and intake air temperature, the engine speed, and the like. Next, the basic injection amount TP is corrected with a feedback correction coefficient FAF determined according to the air-fuel ratio on the upstream side of the catalyst 41. Further, various correction coefficients K determined according to the state of the internal combustion engine and the invalid injection time of the injector 36 The final fuel injection time (energization time for the injector 11) T is calculated in consideration of TAUV. The fuel injection time T is T = TP × FAF × K + TAUV. Then, the signal j is input to the injector 11 for the fuel injection time T, and the injector 11 is opened to inject fuel.

触媒41の上流側の空燃比信号fを参照したフィードバック制御は、例えば、内燃機関の冷却水温が所定温度以上であり、燃料カット中でなく、パワー増量中でなく、内燃機関の始動から所定時間が経過し、触媒41の上流側の空燃比センサ43が活性中、吸気圧が正常である、等の諸条件が全て成立している場合に行う。このことは、アイドル運転中においても同様である。   The feedback control with reference to the air-fuel ratio signal f on the upstream side of the catalyst 41 is performed, for example, when the cooling water temperature of the internal combustion engine is equal to or higher than a predetermined temperature, the fuel is not being cut, the power increase is not being performed, This is performed when all of the conditions such as the air-fuel ratio sensor 43 upstream of the catalyst 41 is active and the intake pressure is normal are satisfied. The same applies to the idling operation.

図2に示すように、ECU0は、触媒41の上流側のガスの空燃比を検出するセンサであるフロントO2センサ43の出力電圧fを、目標となる電圧値(鎖線で表す)と比較して、その目標値よりも高ければリッチ、その目標値よりも低ければリーンと判定する。そして、センサ出力fがリーンからリッチに切り替わったときには、遅延時間の経過を待つことなく、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。その後、補正係数FAFを所定時間あたりリーン積分値KIMだけ逓減させる。補正係数FAFの減少に伴い、燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。 As shown in FIG. 2, the ECU 0 compares the output voltage f of the front O 2 sensor 43, which is a sensor for detecting the air-fuel ratio of the gas upstream of the catalyst 41, with a target voltage value (represented by a chain line). If it is higher than the target value, it is determined to be rich, and if it is lower than the target value, it is determined to be lean. When the sensor output f is switched from lean to rich, the feedback correction coefficient FAF is decreased by the skip value RSM without waiting for the delay time to elapse. Thereafter, the correction coefficient FAF is decreased by a lean integral value KIM per predetermined time. As the correction coefficient FAF decreases, the fuel injection amount is reduced, and the air-fuel ratio of the air-fuel mixture moves toward lean.

あるいは、センサ出力fがリッチからリーンに切り替わったときには、遅延時間の経過を待つことなく、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。その後、補正係数FAFを所定時間あたりリッチ積分値KIPだけ逓増させる。補正係数FAFの増加に伴い、燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。   Alternatively, when the sensor output f is switched from rich to lean, the feedback correction coefficient FAF is increased by the skip value RSP without waiting for the delay time to elapse. Thereafter, the correction coefficient FAF is increased by the rich integral value KIP per predetermined time. As the correction coefficient FAF increases, the fuel injection amount is increased and the air-fuel ratio of the air-fuel mixture becomes richer.

本実施形態において、フロントO2センサ43の出力電圧fと比較するべき目標値は常時一定ではなく、触媒41の下流側のガスの空燃比に応じて上下する。本実施形態のECU0は、空燃比のフィードバック制御中、触媒41の下流側のガスの空燃比を検出するセンサであるリアO2センサ44の出力gを参照して、触媒41の下流側のガスの空燃比の度合いを表す指標値FACFを算出し、当該指標値FACFを基にフロントO2センサ43の出力fの目標値を設定する。 In the present embodiment, the target value to be compared with the output voltage f of the front O 2 sensor 43 is not always constant, and varies depending on the air-fuel ratio of the gas on the downstream side of the catalyst 41. The ECU 0 of the present embodiment refers to the output g of the rear O 2 sensor 44 that is a sensor for detecting the air-fuel ratio of the gas downstream of the catalyst 41 during the air-fuel ratio feedback control, and the gas downstream of the catalyst 41 An index value FACF representing the degree of air-fuel ratio is calculated, and a target value of the output f of the front O 2 sensor 43 is set based on the index value FACF.

触媒41の下流側の空燃比信号gを参照したフィードバック制御は、例えば、冷却水温が所定温度以上であり、空燃比フィードバック制御の開始から所定時間が経過し、リアO2センサ44が活性してから所定時間が経過し、過渡期の燃料補正量が所定値を下回り、アイドル状態で車速が0若しくは0に近い所定値以下であるかまたは非アイドル状態で所定の運転領域にある、等の諸条件が全て成立している場合に行う。 In the feedback control with reference to the air-fuel ratio signal g on the downstream side of the catalyst 41, for example, the cooling water temperature is equal to or higher than a predetermined temperature, a predetermined time has elapsed from the start of the air-fuel ratio feedback control, and the rear O 2 sensor 44 is activated. The fuel correction amount in the transition period is below a predetermined value, the vehicle speed is 0 or less than a predetermined value close to 0 in the idle state, or is in the predetermined operating range in the non-idle state, etc. Performed when all the conditions are met.

図3に示すように、ECU0は、触媒41の下流側のガスの空燃比を検出するセンサであるリアO2センサ44の出力電圧gを、目標となる電圧値(鎖線で表す)と比較して、その目標値よりも高ければリッチ、その目標値よりも低ければリーンと判定する。そして、センサ出力gがリッチである間は、指標値FACFを所定時間あたりリーン積分値FACFKIMだけ逓減させる。 As shown in FIG. 3, the ECU 0 compares the output voltage g of the rear O 2 sensor 44 that is a sensor for detecting the air-fuel ratio of the gas downstream of the catalyst 41 with a target voltage value (represented by a chain line). If it is higher than the target value, it is determined to be rich, and if it is lower than the target value, it is determined to be lean. While the sensor output g is rich, the index value FACF is gradually decreased by the lean integrated value FACFKIM per predetermined time.

センサ出力gがリーンである間は、指標値FACFを所定時間あたりリッチ積分値FACFKIPだけ逓増させる。   While the sensor output g is lean, the index value FACF is increased by the rich integrated value FACFKIP per predetermined time.

図4に、触媒41の下流におけるガスの空燃比の指標値FACFと、フロントO2センサ43の出力電圧fと比較するべき目標値との関係を示している。基本的に、指標値FACFが大きいほど、即ち触媒41の下流側のガスの空燃比がリーンの傾向にあるほど、上記の目標値を引き上げて燃料噴射量を増加させ、触媒41に流入するガスの空燃比をリッチ化する。逆に、指標値FACFが小さいほど、即ち触媒41の下流側のガスの空燃比がリッチの傾向にあるほど、上記の目標値を引き下げて燃料噴射量を減少させ、触媒41に流入するガスの空燃比をリーン化する。 FIG. 4 shows the relationship between the index value FACF of the gas air-fuel ratio downstream of the catalyst 41 and the target value to be compared with the output voltage f of the front O 2 sensor 43. Basically, as the index value FACF is larger, that is, as the air-fuel ratio of the gas downstream of the catalyst 41 tends to be leaner, the target value is raised to increase the fuel injection amount, and the gas flowing into the catalyst 41 To enrich the air-fuel ratio. Conversely, the smaller the index value FACF, that is, the richer the air-fuel ratio of the gas on the downstream side of the catalyst 41, the lower the target value to decrease the fuel injection amount, and the amount of gas flowing into the catalyst 41 decreases. Reduce the air-fuel ratio.

その上で、図4に示しているように、指標値FACFが理論空燃比周辺、換言すればウィンドウを含む所定範囲(網点で表す)内にあるときには、指標値FACFの変化量に対する上記の目標値の変化量の比(指標値FACFを横軸に、上記の目標値を縦軸にとったときの特性曲線の傾き)を小さくする。これにより、触媒41の下流側のガスの空燃比が理論空燃比に近い状況における、燃料噴射量の補正量FAFの変動を抑制し、空燃比を安定化させる。   In addition, as shown in FIG. 4, when the index value FACF is in the vicinity of the theoretical air-fuel ratio, in other words, within a predetermined range including the window (represented by halftone dots), the above-described change amount for the index value FACF The ratio of the change amount of the target value (the slope of the characteristic curve when the index value FACF is on the horizontal axis and the target value is on the vertical axis) is reduced. As a result, the fluctuation of the fuel injection amount correction amount FAF in the situation where the air-fuel ratio of the gas downstream of the catalyst 41 is close to the stoichiometric air-fuel ratio is suppressed, and the air-fuel ratio is stabilized.

翻って、指標値FACFが理論空燃比周辺の所定範囲外にあるときには、補正量FACFが当該範囲内にある場合と比較して、指標値FACFの変化量に対する上記の目標値の変化量の比をより大きくする。これにより、触媒41の下流側のガスの空燃比が理論空燃比から乖離している状況における、燃料噴射量の補正量FAFの変動を促進し、速やかに空燃比を補正できるようにする。   In contrast, when the index value FACF is outside the predetermined range around the theoretical air-fuel ratio, the ratio of the change amount of the target value to the change amount of the index value FACF is compared with the case where the correction amount FACF is within the range. To make it larger. As a result, in the situation where the air-fuel ratio of the gas downstream of the catalyst 41 deviates from the stoichiometric air-fuel ratio, the fluctuation of the fuel injection amount correction amount FAF is promoted, and the air-fuel ratio can be corrected quickly.

本実施形態では、内燃機関の排気通路4に装着される排気ガス浄化用の触媒41の上流及び下流に設けられた空燃比センサ43、44の出力を参照して空燃比をフィードバック制御するものであって、触媒41の上流の空燃比センサ43の出力fと比較するべき目標値を、触媒41の下流の空燃比センサ44の出力gに基づく空燃比の度合いを表す指標値FACFに応じて上下させることとし、前記指標値FACFの変化量に対する前記目標値の変化量の比を、前記指標値FACFが理論空燃比周辺の範囲内にあるときにはより小さく、前記指標値FACFが当該理論空燃比周辺の範囲からリーン側またはリッチ側に偏倚しているときにはより大きく設定する空燃比制御装置0を構成した。   In this embodiment, the air-fuel ratio is feedback-controlled with reference to the outputs of air-fuel ratio sensors 43 and 44 provided upstream and downstream of the exhaust gas purification catalyst 41 mounted in the exhaust passage 4 of the internal combustion engine. The target value to be compared with the output f of the air-fuel ratio sensor 43 upstream of the catalyst 41 is increased or decreased according to the index value FACF representing the degree of air-fuel ratio based on the output g of the air-fuel ratio sensor 44 downstream of the catalyst 41. The ratio of the change amount of the target value to the change amount of the index value FACF is smaller when the index value FACF is in the range around the theoretical air-fuel ratio, and the index value FACF is around the theoretical air-fuel ratio. Thus, the air-fuel ratio control device 0 is set so as to be set larger when it is deviated from the range to the lean side or the rich side.

本実施形態によれば、触媒41による有害物質HC、CO、NOxの浄化能率を高く保ち、これら有害物質の排出量の一層の削減を図ることができる。 According to the present embodiment, it is possible to maintain a high purification efficiency of the harmful substances HC, CO and NO x by the catalyst 41 and to further reduce the discharge amount of these harmful substances.

特に、遅延時間TDR、TDLを調整する従来の制御手法のように、フィードバック補正係数FAFの振動の周期が徒に延びることはなく、触媒41の上流におけるガスの空燃比がウィンドウから外れている期間が長くならない。   In particular, unlike the conventional control method of adjusting the delay times TDR and TDL, the period of the oscillation of the feedback correction coefficient FAF does not extend unnecessarily, and the air-fuel ratio of the gas upstream of the catalyst 41 is out of the window. Will not be long.

加えて、触媒41の上流の空燃比センサ43の出力fの目標値自体を上下させるものとしているので、そのダイナミックレンジを大きくとることができる。従って、触媒41の下流の空燃比センサ44の出力gが明らかなリッチまたはリーンを示したときに、ガスの空燃比をリーン化またはリッチ化するための補正制御の応答性を速めることが可能である。空燃比の制御中心をややリーンに位置付けることも容易となる。   In addition, since the target value of the output f of the air-fuel ratio sensor 43 upstream of the catalyst 41 is increased or decreased, the dynamic range can be increased. Therefore, when the output g of the air-fuel ratio sensor 44 downstream of the catalyst 41 shows an obvious rich or lean condition, it is possible to speed up the response of the correction control for leaning or enriching the gas air-fuel ratio. is there. It becomes easy to position the control center of the air-fuel ratio slightly lean.

なお、本発明は以上に詳述した実施形態には限られない。各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…空燃比制御装置(ECU)
1…気筒
11…インジェクタ
4…排気通路
41…触媒
43…触媒の上流の空燃比センサ(O2センサ)
44…触媒の下流の空燃比センサ(O2センサ)
f…触媒の上流の空燃比センサの出力(電圧)
g…触媒の下流の空燃比センサの出力(電圧)
0 ... Air-fuel ratio control unit (ECU)
1 ... cylinder 11 ... air-fuel ratio sensor upstream of the injector 4 ... exhaust passage 41 ... catalyst 43 ... catalyst (O 2 sensor)
44 ... air-fuel ratio sensor downstream of the catalyst (O 2 sensor)
f: Output (voltage) of the air-fuel ratio sensor upstream of the catalyst
g: Output (voltage) of the air-fuel ratio sensor downstream of the catalyst

Claims (1)

内燃機関の排気通路に装着される排気ガス浄化用の触媒の上流及び下流に設けられた空燃比センサの出力を参照して空燃比をフィードバック制御するものであって、
触媒の上流の空燃比センサの出力と比較するべき目標値を、触媒の下流の空燃比センサの出力に基づく空燃比の度合いを表す指標値に応じて上下させることとし、
触媒の下流の空燃比センサの出力とその目標値とを比較して、当該出力が目標値よりもリッチである間は前記指標値を単位時間あたり所定のリーン積分値だけ逓減させ、当該出力が目標値よりもリーンである間は前記指標値を単位時間あたり所定のリッチ積分値だけ逓増させる積分のみを行い、
前記指標値の変化量に対する、触媒の上流の空燃比センサの出力と比較するべき前記目標値の変化量の比を、前記指標値が理論空燃比周辺の範囲内にあるときにはより小さく、前記指標値が当該理論空燃比周辺の範囲からリーン側またはリッチ側に偏倚しているときにはより大きく設定した空燃比制御装置。
Feedback control of the air-fuel ratio with reference to the outputs of air-fuel ratio sensors provided upstream and downstream of an exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine,
The target value to be compared with the output of the air-fuel ratio sensor upstream of the catalyst is raised or lowered according to an index value representing the degree of air-fuel ratio based on the output of the air-fuel ratio sensor downstream of the catalyst,
The output of the air-fuel ratio sensor downstream of the catalyst is compared with the target value, and while the output is richer than the target value, the index value is decreased by a predetermined lean integral value per unit time, and the output is While it is leaner than the target value, it performs only integration that increases the index value by a predetermined rich integral value per unit time,
The ratio of the change amount of the target value to be compared with the output of the air-fuel ratio sensor upstream of the catalyst with respect to the change amount of the index value is smaller when the index value is within the range around the theoretical air-fuel ratio, An air-fuel ratio control apparatus in which the value is set larger when the value deviates from a range around the theoretical air-fuel ratio toward the lean side or the rich side.
JP2013056274A 2013-03-19 2013-03-19 Air-fuel ratio control device Expired - Fee Related JP6188364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056274A JP6188364B2 (en) 2013-03-19 2013-03-19 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056274A JP6188364B2 (en) 2013-03-19 2013-03-19 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2014181599A JP2014181599A (en) 2014-09-29
JP6188364B2 true JP6188364B2 (en) 2017-08-30

Family

ID=51700570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056274A Expired - Fee Related JP6188364B2 (en) 2013-03-19 2013-03-19 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP6188364B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641827B2 (en) * 1992-07-22 1997-08-20 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
JP2003206784A (en) * 2002-01-16 2003-07-25 Mazda Motor Corp Air-fuel ratio control device of engine
JP2006022772A (en) * 2004-07-09 2006-01-26 Mitsubishi Electric Corp Air-fuel ratio control device of internal combustion engine
JP5832156B2 (en) * 2011-06-22 2015-12-16 ダイハツ工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2014181599A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
WO2006075537A1 (en) Fuel-injection control device for internal-combustion engine
JP2008309036A (en) Fuel estimation device
JP2014066154A (en) Control device of internal combustion engine
JP2009036117A (en) Air-fuel ratio controller of internal combustion engine
JP6961307B2 (en) Internal combustion engine control device
JP6188364B2 (en) Air-fuel ratio control device
JP6961308B2 (en) Internal combustion engine control device
JP2007077913A (en) Fuel injection control device for internal combustion engine
JP6153344B2 (en) Air-fuel ratio control device
JP2010138791A (en) Air-fuel ratio control device
JP7143032B2 (en) Control device for internal combustion engine
JP2005194981A (en) Catalyst deterioration determining device
JP5331554B2 (en) Exhaust gas purification device for internal combustion engine
JP2021139340A (en) Internal combustion engine control device
JP5794788B2 (en) Air-fuel ratio control device
JP2014137031A (en) Internal combustion engine control device
JP2009024496A (en) Air-fuel ratio control system of internal combustion engine
JP2005207286A (en) Catalyst deterioration determining device
JP2017115802A (en) Air fuel ratio controller for internal combustion engine
JP2020084902A (en) Control device of internal combustion engine
JP2007247405A (en) Exhaust emission control device of internal combustion engine
JP2015218582A (en) Internal combustion engine control unit
JP2022133865A (en) Control device for internal combustion engine
JP5084708B2 (en) Air-fuel ratio control method for internal combustion engine
JP2015140760A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6188364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees