JP2021139340A - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP2021139340A
JP2021139340A JP2020038147A JP2020038147A JP2021139340A JP 2021139340 A JP2021139340 A JP 2021139340A JP 2020038147 A JP2020038147 A JP 2020038147A JP 2020038147 A JP2020038147 A JP 2020038147A JP 2021139340 A JP2021139340 A JP 2021139340A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020038147A
Other languages
Japanese (ja)
Inventor
幸男 吉岡
Yukio Yoshioka
幸男 吉岡
裕之 中島
Hiroyuki Nakajima
裕之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2020038147A priority Critical patent/JP2021139340A/en
Publication of JP2021139340A publication Critical patent/JP2021139340A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

To further reduce an amount of a harmful substance discharged while an internal combustion engine is in operation.SOLUTION: An internal combustion engine control device detects an air-fuel ratio of gas passed through an exhaust purification catalyst installed in an exhaust passage of an internal combustion engine through an air-fuel ratio sensor and performs feedback control so that the air-fuel ratio converges to a target air-fuel ratio. The internal combustion engine control device also changes a correction amount considered in the target air-fuel ratio depending on a deterioration degree of the catalyst. Thus, the internal combustion engine control device can set the target air-fuel ratio for each operation region of the internal combustion engine with improved appropriateness and thereby curbing an increase in a discharge amount of a harmful substance with improved efficiency.SELECTED DRAWING: Figure 4

Description

本発明は、車両等に搭載される内燃機関を制御する制御装置に関する。 The present invention relates to a control device for controlling an internal combustion engine mounted on a vehicle or the like.

一般に、内燃機関の排気通路には、気筒から排出される排気ガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO、NOxの全てを効率よく浄化するには、混合気の空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収める必要がある。 Generally, the exhaust passage of an internal combustion engine is equipped with a three-way catalyst that oxidizes / reduces harmful substances HC, CO, and NO x contained in the exhaust gas discharged from the cylinder to make them harmless. In order to efficiently purify all of HC, CO, and NO x , it is necessary to keep the air-fuel ratio of the air-fuel mixture within a certain range near the theoretical air-fuel ratio called a window.

そのために、従来より、排気通路における触媒の上流及び下流にそれぞれ空燃比センサを配し、それら空燃比センサの出力信号を参照する二重のフィードバックループを構築して、空燃比をフィードバック制御している。内燃機関の運転制御を司るECU(Electronic Control Unit)は、気筒に吸入される空気(新気)の量に比例する基本噴射量に、触媒に流入するガスの空燃比(触媒の上流に設置した空燃比センサが検出する空燃比)と目標空燃比との偏差に応じて変動するフィードバック補正係数を乗じることで、インジェクタからの燃料噴射量を決定する(例えば、下記特許文献を参照)。 For this purpose, conventionally, air-fuel ratio sensors are arranged upstream and downstream of the catalyst in the exhaust passage, and a double feedback loop that refers to the output signals of the air-fuel ratio sensors is constructed to feedback-control the air-fuel ratio. There is. The ECU (Electronic Control Unit), which controls the operation of the internal combustion engine, has an air-fuel ratio (installed upstream of the catalyst) of the gas flowing into the catalyst to a basic injection amount proportional to the amount of air (fresh air) taken into the cylinder. The fuel injection amount from the injector is determined by multiplying the feedback correction coefficient that fluctuates according to the deviation between the air-fuel ratio detected by the air-fuel ratio sensor and the target air-fuel ratio (see, for example, the following patent documents).

触媒から排出されるガスの空燃比(触媒の下流に設置した空燃比センサが検出する空燃比)の変動は、触媒の最大酸素吸蔵能力近くまで酸素が吸蔵されて酸素が過剰となった事実、または触媒に吸蔵されていた酸素の大半が消費されて酸素が欠乏した事実を示す。触媒内に酸素が充満すると、NOxの還元が難しくなり、NOxが排出されやすくなる。翻って、触媒内で酸素が不足すると、HCやCOの酸化が困難となり、これらが排出されやすくなる。触媒から排出されるガスの空燃比に基づき、触媒に流入するガスの空燃比を補正することは、有害物質の排出抑制にとって非常に有効である。 Fluctuations in the air-fuel ratio of the gas discharged from the catalyst (the air-fuel ratio detected by the air-fuel ratio sensor installed downstream of the catalyst) are due to the fact that oxygen was occluded near the maximum oxygen storage capacity of the catalyst and oxygen became excessive. Or it indicates the fact that most of the oxygen occluded in the catalyst is consumed and oxygen is deficient. If the oxygen in the catalyst is filled, the reduction of the NO x becomes difficult, NO x is easily discharged. On the other hand, when oxygen is insufficient in the catalyst, it becomes difficult to oxidize HC and CO, and these are easily discharged. Correcting the air-fuel ratio of the gas flowing into the catalyst based on the air-fuel ratio of the gas discharged from the catalyst is very effective in suppressing the emission of harmful substances.

特開2010−138791号公報Japanese Unexamined Patent Publication No. 2010-138791

触媒の最大酸素吸蔵能力は、経年劣化に伴い徐々に減退してゆく。一方、現状の制御では、触媒に流入するガスの空燃比に対する目標空燃比の初期値を、内燃機関の運転領域により一律に決定している。 The maximum oxygen storage capacity of the catalyst gradually declines as it deteriorates over time. On the other hand, in the current control, the initial value of the target air-fuel ratio with respect to the air-fuel ratio of the gas flowing into the catalyst is uniformly determined according to the operating region of the internal combustion engine.

従って、現在の触媒内の雰囲気、換言すれば酸素吸蔵量が、有害物質HC、CO、NOxの全てを酸化/還元処理するのに適した状態となっていない時期が生じることがあった。触媒内の雰囲気は、触媒の下流の空燃比センサの出力信号を参照したフィードバックループによって徐々に改善されてゆく。これにより、現在の触媒の劣化の度合い即ち酸素吸蔵能力を加味した修正が施されてゆくが、その修正が完了するまでの間、一時的に有害物質の排出量が増加する懸念がある。 Therefore, there may be a time when the current atmosphere in the catalyst, in other words, the amount of oxygen occlusion, is not in a state suitable for oxidizing / reducing all of the harmful substances HC, CO, and NO x. The atmosphere inside the catalyst is gradually improved by a feedback loop that refers to the output signal of the air-fuel ratio sensor downstream of the catalyst. As a result, corrections will be made in consideration of the degree of deterioration of the current catalyst, that is, the oxygen storage capacity, but there is a concern that the amount of harmful substances emitted will temporarily increase until the correction is completed.

本発明は、以上の問題に着目してなされたものであり、内燃機関の運転中に排出される有害物質の量をより一層削減することを所期の目的としている。 The present invention has been made by paying attention to the above problems, and an object of the present invention is to further reduce the amount of harmful substances emitted during the operation of an internal combustion engine.

本発明では、内燃機関の排気通路に装着した排気浄化用の触媒を流通するガスの空燃比を空燃比センサを介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施する制御装置であって、前記触媒の劣化の度合いに応じて前記目標空燃比に加味する補正量を変更する内燃機関の制御装置を構成した。 In the present invention, control is performed to detect the air-fuel ratio of the gas flowing through the exhaust gas purification catalyst mounted in the exhaust passage of the internal combustion engine via the air-fuel ratio sensor and perform feedback control to converge the air-fuel ratio to the target air-fuel ratio. The device comprises a control device for an internal combustion engine that changes a correction amount to be added to the target air-fuel ratio according to the degree of deterioration of the catalyst.

本発明によれば、内燃機関の運転中に排出される有害物質の量をより一層削減できる。 According to the present invention, the amount of harmful substances emitted during the operation of the internal combustion engine can be further reduced.

本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。The figure which shows the schematic structure of the internal combustion engine and the control device in one Embodiment of this invention. 触媒の上流の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。The timing diagram which shows the content of the air-fuel ratio feedback control with reference to the output signal of the air-fuel ratio sensor upstream of a catalyst. 補正量FACFと遅延時間TDR、TDLとの関係を例示する図。The figure which illustrates the relationship between the correction amount FACF and the delay time TDR, TDL. 触媒の下流の空燃比センサの出力信号を参照した空燃比フィードバック制御の内容を示すタイミング図。A timing diagram showing the contents of air-fuel ratio feedback control with reference to the output signal of the air-fuel ratio sensor downstream of the catalyst. 本実施形態の制御装置による制御の内容を説明するタイミング図。The timing diagram explaining the content of control by the control device of this embodiment.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(例えば、三気筒。図1には、そのうち一つを図示している)を具備している。各気筒1の吸気バルブよりも上流、各気筒1に連なる吸気ポートの近傍には、吸気ポートに向けて燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を起こすものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle according to the present embodiment. The internal combustion engine of the present embodiment is a spark-ignition 4-stroke gasoline engine, and includes a plurality of cylinders 1 (for example, three cylinders, one of which is illustrated in FIG. 1). An injector 11 for injecting fuel toward the intake port is provided upstream of the intake valve of each cylinder 1 and in the vicinity of the intake port connected to each cylinder 1. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives an induction voltage generated by the ignition coil and causes a spark discharge between the center electrode and the ground electrode. The ignition coil is integrally built in the coil case together with the igniter which is a semiconductor switching element.

吸気を気筒1に供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air to the cylinder 1 takes in air from the outside and guides it to the intake port of each cylinder 1. An air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream on the intake passage 3.

排気を気筒1から排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for discharging the exhaust gas from the cylinder 1 guides the exhaust gas generated by burning the fuel in the cylinder 1 to the outside from the exhaust port of each cylinder 1. An exhaust manifold 42 and a three-way catalyst 41 for purifying exhaust gas are arranged on the exhaust passage 4.

排気通路4における触媒41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設置する。空燃比センサ43、44はそれぞれ、排気ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよく、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよい。本実施形態では、触媒41の上流の空燃比センサ43としてリニアA/Fセンサを、触媒41の下流の空燃比センサ44としてO2センサを想定している。 Air-fuel ratio sensors 43 and 44 for detecting the air-fuel ratio of the gas flowing through the exhaust passage 4 are installed upstream and downstream of the catalyst 41 in the exhaust passage 4. The air-fuel ratio sensors 43 and 44 may be linear A / F sensors having output characteristics proportional to the air-fuel ratio of the exhaust gas, respectively, and are O 2 sensors having output characteristics that are non-linear with respect to the air-fuel ratio of the exhaust gas. There may be. In this embodiment, a linear A / F sensor is assumed as the air-fuel ratio sensor 43 upstream of the catalyst 41, and an O 2 sensor is assumed as the air-fuel ratio sensor 44 downstream of the catalyst 41.

リニアA/Fセンサ43の出力電圧fは、触媒41に流入するガスの空燃比がリーンであるほど高くなる。 The output voltage f of the linear A / F sensor 43 becomes higher as the air-fuel ratio of the gas flowing into the catalyst 41 becomes leaner.

他方、O2センサ44の出力電圧gは、触媒41から流出するガスの空燃比がリーンであるほど低くなる。特に、理論空燃比近傍の一定範囲では空燃比に対する出力の変化率が大きく急峻な傾きを示し、それよりも空燃比がリーンである領域では低位飽和値に漸近し、それよりも空燃比がリッチである領域では高位飽和値に漸近する、いわゆるZ特性曲線を描く。 On the other hand, the output voltage g of the O 2 sensor 44 becomes lower as the air-fuel ratio of the gas flowing out from the catalyst 41 becomes leaner. In particular, in a certain range near the stoichiometric air-fuel ratio, the rate of change of the output with respect to the air-fuel ratio is large and shows a steep slope, and in the region where the air-fuel ratio is lean, it asymptotically approaches the low saturation value, and the air-fuel ratio is richer than that. In the region where is, a so-called Z characteristic curve that asymptotically approaches the high saturation value is drawn.

因みに、排気通路4における触媒41及び空燃比センサ44の下流に、さらなる排気浄化用の触媒(図示せず)を付設することがある。 Incidentally, a catalyst for further exhaust gas purification (not shown) may be attached downstream of the catalyst 41 and the air-fuel ratio sensor 44 in the exhaust passage 4.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、排気通路4と吸気通路3とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における触媒41の下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所(特に、サージタンク33若しくは排気マニホルド34)に接続している。 The exhaust gas recirculation device 2 opens and closes the external EGR passage 21 that connects the exhaust passage 4 and the intake passage 3, the EGR cooler 22 provided on the EGR passage 21, and the EGR passage 21 to open and close the EGR passage 21. The element is an EGR valve 23 that controls the flow rate of EGR gas flowing through the passage 21. The inlet of the EGR passage 21 is connected to a predetermined position downstream of the catalyst 41 in the exhaust passage 4. The outlet of the EGR passage 21 is connected to a predetermined position (particularly, the surge tank 33 or the exhaust manifold 34) downstream of the throttle valve 32 in the intake passage 3.

本実施形態の内燃機関の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラが、CAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 The ECU 0, which is a control device for the internal combustion engine of the present embodiment, is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The ECU 0 may be a plurality of ECUs or controllers connected to each other so as to be able to communicate with each other via a telecommunication line such as CAN (Control Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、運転者によるアクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求されるエンジン負荷率またはエンジントルク)として検出するセンサから出力されるアクセル開度信号c、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号d、吸気通路3(特に、サージタンク33若しくは吸気マニホルド34)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、触媒41の上流における排気ガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流における排気ガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号h等が入力される。 The input interface of ECU0 has a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from a crank angle sensor that detects the rotation angle of the crank shaft of an internal combustion engine and the engine rotation speed. , Accelerator opening signal c output from a sensor that detects the amount of depression of the accelerator pedal by the driver or the opening of the throttle valve 32 as the accelerator opening (so to speak, the required engine load ratio or engine torque), the internal combustion engine The cooling water temperature signal d output from the water temperature sensor that detects the cooling water temperature, the intake air temperature in the intake passage 3 (particularly, the surge tank 33 or the intake manifold 34) and the intake air temperature output from the temperature / pressure sensor that detects the intake pressure. From the intake pressure signal e, the air-fuel ratio signal f output from the air-fuel ratio sensor 43 that detects the air-fuel ratio of the exhaust gas upstream of the catalyst 41, and the air-fuel ratio sensor 44 that detects the air-fuel ratio of the exhaust gas downstream of the catalyst 41. The output air-fuel ratio signal g, the cam angle signal h output from the cam angle sensor, and the like are input at a plurality of cam angles of the intake cam shaft.

ECU0の出力インタフェースからは、火花点火装置のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。 From the output interface of ECU 0, ignition signal i for the igniter of the spark ignition device, fuel injection signal j for the injector 11, opening operation signal k for the throttle valve 32, and opening operation for the EGR valve 23. Outputs signal l and the like.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気(新気)量を推算する。そして、それらエンジン回転数及び吸入空気量等に基づき、要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、要求EGR率(または、EGRガス量)、点火タイミング(一度の燃焼に対する火花点火の回数を含む)、要求EGR率(または、EGRガス量)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。 The processor of ECU 0 interprets and executes a program stored in the memory in advance, calculates an operation parameter, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, h necessary for the operation control of the internal combustion engine via the input interface, obtains the engine speed, and is sucked into the cylinder 1. Estimate the amount of air (fresh air). Then, based on the engine speed, intake air amount, etc., the required fuel injection amount, fuel injection timing (including the number of fuel injections per combustion), fuel injection pressure, required EGR rate (or EGR gas amount), Various operating parameters such as ignition timing (including the number of spark ignitions per combustion), required EGR rate (or EGR gas amount), and the like are determined. The ECU 0 applies various control signals i, j, k, l corresponding to the operation parameters via the output interface.

燃料噴射量を決定するに際して、ECU0は、まず、気筒1に吸入される空気の量を求め、その吸入空気量に比例する(吸入空気量に応じて理論空燃比またはその近傍の空燃比を実現できような)燃料噴射量の基本量TPを決定する。吸入空気量は、現在のエンジン回転数、現在のサージタンク33若しくは吸気マニホルド34内の吸気圧、並びに現在ECU0から吸気VVT(Variable Valve Timing)機構に与えている吸気バルブの開閉タイミングの目標位相角等を基に推算する。吸入空気量の推算値に、現在の吸気温や大気圧等に応じた補正を加えてもよい。この吸入空気量の推算の手法は、公知のものである。 When determining the fuel injection amount, the ECU 0 first obtains the amount of air sucked into the cylinder 1 and is proportional to the intake air amount (realizes the stoichiometric air-fuel ratio or an air-fuel ratio in the vicinity thereof according to the intake air amount). Determine the basic amount TP of the fuel injection amount (as possible). The intake air amount is the current engine speed, the current intake pressure in the surge tank 33 or the intake manifold 34, and the target phase angle of the intake valve opening / closing timing currently given from ECU 0 to the intake VVT (Variable Valve Timing) mechanism. Estimate based on etc. The estimated value of the intake air amount may be corrected according to the current intake air temperature, atmospheric pressure, and the like. This method of estimating the intake air amount is known.

次いで、この基本噴射量TPを、触媒41に流入するガスの空燃比とその目標値との偏差に応じたフィードバック補正係数FAFや、環境条件その他の状況に応じて定まる各種補正係数Kにより補正する。フィードバック補正係数FAF、Kはそれぞれ、1を中心に増減する正数である。さらに、インジェクタ11を開弁しても燃料が噴出しない無効噴射時間TAUVを加味して、最終的な燃料噴射時間T、即ちインジェクタ11を開弁する時間を算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。ECU0は、燃料噴射時間Tだけインジェクタ11に対して信号jを入力し、インジェクタ11を開弁して燃料を噴射させる。
Next, this basic injection amount TP is corrected by a feedback correction coefficient FAF according to the deviation between the air-fuel ratio of the gas flowing into the catalyst 41 and its target value, and various correction coefficients K determined according to environmental conditions and other conditions. .. The feedback correction coefficients FAF and K are positive numbers that increase or decrease around 1. Further, the final fuel injection time T, that is, the time for opening the injector 11, is calculated in consideration of the invalid injection time TAUV in which the fuel is not ejected even if the injector 11 is opened. The fuel injection time T is
T = TP x FAF x K + TAUV
Will be. The ECU 0 inputs a signal j to the injector 11 for the fuel injection time T, opens the injector 11 to inject fuel.

空燃比フィードバック制御は、気筒1に充填される混合気の空燃比、ひいては気筒1から排出され触媒41へと導かれる排気ガスの空燃比を所望の目標空燃比に収束させ、以て触媒41における有害物質の浄化能率を最大化するものである。空燃比フィードバック補正係数FAFは、触媒41の上流の空燃比センサ43の出力信号fに基づいて定める。図2に示すように、ECU0は、触媒41の上流のガスの空燃比を検出する空燃比センサ43の出力電圧fを、目標空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリーン、判定電圧値よりも低ければリッチと判定する。そして、ECU0は、触媒41の上流のガスの空燃比の判定結果に基づき、フィードバック補正係数FAFを増減調整する。 The air-fuel ratio feedback control converges the air-fuel ratio of the air-fuel mixture filled in the cylinder 1, and eventually the air-fuel ratio of the exhaust gas discharged from the cylinder 1 and led to the catalyst 41 to a desired target air-fuel ratio, and thus the catalyst 41. It maximizes the purification efficiency of harmful substances. The air-fuel ratio feedback correction coefficient FAF is determined based on the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41. As shown in FIG. 2, the ECU 0 compares the output voltage f of the air-fuel ratio sensor 43 that detects the air-fuel ratio of the gas upstream of the catalyst 41 with the determination voltage value corresponding to the target air-fuel ratio, and compares the output voltage f with the determination voltage value. If it is higher than, it is judged as lean, and if it is lower than the judgment voltage value, it is judged as rich. Then, the ECU 0 adjusts the feedback correction coefficient FAF by increasing or decreasing based on the determination result of the air-fuel ratio of the gas upstream of the catalyst 41.

具体的には、触媒41の上流のガスの空燃比の判定結果がリーンからリッチに反転した(下記の遅延時間TDRが経過した)時点で、フィードバック補正係数FAFをスキップ値RSMだけ減少させる。加えて、空燃比がリッチであると判定している間、フィードバック補正係数FAFを演算サイクル(制御サイクル)あたりリーン積分値KIMだけ逓減させる。演算サイクルの周期は、内燃機関が備える個々の気筒1が新たなサイクル(吸気行程−圧縮行程−膨脹行程−排気行程の一連)を迎える周期に等しい。なお、リーン積分値KIMの絶対値を、判定電圧値と空燃比センサ43の出力電圧値fとの差分または比の絶対値が大きいほど大きくすることも考えられる。 Specifically, when the determination result of the air-fuel ratio of the gas upstream of the catalyst 41 is reversed from lean to rich (the following delay time TDR has elapsed), the feedback correction coefficient FAF is reduced by the skip value RSM. In addition, while it is determined that the air-fuel ratio is rich, the feedback correction coefficient FAF is gradually reduced by the lean integral value KIM per calculation cycle (control cycle). The cycle of the calculation cycle is equal to the cycle in which each cylinder 1 included in the internal combustion engine enters a new cycle (a series of intake stroke-compression stroke-expansion stroke-exhaust stroke). It is also conceivable that the absolute value of the lean integral value KIM is increased as the absolute value of the difference or ratio between the determination voltage value and the output voltage value f of the air-fuel ratio sensor 43 is larger.

他方、触媒41の上流のガスの空燃比の判定結果がリッチからリーンに反転した(下記の遅延時間TDLが経過した)時点で、フィードバック補正係数FAFをスキップ値RSPだけ増加させる。加えて、空燃比がリーンであると判定している間、フィードバック補正係数FAFを演算サイクルあたりリッチ積分値KIPだけ逓増させる。なお、リッチ積分値KIPの絶対値を、空燃比センサ43の出力電圧値fと判定電圧値との差分または比の絶対値が大きいほど大きくすることも考えられる。 On the other hand, when the determination result of the air-fuel ratio of the gas upstream of the catalyst 41 is reversed from rich to lean (the following delay time TDL has elapsed), the feedback correction coefficient FAF is increased by the skip value RSP. In addition, while determining that the air-fuel ratio is lean, the feedback correction coefficient FAF is incremented by the rich integral value KIP per calculation cycle. It is also conceivable that the absolute value of the rich integral value KIP is increased as the absolute value of the difference or ratio between the output voltage value f of the air-fuel ratio sensor 43 and the determination voltage value is larger.

基本噴射量TPに乗ずるフィードバック補正係数FAFが減少すると、インジェクタ11による燃料噴射量が絞られて、混合気の空燃比がリーンへと向かう。フィードバック補正係数FAFが増加すると、インジェクタ11による燃料噴射量が上積みされて、混合気の空燃比がリッチへと向かう。 When the feedback correction coefficient FAF multiplied by the basic injection amount TP decreases, the fuel injection amount by the injector 11 is reduced, and the air-fuel ratio of the air-fuel mixture tends toward lean. When the feedback correction coefficient FAF increases, the fuel injection amount by the injector 11 is increased, and the air-fuel ratio of the air-fuel mixture becomes rich.

但し、空燃比センサ43の出力電圧fが判定電圧値を跨ぐように変動したときには、即時に触媒41の上流のガスの空燃比の判定結果を反転させるのではなく、遅延時間TDL、TDRの経過を待ってから判定結果を反転させる。即ち、空燃比センサ43の出力電圧fがリッチからリーンに切り替わった(判定電圧値を下回った)ときには、リーン判定遅延時間TDLの経過の後、空燃比がリッチからリーンに反転したと判断する。並びに、空燃比センサ43の出力電圧fがリーンからリッチに切り替わった(判定電圧値を上回った)ときには、リッチ判定遅延時間TDRの経過の後、空燃比がリーンからリッチに反転したと判断する。 However, when the output voltage f of the air-fuel ratio sensor 43 fluctuates so as to straddle the determination voltage value, the determination result of the air-fuel ratio of the gas upstream of the catalyst 41 is not immediately reversed, but the delay times TDL and TDR elapse. After waiting for, the judgment result is inverted. That is, when the output voltage f of the air-fuel ratio sensor 43 is switched from rich to lean (below the determination voltage value), it is determined that the air-fuel ratio is reversed from rich to lean after the lean determination delay time TDL has elapsed. Further, when the output voltage f of the air-fuel ratio sensor 43 is switched from lean to rich (exceeds the determination voltage value), it is determined that the air-fuel ratio is reversed from lean to rich after the rich determination delay time TDR has elapsed.

リーン判定遅延時間TDL及びリッチ判定遅延時間TDRを設けているのは、空燃比センサ43の出力信号fにノイズが混入した場合に、空燃比のリーン/リッチの判定結果が短期間に複数回反転して燃料噴射量が振動するように増減するチャタリングを起こすことを予防する意図である。 The lean determination delay time TDL and the rich determination delay time TDR are provided so that when noise is mixed in the output signal f of the air-fuel ratio sensor 43, the lean / rich determination result of the air-fuel ratio is inverted multiple times in a short period of time. The intention is to prevent chattering, which increases or decreases so that the fuel injection amount vibrates.

遅延時間TDL、TDRは、補正量FACFに応じて増減する。図3に、補正量FACFと遅延時間TDL、TDRとの関係を例示する。図3中、リーン判定遅延時間TDLを破線で表し、リッチ判定遅延時間TDRを実線で表している。補正量FACFが大きくなるほど、リーン判定遅延時間TDLは短縮され、リッチ判定遅延時間TDRは延長される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が遅れ、減少から増加に転じる時期が早まる。結果、燃料噴射量が平均的に増すこととなり、空燃比フィードバック制御により収束させるべき触媒41に流入するガスの空燃比の目標がリッチ側に変位する。 The delay times TDL and TDR increase or decrease according to the correction amount FACF. FIG. 3 illustrates the relationship between the correction amount FACF and the delay times TDL and TDR. In FIG. 3, the lean determination delay time TDL is represented by a broken line, and the rich determination delay time TDR is represented by a solid line. As the correction amount FACF becomes larger, the lean determination delay time TDL is shortened and the rich determination delay time TDR is extended. Then, the time when the feedback correction coefficient FAF changes from an increase to a decrease is delayed, and the time when the feedback correction coefficient FAF changes from a decrease to an increase is advanced. As a result, the fuel injection amount increases on average, and the target of the air-fuel ratio of the gas flowing into the catalyst 41 to be converged by the air-fuel ratio feedback control is displaced to the rich side.

逆に、補正量FACFが小さくなるほど、リーン判定遅延時間TDLは延長され、リッチ判定遅延時間TDRは短縮される。さすれば、フィードバック補正係数FAFが増加から減少に転じる時期が早まり、減少から増加に転じる時期が遅れる。結果、燃料噴射量が平均的に減ることとなり、触媒41に流入するガスの空燃比の目標がリーン側に変位する。 On the contrary, as the correction amount FACF becomes smaller, the lean determination delay time TDL is extended and the rich determination delay time TDR is shortened. Then, the time when the feedback correction coefficient FAF changes from an increase to a decrease is advanced, and the time when the feedback correction coefficient FAF changes from a decrease to an increase is delayed. As a result, the fuel injection amount is reduced on average, and the target of the air-fuel ratio of the gas flowing into the catalyst 41 is displaced to the lean side.

ECU0は、空燃比フィードバック制御中、上記の補正量FACFをも算出する。図4に示すように、ECU0は、補正量FACFを算定するにあたり、触媒41の下流のガスの空燃比を検出する空燃比センサ44の出力電圧gを、理論空燃比またはその近傍の目標空燃比に相当する判定電圧値と比較して、その判定電圧値よりも高ければリーン、判定電圧値よりも低ければリッチと判定する。この判定電圧値は、空燃比センサ43の出力信号fと比較される判定電圧値とは必ずしも一致しない。その上で、触媒41の下流のガスの空燃比の判定結果に基づき、補正量FACFを増減調整する。 The ECU 0 also calculates the above-mentioned correction amount FACF during the air-fuel ratio feedback control. As shown in FIG. 4, when calculating the correction amount FACF, the ECU 0 sets the output voltage g of the air-fuel ratio sensor 44 that detects the air-fuel ratio of the gas downstream of the catalyst 41 to the theoretical air-fuel ratio or a target air-fuel ratio in the vicinity thereof. Compared with the judgment voltage value corresponding to, if it is higher than the judgment voltage value, it is judged to be lean, and if it is lower than the judgment voltage value, it is judged to be rich. This determination voltage value does not always match the determination voltage value to be compared with the output signal f of the air-fuel ratio sensor 43. Then, the correction amount FACF is increased or decreased based on the determination result of the air-fuel ratio of the gas downstream of the catalyst 41.

具体的には、触媒41の下流のガスの空燃比がリッチであると判定している間、補正量FACFを演算サイクルあたりリーン積分値FACFKIMだけ逓減させる一方、空燃比がリーンであると判定している間は、補正量FACFを演算サイクルあたりリッチ積分値FACFKIPだけ逓増させる。なお、リーン積分値FACFKIMの絶対値を、判定電圧値と空燃比センサ44の出力電圧値gとの差分または比の絶対値が大きいほど大きくしてもよく、リッチ積分値FACFKIPの絶対値を、空燃比センサ44の出力電圧gと判定電圧値との差分または比の絶対値が大きいほど大きくしてもよい。既に述べた通り、補正量FACFが減少すると、触媒41に流入するガスの目標空燃比がリーンへと向かい、補正量FACFが増加すると、触媒41に流入するガスの目標空燃比がリッチへと向かう。 Specifically, while it is determined that the air-fuel ratio of the gas downstream of the catalyst 41 is rich, the correction amount FACF is gradually reduced by the lean integral value FACFKIM per calculation cycle, while the air-fuel ratio is determined to be lean. During this period, the correction amount FACF is gradually increased by the rich integral value FACFKIP per calculation cycle. The absolute value of the lean integrated value FACFKIM may be increased as the absolute value of the difference or ratio between the determination voltage value and the output voltage value g of the air-fuel ratio sensor 44 is larger, and the absolute value of the rich integrated value FACFKIP may be increased. The larger the absolute value of the difference or ratio between the output voltage g of the air-fuel ratio sensor 44 and the determination voltage value, the larger the value may be. As described above, when the correction amount FACF decreases, the target air-fuel ratio of the gas flowing into the catalyst 41 tends toward lean, and when the correction amount FACF increases, the target air-fuel ratio of the gas flowing into the catalyst 41 tends toward richness. ..

内燃機関の運転中、ECU0は、今触媒41に吸蔵している酸素の量を随時推算している。過去のある時点tにおける燃料噴射量をGf(t)、同時点tにおいて空燃比センサ43を介して検出した実測空燃比から理論空燃比を減算した差分をΔA/F(t)、空気中に占める酸素の重量割合(≒0.23)をαとおくと、触媒41の酸素吸蔵量OSを、
OS=α∫{ΔA/F(t)×Gf(t)}dt
のように時間積分の形で求めることができる。但し、触媒41の酸素吸蔵量OSは、同触媒41の最大酸素吸蔵能力を超えない。
During the operation of the internal combustion engine, the ECU 0 estimates the amount of oxygen currently occluded in the catalyst 41 at any time. The fuel injection amount at a certain point in the past is G f (t), and the difference obtained by subtracting the theoretical air-fuel ratio from the measured air-fuel ratio detected via the air-fuel ratio sensor 43 at the same point t is ΔA / F (t) in the air. Assuming that the weight ratio of oxygen to the air-fuel ratio (≈0.23) is α, the oxygen occlusion OS of the catalyst 41 is set to
OS = α∫ {ΔA / F (t) × G f (t)} dt
It can be obtained in the form of time integration as in. However, the oxygen storage capacity OS of the catalyst 41 does not exceed the maximum oxygen storage capacity of the catalyst 41.

ECU0は、ダイアグノーシス(自己診断)機能として、現在の触媒41の酸素吸蔵能力の推定を行う。例えば、内燃機関及び車両の運転に悪影響を及ぼさない時機に、気筒1に空燃比リーンの混合気を供給して触媒41の酸素吸蔵能力一杯まで酸素を吸蔵している状態から、気筒1に供給する混合気を意図的に空燃比リッチに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号fは即座に空燃比リッチを示す一方、触媒41の下流の空燃比センサ44の出力信号gは上流の空燃比センサ43の出力信号fに遅れて空燃比リッチを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リッチを示してから(または、混合気を空燃比リッチに操作してから)下流の空燃比センサ44の出力信号gが空燃比リッチを示すまでの間、触媒41に吸蔵していた酸素が放出されて酸素の不足が補われるためである。この期間における触媒41の吸蔵酸素量OS(触媒41からの酸素放出量であり、負値となる)を算出すれば、それが触媒41の最大酸素吸蔵能力となる。 ECU0 estimates the oxygen storage capacity of the current catalyst 41 as a diagnosis (self-diagnosis) function. For example, when the operation of the internal combustion engine and the vehicle is not adversely affected, the air-fuel ratio lean air-fuel mixture is supplied to the cylinder 1 to supply oxygen to the cylinder 1 from the state where oxygen is occluded to the full oxygen storage capacity of the catalyst 41. Perform active control to intentionally operate the air-fuel ratio rich. Then, the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 immediately indicates the air-fuel ratio rich, while the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 becomes the output signal f of the upstream air-fuel ratio sensor 43. It shows a rich air-fuel ratio with a delay. After the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 shows the air-fuel ratio rich (or after operating the air-fuel mixture to be air-fuel ratio rich), the output signal g of the air-fuel ratio sensor 44 downstream is rich in air-fuel ratio. This is because the oxygen occluded in the catalyst 41 is released until the above is shown to compensate for the lack of oxygen. If the stored oxygen amount OS of the catalyst 41 in this period (the amount of oxygen released from the catalyst 41, which is a negative value) is calculated, it becomes the maximum oxygen storage capacity of the catalyst 41.

あるいは、内燃機関の気筒1に空燃比リッチの混合気を供給して触媒41に酸素を全く吸蔵していない状態から、気筒1に供給する混合気を意図的に空燃比リーンに操作するアクティブ制御を実行する。すると、触媒41の上流の空燃比センサ43の出力信号fは即座に空燃比リーンを示す一方、触媒41の下流の空燃比センサ44の出力信号gは上流の空燃比センサ43の出力信号fに遅れて空燃比リーンを示す。触媒41の上流の空燃比センサ43の出力信号fが空燃比リーンを示してから(または、混合気を空燃比リーンに操作してから)下流の空燃比センサ44の出力信号gが空燃比リーンを示すまでの間、過剰な酸素が触媒41に吸着するためである。この期間における触媒41の吸蔵酸素量OSを算出すれば、それが触媒41の最大酸素吸蔵能力となる。 Alternatively, active control in which the air-fuel ratio rich air-fuel mixture is supplied to the cylinder 1 of the internal combustion engine and oxygen is not occluded in the catalyst 41 at all, and the air-fuel ratio lean is intentionally operated from the air-fuel ratio supplied to the cylinder 1. To execute. Then, the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 immediately indicates the air-fuel ratio lean, while the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 becomes the output signal f of the upstream air-fuel ratio sensor 43. It shows a lean air-fuel ratio with a delay. After the output signal f of the air-fuel ratio sensor 43 upstream of the catalyst 41 indicates the air-fuel ratio lean (or after operating the air-fuel mixture to the air-fuel ratio lean), the output signal g of the air-fuel ratio sensor 44 downstream is the air-fuel ratio lean. This is because excess oxygen is adsorbed on the catalyst 41 until the above is shown. If the stored oxygen amount OS of the catalyst 41 in this period is calculated, it becomes the maximum oxygen storage capacity of the catalyst 41.

触媒41の酸素吸蔵能力は、経年変化により徐々に低減してゆく。であるから、触媒41の酸素吸蔵能力を求めることが、触媒41の劣化の度合いを推定することになる。 The oxygen storage capacity of the catalyst 41 gradually decreases with aging. Therefore, obtaining the oxygen storage capacity of the catalyst 41 is to estimate the degree of deterioration of the catalyst 41.

空燃比フィードバック制御において、触媒41から排出されるガスの目標空燃比は、原則として一定である。これに対し、触媒41に流入するガスの目標空燃比は、常時一定ではない。本実施形態のECU0は、触媒41に流入するガスの目標空燃比を、現在の触媒41の酸素吸蔵能力、換言すれば触媒41の経年劣化の度合いを加味して決定する。 In the air-fuel ratio feedback control, the target air-fuel ratio of the gas discharged from the catalyst 41 is, in principle, constant. On the other hand, the target air-fuel ratio of the gas flowing into the catalyst 41 is not always constant. The ECU 0 of the present embodiment determines the target air-fuel ratio of the gas flowing into the catalyst 41 in consideration of the oxygen storage capacity of the current catalyst 41, in other words, the degree of aging deterioration of the catalyst 41.

より詳しくは、触媒41に流入するガスの目標空燃比を、内燃機関の運転領域[エンジン回転数,アクセル開度(または、サージタンク33若しくは吸気マニホルド34内の吸気圧(空気の分圧)、吸入空気量、あるいは燃料噴射量)]に応じたベース値に、触媒41の劣化の度合いに応じた補正量である係数(劣化指数)を乗じて求める。 More specifically, the target air-fuel ratio of the gas flowing into the catalyst 41 is set to the operating region of the internal combustion engine [engine speed, accelerator opening (or intake pressure (division of air) in the surge tank 33 or intake manifold 34). The base value according to the intake air amount or the fuel injection amount)] is multiplied by a coefficient (deterioration index) which is a correction amount according to the degree of deterioration of the catalyst 41.

ECU0のメモリには予め、内燃機関の運転領域を示すパラメータと、上記の目標空燃比のベース値との関係を規定したマップデータが格納されている。ECU0は、現在の内燃機関の運転領域をキーとして当該マップを検索し、目標空燃比のベース値を知得する。 In the memory of the ECU 0, map data that defines the relationship between the parameter indicating the operating area of the internal combustion engine and the base value of the target air-fuel ratio is stored in advance. The ECU 0 searches the map using the current operating area of the internal combustion engine as a key, and obtains the base value of the target air-fuel ratio.

一例を挙げると、運転領域がより高回転及び/またはより高負荷の運転領域に遷移する際には、触媒41の上流でのガスの目標空燃比のベース値が、理論空燃比よりもリッチ側に偏倚する。空燃比センサ43がリニアA/Fセンサ43であるならば、その出力電圧fと比較するべき判定電圧値のベース値が、理論空燃比に対応した電圧値よりも低位となる。 As an example, when the operating region transitions to a higher rotation and / or higher load operating region, the base value of the target air-fuel ratio of the gas upstream of the catalyst 41 is on the rich side of the stoichiometric air-fuel ratio. It is biased to. If the air-fuel ratio sensor 43 is a linear A / F sensor 43, the base value of the determination voltage value to be compared with the output voltage f is lower than the voltage value corresponding to the theoretical air-fuel ratio.

並びに、ECU0のメモリには予め、触媒41の劣化の度合いを示唆する酸素吸蔵能力と、上記の係数との関係を規定したマップデータが格納されている。ECU0は、現在の触媒41の酸素吸蔵能力をキーとして当該マップを検索し、目標空燃比のベース値に補正量として乗じる係数を知得する。 In addition, the memory of the ECU 0 stores in advance map data that defines the relationship between the oxygen storage capacity that suggests the degree of deterioration of the catalyst 41 and the above-mentioned coefficient. The ECU 0 searches the map using the oxygen storage capacity of the current catalyst 41 as a key, and obtains a coefficient for multiplying the base value of the target air-fuel ratio by a correction amount.

触媒41において有害物質HC、CO、NOxの全てを十分に酸化/還元処理するためには、触媒41に蓄えておく酸素の量を、現在の触媒41の最大酸素吸蔵能力の五割ないし六割程度に維持することが好ましい。触媒41内で酸素量が欠乏するとHC及びCOの酸化処理が難しくなり、触媒41内で酸素量が過剰であるとNOxの還元処理が難しくなるからである。従って、触媒41の劣化の度合いに応じた補正量は、触媒41にその最大酸素吸蔵能力の五割ないし六割程度酸素を吸蔵できるように定める。補正量の傾向としては、触媒41が新品または劣化しておらず酸素吸蔵能力が大きいときと、触媒41の劣化が進行し酸素吸蔵能力が小さくなっているときとでは、前者の場合の方が目標空燃比がよりリッチとなり、後者の場合の方が目標空燃比がよりリーンとなるように設定することになる。触媒41の上流の空燃比センサ43がリニアA/Fセンサであるならば、その出力電圧fと比較するべき判定電圧値を触媒41の劣化が進むほど低下させる必要があり、故に判定電圧値のベース値に補正量として乗じる係数の絶対値が触媒41の劣化が進むほど小さくなる。 In order to sufficiently oxidize / reduce all harmful substances HC, CO, and NO x in the catalyst 41, the amount of oxygen stored in the catalyst 41 is 50% to 6% of the current maximum oxygen storage capacity of the catalyst 41. It is preferable to maintain the ratio. This is because if the amount of oxygen in the catalyst 41 is insufficient, the oxidation treatment of HC and CO becomes difficult, and if the amount of oxygen in the catalyst 41 is excessive, the reduction treatment of NO x becomes difficult. Therefore, the correction amount according to the degree of deterioration of the catalyst 41 is determined so that the catalyst 41 can occlude about 50% to 60% of its maximum oxygen storage capacity. As for the tendency of the correction amount, the former case is better than the case where the catalyst 41 is new or has not deteriorated and has a large oxygen storage capacity, and the case where the catalyst 41 is deteriorated and the oxygen storage capacity is small. The target air-fuel ratio will be richer, and in the latter case, the target air-fuel ratio will be set to be leaner. If the air-fuel ratio sensor 43 upstream of the catalyst 41 is a linear A / F sensor, it is necessary to lower the determination voltage value to be compared with the output voltage f as the catalyst 41 deteriorates. The absolute value of the coefficient obtained by multiplying the base value by the correction amount becomes smaller as the deterioration of the catalyst 41 progresses.

図5に、ECU0による空燃比フィードバック制御の模様を例示する。図5は、運転者によりアクセル開度が拡大操作されてエンジン回転数が加速する過渡期の状況を示している。また、現在の触媒41は劣化しておらず、その酸素吸蔵能力は大きい。図5中、実線は本実施形態のECU0による制御を表し、破線は従来の制御を表している。 FIG. 5 illustrates a pattern of air-fuel ratio feedback control by ECU 0. FIG. 5 shows a situation in a transitional period in which the accelerator opening is expanded by the driver to accelerate the engine speed. Further, the current catalyst 41 has not deteriorated and has a large oxygen storage capacity. In FIG. 5, the solid line represents the control by the ECU 0 of the present embodiment, and the broken line represents the conventional control.

従来の制御では、触媒41の上流におけるガスの目標空燃比の初期値を、そのときの内燃機関の運転領域のみにより決定していた。このため、現在の触媒41の酸素吸蔵能力が想定よりも大きいと、加速の過渡期において触媒41内で酸素が過剰となっている状態が続き、触媒41の下流に流出するガスの空燃比が一時的に目標空燃比よりもリーンとなり、また一時的であるにせよ還元されない有害物質NOxが触媒41の下流に排出される可能性があった。 In the conventional control, the initial value of the target air-fuel ratio of the gas upstream of the catalyst 41 is determined only by the operating region of the internal combustion engine at that time. Therefore, if the current oxygen storage capacity of the catalyst 41 is larger than expected, the oxygen in the catalyst 41 will continue to be excessive during the transitional period of acceleration, and the air-fuel ratio of the gas flowing downstream of the catalyst 41 will increase. There was a possibility that the harmful substance NO x , which was temporarily leaner than the target air-fuel ratio and was not reduced even if it was temporary, was discharged downstream of the catalyst 41.

本実施形態のECU0による制御では、現在の触媒41の酸素吸蔵能力が依然として大きいことに鑑み、触媒41の上流におけるガスの目標空燃比を従来の制御と比較してよりリッチに補正する。これにより、加速の過渡期において速やかに触媒41内の過剰な酸素をHC及びCOの酸化処理に用いてパージでき、触媒41の下流に流出するガスの空燃比を目標空燃比に維持し、かつ還元されない有害物質NOxが触媒41の下流に排出される量を従来の制御に比して減らすことができる。 In the control by the ECU 0 of the present embodiment, in view of the fact that the oxygen storage capacity of the current catalyst 41 is still large, the target air-fuel ratio of the gas upstream of the catalyst 41 is corrected more richly as compared with the conventional control. As a result, excess oxygen in the catalyst 41 can be quickly purged by using it for the oxidation treatment of HC and CO in the transitional period of acceleration, and the air-fuel ratio of the gas flowing downstream of the catalyst 41 is maintained at the target air-fuel ratio. The amount of non-reduced harmful substance NO x discharged downstream of the catalyst 41 can be reduced as compared with the conventional control.

本実施形態では、内燃機関の排気通路4に装着した排気浄化用の触媒41を流通するガスの空燃比を空燃比センサ(リニアA/Fセンサ)43を介して検出し、その空燃比(出力電圧f)を目標空燃比(判定電圧値)に収束させるフィードバック制御を実施する制御装置0であって、前記触媒41の劣化の度合いに応じて前記目標空燃比に加味する補正量を変更する内燃機関の制御装置を構成した。 In the present embodiment, the air-fuel ratio of the gas flowing through the exhaust gas purification catalyst 41 mounted in the exhaust passage 4 of the internal combustion engine is detected via the air-fuel ratio sensor (linear A / F sensor) 43, and the air-fuel ratio (output) is detected. An internal combustion engine that performs feedback control for converging the voltage f) to the target air-fuel ratio (determined voltage value), and changes the correction amount to be added to the target air-fuel ratio according to the degree of deterioration of the catalyst 41. The control device of the engine was configured.

本実施形態によれば、内燃機関の運転領域毎の前記目標空燃比の初期値を、触媒41の劣化の度合いに応じて適切に設定することが可能となり、特に内燃機関の運転領域が遷移した際の有害物質の排出増を効果的に抑制することができる。 According to the present embodiment, it is possible to appropriately set the initial value of the target air-fuel ratio for each operating region of the internal combustion engine according to the degree of deterioration of the catalyst 41, and in particular, the operating region of the internal combustion engine has changed. It is possible to effectively suppress an increase in the emission of harmful substances.

なお、本発明は以上に詳述した実施形態に限られない。特に、触媒41の劣化の度合いを推定する手法は、上記実施形態の如きものには限定されない。例えば、停止していた内燃機関を始動した後、触媒41に流入するガスの空燃比が増減している状態で、触媒41の下流の空燃比センサ44の出力信号gの振幅が所定以下に縮小するまでの経過時間を計測し、その経過時間が長いほど、触媒41の劣化が進んでいると推定することも可能である。 The present invention is not limited to the embodiment described in detail above. In particular, the method for estimating the degree of deterioration of the catalyst 41 is not limited to that of the above-described embodiment. For example, after starting the stopped internal combustion engine, the amplitude of the output signal g of the air-fuel ratio sensor 44 downstream of the catalyst 41 is reduced to a predetermined value or less while the air-fuel ratio of the gas flowing into the catalyst 41 is increasing or decreasing. It is also possible to measure the elapsed time until the catalyst 41 is used, and to estimate that the longer the elapsed time is, the more the catalyst 41 is deteriorated.

あるいは、より単純に、車両の走行距離や内燃機関の累積の回転回数が増大するほど、触媒41の劣化が進んでいると推定することも考えられる。 Alternatively, it can be more simply estimated that the deterioration of the catalyst 41 progresses as the mileage of the vehicle and the cumulative number of revolutions of the internal combustion engine increase.

その他、各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, the specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関の制御に利用することができる。 The present invention can be used for controlling an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
4…排気通路
41…触媒
43…触媒の上流の空燃比センサ
44…触媒の下流の空燃比センサ
f…触媒の上流の空燃比センサの出力信号
g…触媒の下流の空燃比センサの出力信号
0 ... Control unit (ECU)
1 ... Cylinder 4 ... Exhaust passage 41 ... Catalyst 43 ... Air-fuel ratio sensor upstream of catalyst 44 ... Air-fuel ratio sensor downstream of catalyst f ... Output signal of air-fuel ratio sensor upstream of catalyst g ... Air-fuel ratio sensor downstream of catalyst Output signal

Claims (1)

内燃機関の排気通路に装着した排気浄化用の触媒を流通するガスの空燃比を空燃比センサを介して検出し、その空燃比を目標空燃比に収束させるフィードバック制御を実施する制御装置であって、
前記触媒の劣化の度合いに応じて前記目標空燃比に加味する補正量を変更する内燃機関の制御装置。
It is a control device that detects the air-fuel ratio of the gas flowing through the exhaust gas purification catalyst installed in the exhaust passage of the internal combustion engine via the air-fuel ratio sensor and performs feedback control to converge the air-fuel ratio to the target air-fuel ratio. ,
A control device for an internal combustion engine that changes a correction amount to be added to the target air-fuel ratio according to the degree of deterioration of the catalyst.
JP2020038147A 2020-03-05 2020-03-05 Internal combustion engine control device Pending JP2021139340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038147A JP2021139340A (en) 2020-03-05 2020-03-05 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038147A JP2021139340A (en) 2020-03-05 2020-03-05 Internal combustion engine control device

Publications (1)

Publication Number Publication Date
JP2021139340A true JP2021139340A (en) 2021-09-16

Family

ID=77669331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038147A Pending JP2021139340A (en) 2020-03-05 2020-03-05 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2021139340A (en)

Similar Documents

Publication Publication Date Title
JP4251073B2 (en) Control device for internal combustion engine
US20060059894A1 (en) Air-fuel ratio control system and method
US6901906B2 (en) Apparatus and method for controlling air-fuel ratio in direct-injection internal combustion engine
JP2014066154A (en) Control device of internal combustion engine
JP5832156B2 (en) Control device for internal combustion engine
JP6961307B2 (en) Internal combustion engine control device
JP2021139340A (en) Internal combustion engine control device
JP7143032B2 (en) Control device for internal combustion engine
JP6961308B2 (en) Internal combustion engine control device
JP2021131032A (en) Controller of internal combustion engine
JP2010138791A (en) Air-fuel ratio control device
JP7023129B2 (en) Internal combustion engine control device
JP2020084902A (en) Control device of internal combustion engine
JP6153344B2 (en) Air-fuel ratio control device
JP2023090017A (en) Internal combustion engine control device
JP2022133865A (en) Control device for internal combustion engine
JP6188364B2 (en) Air-fuel ratio control device
JP2023090018A (en) Internal combustion engine control device
JP2023142713A (en) Control device of internal combustion engine
JP6238729B2 (en) Control device for internal combustion engine
JP2022059349A (en) Controller of internal combustion engine
JP2014224487A (en) Control device for internal combustion engine
JP2022142962A (en) Control device of internal combustion engine
JP2021121730A (en) Control device for internal combustion engine
JP2022016818A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312