JP2023142713A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2023142713A
JP2023142713A JP2022049737A JP2022049737A JP2023142713A JP 2023142713 A JP2023142713 A JP 2023142713A JP 2022049737 A JP2022049737 A JP 2022049737A JP 2022049737 A JP2022049737 A JP 2022049737A JP 2023142713 A JP2023142713 A JP 2023142713A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022049737A
Other languages
Japanese (ja)
Inventor
達也 辻
Tatsuya Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2022049737A priority Critical patent/JP2023142713A/en
Publication of JP2023142713A publication Critical patent/JP2023142713A/en
Pending legal-status Critical Current

Links

Images

Abstract

To suppress increase of discharge of harmful substances, by enhancing temperature rise and activation of a catalyst at a time immediately after cold start of an internal combustion engine.SOLUTION: A control device of an internal combustion engine for controlling the internal combustion engine including a plurality of cylinders 1 and joining gases discharged from each of the cylinders in an exhaust passage 4 to flow into the same exhaust purification catalyst 41, is constituted to adjust an amount of a fuel to be injected to a certain cylinder 1 so that an air fuel ratio of the gas discharged from the cylinder 1 becomes richer than a stoichiometric air-fuel ratio at a timing immediately after cold start of the internal combustion engine, to adjust an amount of a fuel to be injected to the cylinder 1 so that an air fuel ratio of the gas discharged from the other cylinder 1 becomes leaner than the stoichiometric air-fuel ratio, and to control the air fuel ratio of the total of the gases discharged from these cylinders 1 to the stoichiometric air-fuel ratio or vicinity thereof.SELECTED DRAWING: Figure 3

Description

本発明は、車両等に搭載される内燃機関の運転を制御する制御装置に関する。 The present invention relates to a control device that controls the operation of an internal combustion engine installed in a vehicle or the like.

内燃機関の排気通路には、気筒から排出されるガス中に含まれる有害物質HC、CO、NOxを酸化/還元して無害化する三元触媒が装着されている。この種の触媒は、空燃比リーンのガスが流入したときに余剰の酸素を吸蔵する能力(O2 Storage Capacity)を有している。そして、空燃比リッチのガスが流入したときに、吸蔵していた酸素を放出する。これにより、空燃比リーンのガスに含まれるNOxを適切に還元処理でき、また空燃比リッチのガスに含まれるHC、COを適切に酸化処理できる。 A three-way catalyst is installed in the exhaust passage of an internal combustion engine, which oxidizes/reduces harmful substances HC, CO, and NOx contained in gases exhausted from the cylinders to render them harmless. This type of catalyst has the ability to store excess oxygen (O 2 storage capacity) when gas with a lean air-fuel ratio flows in. Then, when gas with a rich air-fuel ratio flows in, the stored oxygen is released. Thereby, NO x contained in the air-fuel ratio lean gas can be appropriately reduced, and HC and CO contained in the air-fuel ratio rich gas can be appropriately oxidized.

HC、CO、NOxの全てを効率よく浄化するには、ガスの空燃比を理論空燃比近傍の一定範囲に収める必要がある。そのために、内燃機関の排気通路上に空燃比センサを設置して、当該センサが検出する空燃比を所要の目標値に追従させるフィードバック制御を実施することが通例となっている(例えば、下記特許文献を参照)。 In order to efficiently purify all of HC, CO, and NOx , it is necessary to keep the air-fuel ratio of the gas within a certain range near the stoichiometric air-fuel ratio. For this purpose, it is customary to install an air-fuel ratio sensor on the exhaust passage of an internal combustion engine and perform feedback control to make the air-fuel ratio detected by the sensor follow a required target value (for example, the following patent (see literature).

特開2021-139340号公報Japanese Patent Application Publication No. 2021-139340

内燃機関の冷間始動直後は、排気浄化用の触媒の温度も低下している。触媒による有害物質の浄化性能を高く維持するためには、可及的速やかに触媒を昇温させることが望まれる。 Immediately after the cold start of the internal combustion engine, the temperature of the exhaust purifying catalyst also decreases. In order to maintain the high performance of the catalyst in purifying harmful substances, it is desirable to raise the temperature of the catalyst as quickly as possible.

本発明は、内燃機関の冷間始動直後の時期の触媒の昇温、活性化を促進し、有害物質の排出増を抑制することを所期の目的としている。 An objective of the present invention is to promote temperature rise and activation of a catalyst immediately after a cold start of an internal combustion engine, and to suppress an increase in emissions of harmful substances.

本発明では、複数の気筒を包有し各気筒から排出されるガスを、排気通路を通じて同一の排気浄化用触媒に流入させる内燃機関を制御するものであり、当該内燃機関の冷間始動直後の時期に、前記複数の気筒における一部の気筒から排出されるガスの空燃比が理論空燃比よりもリッチとなるように前記一部の気筒に対して噴射する燃料の量を調整し、かつ、前記一部の気筒とは異なる他の気筒から排出されるガスの空燃比が理論空燃比よりもリーンとなるように前記他の気筒に対して噴射する燃料の量を調整し、前記一部の気筒及び前記他の気筒から排出されるガスの総体の空燃比が、理論空燃比またはその近傍となるように制御する内燃機関の制御装置を構成した。 The present invention controls an internal combustion engine that includes a plurality of cylinders and causes gas discharged from each cylinder to flow into the same exhaust purification catalyst through an exhaust passage. adjusting the amount of fuel injected to the some of the cylinders so that the air-fuel ratio of the gas discharged from some of the plurality of cylinders is richer than the stoichiometric air-fuel ratio, and Adjusting the amount of fuel injected to the other cylinders so that the air-fuel ratio of gas discharged from the other cylinders different from the some cylinders is leaner than the stoichiometric air-fuel ratio, A control device for an internal combustion engine is configured to control the total air-fuel ratio of gas discharged from a cylinder and the other cylinders to be at or near the stoichiometric air-fuel ratio.

より具体的には、前記排気浄化用触媒から最も距離の遠い気筒から排出されるガスの空燃比と、前記排気浄化用触媒から最も距離の近い気筒から排出されるガスの空燃比とを異ならせる。とりわけ、前記排気浄化用触媒から最も距離の遠い気筒から排出されるガスの空燃比を理論空燃比よりもリッチとし、前記排気浄化用触媒から最も距離の近い気筒から排出されるガスの空燃比を理論空燃比よりもリーンとすることが考えられる。 More specifically, the air-fuel ratio of the gas discharged from the cylinder farthest from the exhaust purification catalyst is made different from the air-fuel ratio of the gas discharged from the cylinder closest to the exhaust purification catalyst. . In particular, the air-fuel ratio of the gas discharged from the cylinder farthest from the exhaust purification catalyst is richer than the stoichiometric air-fuel ratio, and the air-fuel ratio of the gas discharged from the cylinder closest to the exhaust purification catalyst is set to be richer than the stoichiometric air-fuel ratio. It is conceivable to make the air-fuel ratio leaner than the stoichiometric air-fuel ratio.

本発明によれば、内燃機関の冷間始動直後の時期の触媒の昇温、活性化を促進し、有害物質の排出増を抑制することができる。 According to the present invention, it is possible to promote the temperature rise and activation of the catalyst immediately after a cold start of the internal combustion engine, and to suppress an increase in the discharge of harmful substances.

本発明の一実施形態における内燃機関及び制御装置の概略構成を示す図。1 is a diagram showing a schematic configuration of an internal combustion engine and a control device in an embodiment of the present invention. 同実施形態の内燃機関の制御装置がプログラムに従い実行する処理の手順例を示すフロー図。FIG. 3 is a flowchart showing an example of a procedure of processing executed by the control device for an internal combustion engine according to the embodiment according to a program. 同実施形態の内燃機関の制御装置による触媒の早期暖機のための空燃比制御の例を示す図。FIG. 3 is a diagram showing an example of air-fuel ratio control for early warm-up of a catalyst by the internal combustion engine control device of the embodiment.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークガソリンエンジンであり、複数の気筒1(例えば、三気筒エンジン。図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、吸気ポートに向けて燃料を噴射するインジェクタ11を気筒1毎に設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overview of a vehicle internal combustion engine in this embodiment. The internal combustion engine in this embodiment is a spark ignition four-stroke gasoline engine, and includes a plurality of cylinders 1 (for example, a three-cylinder engine; one of them is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 is provided for each cylinder 1 to inject fuel toward the intake port. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 causes a spark discharge between a center electrode and a ground electrode upon application of an induced voltage generated in an ignition coil. The ignition coil is integrally built into the coil case together with the igniter, which is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させたことで生じる排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。排気通路4における触媒41の上流及び下流には、排気通路4を流通するガスの空燃比を検出するための空燃比センサ43、44を設けている。空燃比センサ43、44はそれぞれ、ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよく、ガスの空燃比に比例した出力特性を有するリニアA/Fセンサであってもよい。本実施形態では、触媒41の上流の空燃比センサ43、下流の空燃比センサ44ともに、O2センサを想定している。 The exhaust passage 4 for discharging exhaust gas guides exhaust gas generated by burning fuel in the cylinders 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and a three-way catalyst 41 for exhaust purification are arranged on the exhaust passage 4. Upstream and downstream of the catalyst 41 in the exhaust passage 4, air-fuel ratio sensors 43 and 44 are provided to detect the air-fuel ratio of gas flowing through the exhaust passage 4. The air-fuel ratio sensors 43 and 44 may each be an O2 sensor that has an output characteristic that is non-linear with respect to the air-fuel ratio of gas, or a linear A/F sensor that has an output characteristic that is proportional to the air-fuel ratio of gas. Good too. In this embodiment, it is assumed that both the air-fuel ratio sensor 43 upstream of the catalyst 41 and the air-fuel ratio sensor 44 downstream of the catalyst 41 are O 2 sensors.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、排気通路4と吸気通路3とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における触媒41の下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所(特に、サージタンク33または吸気マニホルド34)に接続している。 The exhaust gas recirculation device 2 includes an external EGR passage 21 that communicates the exhaust passage 4 and the intake passage 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR passage 21 that opens and closes the EGR passage 21. The element includes an EGR valve 23 that controls the flow rate of EGR gas flowing through the passage 21. The entrance of the EGR passage 21 is connected to a predetermined location downstream of the catalyst 41 in the exhaust passage 4 . The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3 (in particular, the surge tank 33 or the intake manifold 34).

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラが、CAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 An ECU (Electronic Control Unit) 0, which is a control device for an internal combustion engine in this embodiment, is a microcomputer system including a processor, a memory, an input interface, an output interface, and the like. The ECU0 may include a plurality of ECUs or controllers connected to each other so as to be communicable via a telecommunication line such as a CAN (Controller Area Network).

ECU0の入力インタフェースには、車両の実車速(または、車輪の回転速度)を検出する車速センサから出力される車速信号a、内燃機関の出力軸であるクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、運転者によるアクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求されるエンジン負荷率またはエンジントルク)として検出するセンサから出力されるアクセル開度信号c、気筒1に連なる吸気通路3(特に、サージタンク33または吸気マニホルド34)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号e、排気浄化用の触媒41の上流側におけるガスの空燃比を検出する空燃比センサ43から出力される空燃比信号f、触媒41の下流側におけるガスの空燃比を検出する空燃比センサ44から出力される空燃比信号g、大気圧を検出する大気圧センサから出力される大気圧信号h等が入力される。 The input interface of ECU0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed (or wheel rotation speed), and detects the rotation angle and engine rotation speed of the crankshaft, which is the output shaft of the internal combustion engine. A crank angle signal b output from a crank angle sensor that detects the amount of depression of the accelerator pedal by the driver or the opening degree of the throttle valve 32 from a sensor that detects the accelerator opening degree (so to speak, the required engine load factor or engine torque). The accelerator opening signal c that is output, the intake temperature and intake pressure that are output from the temperature and pressure sensor that detects the intake air temperature and intake pressure in the intake passage 3 (particularly the surge tank 33 or intake manifold 34) connected to the cylinder 1. signal d, a cooling water temperature signal e outputted from a water temperature sensor that detects the cooling water temperature of the internal combustion engine, and an air-fuel ratio signal outputted from an air-fuel ratio sensor 43 that detects the air-fuel ratio of gas on the upstream side of the catalyst 41 for exhaust purification. f, an air-fuel ratio signal g output from an air-fuel ratio sensor 44 that detects the air-fuel ratio of gas on the downstream side of the catalyst 41, an atmospheric pressure signal h output from an atmospheric pressure sensor that detects atmospheric pressure, etc. are input.

ECU0の出力インタフェースからは、内燃機関の点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32の弁体を駆動するモータに対して開度操作信号k、EGRバルブ23の弁体を駆動するモータに対して開度操作信号l等を出力する。 From the output interface of the ECU 0, an ignition signal i is sent to the igniter of the spark plug 12 of the internal combustion engine, a fuel injection signal j is sent to the injector 11, and an opening operation signal k is sent to the motor that drives the valve body of the throttle valve 32. , outputs an opening operation signal l, etc. to the motor that drives the valve body of the EGR valve 23.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関及び車両の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング(一度の燃焼に対する点火の回数を含む)、要求EGR率(または、EGRガス量)等といった運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。 The processor of ECU0 interprets and executes programs stored in memory in advance, calculates operating parameters, and controls the operation of the internal combustion engine. The ECU0 acquires various information a, b, c, d, e, f, g, and h necessary for operational control of the internal combustion engine and the vehicle through the input interface, and calculates the required fuel injection amount, fuel injection timing (one time The engine determines operating parameters such as (including the number of fuel injections per combustion), fuel injection pressure, ignition timing (including the number of ignitions per one combustion), required EGR rate (or EGR gas amount), etc. ECU0 applies various control signals i, j, k, l corresponding to operating parameters via an output interface.

インジェクタ11からの燃料噴射量を決定するにあたり、ECU0は、まず、吸気圧及び吸気温、エンジン回転数、要求EGR率等から、気筒1に吸入される空気(新気)の量を算出し、これに見合った基本噴射量TPを決定する。基本噴射量TPは、吸入空気量に比例する、目標空燃比を具現するために必要な燃料の量である。目標空燃比は、通常、理論空燃比またはその近傍の値である。但し、後述するように、本実施形態では、各気筒1毎にインジェクタ11から噴射する燃料の量、ひいては各気筒1に充填される混合気の空燃比を不均等に大きくばらつかせることがある。 In determining the amount of fuel to be injected from the injector 11, the ECU 0 first calculates the amount of air (fresh air) taken into the cylinder 1 from the intake pressure, intake temperature, engine speed, required EGR rate, etc. A basic injection amount TP commensurate with this is determined. The basic injection amount TP is the amount of fuel required to realize the target air-fuel ratio, which is proportional to the intake air amount. The target air-fuel ratio is usually the stoichiometric air-fuel ratio or a value near it. However, as will be described later, in this embodiment, the amount of fuel injected from the injector 11 for each cylinder 1, and even the air-fuel ratio of the air-fuel mixture filled into each cylinder 1, may vary greatly and unevenly. .

混合気の空燃比をフィードバック制御する際には、上記の基本噴射量TPを、排気通路4における触媒41の上流側及び/または下流側のガスの空燃比に応じて定まるフィードバック補正係数FAFで補正する。フィードバック補正係数FAFは、1を中心とする正数であり、空燃比センサ43、44を介して実測されるガスの空燃比と目標空燃比との偏差に応じて調整され、実測空燃比が目標空燃比に対してリーンであるときには増加し、実測空燃比が目標空燃比に対してリッチであるときには減少する。 When performing feedback control of the air-fuel ratio of the air-fuel mixture, the basic injection amount TP is corrected using a feedback correction coefficient FAF that is determined according to the air-fuel ratio of the gas upstream and/or downstream of the catalyst 41 in the exhaust passage 4. do. The feedback correction coefficient FAF is a positive number centered around 1, and is adjusted according to the deviation between the gas air-fuel ratio actually measured via the air-fuel ratio sensors 43 and 44 and the target air-fuel ratio, so that the actual measured air-fuel ratio becomes the target air-fuel ratio. It increases when the air-fuel ratio is lean with respect to the air-fuel ratio, and decreases when the measured air-fuel ratio is rich with respect to the target air-fuel ratio.

その上で、内燃機関の運転状況や環境条件等に応じて定まる各種補正係数Kや、インジェクタ11の無効噴射時間TAUVをも加味して、最終的な燃料噴射時間Tを算定する。燃料噴射時間Tは、
T=TP×FAF×K+TAUV
となる。ECU0は、燃料噴射時間Tだけインジェクタ11に信号jを通電し、インジェクタ11を開弁して燃料を噴射させる。
Then, the final fuel injection time T is calculated by taking into consideration various correction coefficients K determined according to the operating status of the internal combustion engine, environmental conditions, etc., and the invalid injection time TAUV of the injector 11. The fuel injection time T is
T=TP×FAF×K+TAUV
becomes. The ECU0 energizes the injector 11 with a signal j for a fuel injection time T, opens the injector 11, and injects fuel.

しかして、本実施形態のECU0は、図2に示すように、内燃機関の冷間始動直後であるか、その時期を過ぎて内燃機関及び触媒の暖機がある程度以上完了しているかに応じて(ステップS1)、各気筒1に相対するインジェクタ11から当該気筒1に噴射する燃料の量の制御を変更する(ステップS2、S3)。 Therefore, as shown in FIG. 2, the ECU 0 of the present embodiment is configured to operate the engine immediately after the cold start of the internal combustion engine, or depending on whether the warm-up of the internal combustion engine and the catalyst has been completed to a certain extent after that period. (Step S1), and control of the amount of fuel injected into each cylinder 1 from the injector 11 facing each cylinder 1 is changed (Steps S2, S3).

内燃機関の冷間始動直後の時期、例えば、内燃機関の冷却水の温度が所定値以下の低温である、触媒41の温度が所定値以下の低温である、または冷間始動から経過した時間若しくはサイクル数が所定値以下であるときには(ステップS1)、図3に例示するように、各気筒1に充填される混合気の空燃比を、それら気筒1間で均一化せずに大きくばらつかせる(ステップS2)。 The period immediately after a cold start of the internal combustion engine, for example, the temperature of the cooling water of the internal combustion engine is a low temperature below a predetermined value, the temperature of the catalyst 41 is a low temperature below a predetermined value, or the time elapsed after a cold start. When the number of cycles is less than a predetermined value (step S1), as illustrated in FIG. 3, the air-fuel ratio of the air-fuel mixture filled in each cylinder 1 is not made uniform among the cylinders 1, but varies greatly. (Step S2).

燃料としてガソリンを使用する場合、理論空燃比は約14.6である。ステップS2にて、ECU0は、触媒41から最も距離の遠い気筒1における混合気の空燃比を理論空燃比よりも過剰にリッチ化した約12.6とするべく、当該気筒1に対してインジェクタ11から噴射する燃料の量を増量する。対して、触媒41から最も距離の近い気筒1、及び中間の気筒1における混合気の空燃比は、理論空燃比よりも過剰にリーン化した約15.9とするべく、当該気筒1に対してインジェクタ11から噴射する燃料の量を減量する。 When using gasoline as fuel, the stoichiometric air-fuel ratio is approximately 14.6. In step S2, the ECU 0 controls the injector 11 for the cylinder 1 to make the air-fuel ratio of the air-fuel mixture in the cylinder 1 that is farthest from the catalyst 41 to about 12.6, which is excessively richer than the stoichiometric air-fuel ratio. Increase the amount of fuel injected from. On the other hand, the air-fuel ratio of the mixture in the cylinder 1 closest to the catalyst 41 and the intermediate cylinder 1 is set to approximately 15.9, which is excessively leaner than the stoichiometric air-fuel ratio. The amount of fuel injected from the injector 11 is reduced.

上掲の各気筒1から排出されるガスの総和の空燃比は、理論空燃比またはその近傍の値、例えば約14.8になるようにする。14.8は、ガソリン燃料の理論空燃比14.6よりも若干リーンであるが、これは、内燃機関の冷間始動直後の時期には有害物質HCが排出されやすいことによる。HCを触媒41において酸化処理して無害化するためには、触媒41内の雰囲気を幾分リーン寄りにする方が有利である。 The total air-fuel ratio of the gases discharged from each cylinder 1 listed above is set to be the stoichiometric air-fuel ratio or a value close to it, for example, about 14.8. The stoichiometric air-fuel ratio of 14.8 is slightly leaner than the stoichiometric air-fuel ratio of 14.6 for gasoline fuel, but this is because harmful substances HC are easily discharged immediately after the internal combustion engine is cold-started. In order to oxidize HC in the catalyst 41 and render it harmless, it is advantageous to make the atmosphere inside the catalyst 41 somewhat leaner.

ステップS2にて、点火タイミングは、各気筒1毎に均等としてもよいが、各気筒1間で異ならせてもよい。一般に、内燃機関の冷間始動直後の時期は、気筒1から排出され触媒41に流入するガスの温度を高温化するべく、点火タイミングを平常よりも遅角補正する。が、混合気が燃焼しにくい気筒1は、燃焼しやすい気筒1に比して点火タイミングをより進角してもよい。 In step S2, the ignition timing may be made equal for each cylinder 1, or may be made different for each cylinder 1. Generally, immediately after a cold start of the internal combustion engine, the ignition timing is corrected to be retarded than normal in order to raise the temperature of the gas discharged from the cylinder 1 and flowing into the catalyst 41. However, the ignition timing may be advanced in the cylinder 1 in which the air-fuel mixture is difficult to burn compared to the cylinder 1 in which the air-fuel mixture is easy to burn.

その後、内燃機関の冷却水の温度が所定値以上に昇温し、触媒41の温度が所定値以上に昇温し、または冷間始動から経過した時間若しくはサイクル数が所定値を超えたならば(ステップS1)、平常の制御、即ち各気筒1に充填される混合気の空燃比を均一化する制御へと移行する(ステップS3)。ステップS3では、例えば、各気筒1における混合気の空燃比をそれぞれ理論空燃比に近い約14.6とするべく、各気筒1に対してインジェクタ11から噴射する燃料の量を制御する。 After that, if the temperature of the cooling water of the internal combustion engine rises to a predetermined value or more, the temperature of the catalyst 41 rises to a predetermined value or more, or the time or number of cycles that has passed since the cold start exceeds a predetermined value. (Step S1), the routine shifts to normal control, that is, control for equalizing the air-fuel ratio of the air-fuel mixture filled in each cylinder 1 (Step S3). In step S3, for example, the amount of fuel injected from the injector 11 to each cylinder 1 is controlled so that the air-fuel ratio of the air-fuel mixture in each cylinder 1 is approximately 14.6, which is close to the stoichiometric air-fuel ratio.

本実施形態によれば、内燃機関の冷間始動直後の時期に、各気筒1から触媒41に順次流れ込むガスの空燃比が大きく増減し、触媒41にて大きな反応熱が発生して、触媒41の早期の昇温が促進される。そして、有害物質の排出量をより一層低減することができる。 According to this embodiment, immediately after the cold start of the internal combustion engine, the air-fuel ratio of the gas that sequentially flows into the catalyst 41 from each cylinder 1 increases or decreases greatly, and a large amount of reaction heat is generated in the catalyst 41. Early temperature rise is promoted. In addition, the amount of harmful substances discharged can be further reduced.

なお、本発明は以上に詳述した実施形態には限定されない。各部の具体的な構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 Note that the present invention is not limited to the embodiments detailed above. The specific configuration of each part, processing procedure, etc. can be variously modified without departing from the spirit of the present invention.

0…制御装置(ECU)
1…気筒
11…インジェクタ
4…排気通路
41…触媒
0...Control unit (ECU)
1...Cylinder 11...Injector 4...Exhaust passage 41...Catalyst

Claims (3)

複数の気筒を包有し各気筒から排出されるガスを、排気通路を通じて同一の排気浄化用触媒に流入させる内燃機関を制御するものであり、
当該内燃機関の冷間始動直後の時期に、
前記複数の気筒における一部の気筒から排出されるガスの空燃比が理論空燃比よりもリッチとなるように前記一部の気筒に対して噴射する燃料の量を調整し、
かつ、前記一部の気筒とは異なる他の気筒から排出されるガスの空燃比が理論空燃比よりもリーンとなるように前記他の気筒に対して噴射する燃料の量を調整し、
前記一部の気筒及び前記他の気筒から排出されるガスの総体の空燃比が、理論空燃比またはその近傍となるように制御する内燃機関の制御装置。
It controls an internal combustion engine that includes multiple cylinders and causes gas exhausted from each cylinder to flow into the same exhaust purification catalyst through an exhaust passage.
Immediately after the cold start of the internal combustion engine,
adjusting the amount of fuel injected to the some of the cylinders so that the air-fuel ratio of gas discharged from some of the plurality of cylinders is richer than the stoichiometric air-fuel ratio;
and adjusting the amount of fuel injected to the other cylinders so that the air-fuel ratio of gas discharged from the other cylinders different from the some of the cylinders is leaner than the stoichiometric air-fuel ratio;
A control device for an internal combustion engine that controls the total air-fuel ratio of gas discharged from the some cylinders and the other cylinders to be at or near the stoichiometric air-fuel ratio.
前記排気浄化用触媒から最も距離の遠い気筒から排出されるガスの空燃比と、前記排気浄化用触媒から最も距離の近い気筒から排出されるガスの空燃比とを異ならせる請求項1記載の内燃機関の制御装置。 The internal combustion engine according to claim 1, wherein the air-fuel ratio of the gas discharged from the cylinder furthest from the exhaust purification catalyst is different from the air-fuel ratio of the gas discharged from the cylinder closest to the exhaust purification catalyst. Engine control equipment. 前記排気浄化用触媒から最も距離の遠い気筒から排出されるガスの空燃比を理論空燃比よりもリッチとし、前記排気浄化用触媒から最も距離の近い気筒から排出されるガスの空燃比を理論空燃比よりもリーンとする請求項2記載の内燃機関の制御装置。 The air-fuel ratio of gas discharged from the cylinder farthest from the exhaust purification catalyst is set to be richer than the stoichiometric air-fuel ratio, and the air-fuel ratio of gas discharged from the cylinder closest to the exhaust purification catalyst is set to be richer than the stoichiometric air-fuel ratio. 3. The control device for an internal combustion engine according to claim 2, wherein the fuel ratio is leaner than the fuel ratio.
JP2022049737A 2022-03-25 2022-03-25 Control device of internal combustion engine Pending JP2023142713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022049737A JP2023142713A (en) 2022-03-25 2022-03-25 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022049737A JP2023142713A (en) 2022-03-25 2022-03-25 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2023142713A true JP2023142713A (en) 2023-10-05

Family

ID=88206363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022049737A Pending JP2023142713A (en) 2022-03-25 2022-03-25 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2023142713A (en)

Similar Documents

Publication Publication Date Title
US20060201137A1 (en) Engine control equipment
US7047727B2 (en) Rapid catalyst warm-up control device for internal combustion engine
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
JP4778401B2 (en) Control device for internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP6961308B2 (en) Internal combustion engine control device
JP2023142713A (en) Control device of internal combustion engine
JP2021131032A (en) Controller of internal combustion engine
JP2022059350A (en) Controller of internal combustion engine
JP2022059349A (en) Controller of internal combustion engine
JP7383348B2 (en) Internal combustion engine control device
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP7023129B2 (en) Internal combustion engine control device
JP7123512B2 (en) Control device for internal combustion engine
JP7418930B2 (en) Internal combustion engine control device
JP2019100221A (en) Control device for internal combustion engine
JP2012077713A (en) Multi-cylinder internal combustion engine control device
JP6821255B2 (en) Internal combustion engine control device
JP2021134774A (en) Control apparatus for internal combustion engine
JP2022133865A (en) Control device for internal combustion engine
JP2021139340A (en) Internal combustion engine control device
JP2023147998A (en) Control device of internal combustion engine
JP2023090018A (en) Internal combustion engine control device
JP2024054714A (en) Control device for internal combustion engine