JP2010133826A - ピペット - Google Patents

ピペット Download PDF

Info

Publication number
JP2010133826A
JP2010133826A JP2008309999A JP2008309999A JP2010133826A JP 2010133826 A JP2010133826 A JP 2010133826A JP 2008309999 A JP2008309999 A JP 2008309999A JP 2008309999 A JP2008309999 A JP 2008309999A JP 2010133826 A JP2010133826 A JP 2010133826A
Authority
JP
Japan
Prior art keywords
liquid
pipette
size distribution
particle size
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008309999A
Other languages
English (en)
Inventor
Yoshiyuki Sueoka
善之 末岡
Kazuya Oe
一也 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2008309999A priority Critical patent/JP2010133826A/ja
Publication of JP2010133826A publication Critical patent/JP2010133826A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】粒子径分布の測定の精度を向上できるピペット、液体採取方法および粒子径分布の測定方法を提供する。
【解決手段】ピペット10は、内部が中空で、かつ一方端が覆われている管11と、管11の側部に形成された吸上部12とを備えている。吸上部12は管11の側部から内部に貫通する孔であり、孔を通じて外部から内部へ液体を吸い上げる。液体採取方法は、ピペット10を準備する工程と、ピペット10の吸上部12から液体を吸い上げる工程とを備えている。粒子径分布の測定方法は、液体採取方法により液体を採取する工程と、液体の粒子径分布を測定する工程とを備えている。
【選択図】図2

Description

本発明は、ピペット、液体採取方法および粒子径分布の測定方法に関する。
従来より用いられてきた粒子径分布測定方法には、JIS Z 8820−2(非特許文献1)に記載の液相重力沈降法による粒子径分布測定方法のピペット法(第2部)が挙げられる。JIS Z 8820−2には、沈降容器内の一定深さ(採取位置)まで挿入したピペットから適当な時間間隔で一定量の懸濁液を吸引し、懸濁液に含まれる粒子の質量および沈降時間から積算粒子径分布を得る方法が開示されている。
図7は、従来のピペット法に用いられるピペットを概略的に示す拡大断面図である。図8は、図7における線分VIII−VIIIでの断面図である。図7および図8に示すように、JIS Z 8820−2のピペット法に用いられる従来のピペット200は、管11を備えている。管11の先端11aには孔11bが形成されている。この管11の先端11aの孔11bから懸濁液を採取し、先端11aを採取位置としている。
JIS Z 8820−2:2004、日本工業規格
しかしながら、従来のピペットを用いた液体の採取方法では、ピペット200の先端11aの孔11bが下向きに形成されている。このため、図7における矢印に示すように、採取位置である先端11aよりも下方からの懸濁液を吸上げてしまうので、採取位置よりも下方に沈降した粒子を吸上げてしまう。したがって、上記粒子の質量および沈降時間に影響を及ぼすので、粒子径分布測定の精度が悪いという問題があった。
本発明は、上記問題点を解決するためになされたものであり、粒子径分布の測定の精度を向上できるピペット、液体採取方法および粒子径分布の測定方法を提供することを目的とする。
本発明のピペットは、内部が中空で、かつ一方端が覆われている管と、管の側部に形成された吸上部とを備えている。吸上部は管の側部から内部に貫通する孔であり、孔を通じて外部から内部へ液体を吸い上げる。
本発明のピペットによれば、吸上部は管の側部に形成されているので、この側部を通じてピペットの外部から内部へ液体を吸上げることができる。このとき、管の一方端が覆われているので、吸上部より下方から吸上げる液体量を低減することができる。このため、吸上部を採取位置とすると、採取位置より下方に沈降した粒子を吸上げることを抑制することができるので、採取する液体中に対流を起こすことを抑制することができる。これにより、液体中の粒子の沈降速度への影響を抑制することができる。したがって、このピペットを用いて採取した液体中の粒子径分布の測定の精度を向上することができる。
上記ピペットにおいて好ましくは、管は筒状であり、吸上部は断面視において四方に広がる孔である。これにより、液体の対流を抑制し、かつ設計の容易なピペットを実現することができる。
本発明の液体採取方法は、上記いずれかのピペットを準備する工程と、ピペットの吸上部から液体を吸い上げる工程とを備えている。
本発明の液体採取方法によれば、上記ピペットを用いて液体を採取しているので、液体中に対流を起こすことを抑制して、液体中の粒子の沈降速度への影響を抑制することができる。このため、本発明の液体採取方法により採取した液体を用いて粒子径分布の測定をすると、精度を向上することができる。
本発明の粒子径分布の測定方法は、上記液体採取方法により液体を採取する工程と、液体の粒子径分布を測定する工程とを備えている。
本発明の粒子径分布の測定方法によれば、上記液体採取方法により採取された液体を用いて粒子径分布を測定している。この液体は、対流を起こすことを抑制して、粒子の沈降速度への影響を抑制されて、採取されている。このため、精度を向上して液体の粒子径分布の測定をすることができる。
以上説明したように、本発明のピペットによれば、一方端が覆われている管と、管の側部に形成された吸上部とを備えているので、粒子径分布の測定の精度を向上することができる。
また、本発明の液体採取方法によれば、上記ピペットを用いているので、粒子径分布の測定の精度を向上することができる。
また、本発明の粒子径分布の測定方法によれば、上記液体採取方法により採取された液体を用いているので、粒子径分布の測定の精度を向上することができる。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。
(実施の形態1)
図1は、本発明の一実施の形態におけるピペットを概略的に示す断面図である。図2(A)は、図1における領域II(A)を概略的に示す拡大断面図である。図2(B)は、図1における線分II(B)および図2(A)における線分II(B)での断面図である。図1、図2(A)および(B)を参照して、本実施の形態におけるピペット10を説明する。
図1(A)、図2(A)および(B)に示すように、ピペット10は、管11と、吸上部12とを備えている。吸上部12は、管11の側部に形成されている。
管11は、内部が中空で、液体を保持する。また、管11において、一方端(図1および図2(A)において下端)は覆われており、他方端13(図1および図2(A)において上端)は開口している。図2(B)に示すように、本実施の形態における管11は筒状であるが、特にこれに限定されず、断面視において矩形などであってもよい。
吸上部12は管11の側部から内部に貫通する孔であり、孔を通じて外部から内部へ液体を吸い上げる。吸上部12は、管11の一方端の近傍に形成されていることが好ましい。
図2(B)に示すように、本実施の形態における吸上部12は、断面視において四方に広がる孔である。吸上部12が複数である場合には、一方端からのそれぞれの距離が略同じであることが好ましい。なお、吸上部12の位置および形状は特に限定されず、図3に示すように、吸上部12は1つであってもよい。また、図4に示すように、吸上部12は3つであってもよく、吸上部は5つ以上(図示せず)であってもよい。このように、吸上部12は、断面視において内部の中空から放射状に複数の開口部が広がる形状であることが好ましい。液体を吸上げる際に対流を起こすことを抑制するという観点からは、吸上部12の数は多い方が好ましく、また吸上部12の開口面積が大きいほど好ましい。なお、図3および図4は、本実施の形態における吸上部の変形例を概略的に示す断面図である。
図5は、本実施の形態におけるピペットの別の変形例を概略的に示す斜視図である。図5に示すように、別の変形例のピペットの吸上部12は、側方から見たときに四角形の開口部を有している。この場合、吸上部12を通過する際の液体の流速を小さくすることにより、液体を吸上げる際に対流を起こすことを抑制することができるので好ましい。
他方端13近傍には、たとえば液溜め部などをさらに有していてもよい。また図1に示すように他方端13が開口していてもよく、他方端13近傍の側部に開口部(図示せず)を有し、この開口部から採取した液体を取り出してもよい。
続いて、本実施の形態におけるピペット10の動作について説明する。本実施の形態では、ピペット10を用いて、粒子と分散媒とを含む液体(懸濁液)を吸上げる。具体的には、ピペット10の外部から液体を吸上げる際、他方端13を負圧にする。これにより、図2(A)および(B)の矢印に示すように、吸上部12を通じてピペット10の外部から内部へ液体を吸上げる。
本実施の形態におけるピペット10の吸上部12は管11の側部に形成され、かつ管11の一方端が覆われているので、吸上部12より下方から吸上げる液体量を低減することができる。このため、吸上部12を採取位置とすることができ、採取位置より下方に沈降した粒子を吸上げることを抑制することができる。したがって、採取する液体中に対流を起こすことを抑制することができるので、液体中の粒子の沈降速度への影響を抑制して液体を採取することができる。
(実施の形態2)
図6は、本実施の形態における液体採取方法および粒子径分布の測定方法に用いる装置を概略的に示す模式図である。まず、図1〜図6を参照して、本実施の形態における液体採取方法および粒子径分布の測定方法に用いる装置について説明する。
図6に示すように、この装置は、図1〜図5に示す実施の形態1におけるピペット10と、沈降管101と、栓103とを備えている。沈降管101は、一方端が開口しており、内部に液体を保持する。栓103は、沈降管101の開口部を塞ぐように配置されている。また栓103は、実施の形態1のピペット10の一方端が沈降管101の内部に配置され、かつ他方端13が沈降管101の外部に配置されるように保持している。
この装置の具体的寸法および材料の一例を示すと、沈降管の直径は5cm程度であり、高さは35cm程度であり、ガラス製である。また栓103は通気孔を有するベル形ドームである。またピペット10の内径は1mm程度である。また沈降管101に投入する液体の量は500cm3程度である。
続いて、図1〜図6を参照して、本実施の形態における液体採取方法および粒子径分布の測定方法について説明する。
まず、実施の形態1におけるピペット10を準備する。その後、このピペット10を用いて図6に示す装置を準備する。次いで、粒子を分散液に分散した液体(懸濁液)を沈降管101に投入する。そして、装置を図6に示す状態にセットする。その後、十分攪拌した後、ピペット10を静置する。液体を採取するときの温度の変動を抑制するため、恒温室あるいは恒温槽などに装置を配置することが好ましい。
次に、ピペット10の吸上部12から液体を吸い上げる。この工程は実施の形態1のピペット10の動作と同様である。本実施の形態では、攪拌した後あらかじめ定めた時間ごとに、沈降中の液体の表面からの深さH(図6参照)の位置において、ピペット10の一方端から懸濁液を吸い上げる。時間t経過後には、H/tの速度で沈降するストークス径よりも大きい粒径を有するすべての粒子は、採取位置より下方に沈降している。このため、吸い上げた試料は、それより小さいストークス径だけを含んでいる。そして、あらかじめ秤量してある蒸発皿に、ピペット10の他方端13から採取した液体を移す。液体を吸い上げる量は、たとえば10cm3である。
以上の工程を実施することにより、液体を採取することができる。本実施の形態における液体採取方法によれば、採取する液体中に対流を起こすことを抑制することができるので、採取位置以外に位置する粒子を含むことを抑制することができ、液体中の粒子の沈降速度への影響を抑制することができる。
次に、液体(懸濁液)の粒子径分布を測定する。本実施の形態における液体の粒子径分布の測定方法は、JIS Z 8820−2に記載の液相重力沈降法による粒子径分布測定方法のピペット法を適用することができる。すなわち、粒子の質量基準ふるい下積算分布は、ピペット10から吸い上げた各試料から分散液を除去した後、残留物をひょう量することによって得られる。
具体的には、蒸発皿に流し出した液体をたとえば105℃〜110℃で恒量になるまで乾燥する。そして、吸上げた液体中に分散している粒子の質量を測定する。これにより、粒子の密度を求めることができる。その後、vは粒子の落下速度、gは重力加速度、σおよびρはそれぞれ粒子および液体の密度、ηは流体の粘性係数、dは球の直径とした場合に、v=(g/18)・[(σ−ρ)/η]・d2で表されるストークスの式からストークス径を求める。
なお、本実施の形態では、液体を構成する分散媒として水を用いてもよく、水以外を用いてもよい。水よりも粘度の大きな分散媒を用いる場合には、大きい粒子の測定に有利である。また、粒子との反応を避ける目的でケロシン、エチルアルコールなど非水系の分散媒を用いてもよい。粒子が細かく軽い場合には、液体の採取の影響で粒子の沈降速度に変化が生じやすいが、本実施の形態では液体中に対流を起こすことを抑制できるため、本実施の形態における液体採取方法および粒子径分布の測定方法は、粒子が細かく軽い場合に好適に用いられる。
以上の工程を実施することにより、採取した液体の粒子径分布の測定することができる。本実施の形態における粒子径分布の測定方法によれば、対流を抑制して液体を採取しているので、採取位置以外に位置する粒子を含むことを抑制した液体中の粒子を測定している。このため、精度を向上して粒子径分布を測定することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明のピペット、液体採取方法および粒子径分布の測定方法は、精度を向上して粒子径分布を測定できるので、環境分析等に好適に用いることができる。
本発明の実施の形態1におけるピペットを概略的に示す断面図である。 (A)は、図1における領域II(A)を概略的に示す拡大断面図であり、(B)は、図1における線分II(B)および図2(A)における線分II(B)での断面図である。 実施の形態1における吸上部の変形例を概略的に示す断面図である。 実施の形態1における吸上部の変形例を概略的に示す断面図である。 実施の形態1におけるピペットの別の変形例を概略的に示す斜視図である。 実施の形態2における液体採取方法および粒子径分布の測定方法に用いる装置を概略的に示す模式図である。 従来のピペット法に用いられるピペットを概略的に示す拡大断面図である。 図7における線分VIII−VIIIでの断面図である。
符号の説明
10 ピペット、11 管、12 吸上部、13 他方端、101 沈降管、103 栓。

Claims (4)

  1. 内部が中空で、かつ一方端が覆われている管と、
    前記管の側部に形成された吸上部とを備え、
    前記吸上部は前記管の側部から内部に貫通する孔であり、前記孔を通じて外部から内部へ液体を吸い上げる、ピペット。
  2. 前記管は、筒状であり、
    前記吸上部は、断面視において四方に広がる孔である、請求項1に記載のピペット。
  3. 請求項1または2に記載のピペットを準備する工程と、
    前記ピペットの前記吸上部から液体を吸い上げる工程とを備えた、液体採取方法。
  4. 請求項3に記載の液体採取方法により液体を採取する工程と、
    前記液体の粒子径分布を測定する工程とを備えた、粒子径分布の測定方法。
JP2008309999A 2008-12-04 2008-12-04 ピペット Withdrawn JP2010133826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309999A JP2010133826A (ja) 2008-12-04 2008-12-04 ピペット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309999A JP2010133826A (ja) 2008-12-04 2008-12-04 ピペット

Publications (1)

Publication Number Publication Date
JP2010133826A true JP2010133826A (ja) 2010-06-17

Family

ID=42345260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309999A Withdrawn JP2010133826A (ja) 2008-12-04 2008-12-04 ピペット

Country Status (1)

Country Link
JP (1) JP2010133826A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026554A1 (ja) * 2018-08-01 2020-02-06 ソニー株式会社 サンプル送液装置、フローサイトメータ及びサンプル送液方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026554A1 (ja) * 2018-08-01 2020-02-06 ソニー株式会社 サンプル送液装置、フローサイトメータ及びサンプル送液方法

Similar Documents

Publication Publication Date Title
CN104741158B (zh) 一种利用惯性力产生微液滴的方法和装置
WO2017215428A1 (zh) 一种微通道阵列板的制备方法、用其来获得液滴的装置和液滴产生方法
Kamack Particle-size determination by centrifugal pipet sedimentation
JP2019514061A (ja) 顕微鏡検査のための試料処理
Koch et al. Accelerated evaporation of microdroplets at ambient conditions for the on-line analysis of nanoparticles by inductively-coupled plasma mass spectrometry
US20110070642A1 (en) Device and method for isolating and cultivating live cells on a filter or extracting the genetic material thereof
EP2253960A3 (en) Automatic loading of sample tubes for clinical analyzer
JP2009019922A (ja) 化学分析装置
US10520411B2 (en) Method and system for determining dissolution properties of matter
JP2010133826A (ja) ピペット
EP3885748A1 (en) Single-crystal x-ray structural analysis device sample holder, sample holder unit, and occlusion method
JP2011179862A (ja) 粒子沈降速度算定方法
JP2006098212A (ja) 粒度分布測定装置
JP2015501294A (ja) 液液抽出プロセスおよび器具
JP3185113U (ja) 試料カップ
JP2007046998A (ja) 化学分析装置及びそれに使用する試薬装置
CN109060594B (zh) 一种液体密度测量方法
JP2006047064A (ja) 粒子径分布測定方法および粒子径分布測定装置
CN206057350U (zh) 检验用样本架适配器
CN217304573U (zh) 上清液转移装置及食用油中增塑剂检测用样品前处理系统
CN104483165B (zh) 一种超细磁性粉体中大粒径粉的取样方法
CN106769182B (zh) 一种热重分析仪的取样装置
JP6260521B2 (ja) 粒子解析装置及び粒子解析方法
CN109046487B (zh) 一种用于测量液体密度的定量取液装置
JP5057227B2 (ja) 血液検査用マイクロチップ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207