JP2010133236A - ハイブリッド型建設機械 - Google Patents

ハイブリッド型建設機械 Download PDF

Info

Publication number
JP2010133236A
JP2010133236A JP2009257454A JP2009257454A JP2010133236A JP 2010133236 A JP2010133236 A JP 2010133236A JP 2009257454 A JP2009257454 A JP 2009257454A JP 2009257454 A JP2009257454 A JP 2009257454A JP 2010133236 A JP2010133236 A JP 2010133236A
Authority
JP
Japan
Prior art keywords
construction machine
battery
motor generator
power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009257454A
Other languages
English (en)
Other versions
JP5122548B2 (ja
Inventor
Hideaki Kanbayashi
英明 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009257454A priority Critical patent/JP5122548B2/ja
Publication of JP2010133236A publication Critical patent/JP2010133236A/ja
Application granted granted Critical
Publication of JP5122548B2 publication Critical patent/JP5122548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/6217
    • Y02T10/6226
    • Y02T10/642
    • Y02T10/7005
    • Y02T10/7077

Abstract

【課題】蓄電器又は昇降圧コンバータに異常が発生した場合に、インバータの駆動を停止させるハイブリッド型建設機械を提供すること。
【解決手段】内燃機関又は電動発電機の駆動力で発生される油圧によって駆動される作業要素と、電動駆動される電動作業要素とを含むハイブリッド型建設機械において、前記電動発電機及び前記電動作業要素との間で電力の授受を行う蓄電系と、前記蓄電系の異常を検出する異常検出部と、前記電動発電機、及び前記電動作業要素の制御を行う主制御部とを含み、前記主制御部は、前記異常検出部によって前記蓄電系の異常が検出された場合に、前記電動作業要素の駆動を停止する。
【選択図】図2

Description

本発明は、昇圧用スイッチング素子及び降圧用スイッチング素子を有し、負荷への電力供給の制御と、負荷より得られる回生電力の蓄電器への供給の制御とを行う昇降圧コンバータを用いたハイブリッド型建設機械に関する。
従来より、駆動機構の一部を電動化したハイブリッド型建設機械が提案されている。このような建設機械は、ブーム、アーム、及びバケット等の作業要素を油圧駆動するための油圧ポンプを備え、この油圧ポンプを駆動するためのエンジンに減速機を介して電動発電機を接続し、電動発電機でエンジンの駆動をアシストするとともに、発電によって得る電力を蓄電器に充電している。
また、上部旋回体を旋回させるための旋回機構の動力源として油圧モータに加えて電動機を備え、旋回機構の加速時に電動機で油圧モータの駆動をアシストし、旋回機構の減速時に電動機で回生運転を行い、発電される電力をバッテリに充電している(例えば、特許文献1参照)。
特開平10−103112号公報
ところで、従来のハイブリッド型建設機械では、蓄電手段に異常が発生した場合に、蓄電手段への充電ができなくなってしまう。この場合、蓄電手段と接続する回路電圧が上昇し、回路に接続しているインバータが損傷するおそれが生じてしまう。
そこで、本発明は、蓄電系に異常が発生した場合に、インバータの駆動を停止させるハイブリッド型建設機械を提供することを目的とする。
本発明の一局面のハイブリッド型建設機械は、内燃機関又は電動発電機の駆動力で発生される油圧によって駆動される作業要素と、電動駆動される電動作業要素とを含むハイブリッド型建設機械において、前記電動発電機及び前記電動作業要素との間で電力の授受を行う蓄電系と、前記蓄電系の異常を検出する異常検出部と、前記電動発電機、及び前記電動作業要素の制御を行う主制御部とを含み、前記主制御部は、前記異常検出部によって前記蓄電系の異常が検出された場合に、前記電動作業要素の駆動を停止する。
また、前記主制御部は、前記異常検出部によって前記蓄電系の異常が検出された場合に、さらに、前記電動発電機の駆動制御系の駆動を停止させてもよい。
前記主制御部は、前記油圧を発生させる油圧ポンプの出力を制御するように構成されており、前記異常検出部によって前記蓄電系の異常が検出された場合に、さらに、前記油圧ポンプの出力を制限してもよい。
前記蓄電系は、前記電動発電機と前記電動作業要素との間を接続するDCバス、及び、前記DCバスと前記蓄電器との間に配設される昇降圧コンバータを含んでもよい。
本発明によれば、蓄電系に異常が発生した場合に、インバータの駆動を停止させるハイブリッド型建設機械を提供できるという特有の効果が得られる。
実施の形態1のハイブリッド型建設機械を示す側面図である。 実施の形態1のハイブリッド型建設機械の構成を表すブロック図である。 実施の形態1のハイブリッド型建設機械に用いる昇降圧コンバータの回路構成を概略的に示す図である。 実施の形態1のハイブリッド型建設機械において、インバータ20の異常が検出された場合に駆動制御部120によってDCバス110の電圧値が一定に保持される際のDCバス電圧値とバッテリ電圧値の時間推移を示す図である。 実施の形態2のハイブリッド型建設機械の構成を表すブロック図である。 実施の形態3のハイブリッド型建設機械の構成を示すブロック図である。
以下、本発明のハイブリッド型建設機械を適用した実施の形態について説明する。
「実施の形態1」
図1は、実施の形態1のハイブリッド型建設機械を示す側面図である。
このハイブリッド型建設機械は、建設機械型のハイブリッド型建設機械であり、下部走行体1には、旋回機構2を介して上部旋回体3が搭載されている。また、上部旋回体3には、ブーム4、アーム5、及びバケット6と、これらを油圧駆動するためのブームシリンダ7、アームシリンダ8、及びバケットシリンダ9に加えて、キャビン10及び動力源が搭載される。
「全体構成」
図2は、実施の形態1のハイブリッド型建設機械の構成を表すブロック図である。この図2では、機械的動力系を二重線、高圧油圧ラインを実線、パイロットラインを破線、電気駆動・制御系を実線でそれぞれ示す。
機械式駆動部としてのエンジン11と、アシスト駆動部としての電動発電機12は、ともに増力機としての減速機13の入力軸に接続されている。また、この減速機13の出力軸には、メインポンプ14及びパイロットポンプ15が接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。
コントロールバルブ17は、実施の形態1の建設機械における油圧系の制御を行う制御装置であり、このコントロールバルブ17には、下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続される。
また、電動発電機12には、インバータ18及び充放電制御部としての昇降圧コンバータ100を介して蓄電器としてのバッテリ19が接続される。このインバータ18と昇降圧コンバータ100との間は、DCバス110によって接続されている。
また、DCバス110には、インバータ20を介して電動作業要素としての旋回用電動機21が接続されている。DCバス110は、バッテリ19、電動発電機12、及び旋回用電動機21の間で電力の授受を行うために配設されている。
DCバス110には、DCバス110の電圧値(以下、DCバス電圧値と称す)を検出するためのDCバス電圧検出部111が配設されている。検出されるDCバス電圧値は、コントローラ30に入力される。
また、バッテリ19には、バッテリ電圧値を検出するためのバッテリ電圧検出部112と、バッテリ電流値を検出するためのバッテリ電流検出部113が配設されている。これらによって検出されるバッテリ電圧値とバッテリ電流値は、コントローラ30に入力される。
なお、バッテリ19、DCバス110、及び昇降圧コンバータ100は、電動発電機12及び旋回用電動機21との間で電力の授受を行う蓄電系である。
旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。また、パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。旋回用電動機21、インバータ20、レゾルバ22、及び旋回用減速機24とで負荷駆動系を構成する。
操作装置26は、レバー26A、レバー26B、ペダル26Cを含み、レバー26A、レバー26B、及びペダル26Cには、油圧ライン27及び28を介して、コントロールバルブ17及び圧力センサ29がそれぞれ接続される。この圧力センサ29には、実施の形態1の建設機械の電気系の駆動制御を行うコントローラ30が接続されている。
このような実施の形態1の建設機械は、エンジン11、電動発電機12、及び旋回用電動機21を動力源とするハイブリッド型建設機械である。これらの動力源は、図1に示す上部旋回体3に搭載される。以下、各部について説明する。
「各部の構成」
エンジン11は、例えば、ディーゼルエンジンで構成される内燃機関であり、その出力軸は減速機13の一方の入力軸に接続される。このエンジン11は、建設機械の運転中は常時運転される。
電動発電機12は、電動(アシスト)運転及び発電運転の双方が可能な電動機であればよい。ここでは、電動発電機12として、インバータ20によって交流駆動される電動発電機を示す。この電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータで構成することができる。電動発電機12の回転軸は減速機13の他方の入力軸に接続される。
減速機13は、2つの入力軸と1つの出力軸を有する。2つの入力軸の各々には、エンジン11の駆動軸と電動発電機12の駆動軸が接続される。また、出力軸にはメインポンプ14の駆動軸が接続される。エンジン11の負荷が大きい場合には、電動発電機12が電動(アシスト)運転を行い、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。これによりエンジン11の駆動がアシストされる。一方、エンジン11の負荷が小さい場合は、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が発電運転による発電を行う。電動発電機12の力行運転と発電運転の切り替えは、コントローラ30により、エンジン11の負荷等に応じて行われる。
メインポンプ14は、コントロールバルブ17に供給するための油圧を発生するポンプである。この油圧は、コントロールバルブ17を介して油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々を駆動するために供給される。
パイロットポンプ15は、油圧操作系に必要なパイロット圧を発生するポンプである。この油圧操作系の構成については後述する。
コントロールバルブ17は、高圧油圧ラインを介して接続される下部走行体1用の油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の各々に供給する油圧を運転者の操作入力に応じて制御することにより、これらを油圧駆動制御する油圧制御装置である。
インバータ18は、上述の如く電動発電機12と昇降圧コンバータ100との間に設けられ、コントローラ30からの制御指令に基づき、電動発電機12の運転制御を行う電動発電機12の駆動制御部である。これにより、インバータ18が電動発電機12の力行を運転制御している際には、必要な電力をバッテリ19と昇降圧コンバータ100からDCバス110を介して電動発電機12に供給する。また、電動発電機12の回生を運転制御している際には、電動発電機12により発電された電力をDCバス110及び昇降圧コンバータ100を介してバッテリ19に充電する。電動発電機12とインバータ18とで電動発電系を構成している。
バッテリ19は、昇降圧コンバータ100を介してインバータ18及びインバータ20に接続されている。これにより、電動発電機12の電動(アシスト)運転と旋回用電動機21の力行運転との少なくともどちらか一方が行われている際には、電動(アシスト)運転又は力行運転に必要な電力を供給するとともに、また、電動発電機12の発電運転と旋回用電動機21の回生運転の少なくともどちらか一方が行われている際には、発電運転又は回生運転によって発生した電力を電気エネルギとして蓄積するための電源である。そして、バッテリ19には、蓄電系の異常検出部としての図示しない温度センサが配設されている。バッテリ19に過電流が流れ続けると温度センサの温度検出値が上昇する。これにより、温度センサの温度検出値を検出することで、バッテリ19が過負荷状態であるかを把握することができ、蓄電系の異常を検出することができる。同様に、昇降圧コンバータ100にも、異常検出部としての図示しない温度センサが設けられている。これにより、昇降圧コンバータ100の温度センサでは、スイッチング素子やリアクトルの温度を検出し、バッテリ19の温度センサではバッテリ19の発熱を計測する。
このバッテリ19の充放電制御は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、旋回用電動機21の運転状態(力行運転又は回生運転)に基づき、昇降圧コンバータ100によって行われる。この昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるバッテリ電流値に基づき、コントローラ30によって行われる。
インバータ20は、旋回用電動機21と昇降圧コンバータ100との間に設けられ、コントローラ30からの制御指令に基づき、旋回用電動機21に対して運転制御を行う旋回用電動機21の駆動制御部である。これにより、インバータが旋回用電動機21の力行を運転制御している際には、必要な電力をバッテリ19から昇降圧コンバータ100を介して旋回用電動機21に供給する。また、旋回用電動機21が回生運転をしている際には、旋回用電動機21により発電された電力を昇降圧コンバータ100を介してバッテリ19へ充電する。図2には、旋回電動機(1台)及びインバータ(1台)を含む実施の形態を示すが、その他マグネット機構や旋回機構部以外の駆動部として備えることで、複数の電動機及び複数のインバータをDCバス110に接続するようにしてもよい。
昇降圧コンバータ100は、一側がDCバス110を介して電動発電機12及び旋回用電動機21に接続されるとともに、他側がバッテリ19に接続されており、DCバス電圧値が一定の範囲内に収まるように昇圧又は降圧を切り替える制御を行う。電動発電機12が電動(アシスト)運転を行う場合には、インバータ18を介して電動発電機12に電力を供給する必要があるため、DCバス電圧値を昇圧する必要がある。一方、電動発電機12が発電運転を行う場合には、発電された電力をインバータ18を介してバッテリ19に充電する必要があるため、DCバス電圧値を降圧する必要がある。これは、旋回用電動機21の力行運転と回生運転においても同様であり、その上、電動発電機12はエンジン11の負荷状態に応じて運転状態が切り替えられ、旋回用電動機21は上部旋回体3の旋回動作に応じて運転状態が切り替えられるため、電動発電機12と旋回用電動機21には、いずれか一方が電動(アシスト)運転又は力行運転を行い、他方が発電運転又は回生運転を行う状況が生じうる。
このため、昇降圧コンバータ100は、電動発電機12と旋回用電動機21の運転状態に応じて、DCバス電圧値を一定の範囲内に収まるように昇圧動作と降圧動作を切り替える制御を行う。
DCバス110は、2つのインバータ18及び20と昇降圧コンバータとの間に配設されており、バッテリ19、電動発電機12、及び旋回用電動機21の間で電力の授受が可能に構成されている。
DCバス電圧検出部111は、DCバス電圧値を検出するための電圧検出部である。検出されるDCバス電圧値はコントローラ30に入力され、このDCバス電圧値を一定の範囲内に収めるための昇圧動作と降圧動作の切替制御を行うために用いられる。
バッテリ電圧検出部112は、バッテリ19の電圧値を検出するための電圧検出部であり、バッテリの充電状態を検出するために用いられる。検出されるバッテリ電圧値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。そして、DCバス電圧検出部111とバッテリ電圧検出部112で構成されるそれぞれの電圧値を比較し、異常の発生と異常発生箇所の特定を行う異常検出部としても機能する。
バッテリ電流検出部113は、バッテリ19の電流値を検出するための電流検出部である。バッテリ電流値は、バッテリ19から昇降圧コンバータ100に流れる電流を正の値として検出される。検出されるバッテリ電流値は、コントローラ30に入力され、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行うために用いられる。そして、バッテリ電流検出部113は、検出される電流値の急激な低下を検出することで、蓄電系の異常検出部としても機能する。
旋回用電動機21は、力行運転及び回生運転の双方が可能な電動作業要素としての電動機であればよく、上部旋回体3の旋回機構2を駆動するために設けられている。力行運転の際には、旋回用電動機21の回転駆動力の回転力が減速機24にて増幅され、上部旋回体3が加減速制御され回転運動を行う。また、上部旋回体3の慣性回転により、減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させることができる。ここでは、旋回用電動機21として、PWM(Pulse Width Modulation)制御信号によりインバータ20によって交流駆動される電動機を示す。この旋回用電動機21は、例えば、磁石埋込型のIPMモータで構成することができる。これにより、より大きな誘導起電力を発生させることができるので、回生時に旋回用電動機21にて発電される電力を増大させることができる。
レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで旋回用電動機21の回転前の回転軸21Aの回転位置と、左回転又は右回転した後の回転位置との差を検出することにより、回転軸21Aの回転角度及び回転方向を検出するように構成されている。旋回用電動機21の回転軸21Aの回転角度を検出することにより、旋回機構2の回転角度及び回転方向が導出される。また、図2にはレゾルバ22を取り付けた形態を示すが、電動機の回転センサを有しないインバータ制御方式を用いてもよい。
メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、旋回用電動機21の回転軸21Aを機械的に停止させる。このメカニカルブレーキ23は、電磁式スイッチにより制動/解除が切り替えられる。この切り替えは、コントローラ30によって行われる。
旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構2に機械的に伝達する減速機である。これにより、力行運転の際には、旋回用電動機21の回転力を増力させ、より大きな回転力として旋回体へ伝達することができる。これとは逆に、回生運転の際には、旋回体で発生した回転数を増加させ、より多くの回転動作を旋回用電動機21に発生させることができる。
旋回機構2は、旋回用電動機21のメカニカルブレーキ23が解除された状態で旋回可能となり、これにより、上部旋回体3が左方向又は右方向に旋回される。
操作装置26は、旋回用電動機21、下部走行体1、ブーム4、アーム5、及びバケット6を操作するための操作装置であり、ハイブリッド型建設機械の運転者によって操作される。
この操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を運転者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。
操作装置26が操作されると、油圧ライン27を通じてコントロールバルブ17が駆動され、これにより、油圧モータ1A、1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9内の油圧が制御されることによって、下部走行体1、ブーム4、アーム5、及びバケット6が駆動される。
なお、油圧ライン27は、油圧モータ1A及び1B、ブームシリンダ7、アームシリンダ8、及びバケットシリンダの駆動に必要な油圧をコントロールバルブに供給する。
旋回用操作検出部としての圧力センサ29では、操作装置26に対して旋回機構2を旋回させるための操作が入力されると、この操作量を油圧ライン28内の油圧の変化として検出する。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。これにより、操作装置26に入力される旋回機構2を旋回させるための操作量を的確に把握することができる。この電気信号は、コントローラ30に入力され、旋回用電動機21の駆動制御に用いられる。また、実施の形態1では、レバー操作検出部としての圧力センサを用いる形態について説明するが、操作装置26に入力される旋回機構2を旋回させるための操作量をそのまま電気信号で読み取るセンサを用いてもよい。
「コントローラ30」
コントローラ30は、実施の形態1のハイブリッド型建設機械の駆動制御を行う主制御部としての制御装置であり、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、CPUが内部メモリに格納される駆動制御用のプログラムを実行することにより実現される装置である。
コントローラ30は、圧力センサ29から入力される信号(操作装置26に入力される旋回機構2を旋回させるための操作量を表す信号)を速度指令に変換し、旋回用電動機21の駆動制御を行う。
また、コントローラ30は、電動発電機12の運転制御(電動(アシスト)運転又は発電運転の切り替え)を行うとともに、昇降圧コンバータ100を駆動制御することによるバッテリ19の充放電制御を行う。駆動制御部120は、バッテリ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、及び旋回用電動機21の運転状態(力行運転又は回生運転)に基づいて、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御を行い、これによりバッテリ19の充放電制御を行う。
この昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、バッテリ電圧検出部112によって検出されるバッテリ電圧値、及びバッテリ電流検出部113によって検出されるバッテリ電流値に基づいて行われる。
また、駆動制御部120には、蓄電系に含まれる昇降圧コンバータ100とバッテリ19の温度等を表す電気信号が入力される。具体的には、例えば、リアクトル101の温度、IGBT102A、102Bの温度、バッテリ19の温度、及び、バッテリ19のSOC(State OF Charge:充電率)を表す電気信号が入力される。
コントローラ30は、異常検出部で検出されるこれらの温度等や、DCバス電圧値及びバッテリ電流値、バッテリ電圧値等と、それぞれの異常検出部に対応して予め設定された閾値とを比較することで、昇降圧コンバータ100又はバッテリ19の異常を検出する。
なお、昇降圧コンバータ100又はバッテリ19の異常とは、例えば、断線や故障により、リアクトル101の温度、IGBT102A、102Bの温度、バッテリ19の温度、バッテリ19のSOCがそれぞれの閾値を超えて、過熱状態、過電圧状態、又は過電流状態が生じていることをいう。
図3は、実施の形態1のハイブリッド型建設機械に用いる蓄電系の詳細図である。この昇降圧コンバータ100は、リアクトル101、昇圧用IGBT(Insulated Gate Bipolar Transistor)102A、降圧用IGBT102B、バッテリ19を接続するための電源接続端子104、インバータ105を接続するための出力端子106、及び、一対の出力端子106に並列に挿入される平滑用のコンデンサ107を備える。昇降圧コンバータ100の出力端子106とインバータ105との間は、DCバス110によって接続される。インバータ105は、インバータ18A、18B、20に相当する。
リアクトル101は、一端が昇圧用IGBT102A及び降圧用IGBT102Bの中間点に接続されるとともに、他端が電源接続端子104に接続されており、昇圧用IGBT102Aのオン/オフに伴って生じる誘導起電力をDCバス9に供給するために設けられている。
昇圧用IGBT102A及び降圧用IGBT102Bは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)をゲート部に組み込んだバイポーラトランジスタで構成され、大電力の高速スイッチングが可能な半導体素子である。昇圧用IGBT102A及び降圧用IGBT102Bは、駆動制御部120により、ゲート端子にPWM電圧が印加されることによって駆動される。昇圧用IGBT102A及び降圧用IGBT102Bには、整流素子であるダイオード102a及び102bが並列接続される。
バッテリ19は、昇降圧コンバータ100を介してDCバス110との間で電力の授受が行えるように、充放電可能な蓄電器であればよい。なお、図3には、蓄電器としてバッテリ19を示すが、バッテリ19の代わりに、コンデンサ、充放電可能な二次電池、又は、電力の授受が可能なその他の形態の電源を蓄電器として用いてもよい。
電源接続端子104及び出力端子106は、バッテリ19及びインバータ105が接続可能な端子であればよい。一対の電源接続端子104の間には、バッテリ電圧を検出するバッテリ電圧検出部112が接続される。一対の出力端子106の間には、DCバス電圧を検出するDCバス電圧検出部111が接続される。
バッテリ電圧検出部112は、バッテリ19の電圧値(vbat_det)を検出し、DCバス電圧検出部111は、DCバス110の電圧(以下、DCバス電圧:vdc_det)を検出する。
平滑用のコンデンサ107は、出力端子106の正極端子と負極端子との間に挿入され、DCバス電圧を平滑化できる蓄電素子であればよい。
バッテリ電流検出部113は、バッテリ19に通流する電流の値を検出可能な検出手段であればよく、電流検出用の抵抗器を含む。このリアクトル電流検出部108は、バッテリ19に通流する電流値(ibat_det)を検出する。
「昇降圧動作」
このような昇降圧コンバータ100において、DCバス110を昇圧する際には、昇圧用IGBT102Aのゲート端子にPWM電圧を印加し、降圧用IGBT102Bに並列に接続されたダイオード102bを介して、昇圧用IGBT102Aのオン/オフに伴ってリアクトル101に発生する誘導起電力をDCバス110に供給する。これにより、DCバス110が昇圧される。
また、DCバス110を降圧する際には、降圧用IGBT102Bのゲート端子にPWM電圧を印加し、降圧用IGBT102B、インバータ105を介して供給される回生電力をDCバス110からバッテリ19に供給する。これにより、DCバス110に蓄積された電力がバッテリ19に充電され、DCバス110が降圧される。
なお、実際には、コントローラ120と昇圧用IGBT102A及び降圧用IGBT102Bとの間には、昇圧用IGBT102A及び降圧用IGBT102Bを駆動するPWM信号を生成する駆動部が存在するが、図3では省略する。このような駆動部は、電子回路又は演算処理装置のいずれでも実現することができる。
ここで、蓄電系に異常が発生した場合、すなわち、昇降圧コンバータ100に異常が発生して正常に動作しない場合、又は、バッテリ19に異常が発生した場合には、インバータ18又は20に過大な電力が供給され、インバータ18又は20が損傷を受ける場合がある。
このため、実施の形態1のハイブリッド型建設機械では、蓄電系に異常が発生した場合には、駆動制御部120がインバータ18及び20の駆動を停止させる。このときの動作特性を図4を用いて説明する。
図4は、実施の形態1のハイブリッド型建設機械において、蓄電系の異常が発生した場合のDCバス電圧値及びバッテリ電圧値の推移を示す特性図であり、(a)は負荷が回生運転を行っていた場合、(b)は負荷が力行運転から回生運転に運転状態が切り替わった場合の電圧値の推移を示す。
これらの図において、縦軸は電圧値を示し、V1はDCバス電圧値の目標値、V2はDCバス電圧値の上限値、VDCはDCバス電圧値、VBATはバッテリ電圧値を表す。DCバス電圧値の上限値V2は、DCバス電圧値が過電圧であるか否かを判定するための電圧値である。
また、図4(a)、(b)の各々の特性において、実線は実施の形態1のハイブリッド型建設機械による特性を示し、破線は従来のハイブリッド型建設機械による特性を示す。
なお、図4(a)、(b)には、蓄電系のうちの昇降圧コンバータ100に異常が発生した場合の特性を示す。
図4(a)に示すように、時刻t=0では、バッテリ電圧値VBATよりもDCバス電圧値VDCの方が高い状態となっている。
t=0の昇降圧コンバータ100に異常が発生した時点で、旋回用電動機21が回生運転を、電動発電機12が発電運転を行っていると、バッテリ19への充電運転ができないため、DCバス電圧値Vdcが上昇する。その後、回生運転が継続されると、継続してDCバス電圧値Vdcも上昇し続け上限値V2に到達してしまい、過電圧状態となってしまう。この場合に、電動発電機12の電動運転、又は旋回用電動機21の力行運転が行われると、インバータ18又は20に多大な電力が供給され、損傷を受けてしまう。
なお、これは、旋回用電動機21が回生運転を行っているときに昇降圧コンバータ100に異常が発生した場合でも同様である。
これに対して、実施の形態1のハイブリッド型建設機械では、時刻t=0において、例えば、昇降圧コンバータ100に配置した温度センサの温度検出値が、リアクトルの過電圧により予め定められた閾値以上になった場合、コントローラ30は異常が生じたと判定を行う。この場合、コントローラ30は、昇降圧コンバータ100に対して充放電制御を停止するように制御指令を送る。
その結果、DCバス110の内部抵抗によって電力が徐々に消費され、DCバス電圧値Vdcは次第に低下する。時刻t=t1においてバッテリ電圧値VBATと同一値となる。
このように、蓄電系に異常が発生すると、旋回用電動機21の駆動を停止することで、旋回用電動機21での回生電力の発生を禁止することができる。これにより、異常発生後のDCバス電圧値Vdcの上昇を防止することができる。その結果、蓄電系に異常が発生してもインバータ18及び20の損傷を防ぐことができる。
さらに、コントローラ30は蓄電系の異常判定すると、インバータ18に対して電動発電機12の駆動制御を停止するように制御指令を送るようにしてもよい。この場合、電動発電機12の発電運転を防止することができるので、発電電力によるDCバス電圧値Vdcの上昇を防ぐことができる。この場合、確実にDCバスが過電圧になることを防ぐことができ、インバータ18、20の損傷を防ぐことができる。
このように実施の形態1のハイブリッド型建設機械では、蓄電系に異常が発生しても、DCバス電圧値VDCは低下するので、インバータ18及び20の損傷を防ぐことができる。
また、図4(b)に破線で示すように、従来のハイブリッド型建設機械では、昇降圧コンバータ100に異常が発生しても、インバータ18及び20の駆動制御は停止されない。
時刻t=0の昇降圧コンバータ100に異常が発生すると、バッテリ19からの放電制御により、DCバス電圧値を一定値に維持できなくなる。このとき、コントローラ30からインバータ20に対して旋回用電動機21の力行運転を行う制御指令が出されていると、DCバス110の電圧が旋回用電動機21に供給される。このため、DCバス電圧はV1を保てなくなりDCバス110の内部抵抗の消費による電圧低下と比較して急激に低下してしまう。
t=t2でDCバス電圧値VDCとバッテリ電圧値VBATが同一値となると、その後も電動発電機12の電動運転が引き続き行われることにより、DCバス電圧値VDC及びバッテリ電圧値VBATは同一値のまま、ともに低下する。
時刻t=t3で旋回用電動機21が回生運転に切り替えられると、DCバス電圧値VDCは上昇し始め、時刻t=t4で上限値V2に到達してしまい過電圧状態となってしまう。この場合に、旋回用電動機21の回生運転が行われると、インバータ18及び20に対しても過電圧状態となり、インバータ18及び20が損傷を受けてしまう。
なお、これは、時刻t=t3以降に、電動発電機12が発電運転を行う場合でも同様である。
これに対して、実施の形態1のハイブリッド型建設機械では、時刻t=0において、例えば、昇降圧コンバータ100に配置した温度センサの温度検出値が、リアクトルの過電圧により予め定められた閾値以上になった場合、コントローラ30は異常が生じたと判定を行う。
この場合、図4(a)の処理と同様に、コントローラ30は、昇降圧コンバータ100に対して充放電制御を停止するように制御指令を送る。そして、コントローラ30は、インバータ20に対しても旋回用電動機21の駆動制御を停止するように制御指令を送る。
その結果、DCバス110の内部抵抗によって電力が徐々に消費され、DCバス電圧値Vdcは次第に低下する。
このように、蓄電系に異常が発生すると、旋回用電動機21の駆動を停止することで、旋回用電動機21での回生電力の発生を禁止することができる。これにより、異常発生後のDCバス電圧値Vdcno上昇を防止することができる。その結果、蓄電系に異常が発生してもインバータ18及び20の損傷を防ぐことができる。
さらに、コントローラ30は蓄電系の異常判定すると、インバータ18に対して電動発電機12の駆動制御を停止するように制御指令を送るようにしてもよい。この場合、電動発電機12の発電運転を防止することができるので、発電電力によるDCバス電圧値Vdcの上昇を防ぐことができる。この場合、確実にDCバス110が過電圧になることを防ぐことができ、インバータ18、20の損傷を防ぐことができる。
このように実施の形態1のハイブリッド型建設機械では、蓄電系に異常が発生しても、DCバス電圧値VDCは低下するので、インバータ18及び20の損傷を防ぐことができる。
なお、以上では、蓄電系のうちの昇降圧コンバータ100に異常が発生した場合について説明したが、バッテリ19に異常が発生した場合も、駆動制御部120によってインバータ18及び20の駆動制御は停止される。
例えば、バッテリ19に備えた温度センサにより、バッテリ19が過熱状態であると判定された場合には、コントローラ30は、昇降圧コンバータ100の充放電制御を停止する。そして、旋回用電動機21の運転を停止することで、旋回用電動機21の回生運転を禁止することができる。これにより、回生電力によるDCバスが過電圧状態となることを防止することができ、インバータ18、20の損傷を防ぐことができる。電動発電機12の発電運転に対しても同様である。
このため、バッテリ19に異常が発生した場合においても、上述の場合と同様に、インバータ18及び20の損傷を防ぐことができる。
以上では、バッテリ19又は昇降圧コンバータ100に異常が発生した場合に、インバータ20の駆動制御を停止する形態について説明したが、コントローラ30がメインポンプ14の吐出量を制限(低下)させるようにしてもよい。これにより、バッテリ19又は昇降圧コンバータ100に異常が発生することによって電動発電機12の出力が低下した場合においても、エンジン11がメインポンプ14を駆動する際の負荷を低減することができる。このため、バッテリ19や昇降圧コンバータ100に異常が発生した際に、メインポンプ14の負荷が大きい場合でも、エンジン11がストールすることを抑制することができる。
[実施の形態2]
図5は、実施の形態2のハイブリッド型建設機械の構成を表すブロック図である。実施の形態2のハイブリッド型建設機械は、DCバス110に駆動制御系としてのインバータ18Bを介して電動作業要素としてのブーム回生用発電機300が接続されている点が実施の形態1のハイブリッド型建設機械と異なる。インバータ18Bとブーム回生用発電機300とで負荷駆動系を構成する。
実施の形態2のハイブリッド型建設機械では、ブームシリンダ7に油圧モータ310が接続されており、ブーム回生用発電機300の回転軸は、油圧モータ310によって駆動される。なお、図5では、説明の便宜上、油圧モータ310とブーム回生用発電機300は離れているが、実際には、ブーム回生用発電機300の回転軸は、油圧モータ310の回転軸に機械的に接続されている。
ブーム回生用発電機300は、上述のように、油圧モータ310によって駆動され、ブーム4が重力に従って下げられるときに、位置エネルギを電気エネルギに変換する電動作業要素である。
油圧モータ310は、ブーム4が下げられるときにブームシリンダ7から吐出される油によって回転されるように構成されており、ブーム4が重力に従って下げられるときのエネルギを回転力に変換するために設けられている。油圧モータ310は、コントロールバルブ17とブームシリンダ7の間の油圧管7Aに設けられているため、上部旋回体3内の適当な場所に取り付けることができる。
ブーム回生用発電機300で発電された電力は、回生エネルギとしてインバータ18Bを経てDCバス110に供給される。
このため、電動発電機12、及び旋回用電動機21には、いずれかにDCバス110を介して電力供給が行われる状況が生じうる。また、電動発電機12、ブーム回生用発電機300、及び旋回用電動機21には、いずれかからDCバス110に電力供給が行う状況が生じうる。
実施の形態2では、昇降圧コンバータ100は、電動発電機12、ブーム回生用発電機300、及び旋回用電動機21の運転状態に応じて、DCバス電圧値を一定の範囲内に収まるように昇圧動作と降圧動作を切り替える制御を行う。
DCバス110は、インバータ18A、18B、及び20と昇降圧コンバータとの間に配設されており、バッテリ19、電動発電機12、ブーム回生用発電機300、及び旋回用電動機21の間で電力の授受を行う。
このような実施の形態2のハイブリッド型建設機械において、蓄電系の昇降圧コンバータ100又はバッテリ19に異常が発生した場合には、駆動制御部120によってインバータ18A、18B、及び20の駆動制御が停止される。これにより、電動発電系に異常が発生した場合、インバータ18BからDCバス110への回生エネルギーの供給を防止することができる。
以上、実施の形態2によれば、ブーム4の位置エネルギを電気エネルギに変換するブーム回生用発電機300を含むハイブリッド型建設機械においても、実施の形態1,2のハイブリッド型建設機械と同様に、蓄電系の昇降圧コンバータ100又はバッテリ19に異常が発生した場合には、駆動制御部120によってインバータ18A、18B、及び20の駆動制御が停止される。これにより、インバータ18A、18B、及び20の損傷を防ぐことができる。
なお、以上では、ブーム回生用発電機300が油圧モータ310を介してブーム4の位置エネルギを電気エネルギに変換する形態について説明したが、ブーム回生用発電機300は、ブーム4のブーム軸に接続されており、ブーム4が下げられるときに油圧で駆動される際に発電を行うように構成してもよい。ブーム4の上昇と下降の判別は、例えば、ブーム4の操作を行うための操作レバー26Aの2次側に圧力センサを設け、この圧力センサの出力に基づいて駆動制御部120が行うようにすればよい。
[実施の形態3]
図6は、実施の形態3のハイブリッド型建設機械の構成を示すブロック図である。実施の形態3のハイブリッド型建設機械は、メインポンプ14の駆動がポンプ用電動機400によって行われ、電動発電機12はエンジン11によって駆動されることによる電力の回収(発電運転)を行うように構成されている点が実施の形態1のハイブリッド型建設機械と異なる。その他の構成は実施の形態1のハイブリッド型建設機械と同一であるため、同一の構成要素には同一符号を付し、その説明を省略する。また、電動発電機12は、本実施の形態ではエンジン11によって駆動させることによる発電運転のみを行なう発電機としての機能を備えている。
ポンプ用電動機400は、メインポンプ14を駆動するための力行運転だけを行うように構成されており、インバータ410を介してDCバス110に接続されている。
このポンプ用電動機400は、駆動制御部120によって駆動されるように構成されている。レバー26A〜26Cのいずれかが操作されると、ポンプ用電動機400には、DCバス110からインバータ410を介して電力が供給され、これによって力行運転が行われ、ポンプ14が駆動されて圧油が吐出される。
このため、電動発電機12、ポンプ用電動機400、及び旋回用電動機21には、いずれかにDCバス110を介して電力供給が行われる状況が生じうる。また、電動発電機12、及び旋回用電動機21には、いずれかからDCバス110に電力供給が行う状況が生じうる。
実施の形態3では、昇降圧コンバータ100は、電動発電機12、ポンプ用電動機400、及び旋回用電動機21の運転状態に応じて、DCバス電圧値を一定の範囲内に収まるように昇圧動作と降圧動作を切り替える制御を行う。
DCバス110は、インバータ18、410、及び20と昇降圧コンバータ100との間に配設されており、バッテリ19、ポンプ用電動機400、及び旋回用電動機21の間で電力の授受を行う。
このような実施の形態3のハイブリッド型建設機械において、実施の形態1のハイブリッド型建設機械と同様に、蓄電系の昇降圧コンバータ100又はバッテリ19に異常が発生した場合には、駆動制御部120によってインバータ18、20、及び410の駆動制御が停止される。これにより、インバータインバータ18、20、及び410の損傷を防ぐことができる。
以上、実施の形態1乃至3では、種々の構成のハイブリッド型建設機械について説明したが、本発明のハイブリッド型建設機械は、実施の形態1乃至4に示した構成を任意に組み合わせることができる。
以上、本発明の例示的な実施の形態のハイブリッド型建設機械について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
1 下部走行体
1A、1B 走行機構
2 旋回機構
3 上部旋回体
4 ブーム
5 アーム
6 バケット
7 ブームシリンダ
7A 油圧管
8 アームシリンダ
9 バケットシリンダ
10 キャビン
11 エンジン
12 電動発電機
13 減速機
14 メインポンプ
15 パイロットポンプ
16 高圧油圧ライン
17 コントロールバルブ
18、18A、18B、20、400、410 インバータ
19 バッテリ
21 旋回用電動機
22 レゾルバ
23 メカニカルブレーキ
24 旋回減速機
25 パイロットライン
26 操作装置
26A、26B レバー
26C ペダル
26D ボタンスイッチ
27 油圧ライン
28 油圧ライン
29 圧力センサ
30 コントローラ
100 昇降圧コンバータ
101 リアクトル
102A 昇圧用IGBT
102B 降圧用IGBT
104 電源接続端子
105 モータ
106 出力端子
107 コンデンサ
110 DCバス
111 DCバス電圧検出部
112 バッテリ電圧検出部
113 バッテリ電流検出部
300 発電機
310 油圧モータ
400 ポンプ用電動機

Claims (4)

  1. 内燃機関又は電動発電機の駆動力で発生される油圧によって駆動される作業要素と、電動駆動される電動作業要素とを含むハイブリッド型建設機械において、
    前記電動発電機及び前記電動作業要素との間で電力の授受を行う蓄電系と、
    前記蓄電系の異常を検出する異常検出部と、
    前記電動発電機、及び前記電動作業要素の制御を行う主制御部と
    を含み、
    前記主制御部は、前記異常検出部によって前記蓄電系の異常が検出された場合に、前記電動作業要素の駆動を停止する、ハイブリッド型建設機械。
  2. 前記主制御部は、前記異常検出部によって前記蓄電系の異常が検出された場合に、さらに、前記電動発電機の駆動制御系の駆動を停止させる、請求項1に記載のハイブリッド型建設機械。
  3. 前記主制御部は、前記油圧を発生させる油圧ポンプの出力を制御するように構成されており、前記異常検出部によって前記蓄電系の異常が検出された場合に、さらに、前記油圧ポンプの出力を制限する、請求項1又は2に記載のハイブリッド型建設機械。
  4. 前記蓄電系は、前記電動発電機と前記電動作業要素との間を接続するDCバス、及び、前記DCバスと前記蓄電器との間に配設される昇降圧コンバータを含む、請求項1乃至3のいずれか一項に記載のハイブリッド型建設機械。
JP2009257454A 2008-11-10 2009-11-10 ハイブリッド型建設機械 Active JP5122548B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257454A JP5122548B2 (ja) 2008-11-10 2009-11-10 ハイブリッド型建設機械

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008288192 2008-11-10
JP2008288192 2008-11-10
JP2009257454A JP5122548B2 (ja) 2008-11-10 2009-11-10 ハイブリッド型建設機械

Publications (2)

Publication Number Publication Date
JP2010133236A true JP2010133236A (ja) 2010-06-17
JP5122548B2 JP5122548B2 (ja) 2013-01-16

Family

ID=42344759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257454A Active JP5122548B2 (ja) 2008-11-10 2009-11-10 ハイブリッド型建設機械

Country Status (1)

Country Link
JP (1) JP5122548B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060132A1 (ja) * 2014-10-14 2016-04-21 日立建機株式会社 ハイブリッド式建設機械
EP2799629A4 (en) * 2011-12-28 2016-05-11 Doosan Infracore Co Ltd EMERGENCY STOP PROCEDURE FOR HYBRID CONSTRUCTION MACHINE AND BRAKE CONTROL DEVICE
KR101877057B1 (ko) * 2011-12-28 2018-07-11 두산인프라코어 주식회사 하이브리드 건설기계의 비상 정지 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319932A (ja) * 1999-05-12 2000-11-21 Kobelco Contstruction Machinery Ltd ショベル
JP2007204924A (ja) * 2006-01-31 2007-08-16 Shin Caterpillar Mitsubishi Ltd 電動機故障時停止装置
JP2008038503A (ja) * 2006-08-08 2008-02-21 Shin Caterpillar Mitsubishi Ltd ハイブリッド型作業機械
JP2008088660A (ja) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd ハイブリッド式作業機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319932A (ja) * 1999-05-12 2000-11-21 Kobelco Contstruction Machinery Ltd ショベル
JP2007204924A (ja) * 2006-01-31 2007-08-16 Shin Caterpillar Mitsubishi Ltd 電動機故障時停止装置
JP2008038503A (ja) * 2006-08-08 2008-02-21 Shin Caterpillar Mitsubishi Ltd ハイブリッド型作業機械
JP2008088660A (ja) * 2006-09-29 2008-04-17 Kobelco Contstruction Machinery Ltd ハイブリッド式作業機械

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799629A4 (en) * 2011-12-28 2016-05-11 Doosan Infracore Co Ltd EMERGENCY STOP PROCEDURE FOR HYBRID CONSTRUCTION MACHINE AND BRAKE CONTROL DEVICE
US9431930B2 (en) 2011-12-28 2016-08-30 Doosan Infracore Co., Ltd. Emergency stop method for hybrid construction equipment and brake control device
KR101877057B1 (ko) * 2011-12-28 2018-07-11 두산인프라코어 주식회사 하이브리드 건설기계의 비상 정지 방법
WO2016060132A1 (ja) * 2014-10-14 2016-04-21 日立建機株式会社 ハイブリッド式建設機械
JPWO2016060132A1 (ja) * 2014-10-14 2017-07-20 日立建機株式会社 ハイブリッド式建設機械
KR101921435B1 (ko) * 2014-10-14 2018-11-22 히다찌 겐끼 가부시키가이샤 하이브리드식 건설 기계

Also Published As

Publication number Publication date
JP5122548B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5421074B2 (ja) ハイブリッド型建設機械
JP5674086B2 (ja) ハイブリッド型建設機械
KR101364331B1 (ko) 하이브리드형 건설기계
WO2010087363A1 (ja) ハイブリッド型作業機械及び蓄電制御装置
WO2010053179A1 (ja) ハイブリッド型建設機械
JP4949288B2 (ja) ハイブリッド型建設機械
JP5436900B2 (ja) ハイブリッド型建設機械
JP4824069B2 (ja) ハイブリッド型建設機械
JP6173564B2 (ja) 作業機械
JP5704676B2 (ja) ハイブリッド型作業機械
JP2010178446A (ja) ハイブリッド型作業機械
JP5101400B2 (ja) ハイブリッド型建設機械
JP5274978B2 (ja) ハイブリッド型建設機械
JP5583901B2 (ja) ハイブリッド型建設機械
JP5122548B2 (ja) ハイブリッド型建設機械
JP5107167B2 (ja) ハイブリッド型作業機械
JP2009261227A (ja) ハイブリッド型作業機械
JP5307692B2 (ja) リフティングマグネット式自走機械
JP4949457B2 (ja) ハイブリッド型建設機械
JP2011105454A (ja) リフティングマグネット式建設機械
JP2013014915A (ja) ショベル
JP5178666B2 (ja) ハイブリッド型掘削機械
JP5107207B2 (ja) ハイブリッド型作業機械
JP5925877B2 (ja) 掘削機
JP5356067B2 (ja) ハイブリッド型建設機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5122548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250