JP2010127122A - Supercharging pressure control device of cylinder injection type internal combustion engine - Google Patents

Supercharging pressure control device of cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2010127122A
JP2010127122A JP2008300308A JP2008300308A JP2010127122A JP 2010127122 A JP2010127122 A JP 2010127122A JP 2008300308 A JP2008300308 A JP 2008300308A JP 2008300308 A JP2008300308 A JP 2008300308A JP 2010127122 A JP2010127122 A JP 2010127122A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
supercharging pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300308A
Other languages
Japanese (ja)
Other versions
JP5169769B2 (en
Inventor
Katsuhiko Miyamoto
勝彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008300308A priority Critical patent/JP5169769B2/en
Publication of JP2010127122A publication Critical patent/JP2010127122A/en
Application granted granted Critical
Publication of JP5169769B2 publication Critical patent/JP5169769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercharging pressure control device of a cylinder injection type internal combustion engine for properly controlling the air-fuel ratio, by cooperatively controlling fuel pressure and a supercharger system. <P>SOLUTION: The feasible richest prediction A/F is determined based on present fuel pressure FPrea1, supercharging pressure Pb and an engine speed Ne (Step S1-S8), and when the prediction A/F is larger than a present target A/F(TAF'), the supercharging pressure is restricted (Step S9-S13) by controlling ETV and W/G-V so as to become the target A/F(TAF'). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、気筒内に燃料を直接噴射する内燃機関において、その内燃機関に備えた過給器の制御を行う筒内噴射型内燃機関の過給圧制御装置に関する。   The present invention relates to a supercharging pressure control device for a direct injection internal combustion engine that controls a supercharger provided in the internal combustion engine in which fuel is directly injected into a cylinder.

気筒内に燃料を直接噴射する筒内噴射型内燃機関に、ターボチャージャ等の過給器を装着したものが知られている。   2. Description of the Related Art A cylinder injection internal combustion engine that directly injects fuel into a cylinder is equipped with a turbocharger or other supercharger.

特開2003−254072号公報JP 2003-254072 A

筒内噴射型内燃機関の場合、高圧燃料ポンプで燃料の圧力(以降、燃圧と呼ぶ。)を加圧して、気筒内に燃料を直接噴射するようにしており、高圧燃料ポンプで加圧された燃圧は、燃料噴射量を制御する際の要である。一方、過給器を装着した筒内噴射型内燃機関では、吸入する空気量が、スロットルバルブだけでなく、過給器系を構成する部品(例えば、ターボチャージャ、ウェストゲートバルブ等)にも制御されることになる。従って、過給器を装着した筒内噴射型内燃機関では、燃圧と過給器系を協調するように制御しないと、吸入空気量に対して適切な燃料噴射量を供給できなくなり、空燃比が不適切な状態となって、排ガスの悪化やエンジン破損に至るおそれがあった。   In the case of an in-cylinder injection type internal combustion engine, the pressure of fuel (hereinafter referred to as fuel pressure) is increased by a high-pressure fuel pump, and fuel is directly injected into the cylinder. The fuel pressure is a key when controlling the fuel injection amount. On the other hand, in a cylinder injection internal combustion engine equipped with a supercharger, the amount of air taken in is controlled not only by the throttle valve, but also by the components that make up the supercharger system (for example, turbocharger, wastegate valve, etc.) Will be. Therefore, in a cylinder injection internal combustion engine equipped with a supercharger, if the fuel pressure and the supercharger system are not controlled so as to cooperate, an appropriate fuel injection amount cannot be supplied to the intake air amount, and the air-fuel ratio becomes low. Inappropriate conditions could lead to exhaust gas deterioration and engine damage.

本発明は上記課題に鑑みなされたもので、燃圧と過給器系を協調制御して、空燃比を適正に制御する筒内噴射型内燃機関の過給圧制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a supercharging pressure control device for a direct injection internal combustion engine that controls the fuel pressure and the supercharger system in a coordinated manner to appropriately control the air-fuel ratio. To do.

上記課題を解決する第1の発明に係る筒内噴射型内燃機関の過給圧制御装置は、
内燃機関の気筒内に燃料を直接噴射する燃料噴射手段と、
前記燃料噴射手段へ供給する燃料の圧力を検出する燃料圧力検出手段と、
前記気筒に吸入される吸気の過給を行う過給手段と、
前記過給手段により過給される吸気の過給圧を検出する過給圧検出手段と、
前記内燃機関の回転数を検出する回転数検出手段と、
前記燃料圧力検出手段、前記過給圧検出手段及び前記回転数検出手段により検出された現在の燃料圧力、過給圧及び回転数に基づいて予測空燃比を求め、現在の前記内燃機関の目標空燃比より前記予測空燃比が大きい場合には、前記過給手段による過給圧を制限する制御手段と、
を備えることを特徴とする。
A supercharging pressure control device for a direct injection internal combustion engine according to a first invention for solving the above-described problem is
Fuel injection means for directly injecting fuel into the cylinder of the internal combustion engine;
Fuel pressure detection means for detecting the pressure of fuel supplied to the fuel injection means;
Supercharging means for supercharging intake air sucked into the cylinder;
A supercharging pressure detecting means for detecting a supercharging pressure of the intake air supercharged by the supercharging means;
A rotational speed detection means for detecting the rotational speed of the internal combustion engine;
A predicted air-fuel ratio is obtained based on the current fuel pressure, the supercharging pressure, and the rotational speed detected by the fuel pressure detecting means, the supercharging pressure detecting means, and the rotational speed detecting means, and the current target air pressure of the internal combustion engine is determined. When the predicted air-fuel ratio is larger than the fuel ratio, control means for limiting the supercharging pressure by the supercharging means,
It is characterized by providing.

上記課題を解決する第2の発明に係る筒内噴射型内燃機関の過給圧制御装置は、
上記第1の発明に記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
現在の燃料圧力で噴射できる最大の噴射量に基づいて、実現可能な最もリッチな空燃比を求め、求めた空燃比を前記予測空燃比とすることを特徴とする。
A supercharging pressure control device for a direct injection internal combustion engine according to a second invention for solving the above-mentioned problems is
In the supercharging pressure control apparatus for a direct injection internal combustion engine according to the first invention,
The control means includes
The richest air-fuel ratio that can be realized is obtained based on the maximum injection amount that can be injected with the current fuel pressure, and the obtained air-fuel ratio is set as the predicted air-fuel ratio.

上記課題を解決する第3の発明に係る筒内噴射型内燃機関の過給圧制御装置は、
上記第2の発明に記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記最大の噴射量に対応する燃料重量と前記目標空燃比に基づいて、制御目標となる吸入空気重量を求め、求めた前記吸入空気重量に基づいて前記過給手段による過給圧を制限することを特徴とする。
A supercharging pressure control device for a direct injection internal combustion engine according to a third invention for solving the above-described problem is
In the supercharging pressure control device for a direct injection internal combustion engine according to the second invention,
The control means includes
Based on the fuel weight corresponding to the maximum injection amount and the target air-fuel ratio, the intake air weight as a control target is obtained, and the supercharging pressure by the supercharging means is limited based on the obtained intake air weight. It is characterized by.

上記課題を解決する第4の発明に係る筒内噴射型内燃機関の過給圧制御装置は、
上記第1〜第3の発明のいずれか1つに記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記内燃機関の吸気系に設けられた第1制御弁、及び、前記内燃機関の排気系において前記過給手段をバイパスするバイパス通路に設けられた第2制御弁の開度を制御して前記過給手段による過給圧を制限するものであり、過給圧を制限する際には、前記第1制御弁を制御した後に前記第2制御弁を制御することを特徴とする。
A supercharging pressure control device for a direct injection internal combustion engine according to a fourth aspect of the present invention for solving the above-described problem is provided.
In the supercharging pressure control device for a direct injection internal combustion engine according to any one of the first to third inventions,
The control means includes
The first control valve provided in the intake system of the internal combustion engine and the second control valve provided in a bypass passage that bypasses the supercharging means in the exhaust system of the internal combustion engine are controlled to control the opening degree. The supercharging pressure by the supply means is limited, and when the supercharging pressure is limited, the second control valve is controlled after the first control valve is controlled.

上記課題を解決する第5の発明に係る筒内噴射型内燃機関の過給圧制御装置は、
上記第1〜第4の発明のいずれか1つに記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記回転数検出手段により検出された回転数に基づいて、前記燃料噴射手段から燃料が噴射される際の回転数の予測補正を行うことを特徴とする。
A supercharging pressure control apparatus for a direct injection internal combustion engine according to a fifth aspect of the present invention for solving the above-described problem is provided.
In the supercharging pressure control device for a direct injection internal combustion engine according to any one of the first to fourth inventions,
The control means includes
Based on the number of revolutions detected by the number of revolutions detecting means, prediction correction of the number of revolutions when fuel is injected from the fuel injection means is performed.

本発明によれば、目標空燃比より予測空燃比が大きい場合には、つまり、目標空燃比よりリーン状態となる場合には、現在の燃料圧力を基準に過給圧側を制限することにより、空燃比を制御しているので、空燃比を適正に制御することができ、排ガス悪化やエンジン破損を抑制することができる。   According to the present invention, when the predicted air-fuel ratio is larger than the target air-fuel ratio, that is, when the lean air condition is reached from the target air-fuel ratio, the boost pressure side is limited based on the current fuel pressure, Since the fuel ratio is controlled, the air-fuel ratio can be properly controlled, and exhaust gas deterioration and engine damage can be suppressed.

以下、図1〜図5を用いて、本発明に係る筒内噴射型内燃機関の過給圧制御装置の実施形態を詳細に説明する。   Hereinafter, an embodiment of a supercharging pressure control device for a direct injection internal combustion engine according to the present invention will be described in detail with reference to FIGS.

(実施例1)
図1は、本発明に係る筒内噴射型内燃機関の過給圧制御装置の実施形態の一例を示す概略構成図であり、図2、図3は、各々、図1に示した筒内噴射型内燃機関の過給圧制御装置における制御を説明するブロック図、フローチャートである。
Example 1
FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a supercharging pressure control device for a direct injection internal combustion engine according to the present invention, and FIGS. 2 and 3 respectively show the direct injection shown in FIG. It is the block diagram and flowchart explaining the control in the supercharging pressure control apparatus of a type internal combustion engine.

本実施例において、内燃機関(以降、エンジンと呼ぶ。)10は、気筒内に燃料を直接噴射する筒内噴射型のガソリンエンジンであると共に、気筒に吸入される空気(吸気)の過給を行う過給器(過給手段)を備えたものである。なお、エンジン10は、複数の気筒を有するものであるが、図1では、1つの気筒のみ図示して、その構成を説明する。   In this embodiment, an internal combustion engine (hereinafter referred to as an engine) 10 is an in-cylinder injection type gasoline engine that directly injects fuel into a cylinder, and supercharges air (intake air) sucked into the cylinder. A supercharger (supercharging means) is provided. Although the engine 10 has a plurality of cylinders, only one cylinder is illustrated in FIG. 1 and the configuration thereof will be described.

エンジン10は、図1に示すように、気筒を構成するシリンダ11と、シリンダ11内に設けられ、シリンダ11の内壁に沿って往復運動をするピストン12とを有し、シリンダ11とピストン12とにより形成される空間が燃焼室13となっている。   As shown in FIG. 1, the engine 10 includes a cylinder 11 that constitutes a cylinder, and a piston 12 that is provided in the cylinder 11 and reciprocates along the inner wall of the cylinder 11. The space formed by is the combustion chamber 13.

又、エンジン10は、吸気系機構として、外部からの空気を吸入する際、吸入した空気を清浄化するエアクリーナ14と、清浄化された空気の流量を検出するエアフローセンサ15と、空気を燃焼室13に導く吸気管16、18、21を有している。   Further, the engine 10 has, as an intake system mechanism, an air cleaner 14 that cleans the sucked air when sucking air from the outside, an air flow sensor 15 that detects the flow rate of the cleaned air, and a combustion chamber. Intake pipes 16, 18, and 21 that lead to 13 are provided.

吸気管16は、排気ガスを利用して、吸入する空気の過給を行うターボチャージャ17(過給手段)に接続されており、ターボチャージャ17で過給された空気が、吸気管18を経由して、インタークーラ19に導かれる。インタークーラ19に導かれた空気は、インタークーラ19で冷却された後、電子制御式スロットルバルブ(第1制御弁;以降、ETVと略す。)20により空気量が制御されて、吸気管21を経由して、燃焼室13に導かれる。その際、吸気管21に設けられた過給圧センサ22(過給圧検出手段)を用いて、燃焼室13に過給される空気の過給圧が検出されている。   The intake pipe 16 is connected to a turbocharger 17 (supercharging means) that supercharges the intake air using exhaust gas, and the air supercharged by the turbocharger 17 passes through the intake pipe 18. Then, it is guided to the intercooler 19. After the air guided to the intercooler 19 is cooled by the intercooler 19, the air amount is controlled by an electronically controlled throttle valve (first control valve; hereinafter abbreviated as ETV) 20, and the intake pipe 21 is Via, it is guided to the combustion chamber 13. At that time, the supercharging pressure of the air supercharged in the combustion chamber 13 is detected using a supercharging pressure sensor 22 (supercharging pressure detecting means) provided in the intake pipe 21.

又、エンジン10は、燃料系機構として、燃料タンク(図示省略)から供給された燃料を加圧して高圧にする高圧燃料ポンプ23と、後述のインジェクタ26へ供給する加圧後の燃料の圧力を検出する燃圧センサ24(燃料圧力検出手段)と、高圧にされた燃料を分配するためのデリバリパイプ25と、デリバリパイプに接続され、燃焼室13内に燃料を直接噴射するインジェクタ26(燃料噴射手段)とを有している。   Further, the engine 10 functions as a fuel system mechanism by adjusting the pressure of the pressurized fuel supplied to a high-pressure fuel pump 23 that pressurizes the fuel supplied from a fuel tank (not shown) to a high pressure and an injector 26 described later. A fuel pressure sensor 24 (fuel pressure detection means) for detecting, a delivery pipe 25 for distributing the high-pressure fuel, and an injector 26 (fuel injection means) connected to the delivery pipe and directly injecting fuel into the combustion chamber 13 ).

従って、上記吸気系機構から供給された空気と、上記燃料系機構から供給された燃料が、燃焼室13に設けた点火プラグ27により点火されて、燃焼することになる。   Therefore, the air supplied from the intake system mechanism and the fuel supplied from the fuel system mechanism are ignited by the spark plug 27 provided in the combustion chamber 13 and combusted.

そして、エンジン10は、排気系機構として、燃焼室13と接続されて、燃焼室13で燃焼した燃料(排ガス)を排気する排気管28、31と、排気管31に設けられ、排気ガスを浄化する三元触媒32とを有しており、燃焼室13で燃焼した燃料(排ガス)は、この排気系機構を介して、外部へ排出されることになる。排気管28と排気管31との間には、ターボチャージャ17が設けられており、排気管28、排気管31を通過する排気ガスの力を利用して、ターボチャージャ17が駆動されて、過給を行うようにしている。   The engine 10 is connected to the combustion chamber 13 as an exhaust system mechanism, and is provided in the exhaust pipes 28 and 31 for exhausting the fuel (exhaust gas) combusted in the combustion chamber 13 and the exhaust pipe 31 to purify the exhaust gas. The fuel (exhaust gas) combusted in the combustion chamber 13 is discharged to the outside through this exhaust system mechanism. A turbocharger 17 is provided between the exhaust pipe 28 and the exhaust pipe 31, and the turbocharger 17 is driven using the force of the exhaust gas passing through the exhaust pipe 28 and the exhaust pipe 31. I am trying to pay.

又、排気管28と排気管31との間には、ターボチャージャ17をバイパスするバイパス通路29と、バイパス通路29に設けられ、バイパスする排気ガス量を制御するウェストゲートバルブ(第2制御弁;以降、W/G−Vと略す。)30が設けられており、排ガスがターボチャージャ17をバイパスできるようにしている。   Between the exhaust pipe 28 and the exhaust pipe 31, a bypass passage 29 for bypassing the turbocharger 17 and a wastegate valve (second control valve; provided in the bypass passage 29 for controlling the amount of exhaust gas to be bypassed; Hereinafter, abbreviated as W / G-V.) 30 is provided so that the exhaust gas can bypass the turbocharger 17.

又、エンジン10には、ピストン12に連結されたクランクシャフト33の角度を検出するクランク角センサ34が設けられており、このクランク角センサ34の検出値に基づいて、エンジン10のエンジン回転数Neを算出するようにしている(回転数検出手段)。   The engine 10 is provided with a crank angle sensor 34 that detects the angle of the crankshaft 33 connected to the piston 12, and the engine speed Ne of the engine 10 is determined based on the detected value of the crank angle sensor 34. Is calculated (rotational speed detection means).

そして、過給圧センサ22、燃圧センサ24、クランク角センサ34における検出値は、ECU(Electronic Control Unit;電子制御装置、制御手段)35に入力され、それらの入力値に基づいて、ETV20、W/G−V30が制御されて、後述の過給圧制限が実施される。   The detected values in the supercharging pressure sensor 22, the fuel pressure sensor 24, and the crank angle sensor 34 are input to an ECU (Electronic Control Unit) 35, and based on these input values, ETV 20, W / G-V30 is controlled, and the supercharging pressure limitation described later is performed.

次に、図2、図3を参照して、本実施例の過給圧制御装置における制御を説明する。   Next, the control in the supercharging pressure control device of the present embodiment will be described with reference to FIGS.

まず、クランク角センサ34を用いて算出したエンジン回転数Neを取得すると共に(ステップS1)、過給圧センサ22を用いて、過給圧Pbを取得する(ステップS2)。   First, the engine speed Ne calculated using the crank angle sensor 34 is acquired (step S1), and the supercharging pressure Pb is acquired using the supercharging pressure sensor 22 (step S2).

次に、ECU35に予め取得してあるマップデータ(エンジン回転数Ne、過給圧Pbに対応する1ストローク当たりの吸入空気重量Gair(g/st)のデータ)に基づいて、取得したエンジン回転数Ne、過給圧Pbから吸入空気重量Gairを求める(ステップS3、ブロックB1)。ブロックB1に示すマップデータは、等吸入空気量線と呼ばれるグラフであり、吸入空気量が大きくなるに従い、等吸入空気量線はエンジン回転数Ne、過給圧Pbが大きくなる方向に移動する傾向がある。   Next, the engine speed acquired based on the map data (engine speed Ne, data of intake air weight Gair (g / st) corresponding to the boost pressure Pb corresponding to the supercharging pressure Pb) acquired in advance by the ECU 35. The intake air weight Gair is obtained from Ne and the supercharging pressure Pb (step S3, block B1). The map data shown in the block B1 is a graph called an equal intake air amount line, and as the intake air amount increases, the equal intake air amount line tends to move in a direction in which the engine speed Ne and the boost pressure Pb increase. There is.

次に、取得したエンジン回転数Neに基づいて、燃料噴射可能な期間を求め、求めた燃料噴射可能な期間から、標準燃圧での1噴射当たりの最大噴射量Qstdを計算する(ステップS4、ブロックB2)。ブロックB2に示すマップデータからわかるように、エンジン回転数Neが大きくなるに従い、最大噴射量Qstdは減少する傾向がある。なお、エンジン回転数Neとしては、取得したエンジン回転数Neそのものを用いてもよいが、検出遅れ、制御遅れ等を考慮し、取得したエンジン回転数Neに基づき、実際に制御を行うとき、つまり、インジェクタ26から燃料が噴射される際のエンジン回転数を予測補正するようにしてもよい。これは、エンジン回転数が大きく変化する場合、例えば、加速時、減速時等の場合に有効である。   Next, a period during which fuel can be injected is obtained based on the acquired engine speed Ne, and a maximum injection amount Qstd per injection at the standard fuel pressure is calculated from the obtained period during which fuel injection is possible (step S4, block) B2). As can be seen from the map data shown in block B2, the maximum injection amount Qstd tends to decrease as the engine speed Ne increases. The acquired engine speed Ne itself may be used as the engine speed Ne. However, when actual control is performed based on the acquired engine speed Ne in consideration of detection delay, control delay, etc., that is, The engine rotational speed when fuel is injected from the injector 26 may be predicted and corrected. This is effective when the engine speed changes greatly, for example, when accelerating or decelerating.

次に、燃圧センサ24を用いて実際に取得した実燃圧FPrealと、計算上用いる標準燃圧FPstdに基づいて、実燃圧FPrealと標準燃圧FPstdとの差を補正する係数Kfpを算出する(ステップS5、ブロックB3)。係数Kfpは以下の式から求められる。
[係数Kfp]={[実燃圧FPreal]/[標準燃圧FPstd]}1/2
Next, a coefficient Kfp for correcting the difference between the actual fuel pressure FPreal and the standard fuel pressure FPstd is calculated based on the actual fuel pressure FPreal actually obtained using the fuel pressure sensor 24 and the standard fuel pressure FPstd used for calculation (step S5, Block B3). The coefficient Kfp is obtained from the following equation.
[Factor KFP] = {[actual fuel FPreal] / [Standard fuel pressure FPstd]} 1/2

ステップS4で求めた最大噴射量Qstdと、ステップS5で求めた係数Kfpとを用いて、現在の燃圧で噴射できる最大噴射量Qmaxを求める(ステップS6、ブロックB4)。最大噴射量Qmaxは以下の式から求められる。
[最大噴射量Qmax]=[最大噴射量Qstd]×[係数Kfp]
The maximum injection amount Qmax that can be injected with the current fuel pressure is obtained using the maximum injection amount Qstd obtained in step S4 and the coefficient Kfp obtained in step S5 (step S6, block B4). The maximum injection amount Qmax is obtained from the following equation.
[Maximum injection amount Qmax] = [maximum injection amount Qstd] × [coefficient Kfp]

ステップS6で求めた最大噴射量Qmaxと、既知の値である燃料比重とを用いて、最大噴射量Qmaxを燃料重量Gmaxに変換する(ステップS7)。燃料重量Gmaxは以下の式から求められる。
[燃料重量Gmax]=[最大噴射量Qmax]×[燃料比重]
The maximum injection amount Qmax is converted into the fuel weight Gmax using the maximum injection amount Qmax obtained in step S6 and the fuel specific gravity which is a known value (step S7). The fuel weight Gmax is obtained from the following equation.
[Fuel weight Gmax] = [maximum injection amount Qmax] × [fuel specific gravity]

ステップS3で求めた吸入空気重量Gairと、ステップS7で求めた燃料重量Gmaxとを用いて、予測A/Fを求める(ステップS8、ブロックB5)。予測A/Fは以下の式から求められる。この予測A/Fは、実際に実現可能な最もリッチな空燃比となる。
[予測A/F]=[吸入空気重量Gair]/[燃料重量Gmax]
A predicted A / F is obtained using the intake air weight Gair obtained in step S3 and the fuel weight Gmax obtained in step S7 (step S8, block B5). Prediction A / F is calculated | required from the following formula | equation. This predicted A / F is the richest air-fuel ratio that can be actually realized.
[Predicted A / F] = [Intake air weight Gair] / [Fuel weight Gmax]

ECU35に予め取得してあるマップデータ(エンジン回転数Ne、負荷に対応する目標A/F(TAF)のデータ)に基づいて、エンジン回転数Ne、負荷から現在の目標A/F(TAF)を求める(ステップS9)。   Based on the map data (engine speed Ne, target A / F (TAF) data corresponding to the load) acquired in advance in the ECU 35, the current target A / F (TAF) is calculated from the engine speed Ne and the load. Obtained (step S9).

マージンα(αは正の数)を見込んだ目標A/F(TAF’)を求める(ステップS10)。目標A/F(TAF’)は以下の式から求められる。なお、マージンαは、実際に制御されるA/Fがリッチ目となるようにする、つまり、リーンにならないようにする安全係数である。このように、本実施例では、マージンを見込んだ目標A/F(TAF’)を、後述の比較、制御で用いているが、ステップS9で求めたマージンのない目標A/F(TAF)を、後述の比較、制御で用いるようにしてもよい。
[目標A/F(TAF’)]=[目標A/F(TAF)]−[マージンα]
A target A / F (TAF ′) that anticipates the margin α (α is a positive number) is obtained (step S10). The target A / F (TAF ′) is obtained from the following equation. The margin α is a safety coefficient that makes the actually controlled A / F become rich, that is, does not become lean. As described above, in this embodiment, the target A / F (TAF ′) that anticipates the margin is used in the comparison and control described later, but the target A / F (TAF) without the margin obtained in step S9 is used. It may be used in comparison and control described later.
[Target A / F (TAF ′)] = [Target A / F (TAF)] − [Margin α]

ステップS8で求めた予測A/Fと、ステップS10で求めた目標A/F(TAF’)とを比較する(ステップS11)。予測A/F>目標A/F(TAF’)である場合にはステップS12へ進み、予測A/F>目標A/F(TAF’)でない場合には、一連の制御手順を終了する。   The predicted A / F obtained in step S8 is compared with the target A / F (TAF ') obtained in step S10 (step S11). If the prediction A / F> the target A / F (TAF '), the process proceeds to step S12. If the prediction A / F> the target A / F (TAF') is not satisfied, the series of control procedures is terminated.

ステップS11において、予測A/F>目標A/F(TAF’)である場合には、目標A/F(TAF’)と燃料重量Gmaxとを用いて、制御目標となる吸入空気重量TGairを求める(ステップS12)。吸入空気重量TGairは以下の式から求められる。
[吸入空気重量TGair]=[目標A/F(TAF’)]×[燃料重量Gmax]
If predicted A / F> target A / F (TAF ′) in step S11, the intake air weight TGair as the control target is obtained using the target A / F (TAF ′) and the fuel weight Gmax. (Step S12). The intake air weight TGair is obtained from the following equation.
[Intake air weight TGair] = [Target A / F (TAF ′)] × [Fuel weight Gmax]

実際の吸入空気の重量が、ステップS12で求めた吸入空気重量TGairとなるように、ECU35により、ETV20、W/G−V30を制御して、過給圧を制限する(ステップS13)。つまり、算出した予測A/Fが目標A/F(TAF’)よりリーンとなる場合には、空燃比が目標A/F(TAF’)よりリッチ化するまで、現在の燃圧を基準に吸入する空気重量(過給圧)側を制限する。その後、一連の制御手順を終了する。   The ECU 35 controls the ETV 20 and W / G-V30 so as to limit the supercharging pressure so that the actual intake air weight becomes the intake air weight TGair obtained in step S12 (step S13). That is, when the calculated prediction A / F is leaner than the target A / F (TAF ′), the current fuel pressure is sucked in until the air-fuel ratio becomes richer than the target A / F (TAF ′). Limit the air weight (supercharging pressure) side. Thereafter, a series of control procedures is terminated.

なお、吸入する空気重量を制限する際には、ETV20を制御した後に、W/G−V30を制御しており、(1)ETV20、(2)W/G−V30の順番で行っている。空気重量の制御に関し、ETV20(開くと空気重量が増える。)は、迅速性があるからである。一方、W/G−V30(開くと空気重量が減る。)は、空気重量の制御に関し、効率性がある。   In order to limit the weight of the air to be sucked in, W / G-V30 is controlled after controlling ETV20, and (1) ETV20 and (2) W / G-V30 are performed in this order. This is because the ETV 20 (the air weight increases when it is opened) is quick in terms of air weight control. On the other hand, W / G-V30 (the air weight decreases when opened) is efficient in controlling the air weight.

上記制御では、現在のエンジン回転数、過給圧、燃圧に基づいて、排気温度に影響がある空燃比を、実現可能な最もリッチな予測空燃比として求め、目標空燃比より予測空燃比が大きい場合には、現在の燃料圧力を基準に過給圧側を制限するので、実際の空燃比を適正に制御でき、排ガス悪化やエンジン破損を防止することができ、又、排気系の温度上昇の遅れや余裕度を考慮した制御が可能となる。   In the above control, based on the current engine speed, supercharging pressure, and fuel pressure, the air-fuel ratio that affects the exhaust temperature is obtained as the richest predicted air-fuel ratio that can be realized, and the predicted air-fuel ratio is larger than the target air-fuel ratio. In this case, since the boost pressure side is limited based on the current fuel pressure, the actual air-fuel ratio can be properly controlled, exhaust gas deterioration and engine damage can be prevented, and the exhaust system temperature rise is delayed. And control in consideration of the margin.

(実施例2)
図4、図5は、各々、本実施例の筒内噴射型内燃機関の過給圧制御装置における制御を説明するブロック図、フローチャートである。
(Example 2)
FIGS. 4 and 5 are a block diagram and a flowchart for explaining the control in the supercharging pressure control device for the direct injection internal combustion engine of the present embodiment, respectively.

本実施例においても、エンジンは、筒内噴射型のものであると共に過給器を備えたものであればよい。従って、その構成の一例として、実施例1の図1に示したエンジン10を参照し、図4、図5を用いて、本実施例の過給圧制御装置における制御を説明する。なお、実施例1と重複する構成については、その詳細な説明は省略する。   Also in the present embodiment, the engine may be an in-cylinder injection type and a supercharger. Therefore, as an example of the configuration, the engine 10 shown in FIG. 1 of the first embodiment will be referred to, and the control in the supercharging pressure control device of the present embodiment will be described using FIGS. 4 and 5. Detailed description of the same components as those in the first embodiment will be omitted.

まず、クランク角センサ34を用いて算出したエンジン回転数Neを取得すると共に(ステップS21)、過給圧センサ22を用いて、過給圧Pbを取得する(ステップS22)。   First, the engine speed Ne calculated using the crank angle sensor 34 is acquired (step S21), and the supercharging pressure Pb is acquired using the supercharging pressure sensor 22 (step S22).

次に、ECU35に予め取得してあるマップデータ(エンジン回転数Ne、過給圧Pbに対応する下限燃圧のデータ)に基づいて、取得したエンジン回転数Ne、過給圧Pbから下限燃圧を求める(ステップS23、ブロックB11)。ブロックB11に示したマップデータは、空燃比A/F=13とするように、エンジン回転数Ne、過給圧Pbに対応する下限燃圧を求めたものである。   Next, the lower limit fuel pressure is obtained from the acquired engine speed Ne and boost pressure Pb based on the map data (the engine speed Ne and lower limit fuel pressure data corresponding to the boost pressure Pb) acquired in advance by the ECU 35. (Step S23, block B11). The map data shown in the block B11 is obtained by obtaining the lower limit fuel pressure corresponding to the engine speed Ne and the supercharging pressure Pb so that the air-fuel ratio A / F = 13.

次に、燃圧センサ24を用いて実際に取得した実燃圧と、ステップS23で求めた下限燃圧とを比較する(ステップS24)。実燃圧<下限燃圧である場合にはステップS25へ進み、実燃圧<下限燃圧でない場合には、一連の制御手順を終了する。   Next, the actual fuel pressure actually acquired using the fuel pressure sensor 24 is compared with the lower limit fuel pressure obtained in step S23 (step S24). If the actual fuel pressure <the lower limit fuel pressure, the process proceeds to step S25. If the actual fuel pressure <the lower limit fuel pressure is not satisfied, the series of control procedures is terminated.

次に、ECU35に予め取得してあるマップデータ(エンジン回転数Ne、下限燃圧に対応する過給圧Pbのデータ。つまり、ブロックB11に示したデータを逆引きして求めたデータ)に基づいて、取得したエンジン回転数Neと、ステップS23で求めた下限燃圧から、制限過給圧を求める(ステップS25、ブロックB12)。なお、エンジン回転数Neとしては、取得したエンジン回転数Neそのものを用いてもよいが、実施例1と同様に、実際に制御を行うとき、つまり、インジェクタ26から燃料が噴射される際のエンジン回転数を予測補正するようにしてもよい。   Next, based on the map data (the engine speed Ne, the supercharging pressure Pb corresponding to the lower limit fuel pressure, that is, the data obtained by reverse lookup of the data shown in the block B11) acquired in advance by the ECU 35. From the acquired engine speed Ne and the lower limit fuel pressure obtained in step S23, a limit supercharging pressure is obtained (step S25, block B12). As the engine speed Ne, the acquired engine speed Ne itself may be used. However, as in the first embodiment, when the control is actually performed, that is, the engine when fuel is injected from the injector 26. The rotational speed may be predicted and corrected.

実際の吸入空気の重量が、ステップS25で求めた制限過給圧以下となるように、ECU35により、ETV20、W/G−V30を制御して、吸入する空気重量を制限する(ステップS26)。つまり、実燃圧が下限燃圧未満のときに空燃比がリッチ化するように、吸入する空気重量を制限している。その後、一連の制御手順を終了する。   The ECU 35 controls the ETV 20 and W / G-V30 so as to limit the weight of air to be sucked so that the actual weight of the intake air is equal to or less than the limit supercharging pressure obtained in step S25 (step S26). That is, the intake air weight is limited so that the air-fuel ratio becomes rich when the actual fuel pressure is less than the lower limit fuel pressure. Thereafter, a series of control procedures is terminated.

なお、吸入する空気重量の制限は、実施例1と同様に、(1)ETV20、(2)W/G−V30の順番で行う。   The intake air weight is limited in the order of (1) ETV20 and (2) W / G-V30, as in the first embodiment.

上記制御では、現在のエンジン回転数、過給圧に基づいて、下限燃圧を求め、求めた下限燃圧に基づいて、過給圧を制限するので、実際の空燃比を適正に制御でき、排ガス悪化やエンジン破損を防止することができる。このように、空気重量の制限としては、実施例1に限らず、実施例2に示した制御でも、空燃比を適正に制御可能である。又、実施例1では、予測A/Fを算出した後、制御を行っていたが、本実施例では、予測A/Fの算出は不要であり、その制御を簡略化できる。   In the above control, the lower limit fuel pressure is obtained based on the current engine speed and the boost pressure, and the boost pressure is limited based on the obtained lower limit fuel pressure. And engine damage can be prevented. As described above, the air weight is not limited to the first embodiment, and the air-fuel ratio can be appropriately controlled by the control shown in the second embodiment. In the first embodiment, the control is performed after the predicted A / F is calculated. However, in the present embodiment, the calculation of the predicted A / F is unnecessary, and the control can be simplified.

なお、上記実施例1、2においては、過給器としてターボチャージャを示しているが、例えば、スーパーチャージャ等の他の過給器にも本発明は適用可能である。   In the first and second embodiments, a turbocharger is shown as a supercharger. However, the present invention can also be applied to other superchargers such as a supercharger.

本発明は、過給器を備えた筒内噴射型内燃機関に好適なものである。   The present invention is suitable for a direct injection internal combustion engine provided with a supercharger.

本発明に係る筒内噴射型内燃機関の過給圧制御装置の実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of the supercharging pressure control apparatus of the cylinder injection type internal combustion engine which concerns on this invention. 図1に示した筒内噴射型内燃機関の過給圧制御装置における制御を説明するブロック図である。It is a block diagram explaining the control in the supercharging pressure control apparatus of the direct injection type internal combustion engine shown in FIG. 図1に示した筒内噴射型内燃機関の過給圧制御装置における制御を説明するフローチャートである。2 is a flowchart illustrating control in a supercharging pressure control device for a direct injection internal combustion engine shown in FIG. 1. 本発明に係る筒内噴射型内燃機関の過給圧制御装置について、その制御の他の一例を説明するブロック図である。It is a block diagram explaining the other example of the control about the supercharging pressure control apparatus of the cylinder injection type internal combustion engine which concerns on this invention. 本発明に係る筒内噴射型内燃機関の過給圧制御装置について、その制御の他の一例を説明するフローチャートである。It is a flowchart explaining another example of the control about the supercharging pressure control apparatus of the direct injection internal combustion engine which concerns on this invention.

符号の説明Explanation of symbols

10 エンジン
17 ターボチャージャ
20 ETV
22 過給圧センサ
23 高圧燃料ポンプ
24 燃圧センサ
26 インジェクタ
29 バイパス通路
30 W/G−V
34 クランク角センサ
35 ECU
10 Engine 17 Turbocharger 20 ETV
22 Supercharging pressure sensor 23 High pressure fuel pump 24 Fuel pressure sensor 26 Injector 29 Bypass passage 30 W / G-V
34 Crank angle sensor 35 ECU

Claims (5)

内燃機関の気筒内に燃料を直接噴射する燃料噴射手段と、
前記燃料噴射手段へ供給する燃料の圧力を検出する燃料圧力検出手段と、
前記気筒に吸入される吸気の過給を行う過給手段と、
前記過給手段により過給される吸気の過給圧を検出する過給圧検出手段と、
前記内燃機関の回転数を検出する回転数検出手段と、
前記燃料圧力検出手段、前記過給圧検出手段及び前記回転数検出手段により検出された現在の燃料圧力、過給圧及び回転数に基づいて予測空燃比を求め、現在の前記内燃機関の目標空燃比より前記予測空燃比が大きい場合には、前記過給手段による過給圧を制限する制御手段と、
を備えることを特徴とする筒内噴射型内燃機関の過給圧制御装置。
Fuel injection means for directly injecting fuel into the cylinder of the internal combustion engine;
Fuel pressure detection means for detecting the pressure of fuel supplied to the fuel injection means;
Supercharging means for supercharging intake air sucked into the cylinder;
A supercharging pressure detecting means for detecting a supercharging pressure of the intake air supercharged by the supercharging means;
A rotational speed detection means for detecting the rotational speed of the internal combustion engine;
A predicted air-fuel ratio is obtained based on the current fuel pressure, the supercharging pressure, and the rotational speed detected by the fuel pressure detecting means, the supercharging pressure detecting means, and the rotational speed detecting means, and the current target air pressure of the internal combustion engine is determined. When the predicted air-fuel ratio is larger than the fuel ratio, control means for limiting the supercharging pressure by the supercharging means,
A supercharging pressure control device for a cylinder injection type internal combustion engine.
請求項1に記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
現在の燃料圧力で噴射できる最大の噴射量に基づいて、実現可能な最もリッチな空燃比を求め、求めた空燃比を前記予測空燃比とすることを特徴とする筒内噴射型内燃機関の過給圧制御装置。
The supercharging pressure control device for a direct injection internal combustion engine according to claim 1,
The control means includes
Based on the maximum injection amount that can be injected with the current fuel pressure, the richest possible air-fuel ratio is obtained, and the obtained air-fuel ratio is set as the predicted air-fuel ratio. Supply pressure control device.
請求項2に記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記最大の噴射量に対応する燃料重量と前記目標空燃比に基づいて、制御目標となる吸入空気重量を求め、求めた前記吸入空気重量に基づいて前記過給手段による過給圧を制限することを特徴とする筒内噴射型内燃機関の過給圧制御装置。
The supercharging pressure control device for a direct injection internal combustion engine according to claim 2,
The control means includes
Based on the fuel weight corresponding to the maximum injection amount and the target air-fuel ratio, the intake air weight as a control target is obtained, and the supercharging pressure by the supercharging means is limited based on the obtained intake air weight. A supercharging pressure control device for a direct injection internal combustion engine.
請求項1から請求項3のいずれか1つに記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記内燃機関の吸気系に設けられた第1制御弁、及び、前記内燃機関の排気系において前記過給手段をバイパスするバイパス通路に設けられた第2制御弁の開度を制御して前記過給手段による過給圧を制限するものであり、過給圧を制限する際には、前記第1制御弁を制御した後に前記第2制御弁を制御することを特徴とする筒内噴射型内燃機関の過給圧制御装置。
The supercharging pressure control device for a direct injection internal combustion engine according to any one of claims 1 to 3,
The control means includes
The first control valve provided in the intake system of the internal combustion engine and the second control valve provided in a bypass passage that bypasses the supercharging means in the exhaust system of the internal combustion engine are controlled to control the opening degree. A cylinder injection type internal combustion engine that restricts a supercharging pressure by a supply means, and controls the second control valve after controlling the first control valve when limiting the supercharging pressure. Engine supercharging pressure control device.
請求項1から請求項4のいずれか1つに記載の筒内噴射型内燃機関の過給圧制御装置において、
前記制御手段は、
前記回転数検出手段により検出された回転数に基づいて、前記燃料噴射手段から燃料が噴射される際の回転数の予測補正を行うことを特徴とする筒内噴射型内燃機関の過給圧制御装置。
In the supercharging pressure control device for a direct injection internal combustion engine according to any one of claims 1 to 4,
The control means includes
A boost pressure control for a cylinder injection type internal combustion engine, wherein a prediction correction of a rotation speed when fuel is injected from the fuel injection means is performed based on the rotation speed detected by the rotation speed detection means. apparatus.
JP2008300308A 2008-11-26 2008-11-26 Supercharging pressure control device for direct injection internal combustion engine Expired - Fee Related JP5169769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300308A JP5169769B2 (en) 2008-11-26 2008-11-26 Supercharging pressure control device for direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300308A JP5169769B2 (en) 2008-11-26 2008-11-26 Supercharging pressure control device for direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010127122A true JP2010127122A (en) 2010-06-10
JP5169769B2 JP5169769B2 (en) 2013-03-27

Family

ID=42327694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300308A Expired - Fee Related JP5169769B2 (en) 2008-11-26 2008-11-26 Supercharging pressure control device for direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP5169769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173261A (en) * 2020-04-29 2021-11-01 トヨタ自動車株式会社 Engine device
US11560862B2 (en) 2021-01-07 2023-01-24 Toyota Jidosha Kabushiki Kaisha Engine control device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223226A (en) * 1988-07-11 1990-01-25 Toyota Motor Corp Supercharging pressure control device of internal combustion engine
JPH03202636A (en) * 1989-12-28 1991-09-04 Mazda Motor Corp Engine with turbo-supercharger
JPH05288067A (en) * 1992-04-08 1993-11-02 Toyota Autom Loom Works Ltd Turbo charger boost pressure control device
JP2000282926A (en) * 1999-03-30 2000-10-10 Mazda Motor Corp Control device of diesel engine
JP2001050082A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Air-fuel ratio control system
JP2002004903A (en) * 2000-06-16 2002-01-09 Mitsubishi Motors Corp Engine with supercharger
JP2003076404A (en) * 2001-08-30 2003-03-14 Yamaha Motor Co Ltd Computer with learning function
JP2003254072A (en) * 2002-02-27 2003-09-10 Suzuki Motor Corp Supercharging pressure control device of supercharger equipped cylinder injection engine
JP2005036721A (en) * 2003-07-15 2005-02-10 Mazda Motor Corp Engine control device
JP2008163815A (en) * 2006-12-27 2008-07-17 Honda Motor Co Ltd Fuel injection control device for internal combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223226A (en) * 1988-07-11 1990-01-25 Toyota Motor Corp Supercharging pressure control device of internal combustion engine
JPH03202636A (en) * 1989-12-28 1991-09-04 Mazda Motor Corp Engine with turbo-supercharger
JPH05288067A (en) * 1992-04-08 1993-11-02 Toyota Autom Loom Works Ltd Turbo charger boost pressure control device
JP2000282926A (en) * 1999-03-30 2000-10-10 Mazda Motor Corp Control device of diesel engine
JP2001050082A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Air-fuel ratio control system
JP2002004903A (en) * 2000-06-16 2002-01-09 Mitsubishi Motors Corp Engine with supercharger
JP2003076404A (en) * 2001-08-30 2003-03-14 Yamaha Motor Co Ltd Computer with learning function
JP2003254072A (en) * 2002-02-27 2003-09-10 Suzuki Motor Corp Supercharging pressure control device of supercharger equipped cylinder injection engine
JP2005036721A (en) * 2003-07-15 2005-02-10 Mazda Motor Corp Engine control device
JP2008163815A (en) * 2006-12-27 2008-07-17 Honda Motor Co Ltd Fuel injection control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021173261A (en) * 2020-04-29 2021-11-01 トヨタ自動車株式会社 Engine device
JP7371570B2 (en) 2020-04-29 2023-10-31 トヨタ自動車株式会社 engine equipment
US11560862B2 (en) 2021-01-07 2023-01-24 Toyota Jidosha Kabushiki Kaisha Engine control device

Also Published As

Publication number Publication date
JP5169769B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US9267423B2 (en) Methods and systems for increasing airflow through a charge air cooler to decrease charge air cooler condensate
JP4609541B2 (en) Control device for an internal combustion engine with a supercharger
US20170089284A1 (en) Control apparatus of engine
JP6167700B2 (en) In-cylinder injection engine control device
US9879617B2 (en) Control apparatus of engine
JP2007146779A (en) Control device for compression ignition type multi-cylinder internal combustion engine
JP5169769B2 (en) Supercharging pressure control device for direct injection internal combustion engine
JP5531987B2 (en) Control device for an internal combustion engine with a supercharger
JP2008190342A (en) Control device for internal combustion engine
JP6406398B2 (en) In-cylinder injection engine control device
JP2016217286A (en) Control device of engine system
JP2008240675A (en) Control device for internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP2012087641A (en) Fuel injection device
JP2010127219A (en) Fuel control device of diesel engine
JP2017008770A (en) Control device for internal combustion engine
US9885293B2 (en) Control apparatus of engine
JP5637098B2 (en) Control device for internal combustion engine
JP5786468B2 (en) Control device for internal combustion engine
JP2010230044A (en) Controller of internal combustion engine with supercharger
JP2009085034A (en) Control device of internal combustion engine
JP4325517B2 (en) Fuel injection control method for internal combustion engine
JP5569552B2 (en) Combustion control device
JP6311363B2 (en) Control device for internal combustion engine
JP5983910B2 (en) Fuel injection device for in-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees