JP5637098B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5637098B2
JP5637098B2 JP2011181158A JP2011181158A JP5637098B2 JP 5637098 B2 JP5637098 B2 JP 5637098B2 JP 2011181158 A JP2011181158 A JP 2011181158A JP 2011181158 A JP2011181158 A JP 2011181158A JP 5637098 B2 JP5637098 B2 JP 5637098B2
Authority
JP
Japan
Prior art keywords
injection timing
fuel
amount
internal combustion
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011181158A
Other languages
Japanese (ja)
Other versions
JP2013044250A (en
Inventor
真吾 中田
真吾 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011181158A priority Critical patent/JP5637098B2/en
Publication of JP2013044250A publication Critical patent/JP2013044250A/en
Application granted granted Critical
Publication of JP5637098B2 publication Critical patent/JP5637098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の制御装置に関し、特に、燃料を直接気筒内に噴射する筒内噴射式の内燃機関に適用される技術に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a technique applied to a direct injection internal combustion engine that injects fuel directly into a cylinder.

従来、気筒内に燃料を直接噴射する筒内噴射式の内燃機関が知られている。また、筒内噴射式の内燃機関では、エンジンでの燃料燃焼により粒子状物質(PM)が排出されやすく、これに鑑み、PM排出を考慮した技術が種々提案されている(例えば、特許文献1参照)。特許文献1には、吸気弁と排気弁とのバルブオーバーラップ量や吸気弁の閉じ時期を調整することによって、排気行程において気筒内から排出されなかった残留ガスを吸気管内に吹き返すとともに、その吹き返した残留ガスを吸気行程において再び気筒内へ吹き返す場合(内部EGR効果を得る場合)に、ピストン非衝突噴射時期に燃料が噴射されるように燃料噴射弁を制御することが開示されている。これにより、内部EGR効果を得るべくバルブオーバーラップ量を拡大する等した場合にも、残留ガスとともにPMが吸気管内に吹き返されることに起因して、吸気ポート等にデポジットが発生するのを抑制するようにしている。   2. Description of the Related Art Conventionally, an in-cylinder injection type internal combustion engine that directly injects fuel into a cylinder is known. In addition, in a cylinder injection internal combustion engine, particulate matter (PM) is easily discharged by fuel combustion in the engine, and in view of this, various technologies that consider PM discharge have been proposed (for example, Patent Document 1). reference). In Patent Document 1, by adjusting the valve overlap amount between the intake valve and the exhaust valve and the closing timing of the intake valve, the residual gas that has not been discharged from the cylinder during the exhaust stroke is blown back into the intake pipe, and the blow back is also performed. It is disclosed that the fuel injection valve is controlled so that fuel is injected at the piston non-collision injection timing when the residual gas is blown back into the cylinder again in the intake stroke (when the internal EGR effect is obtained). As a result, even when the valve overlap amount is increased so as to obtain the internal EGR effect, it is possible to prevent deposits from being generated in the intake port or the like due to PM being blown back into the intake pipe together with the residual gas. I am doing so.

特開2008−303799号公報JP 2008-303799 A

ところで、エンジンからのPM排出量が最小になる燃料噴射時期と、エンジンの燃費が最良となる燃料噴射時期とは必ずしも一致しない。そのため、PM低減を優先させようとすると燃費悪化を許容せざるを得ないが、その燃費悪化の程度は、PM排出量を許容範囲内にしつつ最小限にするのが望ましい。   By the way, the fuel injection timing at which the PM emission amount from the engine is minimized does not necessarily coincide with the fuel injection timing at which the fuel efficiency of the engine is the best. Therefore, if priority is given to PM reduction, deterioration of fuel consumption must be allowed, but it is desirable to minimize the degree of fuel consumption deterioration while keeping the PM emission amount within an allowable range.

本発明は上記課題に鑑みなされたものであり、粒子状物質の排出抑制と燃費の好適化とを両立することができる内燃機関の制御装置を提供することを主たる目的とする。   The present invention has been made in view of the above problems, and a main object of the present invention is to provide a control device for an internal combustion engine that can achieve both the suppression of emission of particulate matter and the improvement of fuel efficiency.

本発明は、上記課題を解決するために、以下の手段を採用した。   The present invention employs the following means in order to solve the above problems.

本発明は、燃料噴射弁から燃料を直接気筒内に噴射する筒内噴射式の内燃機関に適用される内燃機関の制御装置に関する。そして、請求項1に記載の発明は、機関運転状態に基づいて、内燃機関から排出される粒子状物質の量が最小となる燃料噴射時期であるPM基準噴射時期を算出するPM基準時期算出手段と、内燃機関の排気中に含まれる粒子状物質の量を検出する粒子状物質量検出手段と、前記内燃機関の定常運転状態において、前記燃料噴射弁による燃料噴射を燃料噴射ごとに指令する噴射時期指令値を、前記粒子状物質量検出手段により検出される粒子状物質量が所定の上限値を超えない範囲で、前記PM基準時期算出手段により算出したPM基準噴射時期から、今現在の機関運転状態において燃費が最良となる燃料噴射時期である燃費最良噴射時期に向かって徐変させる噴射時期変更手段と、を備えることを特徴とする。 The present invention relates to a control device for an internal combustion engine applied to an in-cylinder injection type internal combustion engine in which fuel is directly injected into a cylinder from a fuel injection valve. The invention according to claim 1 is a PM reference timing calculation means for calculating a PM reference injection timing which is a fuel injection timing at which the amount of particulate matter discharged from the internal combustion engine is minimized based on the engine operating state. And a particulate matter amount detecting means for detecting the amount of particulate matter contained in the exhaust gas of the internal combustion engine, and an injection for commanding fuel injection by the fuel injection valve for each fuel injection in a steady operation state of the internal combustion engine From the PM reference injection timing calculated by the PM reference timing calculation means within a range in which the particulate matter amount detected by the particulate matter amount detection means does not exceed a predetermined upper limit value, the current command engine And an injection timing changing means for gradually changing the fuel injection timing toward the best fuel injection timing, which is the fuel injection timing at which the fuel efficiency is optimal in the driving state.

要するに、筒内噴射式の内燃機関では、燃料の噴射時期と、燃料の燃焼によって内燃機関から排出される粒子状物質の量とに相関があり、燃料噴射時期を変更することによって粒子状物質の排出量が変化する。また同様に、内燃機関では、燃料噴射時期と燃費との間にも相関があり、燃料噴射時期を変更することによって燃費が変化する。ここで、粒子状物質の排出量が最小になる燃料噴射時期は、内燃機関の燃費が最良となる燃料噴射時期とは必ずしも一致しない。その一方で、昨今の粒子状物質に対する規制強化や燃費の最適化を考慮すると、粒子状物質の排出抑制と燃費の最適化との両立を図る必要がある。   In short, in a cylinder injection internal combustion engine, there is a correlation between the fuel injection timing and the amount of particulate matter discharged from the internal combustion engine due to the combustion of fuel. Emissions change. Similarly, in the internal combustion engine, there is a correlation between the fuel injection timing and the fuel consumption, and the fuel consumption changes by changing the fuel injection timing. Here, the fuel injection timing at which the particulate matter emission amount is minimized does not necessarily coincide with the fuel injection timing at which the fuel consumption of the internal combustion engine is best. On the other hand, considering the recent stricter regulations on particulate matter and optimization of fuel consumption, it is necessary to achieve both reduction of particulate matter emission and optimization of fuel consumption.

この点に鑑み、上記構成では、内燃機関から排出される粒子状物質の量をモニタし、粒子状物質量が上限値を超えない範囲としつつ、燃料噴射回ごとの噴射時期を、粒子状物質の排出量が最小になる噴射時期から、燃費が最良になる噴射時期に徐々に近付ける。これにより、粒子状物質の排出抑制を図りつつ、燃費を良好にすることができる。   In view of this point, in the above configuration, the amount of particulate matter discharged from the internal combustion engine is monitored, and the injection timing for each fuel injection is set so that the amount of particulate matter does not exceed the upper limit value. The injection timing is gradually approached from the injection timing at which the amount of exhaust gas is minimized. Thereby, fuel consumption can be improved while suppressing emission of particulate matter.

請求項2に記載の発明では、前記噴射時期指令値の徐変に際し、前記粒子状物質量検出手段により検出される粒子状物質の量が前記所定の上限値に達したか否かを判定する物質量判定手段を備え、前記噴射時期変更手段は、前記物質量判定手段により前記粒子状物質の量が前記所定の上限値に達したと判定される前に前記噴射時期指令値が前記燃費最良噴射時期に達するか、又は、前記噴射時期指令値が前記燃費最良噴射時期に達する前に前記物質量判定手段により前記粒子状物質の量が前記所定の上限値に達したと判定された場合、その時点で前記噴射時期指令値の徐変を停止し、その噴射時期指令値で燃料の噴射を制御する。   According to a second aspect of the present invention, when the injection timing command value is gradually changed, it is determined whether or not the amount of the particulate matter detected by the particulate matter amount detection means has reached the predetermined upper limit value. A substance amount determining means, wherein the injection timing changing means determines that the injection timing command value is the best fuel efficiency before the substance amount determining means determines that the amount of the particulate matter has reached the predetermined upper limit value. When it is determined that the amount of the particulate matter has reached the predetermined upper limit value by the substance amount determination means before the injection timing is reached or before the injection timing command value reaches the fuel efficiency best injection timing, At that time, the gradual change of the injection timing command value is stopped, and fuel injection is controlled by the injection timing command value.

噴射時期指令値を燃費最良噴射時期の方向に変更した際に、粒子状物質量が、許容される範囲の上限値に達する前に燃費最良噴射時期に達するか、又は燃費最良噴射時期に達する前に粒子状物質量が許容範囲の上限値まで達した場合には、その時点の燃料噴射時期が、粒子状物質が許容範囲内である場合において燃費を最も良好にできる噴射時期であると言える。したがって、その噴射時期指令値を維持することにより、粒子状物質の排出抑制と燃費好適化とを両立することができる。   When the injection timing command value is changed in the direction of the best fuel injection timing, the amount of particulate matter reaches the best fuel injection timing before reaching the upper limit of the allowable range, or before the best fuel injection timing is reached. When the amount of particulate matter reaches the upper limit of the allowable range, the fuel injection timing at that time can be said to be the injection timing that can achieve the best fuel consumption when the particulate matter is within the allowable range. Therefore, by maintaining the injection timing command value, it is possible to achieve both particulate matter emission suppression and fuel efficiency optimization.

燃料噴射ごとの噴射時期指令値の徐変については、内燃機関が定常運転状態であることを条件に実施するのが望ましい。したがって、請求項3に記載の発明のように、内燃機関の運転状態が定常運転状態であるか否かを判定する運転状態判定手段を備え、前記運転状態判定手段により定常運転状態であると判定されない場合に、前記噴射時期指令値を前記PM基準噴射時期として設定し、前記定常運転状態であると判定された場合に、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させるのがよい。   The gradual change of the injection timing command value for each fuel injection is preferably performed on condition that the internal combustion engine is in a steady operation state. Accordingly, as in the third aspect of the invention, there is provided an operation state determination unit that determines whether or not the operation state of the internal combustion engine is a steady operation state, and the operation state determination unit determines that the operation state is a steady operation state. If not, the injection timing command value is set as the PM reference injection timing, and when it is determined that the operation is in the steady operation state, the injection timing changing means changes the injection timing command value from the PM reference injection timing. It is preferable to gradually change toward the fuel efficiency best injection timing.

請求項4に記載の発明では、内燃機関の回転速度に応じて、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させる場合の徐変量を設定する。   According to a fourth aspect of the present invention, when the injection timing command value is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing by the injection timing changing means according to the rotational speed of the internal combustion engine. Set the variable.

燃料噴射時期の変更に伴う粒子状物質の変化の度合い(増加率)は機関回転速度に応じて相違し、機関回転速度が高いほど、燃料噴射時期をPM基準噴射時期よりも燃費最良噴射時期の方向へ変更した場合に、粒子状物質の排出量が大きく増加する。つまり、機関回転速度が高いほど、燃料噴射時期の変更に対する感度が高くなる。そのため、燃料噴射時期を徐変する場合の徐変量を一定とすると、機関回転速度が比較的高い場合には感度が高いことに起因して粒子状物質が急激に増加し、機関回転速度が比較的低い場合には燃料噴射時期を燃費最良噴射時期に向かって変更するのに時間がかかってしまうことが考えられる。したがって、上記構成とすることにより、燃料噴射時期の変更に対する感度に応じた適切な変更量により燃料噴射時期を徐変させることができる。   The degree of change (increase rate) in the particulate matter associated with the change in the fuel injection timing differs depending on the engine rotation speed. The higher the engine rotation speed, the more the fuel injection timing becomes the fuel efficiency best injection timing than the PM reference injection timing. When the direction is changed, the amount of particulate matter discharged increases greatly. That is, the higher the engine speed, the higher the sensitivity to changes in the fuel injection timing. Therefore, if the amount of gradual change when the fuel injection timing is gradually changed, if the engine speed is relatively high, the particulate matter increases rapidly due to the high sensitivity, and the engine speed is compared. If the fuel injection timing is low, it may take time to change the fuel injection timing toward the best fuel injection timing. Therefore, with the above configuration, the fuel injection timing can be gradually changed by an appropriate change amount corresponding to the sensitivity to the change of the fuel injection timing.

請求項5に記載の発明では、前記PM基準噴射時期と前記燃費最良噴射時期とのずれ幅を算出するずれ幅算出手段を備え、前記ずれ幅算出手段により算出したずれ幅に基づいて、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させる場合の徐変量を設定する。   According to a fifth aspect of the present invention, there is provided a deviation width calculating means for calculating a deviation width between the PM reference injection timing and the fuel efficiency best injection timing, and the injection is performed based on the deviation width calculated by the deviation width calculating means. A gradual change amount is set when the injection timing command value is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing by the timing changing means.

PM基準噴射時期及び燃費最良噴射時期は内燃機関の運転状態に応じて相違する。また、その相違に伴い、PM基準噴射時期と燃費最良噴射時期とのずれ幅が内燃機関の運転状態に応じて相違する。したがって、燃料噴射時期を徐変する場合の徐変量を一定とすると、ずれ幅が比較的大きい場合には、燃料噴射時期を燃費最良噴射時期に向かって変更するのに時間がかかってしまう。したがって、上記構成のように、PM基準噴射時期と燃費最良噴射時期とのずれ幅に応じて徐変量を可変に設定するとよい。   The PM reference injection timing and the best fuel efficiency injection timing differ depending on the operating state of the internal combustion engine. Along with the difference, the deviation width between the PM reference injection timing and the best fuel efficiency injection timing differs depending on the operating state of the internal combustion engine. Accordingly, if the amount of gradual change when the fuel injection timing is gradually changed is constant, it takes time to change the fuel injection timing toward the best fuel injection timing when the deviation is relatively large. Therefore, as in the above configuration, the gradual change amount may be set variably in accordance with the deviation width between the PM reference injection timing and the fuel efficiency best injection timing.

請求項6に記載の発明では、前記PM基準噴射時期と前記燃費最良噴射時期とのずれ幅を算出するずれ幅算出手段を備え、前記ずれ幅算出手段により算出したずれ幅に基づいて、前記噴射時期変更手段による前記噴射時期指令値の徐変を実施するか否かを切り替える。   According to a sixth aspect of the invention, there is provided a deviation width calculating means for calculating a deviation width between the PM reference injection timing and the fuel efficiency best injection timing, and the injection is based on the deviation width calculated by the deviation width calculating means. It is switched whether or not the injection timing command value is gradually changed by the timing changing means.

内燃機関において、燃料噴射時期を変更しても粒子状物質量や燃費が変化しない不感帯が存在することが考えられる。この不感帯を考慮すると、PM基準噴射時期と燃費最良噴射時期とのずれ幅がさほど大きくない場合には、燃料噴射時期を変更しても、例えば粒子状物質量は多くなるが燃費を十分に改善できないといったことが起こり得る。したがって、上記構成とすることにより、不感帯を考慮した燃料噴射時期制御を実現できる。具体的には、PM基準噴射時期と燃費最良噴射時期とのずれ幅が判定値以上の場合には燃料噴射時期の徐変を実施し、当該ずれ幅が判定値未満の場合には燃料噴射時期の徐変を実施しない構成とする。   In an internal combustion engine, there may be a dead zone in which the amount of particulate matter and fuel consumption do not change even when the fuel injection timing is changed. Considering this dead zone, if the difference between the PM reference injection timing and the fuel efficiency best injection timing is not so large, even if the fuel injection timing is changed, for example, the amount of particulate matter will increase, but the fuel efficiency will be improved sufficiently. Things that can't be done can happen. Therefore, the fuel injection timing control in consideration of the dead zone can be realized by adopting the above configuration. Specifically, when the deviation width between the PM reference injection timing and the fuel efficiency best injection timing is equal to or greater than the determination value, the fuel injection timing is gradually changed, and when the deviation width is less than the determination value, the fuel injection timing. The gradual change is not implemented.

請求項7に記載の発明では、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させた場合において、前記粒子状物質量検出手段により検出される粒子状物質の量が前記所定の上限値に達する前に前記噴射時期指令値が前記燃費最良噴射時期に達した場合には該燃費最良噴射時期を、又は前記粒子状物質量検出手段により検出される粒子状物質の量が前記燃費最良噴射時期に達する前に前記所定の上限値に達した場合には該上限値に達したときの燃料噴射時期を、最適噴射時期として内燃機関の運転領域毎に記憶する記憶手段を備え、前記記憶手段により今現在の機関運転状態に対応する前記最適噴射時期が記憶されている場合、該最適噴射時期を前記噴射時期指令値として燃料の噴射を制御する。この構成によれば、機関運転状態が変化する毎に噴射時期指令値をPM基準噴射時期から燃費最良噴射時期に向かって徐変させなくても、粒子状物質の抑制と燃費の好適化とを両立するのに最適な燃料噴射時期を設定することができる。これにより、制御性を良好にすることができる。   In the invention according to claim 7, when the injection timing command value is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing by the injection timing changing means, the particulate matter amount detecting means is used. If the injection timing command value reaches the fuel efficiency best injection time before the amount of particulate matter detected reaches the predetermined upper limit value, the fuel efficiency best injection time, or the particulate matter amount detection means When the amount of the particulate matter detected by the engine reaches the predetermined upper limit value before reaching the fuel efficiency best injection timing, the fuel injection timing when the upper limit value is reached is set as the optimum injection timing. Storage means for storing for each operation region, and when the optimum injection timing corresponding to the current engine operating state is stored in the storage means, the optimum injection timing is used as the injection timing command value for fuel To control the injection. According to this configuration, it is possible to suppress particulate matter and optimize fuel efficiency without having to gradually change the injection timing command value from the PM reference injection timing to the fuel efficiency best injection timing every time the engine operating state changes. It is possible to set the optimal fuel injection timing to achieve both. Thereby, controllability can be made favorable.

エンジン制御システムの全体概略構成図。1 is an overall schematic configuration diagram of an engine control system. 燃料噴射時期特性を示す図。(a)は燃料噴射時期とPM排出量との関係を示し、(b)は燃料噴射時期と燃費率との関係を示す。The figure which shows a fuel injection timing characteristic. (A) shows the relationship between the fuel injection timing and the PM emission amount, and (b) shows the relationship between the fuel injection timing and the fuel consumption rate. 燃料噴射時期制御の具体的態様を説明する図。The figure explaining the specific aspect of fuel injection timing control. 燃料噴射時期制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of fuel injection timing control.

以下、本発明を具体化した実施の形態について図面を参照しつつ説明する。本実施の形態は、内燃機関である車載多気筒4サイクルガソリンエンジンであって筒内噴射式かつ火花点火式のエンジンを対象にエンジン制御システムを構築するものとしている。当該制御システムにおいては、電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施する。このエンジン制御システムの全体概略構成図を図1に示す。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed for an in-cylinder injection and spark ignition engine that is an on-vehicle multi-cylinder four-cycle gasoline engine that is an internal combustion engine. In this control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount, control the ignition timing, and the like. FIG. 1 shows an overall schematic configuration diagram of the engine control system.

図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、エアクリーナ12の下流側には吸入空気量を検出するためのエアフロメータ13が設けられている。また、エアフロメータ13の下流側には、DCモータ等のスロットルアクチュエータ15によって開度調節されるスロットルバルブ14が設けられている。スロットルバルブ14の開度(スロットル開度)は、スロットルアクチュエータ15に内蔵されたスロットル開度センサにより検出される。   In the engine 10 shown in FIG. 1, an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and an air flow meter 13 for detecting the intake air amount is provided downstream of the air cleaner 12. A throttle valve 14 whose opening degree is adjusted by a throttle actuator 15 such as a DC motor is provided on the downstream side of the air flow meter 13. The opening degree of the throttle valve 14 (throttle opening degree) is detected by a throttle opening degree sensor built in the throttle actuator 15.

スロットルバルブ14の下流側にはサージタンク16が設けられ、サージタンク16において、吸気管内圧力を検出するための吸気管内圧力センサ17が設けられている。サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されている。吸気マニホールド18は、更に各気筒の吸気ポートに接続されている。   A surge tank 16 is provided on the downstream side of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. An intake manifold 18 for introducing air into each cylinder of the engine 10 is connected to the surge tank 16. The intake manifold 18 is further connected to the intake port of each cylinder.

エンジン10の吸気ポート及び排気ポートには、それぞれ吸気バルブ21及び排気バルブ22が設けられている。この吸気バルブ21の開動作によりサージタンク16内の空気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排ガスが排気管24に排出される。   An intake valve 21 and an exhaust valve 22 are provided at an intake port and an exhaust port of the engine 10, respectively. The air in the surge tank 16 is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust gas after combustion is discharged to the exhaust pipe 24 by the opening operation of the exhaust valve 22.

エンジン10の各気筒の上部には、燃焼室23内に燃料を直接供給する燃料噴射弁19が取り付けられている。燃料噴射弁19には、燃料配管25を介して燃料タンク38が接続されている。また、燃料配管25において、その最上流部には電磁駆動式のフィードポンプ39が配置され、フィードポンプ39の下流側には機械駆動式の高圧ポンプ26が配置されている。燃料タンク38内の燃料は、フィードポンプ39により汲み上げられて所定のフィード圧(例えば0.3MPa)まで加圧された後、高圧ポンプ26に圧送される。また、高圧ポンプ26に圧送されたフィード圧の燃料は、高圧ポンプ26により更に高圧(例えば4〜20MPa)にされた後、デリバリパイプ27に圧送され、デリバリパイプ27から各気筒の燃料噴射弁19に供給され、燃料噴射弁19から燃焼室23内に噴射される。   A fuel injection valve 19 that directly supplies fuel into the combustion chamber 23 is attached to the upper part of each cylinder of the engine 10. A fuel tank 38 is connected to the fuel injection valve 19 via a fuel pipe 25. In the fuel pipe 25, an electromagnetically driven feed pump 39 is disposed at the most upstream portion, and a mechanically driven high-pressure pump 26 is disposed downstream of the feed pump 39. The fuel in the fuel tank 38 is pumped up by the feed pump 39 and pressurized to a predetermined feed pressure (for example, 0.3 MPa), and then pumped to the high-pressure pump 26. The feed pressure fuel fed to the high-pressure pump 26 is further increased to a high pressure (for example, 4 to 20 MPa) by the high-pressure pump 26, and then pumped to the delivery pipe 27. The fuel injection valve 19 of each cylinder is delivered from the delivery pipe 27. And is injected from the fuel injection valve 19 into the combustion chamber 23.

エンジン10のシリンダヘッドには点火プラグ29が取り付けられている。点火プラグ29には、点火コイル等よりなる点火装置(図示略)を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ29の対向電極間に火花放電が発生し、燃焼室23内の混合気が着火され燃焼に供される。   A spark plug 29 is attached to the cylinder head of the engine 10. A high voltage is applied to the spark plug 29 at a desired ignition timing through an ignition device (not shown) including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 29, and the air-fuel mixture in the combustion chamber 23 is ignited and used for combustion.

排気管24には、排ガス中のCO,HC,NOx等を浄化するための触媒として三元触媒31が設けられている。また、排気管24には、触媒上流側において、排気を検出対象として混合気の空燃比(酸素濃度)を検出する空燃比センサ32が設けられており、触媒下流側において、排気中に含まれる粒子状物質(PM)の量を検出するPMセンサ33が設けられている。   The exhaust pipe 24 is provided with a three-way catalyst 31 as a catalyst for purifying CO, HC, NOx and the like in the exhaust gas. Further, the exhaust pipe 24 is provided with an air-fuel ratio sensor 32 for detecting the air-fuel ratio (oxygen concentration) of the air-fuel mixture on the upstream side of the catalyst as the detection target, and is included in the exhaust on the downstream side of the catalyst. A PM sensor 33 that detects the amount of particulate matter (PM) is provided.

その他、エンジン10には、冷却水温を検出する冷却水温センサ35や、エンジン10の所定クランク角毎に(例えば10°CA周期で)矩形状のクランク角信号を出力するクランク角センサ36、デリバリパイプ27内の燃料圧力を検出する燃圧センサ37などが取り付けられている。   In addition, the engine 10 includes a cooling water temperature sensor 35 that detects the cooling water temperature, a crank angle sensor 36 that outputs a rectangular crank angle signal at every predetermined crank angle of the engine 10 (for example, at a cycle of 10 ° CA), and a delivery pipe. A fuel pressure sensor 37 for detecting the fuel pressure in the fuel tank 27 is attached.

ECU50は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ(以下、マイコンという)51を主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。すなわち、ECU50のマイコン51は、前述した各種センサなどから各々検出信号を入力し、それら入力した各種検出信号に基づいて、燃料噴射量や燃料噴射時期、点火時期等を演算して燃料噴射弁19や点火装置の駆動等を制御する。   As is well known, the ECU 50 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer) 51 composed of a CPU, ROM, RAM, etc., and executes various control programs stored in the ROM, so that the engine operation state can be changed each time. In response, various controls of the engine 10 are performed. That is, the microcomputer 51 of the ECU 50 inputs detection signals from the various sensors described above, calculates the fuel injection amount, fuel injection timing, ignition timing, and the like based on the input various detection signals, and the fuel injection valve 19. And controls the driving of the ignition device.

燃料噴射時期制御について、マイコン51は、都度のエンジン運転状態(例えばエンジン回転速度やエンジン負荷)に基づいて燃料の目標噴射時期を算出する。また、算出した目標噴射時期で燃料噴射が開始されるよう燃料噴射弁19に噴射信号(噴射時期指令値)を出力することにより燃料噴射弁19の駆動を制御する。噴射時期について本実施形態では、基本的には1燃焼サイクル(吸気行程→圧縮行程→膨張行程→排気行程)のうちの吸気行程で燃料の噴射を開始する吸気行程噴射を行い、例えばエンジン始動時や触媒暖機時など一部のエンジン運転状態において圧縮行程で燃料の噴射を開始する圧縮行程噴射を行う。   Regarding the fuel injection timing control, the microcomputer 51 calculates the fuel target injection timing based on the engine operating state (for example, the engine speed and engine load). Further, the drive of the fuel injection valve 19 is controlled by outputting an injection signal (injection timing command value) to the fuel injection valve 19 so that fuel injection is started at the calculated target injection timing. Regarding the injection timing In this embodiment, basically, an intake stroke injection that starts fuel injection in an intake stroke in one combustion cycle (intake stroke → compression stroke → expansion stroke → exhaust stroke) is performed, for example, at the time of engine start In some engine operating conditions such as when the catalyst is warmed up, the compression stroke injection is started to start fuel injection in the compression stroke.

ところで、筒内噴射式のエンジンでは、燃料の噴射時期と、燃料の燃焼によって排出される粒子状物質の量(PM量)との相関が強く、例えば吸気行程噴射の場合には、図2(a)に示すように、燃料噴射時期を吸気上死点(吸気TDC)付近から遅角側に変更するにつれて、排気中に含まれるPM量が減少し、吸気TDCから所定角度だけ遅角側の角度位置(図2中のA)付近でPM量が最小になる。例えば、あるエンジン運転状態(エンジン回転速度Va、エンジン負荷Qa)では、図2(a)に示すように、圧縮上死点前300℃A付近で、エンジン10から排出されるPM量が最小になる。また、燃料噴射時期を、PM量が最小となる噴射時期から更に遅角させると、燃料噴射時期の遅角に伴いPM量が少しずつ増加するとともに、ある角度位置(図2中のB)を越えるとPM量が再び大きく増加する。このようなPM排出特性を考慮すると、PM排出量を抑制するには、PM最小の角度位置を燃料噴射時期の指令値として設定するのがよい。   By the way, in a cylinder injection engine, the correlation between the fuel injection timing and the amount of particulate matter (PM amount) discharged by the combustion of the fuel is strong. For example, in the case of intake stroke injection, FIG. As shown in a), as the fuel injection timing is changed from the vicinity of the intake top dead center (intake TDC) to the retarded angle side, the PM amount contained in the exhaust gas decreases, and the retarded angle side of the intake TDC is retarded by a predetermined angle. The PM amount is minimized near the angular position (A in FIG. 2). For example, in a certain engine operating state (engine speed Va, engine load Qa), as shown in FIG. 2A, the amount of PM discharged from the engine 10 is minimized around 300 ° C. before compression top dead center. Become. Further, when the fuel injection timing is further retarded from the injection timing at which the PM amount is minimized, the PM amount gradually increases with the delay of the fuel injection timing, and a certain angular position (B in FIG. 2) is set. If it exceeds, the amount of PM will increase greatly again. Considering such PM emission characteristics, in order to suppress the PM emission amount, it is preferable to set the minimum PM angular position as a command value for the fuel injection timing.

その一方で、エンジン10の排気中に含まれるPM量が最小になる燃料噴射時期は、エンジン10の燃費が最良となる燃料噴射時期(燃費最良点)とは必ずしも一致しない。例えばエンジン回転速度Va、エンジン負荷Qaの運転状態では、図2(b)に示すように、圧縮上死点前325℃A付近で燃料噴射した場合に燃費が最小になる(図2中のC)。これらのことを鑑みると、燃料噴射時期の指令値を設定するのに際し、PM低減を優先させると燃費悪化を許容せざるを得ないが、その燃費悪化の程度は、PM排出量を許容範囲内にしつつ最小限にするのが望ましい。   On the other hand, the fuel injection timing at which the PM amount contained in the exhaust of the engine 10 is minimized does not necessarily coincide with the fuel injection timing at which the fuel efficiency of the engine 10 is best (fuel economy best point). For example, in the operating state of the engine speed Va and the engine load Qa, as shown in FIG. 2B, the fuel consumption is minimized when fuel is injected near 325 ° C. A before compression top dead center (C in FIG. 2). ). In view of these matters, when setting the command value for the fuel injection timing, if priority is given to PM reduction, it is necessary to allow fuel consumption deterioration. However, the degree of fuel consumption deterioration falls within the allowable range of PM emissions. It is desirable to minimize it while doing so.

また、図2(a)に示すように、PM排出量が最小になる燃料噴射時期(図2中のA)よりも進角側では、燃料噴射時期の変更量に対するPM排出量の増加量が遅角側よりも多くなっている。したがって、エンジン10や燃料噴射弁19等の設計公差を考慮すると(PM低減のロバスト性を考慮すると)、燃料噴射時期の適合値としては、PM量が最小となる噴射時期よりも若干遅角側に設定しておくのが望ましい。しかしながら、図2(b)に示すように、燃料噴射時期を遅角側にすると燃費が悪化する方向に移行する。そのため、予め定めた適合値により燃料噴射時期を制御した場合、燃費悪化を好適に抑制できるとは必ずしも言えない。   Further, as shown in FIG. 2 (a), the amount of increase in the PM emission amount with respect to the change amount of the fuel injection timing is more advanced than the fuel injection timing (A in FIG. 2) at which the PM emission amount is minimized. More than the retard side. Therefore, considering the design tolerances of the engine 10 and the fuel injection valve 19 (considering the robustness of PM reduction), the appropriate value for the fuel injection timing is slightly retarded from the injection timing at which the PM amount is minimized. It is desirable to set to. However, as shown in FIG. 2 (b), when the fuel injection timing is set to the retarded side, the fuel consumption is deteriorated. For this reason, when the fuel injection timing is controlled by a predetermined adaptive value, it cannot always be said that deterioration of fuel consumption can be suitably suppressed.

そこで、本実施形態では、エンジン10の排気中に含まれるPM量(PM排出量)を検出し、その検出したPM排出量が許容範囲の上限値を超えないように、燃料噴射ごとの燃料噴射時期の指令値を、エンジン10から排出されるPM量が最小になる燃料噴射時期であるPM基準噴射時期(図2中のA)から、今現在のエンジン運転状態において燃費が最良となる燃料噴射時期である燃費最良噴射時期(図2中のC)に向かって徐変させることとしている。   Therefore, in the present embodiment, the amount of PM contained in the exhaust gas of the engine 10 (PM emission amount) is detected, and the fuel injection for each fuel injection is performed so that the detected PM emission amount does not exceed the upper limit value of the allowable range. From the PM reference injection timing (A in FIG. 2), which is the fuel injection timing at which the amount of PM discharged from the engine 10 is minimized, the fuel injection that provides the best fuel efficiency in the current engine operating state The fuel consumption is gradually changed toward the best fuel efficiency injection timing (C in FIG. 2).

本実施形態の燃料噴射時期制御について、図3を用いてより具体的に説明する。本実施形態では、基本的には、エンジン運転状態に基づいて、例えば予め定めた適合マップを用いて目標噴射時期を算出する。このとき、本実施形態では、目標噴射時期としてPM基準噴射時期を設定し、そのPM基準噴射時期で燃料が噴射されるよう燃料噴射弁19を制御する。そして、エンジン10が定常運転状態に移行すると、目標噴射時期を、PM基準噴射時期から、PM基準噴射時期よりも燃費最良噴射時期の方向(図3の矢印Mの方向)に所定の徐変量αずつ変更する。つまり、定常運転状態下において、PMセンサ33により検出されるPM排出量をモニタしつつ、燃料噴射弁19による燃料噴射の都度、燃料噴射時期の指令値を前回値に対して所定量ずつ徐変させる。また、同制御の実行中において、燃料噴射時期が燃費最良噴射時期に達した場合には、その時点で燃料噴射時期の指令値の徐変を停止し、燃費最良噴射時期での燃料噴射を維持する。ただし、燃料噴射時期が燃費最良噴射時期に達する前に、PMセンサ33により検出されるPM排出量が所定の上限値(基準値TH)に達した場合には、その基準値THに達した時点で燃料噴射時期の徐変を停止し、その時点の噴射時期(図3中のIn1)を維持する。   The fuel injection timing control of this embodiment will be described more specifically with reference to FIG. In the present embodiment, basically, the target injection timing is calculated using, for example, a predetermined adaptation map based on the engine operating state. At this time, in the present embodiment, the PM reference injection timing is set as the target injection timing, and the fuel injection valve 19 is controlled so that fuel is injected at the PM reference injection timing. Then, when the engine 10 shifts to the steady operation state, the target injection timing is changed from the PM reference injection timing to a predetermined gradual change amount α in the direction of the best fuel injection timing (direction of arrow M in FIG. 3) from the PM reference injection timing. Change it step by step. That is, under steady operating conditions, while monitoring the PM discharge amount detected by the PM sensor 33, the fuel injection timing command value is gradually changed by a predetermined amount with respect to the previous value every time the fuel injection valve 19 performs fuel injection. Let In addition, if the fuel injection timing reaches the best fuel injection timing while the control is being executed, the gradual change of the command value of the fuel injection timing is stopped at that time, and the fuel injection at the best fuel injection timing is maintained. To do. However, when the PM emission amount detected by the PM sensor 33 reaches a predetermined upper limit value (reference value TH) before the fuel injection timing reaches the fuel efficiency best injection timing, the point at which the reference value TH is reached. Then, the gradual change of the fuel injection timing is stopped, and the injection timing (In1 in FIG. 3) at that time is maintained.

次に、本実施形態の燃料噴射時期制御について図4のフローチャートを用いて説明する。この処理は、ECU50のマイコン51により各気筒の燃料噴射毎に(4気筒エンジンであれば180℃A毎に)実行される。   Next, the fuel injection timing control of the present embodiment will be described using the flowchart of FIG. This process is executed by the microcomputer 51 of the ECU 50 for each fuel injection in each cylinder (for every 180 ° C. in the case of a 4-cylinder engine).

図4において、ステップS101では、エンジン10の運転状態が定常状態か否かを判定する。本実施形態では、エンジン回転速度及びエンジン負荷が一定の状態が所定時間継続した場合に定常運転状態であると判定する。定常運転状態でないと判定された場合には、ステップS102へ進み、その時のエンジン運転状態に基づいて、PM排出量が最小となる燃料噴射時期(PM基準噴射時期)を算出し(PM基準時期算出手段)、その算出したPM基準噴射時期を目標噴射時期に設定する。本実施形態では、PM基準噴射時期がエンジン運転状態ごとにPM適合マップとして予め定めて記憶してある。したがって、ここでは、そのPM適合マップから、今現在のエンジン運転状態に対応するPM基準噴射時期を読み出し、その読み出したPM基準噴射時期を目標噴射時期に設定する。また、ステップS103では、設定した目標噴射時期で燃料噴射弁19から燃料が噴射されるよう燃料噴射弁19に噴射信号を出力する。   In FIG. 4, in step S101, it is determined whether or not the operating state of the engine 10 is a steady state. In the present embodiment, it is determined that the engine is in the steady operation state when the engine rotation speed and the engine load are constant for a predetermined time. If it is determined that the engine is not in the steady operation state, the process proceeds to step S102, and a fuel injection timing (PM reference injection timing) at which the PM emission amount is minimized is calculated based on the engine operation state at that time (PM reference timing calculation). And the calculated PM reference injection timing is set as the target injection timing. In this embodiment, the PM reference injection timing is predetermined and stored as a PM conformity map for each engine operating state. Therefore, here, the PM reference injection timing corresponding to the current engine operating state is read from the PM compatibility map, and the read PM reference injection timing is set as the target injection timing. In step S103, an injection signal is output to the fuel injection valve 19 so that fuel is injected from the fuel injection valve 19 at the set target injection timing.

一方、エンジン10が定常運転状態であると判定されると、ステップS101で肯定判定され、ステップS104へ進む。ステップS104では、その時のエンジン運転状態に基づいて、エンジン10の燃費が最良となる燃料噴射時期(燃費最良噴射時期)を算出する。本実施形態では、燃費最良噴射時期がエンジン運転状態ごとに燃費適合マップとして予め定めて記憶してあり、その燃費適合マップから、今現在のエンジン運転状態に対応する燃費最良噴射時期を読み出すことにより燃費最適噴射時期を算出する。   On the other hand, when it is determined that the engine 10 is in the steady operation state, an affirmative determination is made in step S101, and the process proceeds to step S104. In step S104, based on the engine operating state at that time, a fuel injection timing (the best fuel injection timing) at which the fuel efficiency of the engine 10 is best is calculated. In this embodiment, the best fuel injection timing is determined and stored in advance as a fuel consumption adaptation map for each engine operation state, and the best fuel injection timing corresponding to the current engine operation state is read from the fuel consumption adaptation map. Calculate the optimal fuel injection timing.

ステップS105では、目標噴射時期として燃費最良噴射時期が設定されているか否かを判定する。ステップS105で否定判定された場合、ステップS106へ進み、PMセンサ33により検出されたPM排出量を取得し、ステップS107において、その取得したPM排出量が基準値以下であるか否かを判定する。ここで、基準値は、エンジン10の排気中に含まれるPM量として許容される範囲の上限値であり、本実施形態では、エンジン運転状態ごとに予め定めて記憶してある。   In step S105, it is determined whether or not the best fuel efficiency injection timing is set as the target injection timing. When a negative determination is made in step S105, the process proceeds to step S106, where the PM discharge amount detected by the PM sensor 33 is acquired, and in step S107, it is determined whether the acquired PM discharge amount is equal to or less than a reference value. . Here, the reference value is an upper limit value of a range allowed as the PM amount contained in the exhaust of the engine 10, and in the present embodiment, it is predetermined and stored for each engine operating state.

PM排出量が基準値以下である場合には、ステップS107で肯定判定されてステップS108へ進む。ステップS108では、目標噴射時期の前回値を燃費最良噴射時期の方向に所定の徐変量α(例えば数℃A)だけ変更する。このとき、例えば、定常運転状態である旨の判定がなされていない状態(判定前状態)から、定常運転状態である旨の判定がなされた状態(判定後状態)に移行すると、まずはその判定前状態での最後の目標燃料噴射時期(PM基準噴射時期)に対して進角側又は遅角側の変更が行われ、その後、目標噴射時期の前回値に対して更に進角側又は遅角側への変更が行われる。また、目標噴射時期の変更方向について具体的には、例えば図2のエンジン運転状態の場合であれば、燃費最良噴射時期はPM基準噴射時期よりも進角側であるから、目標噴射時期を所定の徐変量αだけ進角側に変更する。一方、燃費最良噴射時期がPM基準噴射時期よりも遅角側の場合には目標噴射時期の前回値を遅角側に変更する。なお、徐変量αについて本実施形態では固定値としてある。ステップS103では、その設定した目標噴射時期で燃料噴射が実施されるよう燃料噴射弁19に噴射信号(噴射時期指令値)を出力する。   If the PM emission amount is less than or equal to the reference value, an affirmative determination is made in step S107 and the process proceeds to step S108. In step S108, the previous value of the target injection timing is changed by a predetermined gradual change amount α (for example, several degrees C) in the direction of the best fuel injection timing. At this time, for example, when a transition from a state in which the steady operation state is not determined (pre-determination state) to a state in which the steady operation state is determined (post-determination state), first, before the determination The advance side or the retard side is changed with respect to the last target fuel injection timing (PM reference injection timing) in the state, and then the further advance side or retard side with respect to the previous value of the target injection timing Changes to are made. Further, with regard to the direction of changing the target injection timing, specifically, for example, in the case of the engine operating state of FIG. 2, the fuel efficiency best injection timing is on the advance side with respect to the PM reference injection timing. The gradual change amount α is changed to the advance side. On the other hand, when the best fuel injection timing is on the retard side relative to the PM reference injection timing, the previous value of the target injection timing is changed to the retard side. Note that the gradual change amount α is a fixed value in this embodiment. In step S103, an injection signal (injection timing command value) is output to the fuel injection valve 19 so that fuel injection is performed at the set target injection timing.

一方、PM排出量が基準値よりも多い場合には、ステップS107で否定判定されてステップS109へ進み、燃料噴射時期の徐変を停止し、そのときの目標噴射時期(前回値)を保持する。また、ステップS103では、設定した目標噴射時期で燃料が噴射されるよう燃料噴射弁19に噴射信号を出力する。   On the other hand, when the PM emission amount is larger than the reference value, a negative determination is made in step S107, the process proceeds to step S109, the gradual change of the fuel injection timing is stopped, and the target injection timing (previous value) at that time is held. . In step S103, an injection signal is output to the fuel injection valve 19 so that fuel is injected at the set target injection timing.

ステップS105で目標噴射時期が燃費最良噴射時期であると判定された場合、ステップS110へ進み、目標噴射時期を燃費最適噴射時期で保持し(前回値のまま保持し)、ステップS103で、燃費最良噴射時期で燃料が噴射されるよう燃料噴射弁19に噴射信号を出力する。   If it is determined in step S105 that the target injection timing is the best fuel consumption injection timing, the process proceeds to step S110, where the target injection timing is held at the optimal fuel consumption injection timing (the previous value is maintained), and in step S103, the best fuel consumption is achieved. An injection signal is output to the fuel injection valve 19 so that fuel is injected at the injection timing.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

エンジン10から排出されるPM量をモニタし、PM量が上限値を超えない範囲としつつ、各気筒の燃料噴射ごとの噴射時期(4気筒エンジンであれば180℃Aごとに実施される燃料噴射の噴射時期)を、PM排出量が最小になるPM基準噴射時期から、燃費が最良になる燃費最良噴射時期に徐々に変更する構成とした。この場合、PM排出量が許容範囲内となる燃料噴射時期のうち、燃費がより良好な燃料噴射時期で燃料を噴射することができる。したがって、上記構成によれば、PMの排出抑制を図りつつ、燃費を良好にすることができる。   The amount of PM discharged from the engine 10 is monitored, and the PM amount is in a range that does not exceed the upper limit value, and the fuel injection timing for each fuel injection in each cylinder (fuel injection performed at 180 ° C. for a 4-cylinder engine) The injection timing is gradually changed from the PM reference injection timing at which the PM emission amount is minimized to the best fuel efficiency injection timing at which the fuel efficiency is optimal. In this case, it is possible to inject fuel at a fuel injection timing with better fuel efficiency among fuel injection timings in which the PM emission amount is within an allowable range. Therefore, according to the said structure, fuel consumption can be made favorable, aiming at PM discharge suppression.

また、噴射時期指令値の徐変に際し、PMセンサ33の検出値に基づいてPM量が基準値に達したか否かを判定する構成を備え、PM量が基準値に達したと判定される前に噴射時期指令値が燃費最良噴射時期に達するか、又は、噴射時期指令値が燃費最良噴射時期に達する前にPM量が基準値に達したと判定された場合、その時点で噴射時期指令値の徐変を停止し、その噴射時期指令値で燃料の噴射を制御する構成とした。この場合、PM排出量が許容範囲内となる燃料噴射時期のうち、燃費が最も良好な燃料噴射時期を指令値として維持することができる。   In addition, when the injection timing command value is gradually changed, it is determined that the PM amount has reached the reference value based on the detection value of the PM sensor 33, and it is determined that the PM amount has reached the reference value. If it is determined that the injection timing command value has reached the fuel efficiency best injection timing before, or the PM amount has reached the reference value before the injection timing command value has reached the fuel efficiency best injection timing, then the injection timing command The gradual change of the value is stopped, and the fuel injection is controlled by the injection timing command value. In this case, the fuel injection timing with the best fuel consumption among the fuel injection timings in which the PM emission amount is within the allowable range can be maintained as the command value.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・上記実施形態では、燃料噴射ごとに燃料噴射時期の指令値をPM基準噴射時期から燃費最良噴射時期に向かって変更するときの徐変量(目標噴射時期の徐変量α)を固定値としたが、本実施形態では、エンジン回転速度(エンジン定常運転状態でのエンジン回転速度)に応じて徐変量を可変に設定する。燃料噴射時期を変更した場合のPM排出量に及ぼす影響(感度)は、エンジン回転速度に応じて相違し、エンジン回転速度が高いほど、燃料噴射時期をPM基準噴射時期よりも燃費最良噴射時期の方向へ変更した場合のPM増加量(傾き)が大きくなる。この場合、エンジン回転速度が高い場合には、燃料噴射時期の変更に伴うPM排出量の感度が高いため、燃料噴射時期の変更量をできるだけ小さくするのが望ましい。一方、エンジン回転速度が低い場合には、徐変量が小さすぎると、燃料噴射時期を燃費最良噴射時期に向かって変更するのに時間がかかってしまう。そこで、本実施形態では、エンジン回転速度が高いほど徐変量を小さく設定する。これにより、エンジン回転速度に応じた徐変量を設定することができ、都度の運転状態に適した燃料噴射時期制御を実現することができる。   In the above embodiment, the gradual change amount (the gradual change amount α of the target injection timing) when the command value of the fuel injection timing is changed from the PM reference injection timing toward the fuel efficiency best injection timing for each fuel injection is a fixed value. In this embodiment, the gradual change amount is variably set in accordance with the engine rotation speed (the engine rotation speed in the engine steady operation state). The influence (sensitivity) on the PM emission amount when the fuel injection timing is changed differs depending on the engine rotation speed. The higher the engine rotation speed, the fuel injection timing is set to the fuel efficiency best injection timing than the PM reference injection timing. When the direction is changed, the PM increase amount (slope) increases. In this case, when the engine speed is high, the sensitivity of the PM emission amount associated with the change of the fuel injection timing is high, so it is desirable to make the change amount of the fuel injection timing as small as possible. On the other hand, when the engine speed is low, if the gradual change amount is too small, it takes time to change the fuel injection timing toward the best fuel injection timing. Therefore, in the present embodiment, the gradual change amount is set to be smaller as the engine rotation speed is higher. Thereby, the gradual change amount according to the engine rotation speed can be set, and fuel injection timing control suitable for each operation state can be realized.

・PM基準噴射時期と燃費最良噴射時期とのずれ幅を算出し、その算出したずれ幅に基づいて、燃料噴射ごとに燃料噴射時期をPM基準噴射時期から燃費最良噴射時期に向かって変更するときの徐変量(目標噴射時期の徐変量α)を可変に設定する。このとき、ずれ幅が大きいほど、徐変量を大きく設定するとよい。   -When the deviation width between the PM reference injection timing and the best fuel efficiency injection timing is calculated, and the fuel injection timing is changed from the PM reference injection timing toward the best fuel efficiency injection timing for each fuel injection based on the calculated deviation width The gradual variation amount (gradual variation amount α of the target injection timing) is variably set. At this time, it is better to set the gradual change amount as the deviation width is larger.

・エンジン10について、燃料噴射時期を僅かに変更しただけではPM排出量や燃費が変化しない不感帯が存在することが考えられる。これに鑑み、PM基準噴射時期と燃費最良噴射時期とのずれ幅に基づいて、PM基準噴射時期から燃費最良噴射時期への燃料噴射時期(指令値)の徐変を実施するか否かを切り替える構成とする。具体的には、PM基準噴射時期と燃費最良噴射時期とのずれ幅が判定値未満の場合には燃料噴射時期の徐変を実施せず、例えばPM基準噴射時期を目標噴射時期として燃料噴射を実施する。一方、上記ずれ幅が判定値以上の場合には、例えば上記図4の処理により燃料噴射時期の徐変を実施する。   -About the engine 10, it is possible that there exists a dead zone in which PM emission amount and fuel consumption do not change only by slightly changing the fuel injection timing. In view of this, whether or not to gradually change the fuel injection timing (command value) from the PM reference injection timing to the fuel efficiency best injection timing is switched based on the deviation width between the PM reference injection timing and the fuel efficiency best injection timing. The configuration. Specifically, when the deviation width between the PM reference injection timing and the fuel efficiency best injection timing is less than the determination value, the fuel injection timing is not gradually changed. For example, fuel injection is performed with the PM reference injection timing as the target injection timing. carry out. On the other hand, when the deviation width is equal to or larger than the determination value, the fuel injection timing is gradually changed by, for example, the processing of FIG.

・上記実施形態では、目標噴射時期をPM基準噴射時期から燃費最良噴射時期の方向に所定量ずつ徐変させることにより、燃料噴射時期の指令値をPM基準噴射時期から燃費最良噴射時期に向かう方向に徐変させる構成としたが、燃料噴射時期の指令値を序変させる構成はこれに限定しない。例えば、PM基準噴射時期と燃費最良噴射時期との差を算出するとともに、その差に基づいて噴射時期指令値の変更量を算出する構成とする。このとき、毎回の燃料噴射における噴射時期指令値の変更量を制限して、すなわち燃料噴射時期の指令値が微少量ずつ(例えば数℃Aずつ)変更されるよう変更量を算出する。   In the above embodiment, the target injection timing is gradually changed from the PM reference injection timing to the fuel economy best injection timing by a predetermined amount, whereby the command value of the fuel injection timing is directed from the PM reference injection timing to the fuel economy best injection timing. However, the configuration for changing the command value of the fuel injection timing is not limited to this. For example, the difference between the PM reference injection timing and the best fuel efficiency injection timing is calculated, and the change amount of the injection timing command value is calculated based on the difference. At this time, the change amount of the injection timing command value in each fuel injection is limited, that is, the change amount is calculated so that the command value of the fuel injection timing is changed minutely (for example, by several degrees C).

・燃料噴射時期の指令値をPM基準噴射時期から燃費最良噴射時期に向かって徐変させた場合において、PMセンサ33により検出されるPM排出量が所定の上限値(基準値TH)に達する前に燃料噴射時期が燃費最良噴射時期に達した場合にはその燃費最良噴射時期を、又は、PMセンサ33により検出されるPM排出量が、燃費最良噴射時期に達する前に所定の上限値に達した場合には該上限値に達したときの燃料噴射時期を、最適噴射時期として取得し、該取得した最適噴射時期をエンジン運転状態毎に記憶する(記憶手段)。このとき、最適噴射時期を取得したエンジン運転状態に対応させて最適噴射時期を記憶する。そして、エンジン10の運転中において、今現在のエンジン運転状態に対応する最適噴射時期が記憶されている場合には、その最適噴射時期を目標燃料噴射時期として設定し、該設定した目標噴射時期で燃料が噴射されるよう燃料噴射弁19に噴射信号(噴射時期指令値)を出力する。本構成によれば、エンジン運転状態が変化する毎に燃料噴射時期の徐変を都度実施しなくても、PM排出抑制と燃費の好適化とを両立するのに最適な燃料噴射時期を設定することができ、制御性を高めることができる。   When the command value of the fuel injection timing is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing, before the PM emission amount detected by the PM sensor 33 reaches a predetermined upper limit value (reference value TH) When the fuel injection timing reaches the best fuel injection timing, the best fuel injection timing or the PM emission detected by the PM sensor 33 reaches a predetermined upper limit value before reaching the best fuel injection timing. In this case, the fuel injection timing when the upper limit value is reached is acquired as the optimal injection timing, and the acquired optimal injection timing is stored for each engine operating state (storage means). At this time, the optimum injection timing is stored in correspondence with the engine operating state for which the optimum injection timing has been acquired. When the optimum injection timing corresponding to the current engine operating state is stored during operation of the engine 10, the optimum injection timing is set as the target fuel injection timing, and the set target injection timing is set. An injection signal (injection timing command value) is output to the fuel injection valve 19 so that fuel is injected. According to this configuration, even when the fuel injection timing is not gradually changed every time the engine operating state changes, an optimal fuel injection timing is set to achieve both PM emission suppression and fuel efficiency optimization. And controllability can be improved.

10…エンジン、19…燃料噴射弁、29…点火プラグ、50…ECU、51…マイコン(PM基準時期算出手段、粒子状物質量検出手段、噴射時期変更手段、物質量判定手段、運転状態判定手段、ずれ幅算出手段、記憶手段)。   DESCRIPTION OF SYMBOLS 10 ... Engine, 19 ... Fuel injection valve, 29 ... Spark plug, 50 ... ECU, 51 ... Microcomputer (PM reference | standard timing calculation means, particulate matter amount detection means, injection timing change means, substance amount determination means, operation state determination means , Deviation width calculation means, storage means).

Claims (7)

燃料噴射弁から燃料を直接気筒内に噴射する筒内噴射式の内燃機関に適用され、
機関運転状態に基づいて、内燃機関から排出される粒子状物質の量が最小となる燃料噴射時期であるPM基準噴射時期を算出するPM基準時期算出手段と、
内燃機関の排気中に含まれる粒子状物質の量を検出する粒子状物質量検出手段と、
前記内燃機関の定常運転状態において、前記燃料噴射弁による燃料噴射を燃料噴射ごとに指令する噴射時期指令値を、前記粒子状物質量検出手段により検出される粒子状物質の量が所定の上限値を超えない範囲で、前記PM基準時期算出手段により算出したPM基準噴射時期から、今現在の機関運転状態において燃費が最良となる燃料噴射時期である燃費最良噴射時期に向かって徐変させる噴射時期変更手段と、
を備えることを特徴とする内燃機関の制御装置。
Applied to an in-cylinder internal combustion engine that injects fuel directly into a cylinder from a fuel injection valve,
PM reference timing calculation means for calculating a PM reference injection timing, which is a fuel injection timing that minimizes the amount of particulate matter discharged from the internal combustion engine, based on the engine operating state;
Particulate matter amount detection means for detecting the amount of particulate matter contained in the exhaust gas of the internal combustion engine;
In a steady operation state of the internal combustion engine, an injection timing command value for instructing fuel injection by the fuel injection valve for each fuel injection, and the amount of particulate matter detected by the particulate matter amount detecting means is a predetermined upper limit value. The injection timing is gradually changed from the PM reference injection timing calculated by the PM reference timing calculation means toward the best fuel injection timing that is the best fuel injection timing in the current engine operating state without exceeding Change means,
A control device for an internal combustion engine, comprising:
前記噴射時期指令値の徐変に際し、前記粒子状物質量検出手段により検出される粒子状物質の量が前記所定の上限値に達したか否かを判定する物質量判定手段を備え、
前記噴射時期変更手段は、前記物質量判定手段により前記粒子状物質の量が前記所定の上限値に達したと判定される前に前記噴射時期指令値が前記燃費最良噴射時期に達するか、又は、前記噴射時期指令値が前記燃費最良噴射時期に達する前に前記物質量判定手段により前記粒子状物質の量が前記所定の上限値に達したと判定された場合、その時点で前記噴射時期指令値の徐変を停止し、その噴射時期指令値で燃料の噴射を制御する請求項1に記載の内燃機関の制御装置。
A substance amount determination means for determining whether or not the amount of the particulate matter detected by the particulate matter amount detection means has reached the predetermined upper limit value when the injection timing command value is gradually changed;
The injection timing changing means is configured such that the injection timing command value reaches the fuel efficiency best injection timing before the substance amount determining means determines that the amount of the particulate matter has reached the predetermined upper limit value, or If the amount of the particulate matter has reached the predetermined upper limit by the substance amount determination means before the injection timing command value reaches the fuel efficiency best injection timing, the injection timing command at that time 2. The control device for an internal combustion engine according to claim 1, wherein the gradual change of the value is stopped and the fuel injection is controlled by the injection timing command value.
内燃機関の運転状態が定常運転状態であるか否かを判定する運転状態判定手段を備え、
前記運転状態判定手段により定常運転状態であると判定されない場合に、前記噴射時期指令値を前記PM基準噴射時期として設定し、前記定常運転状態であると判定された場合に、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させる請求項1又は2に記載の内燃機関の制御装置。
An operating state determining means for determining whether or not the operating state of the internal combustion engine is a steady operating state;
The injection timing command value is set as the PM reference injection timing when the operation state determination unit does not determine that the operation state is a steady operation state, and when it is determined that the operation state is the steady operation state, the injection timing change unit The control device for an internal combustion engine according to claim 1 or 2, wherein the injection timing command value is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing.
内燃機関の回転速度に応じて、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させる場合の徐変量を設定する請求項1乃至3のいずれか一項に記載の内燃機関の制御装置。   4. A gradual change amount is set when the injection timing change means gradually changes the injection timing command value from the PM reference injection timing toward the fuel efficiency best injection timing according to the rotational speed of the internal combustion engine. The control apparatus for an internal combustion engine according to any one of the above. 前記PM基準噴射時期と前記燃費最良噴射時期とのずれ幅を算出するずれ幅算出手段を備え、
前記ずれ幅算出手段により算出したずれ幅に基づいて、前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させる場合の徐変量を設定する請求項1乃至3のいずれか一項に記載の内燃機関の制御装置。
A deviation width calculating means for calculating a deviation width between the PM reference injection timing and the fuel efficiency best injection timing;
Based on the deviation width calculated by the deviation width calculating means, a gradual change amount is set when the injection timing command value is gradually changed from the PM reference injection timing toward the fuel efficiency best injection timing by the injection timing changing means. The control device for an internal combustion engine according to any one of claims 1 to 3.
前記PM基準噴射時期と前記燃費最良噴射時期とのずれ幅を算出するずれ幅算出手段を備え、
前記ずれ幅算出手段により算出したずれ幅に基づいて、前記噴射時期変更手段による前記噴射時期指令値の徐変を実施するか否かを切り替える請求項1乃至5のいずれか一項に記載の内燃機関の制御装置。
A deviation width calculating means for calculating a deviation width between the PM reference injection timing and the fuel efficiency best injection timing;
6. The internal combustion engine according to claim 1, wherein whether or not to gradually change the injection timing command value by the injection timing changing means is switched based on the deviation width calculated by the deviation width calculating means. Engine control device.
前記噴射時期変更手段により前記噴射時期指令値を前記PM基準噴射時期から前記燃費最良噴射時期に向かって徐変させた場合において、前記粒子状物質量検出手段により検出される粒子状物質の量が前記所定の上限値に達する前に前記噴射時期指令値が前記燃費最良噴射時期に達した場合には該燃費最良噴射時期を、又は前記粒子状物質量検出手段により検出される粒子状物質の量が前記燃費最良噴射時期に達する前に前記所定の上限値に達した場合には該上限値に達したときの燃料噴射時期を、最適噴射時期として内燃機関の運転領域毎に記憶する記憶手段を備え、
前記記憶手段により今現在の機関運転状態に対応する前記最適噴射時期が記憶されている場合、該最適噴射時期を前記噴射時期指令値として燃料の噴射を制御する請求項1乃至6のいずれか一項に記載の内燃機関の制御装置。
When the injection timing change means gradually changes the injection timing command value from the PM reference injection timing toward the fuel efficiency best injection timing, the amount of particulate matter detected by the particulate matter amount detection means is If the injection timing command value reaches the fuel efficiency best injection timing before reaching the predetermined upper limit value, the fuel efficiency best injection timing, or the amount of particulate matter detected by the particulate matter amount detection means Storage means for storing the fuel injection timing when the upper limit value is reached before reaching the fuel efficiency best injection timing for each operating region of the internal combustion engine as the optimum injection timing Prepared,
The fuel injection is controlled by using the optimum injection timing as the injection timing command value when the storage means stores the optimum injection timing corresponding to the current engine operating state. The control apparatus for an internal combustion engine according to the item.
JP2011181158A 2011-08-23 2011-08-23 Control device for internal combustion engine Expired - Fee Related JP5637098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181158A JP5637098B2 (en) 2011-08-23 2011-08-23 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181158A JP5637098B2 (en) 2011-08-23 2011-08-23 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013044250A JP2013044250A (en) 2013-03-04
JP5637098B2 true JP5637098B2 (en) 2014-12-10

Family

ID=48008350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181158A Expired - Fee Related JP5637098B2 (en) 2011-08-23 2011-08-23 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5637098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463638B2 (en) 2015-01-20 2019-02-06 株式会社Soken Control device for fuel injection valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813397B2 (en) * 1989-08-03 1998-10-22 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for generating an injection start target value for an internal combustion engine
JP3735888B2 (en) * 1995-05-29 2006-01-18 日産自動車株式会社 Fuel injection timing control device for diesel engine fuel injection pump
JP4404592B2 (en) * 2003-09-12 2010-01-27 トヨタ自動車株式会社 Fuel injection control device for diesel engine
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine
JP2010255528A (en) * 2009-04-24 2010-11-11 Fuji Heavy Ind Ltd Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP2013044250A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
US9297348B2 (en) Methods and systems for variable displacement engine control
US8607544B2 (en) Methods and systems for variable displacement engine control
US9556813B2 (en) Internal combustion engine control device
US9151216B2 (en) Methods and systems for variable displacement engine control
US10024266B2 (en) Direct injection engine controlling device
JP5691914B2 (en) Control device for exhaust gas recirculation system
WO2017130556A1 (en) Intake air temperature control device for engine
US9890736B2 (en) Injection control device for internal combustion engine of cylinder-injection type
JP2010203326A (en) Control device for internal combustion engine
JP6406398B2 (en) In-cylinder injection engine control device
JP4529835B2 (en) Control device for internal combustion engine
JP5637098B2 (en) Control device for internal combustion engine
US11168640B2 (en) Fuel injection control device
JP5925099B2 (en) Control device for internal combustion engine
JP2014074337A (en) Control device of internal combustion engine
JP2010144527A (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP2008008223A (en) Exhaust gas temperature suppressing device for internal combustion engine
JP6603150B2 (en) Fuel injection control device for internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
JP4407442B2 (en) Fuel pressure control device for in-cylinder injection engine
JP5786468B2 (en) Control device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP2008121441A (en) Control device of internal combustion engine
JP2005188334A (en) Fuel injection control device for engine
JP5983910B2 (en) Fuel injection device for in-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5637098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees