JP2001050082A - Air-fuel ratio control system - Google Patents

Air-fuel ratio control system

Info

Publication number
JP2001050082A
JP2001050082A JP11223416A JP22341699A JP2001050082A JP 2001050082 A JP2001050082 A JP 2001050082A JP 11223416 A JP11223416 A JP 11223416A JP 22341699 A JP22341699 A JP 22341699A JP 2001050082 A JP2001050082 A JP 2001050082A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
cylinders
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11223416A
Other languages
Japanese (ja)
Other versions
JP3837972B2 (en
Inventor
Kozo Katogi
工三 加藤木
Toshio Ishii
俊夫 石井
Yutaka Takaku
豊 高久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22341699A priority Critical patent/JP3837972B2/en
Publication of JP2001050082A publication Critical patent/JP2001050082A/en
Application granted granted Critical
Publication of JP3837972B2 publication Critical patent/JP3837972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To extend an operating range where air-fuel ratio control is implemented and reduce emissions immediately after startup of an engine or in a cold state of the engine by setting different air-fuel ratios for respective cylinder or a plurality of cylinders through detecting an air-fuel ratio of each cylinder and correcting a fuel injection amount based on the detection results. SOLUTION: While an engine 100 is operated, a load factor is calculated based on an intake air amount 311 and an engine speed 312 by load factor calculation means 301, and an engine operation range as well as a target air-fuel ratio are calculated by calculation means 301 based on the load factor and engine speed. An actual air-fuel ratio is calculated by actual air-fuel ratio measurement means 314 in which an output signal from an air-fuel ratio sensor 116 is input, and then a deviation from the target air-fuel ratio is calculated. In accordance with the deviation, a correction coefficient is calculated by fuel injection amount correction means 302. The input of the output signal from the air-fuel ratio sensor 116 is implemented after a delay time to be set based on the engine speed, load factor and the like. Therefore a delay of travel time of exhaust gas is compensated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は内燃機関の空燃比制
御装置にかかり、特に運転状態に応じて空燃比を気筒別
に制御する空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device for controlling an air-fuel ratio for each cylinder according to an operation state.

【0002】[0002]

【従来の技術】エンジン制御において、空燃比の制御は
専ら運転状態が所定の範囲内にあり、かつ、暖機後に行
われてきた。これは、始動直後や冷却水温が低い時に燃
料増量が加わり、空燃比がリッチとなり、空燃比制御が
できないためであった。特に、従来のO2 センサではス
トイキ領域しか検出できないので、リッチ領域では空燃
比の制御が不可能であった。
2. Description of the Related Art In engine control, control of the air-fuel ratio has been performed only after the operating state is within a predetermined range and after warming up. This is because an increase in fuel is added immediately after the start or when the cooling water temperature is low, the air-fuel ratio becomes rich, and the air-fuel ratio control cannot be performed. Particularly, since the conventional O 2 sensor can detect only the stoichiometric region, it is impossible to control the air-fuel ratio in the rich region.

【0003】従来はリッチ状態の割合を予め決めてお
き、割合を時間または噴射量の総和に応じて減少させ、
ゼロになった時にO2 センサによる制御に移行してい
た。こうした空燃比の制御は例えば特開昭60−36748 号
で示される空燃比制御方式がある。しかし、エミッショ
ンの有効な低減ができない問題がある。
Conventionally, the ratio of the rich state is determined in advance, and the ratio is reduced according to the time or the sum of the injection amounts.
When it became zero, the control was shifted to the control by the O 2 sensor. An example of such air-fuel ratio control is an air-fuel ratio control method disclosed in Japanese Patent Application Laid-Open No. 60-36748. However, there is a problem that emission cannot be effectively reduced.

【0004】[0004]

【発明が解決しようとする課題】排気ガスは触媒を通し
て浄化されるが、一定の空燃比のままでは触媒効果が低
減されるので、ある程度空燃比を振ることが必要であ
る。このため、エンジン制御装置は空燃比のずれを増大
させるような制御も必要になる。
Although the exhaust gas is purified through the catalyst, the catalytic effect is reduced if the air-fuel ratio is kept constant, so that it is necessary to increase the air-fuel ratio to some extent. For this reason, the engine control device also needs control to increase the deviation of the air-fuel ratio.

【0005】また、燃費向上のためリーン状態での運転
もされるが、この場合、NOxが発生する。このNOx
を触媒内に蓄積する触媒が知られているが、蓄積量は限
界がある。そこで、一時的にリッチ状態のガスを触媒に
流すことにより、未燃の炭化水素分を触媒内でNOxと
反応させて、触媒内のNOxを減らしていた。
[0005] In addition, although the engine is operated in a lean state to improve fuel efficiency, NOx is generated in this case. This NOx
There is known a catalyst which accumulates in the catalyst, but the amount of accumulation is limited. Therefore, by temporarily flowing a rich gas through the catalyst, unburned hydrocarbons are reacted with NOx in the catalyst to reduce NOx in the catalyst.

【0006】こうした空燃比の制御は、従来、エンジン
の全気筒にわたって同じ空燃比を設定して、リーンとリ
ッチを繰り返していたために、リッチ時とリーン時の回
転変動が大きい問題があった。
Conventionally, such air-fuel ratio control involves setting the same air-fuel ratio over all the cylinders of the engine and repeatedly performing lean and rich operations. Therefore, there has been a problem that fluctuations in rotation between rich and lean conditions are large.

【0007】また、従来のO2 センサを使った制御では
ストイキ付近での空燃比のスイッチングしかわからず、
リーン領域やリッチ領域に空燃比を変化させる場合、ず
れ量がわからない問題があった。
Further, in the control using the conventional O 2 sensor, only the switching of the air-fuel ratio in the vicinity of the stoichiometric condition is known.
When the air-fuel ratio is changed to a lean region or a rich region, there is a problem that the deviation amount is not known.

【0008】本発明の目的は、エンジンの始動直後また
は冷機状態でのエミッションを低減するために、空燃比
制御を行う運転領域の拡大を図り、かつ触媒の早期活性
化を図ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to increase the operating range in which the air-fuel ratio control is performed and to quickly activate the catalyst in order to reduce the emission immediately after the start of the engine or in a cold state.

【0009】[0009]

【課題を解決するための手段】まず、空燃比制御を行う
運転領域を拡大するために、リッチ領域から、リーン領
域まで排気ガスの空燃比を測定できる空燃比センサを用
いる。
First, an air-fuel ratio sensor capable of measuring the air-fuel ratio of exhaust gas from a rich region to a lean region is used in order to expand an operation region in which air-fuel ratio control is performed.

【0010】また、触媒の早期活性化を図るために、触
媒に流れるガスの空燃比をリッチ化またはリーン化する
手段を組み合わせることで課題を解決できる。
In order to activate the catalyst early, the problem can be solved by combining means for enriching or leaning the air-fuel ratio of the gas flowing through the catalyst.

【0011】[0011]

【発明の実施の形態】図1に本発明に関する内燃機関の
一構成を示す。
FIG. 1 shows one configuration of an internal combustion engine according to the present invention.

【0012】内燃機関100には、インジェクタ10
1,点火プラグ102,点火コイル103,スロットル
104,アイドルスピードコントロール(ISC)バル
ブ105,水温センサ110,クランク角センサ11
1,カム角センサ112,スロットルポジションセンサ
113,吸気管圧力センサ114、または吸入空気流量
計115,空燃比センサ116,触媒118が取り付け
られ、各々エンジン制御装置120に接続されている。
The internal combustion engine 100 includes an injector 10
1, ignition plug 102, ignition coil 103, throttle 104, idle speed control (ISC) valve 105, water temperature sensor 110, crank angle sensor 11
1, a cam angle sensor 112, a throttle position sensor 113, an intake pipe pressure sensor 114, or an intake air flow meter 115, an air-fuel ratio sensor 116, and a catalyst 118 are attached and connected to an engine control device 120, respectively.

【0013】燃料は燃料タンク1014から燃料ポンプ
1011により輸送され、燃圧制御弁1012によって
一定の燃料圧力としている。
The fuel is transported from a fuel tank 1014 by a fuel pump 1011, and is kept at a constant fuel pressure by a fuel pressure control valve 1012.

【0014】また、燃焼室の近傍にはノッキングの発生
を検出するノックセンサ1013が取り付けられ、ノッ
キング発生時の特有の信号をとらえて、ノック発生を検
出可能としている。
A knock sensor 1013 for detecting the occurrence of knocking is attached near the combustion chamber, and can detect the occurrence of knocking by capturing a signal specific to the occurrence of knocking.

【0015】エンジン制御装置120は吸気管圧力セン
サ114または吸入空気流量計115の出力を取り込み、
センサ電圧を所定のテーブル変換により、実際の単位時
間当りの吸入空気量Qaを算出する。同時に、クランク
角センサ111のパルス信号を計測し、所定時間内のパ
ルス数またはパルスの時間間隔に応じてエンジンの回転
数NDATAを計算する。単位時間当りの吸入空気量Q
aをNDATAで割り算し、さらに気筒数で割ることに
より、1気筒の1回毎の吸入空気量Qacy1を計算する。
Qacy1に所定の計数KTIを乗ずることにより、Qacy1
で燃焼できる燃料量TIが求められ、後述の補正を加え
ることによりインジェクタ101を所定の間開弁するこ
とにより、必要とする燃料量を噴射して、1燃焼毎の混
合気を生成する。
The engine control unit 120 takes in the output of the intake pipe pressure sensor 114 or the intake air flow meter 115,
The actual intake air amount Qa per unit time is calculated by converting the sensor voltage into a predetermined table. At the same time, the pulse signal of the crank angle sensor 111 is measured, and the engine speed NDATA is calculated according to the number of pulses within a predetermined time or the time interval of the pulses. Intake air amount Q per unit time
a is divided by NDATA and further divided by the number of cylinders to calculate the intake air amount Qacy1 for each cylinder once.
By multiplying Qacy1 by a predetermined count KTI, Qacy1
The amount of fuel TI that can be burned is calculated, and the injector 101 is opened for a predetermined period by adding a correction described later, thereby injecting the required amount of fuel to generate an air-fuel mixture for each combustion.

【0016】燃料量TIの計算には以下の補正係数CO
EFnが乗算される。COEFnにはKTW,KWO
T、KAS,APLHAnが含まれる。
The following correction coefficient CO is used for calculating the fuel amount TI.
EFn is multiplied. KTW, KWO in COEFn
T, KAS, and APLHAn.

【0017】まず、水温センサ110やスロットルポジ
ションセンサ113の値に応じて、燃料量を補正する。
この補正項をKTW,KWOTとする。
First, the fuel amount is corrected according to the values of the water temperature sensor 110 and the throttle position sensor 113.
The correction terms are KTW and KWOT.

【0018】また、排気ガスは空燃比センサ116によ
って酸素濃度が測られ、空燃比に応じた電圧信号がエン
ジン制御装置120に入力される。そして、気筒別に空
燃比とのずれを求めて、ずれがあれば補正係数ALPH
Anを補正する。
The oxygen concentration of the exhaust gas is measured by an air-fuel ratio sensor 116, and a voltage signal corresponding to the air-fuel ratio is input to the engine control device 120. Then, a deviation from the air-fuel ratio is determined for each cylinder, and if there is a deviation, the correction coefficient ALPH
Correct An.

【0019】さらに、エンジン始動直後は燃料の気化が
悪いため、吸入管内部の混合気の濃度が通常の運転状態
よりも薄くなってしまうので、濃度を補うために多く噴
射する必要がある。この係数をKASとする。
Furthermore, since the fuel is poorly vaporized immediately after the start of the engine, the concentration of the air-fuel mixture in the suction pipe becomes lower than in a normal operation state. Therefore, it is necessary to inject a large amount of fuel to make up the concentration. This coefficient is defined as KAS.

【0020】図2の(a)に本発明の一実施例で使用す
る空燃比センサの特性を示す。
FIG. 2A shows the characteristics of the air-fuel ratio sensor used in the embodiment of the present invention.

【0021】空燃比がリッチのときは電圧が低く、リー
ンになるにつれ電圧が高くなる特性となっている。この
センサを使って空燃比制御を行うと、目標空燃比に対し
てフィードバック制御を行うことにより、一定の空燃比
でエンジン制御が可能である。
The characteristics are such that the voltage is low when the air-fuel ratio is rich, and increases as the air-fuel ratio becomes lean. When the air-fuel ratio control is performed using this sensor, the engine control can be performed at a constant air-fuel ratio by performing the feedback control on the target air-fuel ratio.

【0022】しかし、排気ガス浄化を行う触媒に常にリ
ッチ状態のガスが流れると酸素の供給がないために、浄
化率が低下する。そこで、従来のO2 センサによるスト
イキ付近での空燃比制御と同等の空燃比の摂動が(パー
タベーション)必要となる。図2の(b)に示すよう
に、空燃比をリッチまたはリーン領域にまで空燃比を変
えて、リーン状態で触媒に酸素を供給し、リッチ状態で
その酸素を消費させる制御が必要である。
However, if a rich gas always flows through the catalyst for purifying the exhaust gas, there is no supply of oxygen, so that the purification rate decreases. Therefore, perturbation of the air-fuel ratio (perturbation) equivalent to the air-fuel ratio control near the stoichiometric state by the conventional O 2 sensor is required. As shown in FIG. 2B, it is necessary to change the air-fuel ratio to a rich or lean region, supply oxygen to the catalyst in a lean state, and consume the oxygen in a rich state.

【0023】図3に本発明のプログラムの一例であるブ
ロック図を示す。
FIG. 3 is a block diagram showing an example of the program of the present invention.

【0024】本実施例では、目標空燃比計算手段30
1,燃料噴射量補正手段302,回転変動率計算手段3
04,燃料噴射量計算手段305,燃料噴射手段306
により内燃機関(エンジン)100を制御している。
In this embodiment, the target air-fuel ratio calculating means 30
1, fuel injection amount correction means 302, rotation fluctuation rate calculation means 3
04, fuel injection amount calculation means 305, fuel injection means 306
The internal combustion engine (engine) 100 is controlled by this.

【0025】目標空燃比計算手段301には、吸入空気
量(または吸入管圧力)311,回転数312が入力さ
れる。また、回転数と吸入空気量により、負荷率313
を計算する。目標空燃比計算手段では、回転数と負荷率
から、エンジンの運転領域を検出し、どの程度の空燃比
TSTIKで運転するかを求める。
The target air-fuel ratio calculation means 301 receives an intake air amount (or intake pipe pressure) 311 and a rotation speed 312. Further, the load ratio 313 is determined by the rotation speed and the intake air amount.
Is calculated. The target air-fuel ratio calculating means detects the operating range of the engine from the rotation speed and the load factor, and determines the air-fuel ratio TSTIK to be operated.

【0026】次に空燃比センサ116の出力信号を取り
込み、図2に応じた実際の空燃比を測定し、実空燃比計
測手段314により、実空燃比を求める。
Next, the output signal of the air-fuel ratio sensor 116 is fetched, the actual air-fuel ratio according to FIG. 2 is measured, and the actual air-fuel ratio is obtained by the actual air-fuel ratio measuring means 314.

【0027】図4によりエンジン制御装置内の動作につ
いて説明する。
The operation in the engine control device will be described with reference to FIG.

【0028】エンジン制御装置内はマイクロコンピュー
タ401とプログラムやデータを格納したROM40
2,一時的なデータの格納に使用するRAM403,エ
ンジンに取り付けられたセンサからの信号を取り込む入
力回路404,マイクロコンピュータに所定時間割り込
みを発生できるタイマやクロック回路405,マイクロ
コンピュータの指令によりオンオフ可能な出力回路40
6、等からなっている。入力回路404では、電気負荷
情報4041をデジタル情報として取り込み、また、吸
入空気量や空燃比センサ等のセンサ信号電圧をA/D変
換しデジタルデータとしている。
The engine control unit includes a microcomputer 401 and a ROM 40 storing programs and data.
2, RAM 403 used for temporary storage of data, input circuit 404 for taking in signals from sensors attached to the engine, timer and clock circuit 405 capable of generating an interrupt to the microcomputer for a predetermined time, can be turned on / off by a command from the microcomputer Output circuit 40
6, etc. The input circuit 404 takes in the electric load information 4041 as digital information, and A / D converts a sensor signal voltage of an intake air amount, an air-fuel ratio sensor, or the like into digital data.

【0029】基準角度パルスとしてのクランク角センサ
の出力信号や気筒判別パルスとしてのカム角センサ出力
信号を波形整形入力回路を通して、マイクロコンピュー
タに割込みを発生させる。割込みにより、エンジンの気
筒判別を行ったり、パルスエッジの時間間隔TDATA
を測定することにより、逆数をとって回転数NDATA を計
算する。
An output signal of the crank angle sensor as a reference angle pulse and an output signal of a cam angle sensor as a cylinder discrimination pulse are generated by a microcomputer through a waveform shaping input circuit to generate an interrupt. An interrupt can be used to determine the cylinder of the engine, or the pulse edge time interval TDATA
, The rotation number NDATA is calculated by taking the reciprocal.

【0030】また、センサ電圧に応じて吸入空気量Qa
を求め、Qaを気筒数と回転数で割り算することにより
1回あたりの基本吸入空気量Qacy1を求める。
Further, the intake air amount Qa is determined according to the sensor voltage.
, And Qa is divided by the number of cylinders and the number of revolutions to obtain a basic intake air amount Qacy1 per operation.

【0031】Qacy1にインジェクタの流量特性から求め
られる係数KTIを乗じて、基本燃料噴射量を求める。
The basic fuel injection amount is obtained by multiplying Qacy1 by a coefficient KTI obtained from the flow characteristics of the injector.

【0032】計算結果は出力回路406のアウトプット
コンペア回路で現在の時間に計算値を加算して、コンペ
アマッチを起こさせて、必要燃料量に対応した時間だけ
インジェクタ開弁させている。
The calculation result is added to the current time by the output compare circuit of the output circuit 406 to cause a compare match to occur, and the injector is opened for a time corresponding to the required fuel amount.

【0033】Qacy1はエンジンの出力に比例するので、
Qacy1に乗数を乗じて最大の出力時を100%とする負
荷率LDATAに換算できる。
Since Qacy1 is proportional to the output of the engine,
By multiplying Qacy1 by a multiplier, it can be converted into a load factor LDATA with the maximum output time being 100%.

【0034】同時に回転数と負荷率によって設定される
点火時期を求めて、点火出力を出して、パルス出力によ
り点火コイルを駆動する。
At the same time, the ignition timing set by the rotational speed and the load factor is obtained, an ignition output is issued, and the ignition coil is driven by the pulse output.

【0035】また、通信手段407によりマイクロコン
ピュータ内の制御パラメータをモニタすることができ
る。
Further, control parameters in the microcomputer can be monitored by the communication means 407.

【0036】目標空燃比計算手段301の出力と実空燃
比計算手段314の出力とを燃料噴射量補正手段302
で比較し、実空燃比が目標空燃比よりも高い(リーン状
態)時は、補正係数ALPHAnを大きくする。低い
(リッチ)時はALPHAnを小さくする。ここで、A
LPHAnは気筒別に設定する値であり、nは気筒番号
を示す。
The output of the target air-fuel ratio calculating means 301 and the output of the actual air-fuel ratio calculating means 314 are used as fuel injection amount correcting means 302.
When the actual air-fuel ratio is higher than the target air-fuel ratio (lean state), the correction coefficient ALPHAn is increased. When low (rich), ALPHAn is reduced. Where A
LPHAn is a value set for each cylinder, and n indicates a cylinder number.

【0037】空燃比センサの出力信号の取り込みは、気
筒別の図5に示すタイミングで取り込む。本実施例にお
いては、空燃比センサは1つのみ図示しているが、この
場合は各気筒の排気ガスが均等に異なるタイミングで空
燃比センサにかかるように排気管が構成されているもの
とする。空燃比センサの数は1つに限るものではなく、
各気筒毎の排気管に取り付ける構成でもよい。または、
排気ガスの流れが干渉しないように排気管をそろえた複
数の気筒に1つの空燃比センサを取り付ける構成でもよ
い。
The output signal of the air-fuel ratio sensor is taken in at the timing shown in FIG. 5 for each cylinder. In this embodiment, only one air-fuel ratio sensor is shown, but in this case, the exhaust pipe is configured so that the exhaust gas of each cylinder is applied to the air-fuel ratio sensor at different timings. . The number of air-fuel ratio sensors is not limited to one,
It may be configured to be attached to the exhaust pipe of each cylinder. Or
A configuration may be adopted in which one air-fuel ratio sensor is attached to a plurality of cylinders having exhaust pipes arranged so that the flow of exhaust gas does not interfere.

【0038】図5(a)のように、各気筒の基準角度位
置信号REFを起動タイミングとし、回転数,負荷率ま
たは吸入空気量に応じてディレイ時間を設けて、空燃比
センサ出力を取り込むことで排気弁から空燃比センサま
での排気ガスの移動時間遅れを補償する。
As shown in FIG. 5 (a), the reference angle position signal REF of each cylinder is set as a start timing, a delay time is provided according to the rotation speed, load factor or intake air amount, and the output of the air-fuel ratio sensor is taken in. Compensates for a delay in the movement time of the exhaust gas from the exhaust valve to the air-fuel ratio sensor.

【0039】または、図5(b)のように、REFから
一定の時間毎に取り込み、回転数,負荷率または吸入空
気量に応じて排気ガスの移動遅れ時間に見合ったタイミ
ングのデータを該当気筒の空燃比RABFnとする。
Alternatively, as shown in FIG. 5 (b), the data is taken from the REF at regular intervals, and the data of the timing corresponding to the exhaust gas movement delay time according to the rotation speed, the load factor or the intake air amount is applied to the corresponding cylinder. Is the air-fuel ratio RABFn.

【0040】次に気筒別の空燃比制御を説明する。目標
空燃比は、例えば、エンジン始動後の所定期間気筒毎に
設定する。目標空燃比は回転数と負荷率からエンジンの
運転領域に応じてストイキとするための共通制御値KS
TIKをまず求める。同時に、始動後時間に応じて燃料
噴射量を増量補正するKASと水温に応じて増量補正す
るKTWを求める。KASやKTWがゼロでない間は、
各気筒の空燃比をリッチ状態にすることで運転性を確保
する場合があり、この間は空燃比制御を行わない。KA
SやKTWがゼロになってから、リッチ状態とリーン状
態を選択するディザ法を取る。ディザの変動量はKDI
Zとし、以下のようにKRICHとKLEANを求める
(リッチ側へ変動させる係数をKDR、リーン側へ変動
させる係数をKDLとする。)。
Next, the air-fuel ratio control for each cylinder will be described. The target air-fuel ratio is set, for example, for each cylinder for a predetermined period after the engine is started. The target air-fuel ratio is a common control value KS for obtaining a stoichiometric condition based on the rotational speed and the load factor in accordance with the operating range of the engine.
First seek TIK. At the same time, a KAS for increasing the fuel injection amount in accordance with the time after the start and a KTW for increasing the fuel injection amount in accordance with the water temperature are obtained. As long as KAS and KTW are not zero,
In some cases, the drivability is ensured by setting the air-fuel ratio of each cylinder to a rich state. During this time, the air-fuel ratio control is not performed. KA
After S and KTW become zero, a dither method for selecting a rich state and a lean state is employed. Dither variation is KDI
Z, and KRICH and KLEAN are calculated as follows (KDR is a coefficient that varies to the rich side, and KDL is a coefficient that varies to the lean side).

【0041】 KRICH=KSTIK−KDIZ*KDR KLEAN=KSTIK+KDIZ*KDL しかし、ディザによる制御を開始するまで時間がかか
り、また、それまでの空燃比をリッチ状態にするため、
排気ガスレベルの低減にならない。
KRICH = KSTIK−KDIZ * KDR KLEAN = KSTIK + KDIZ * KDL However, it takes time to start control by dither, and the air-fuel ratio up to that time is made rich.
Does not reduce exhaust gas levels.

【0042】始動時からディザ法を導入する例として、
上記KDIZの代わりにKASとKTWの和を使うこと
で、エミッションの低減を図ることができる。すなわ
ち、共通の目標値に対して、始動後時間に応じて増量す
る値KAS、および水温に応じて増量する値KTWをK
STIKから引き算し、ベースとなる空燃比KRICH
を以下のように求める。
As an example of introducing the dither method from the start,
Emission can be reduced by using the sum of KAS and KTW instead of KDIZ. That is, for the common target value, a value KAS that increases according to the time after starting and a value KTW that increases according to the water temperature are represented by K
Subtract air-fuel ratio KRICH from STIK
Is determined as follows.

【0043】 KRICH=KSTIK−(KAS+KTW)*KDR これにより、KSTIKに対して増量分だけ空燃比をリ
ッチ側に変動できる。一方、KTGTよりもリーンにな
る目標空燃比KLEANを下記により求める。
KRICH = KSTIK− (KAS + KTW) * KDR As a result, the air-fuel ratio can be changed to the rich side by an increased amount with respect to KSTIK. On the other hand, a target air-fuel ratio KLEAN that is leaner than KTGT is determined as follows.

【0044】 KLEAN=KSTIK+(KAS+KTW)*KDL 同時にKASまたはKTWがゼロではない間、燃焼が不
安定であり点火時期を遅らせて対応する。
KLEAN = KSTIK + (KAS + KTW) * KDL At the same time, while KAS or KTW is not zero, combustion is unstable and the ignition timing is delayed to cope with the situation.

【0045】また、どの気筒をリッチにするかリーンに
するかをパターンKSRLによって実現する。例えば、
所定時間毎またはREF信号毎にリッチとリーンを選択
するKSRLの気筒に対応するビットに応じてデータを
選択する。図6では気筒毎に偶数番目のビットと奇数番
目のビットを選択している。1気筒はビット0と1、2
気筒はビット2と3、以下ビット4と5というように選
択し、2つのビットが両方0であればストイキ,偶数側
が1であればリッチ,奇数側が1のときはリーンデータ
を用いるものとする。KSRLは運転状態に応じてかえ
る。KSRLの初期値は水温またはエンジン始動後時間
に応じた値としてもよい。
Further, which cylinder is made rich or lean is realized by the pattern KSRL. For example,
Data is selected in accordance with a bit corresponding to a KSRL cylinder for selecting rich and lean for each predetermined time or for each REF signal. In FIG. 6, even-numbered bits and odd-numbered bits are selected for each cylinder. One cylinder has bits 0 and 1, 2
The cylinder is selected as bits 2 and 3, hereinafter bits 4 and 5, stoichiometric if both bits are 0, rich if the even side is 1, and lean data if the odd side is 1. . The KSRL changes according to the operating state. The initial value of KSRL may be a value according to the water temperature or the time after the engine is started.

【0046】図7に示すように、データ設定はKASや
KTWに応じて選択する。エンジン始動後、KASがゼ
ロでない期間は全体の空燃比をリッチ状態にする必要が
あれば、リッチまたはストイキのデータを選択するビッ
トパターンのみが設定されているデータKSRL1を使
用してもよい。または、KASがゼロでない期間(70
1)は、KDL=0またはKDL<KDRとなるように
変化させることでもよい(702)。または、気筒数の
半分以上をリッチ、半分以下をリーンにする設定でもよ
い。
As shown in FIG. 7, data setting is selected according to KAS or KTW. If it is necessary to make the entire air-fuel ratio rich during the period when the KAS is not zero after the engine is started, data KSRL1 in which only a bit pattern for selecting rich or stoichiometric data may be used. Alternatively, a period in which the KAS is not zero (70
1) may be changed so that KDL = 0 or KDL <KDR (702). Alternatively, the setting may be such that half or more of the number of cylinders is rich and half or less is lean.

【0047】通常運転状態の場合は、吸入空気量または
回転数と負荷率で決まる設定値KDIZをKASまたはKT
Wの代わりに使用する。
In the normal operation state, the set value KDIZ determined by the intake air amount or the rotation speed and the load factor is changed to KAS or KT.
Use instead of W.

【0048】始動後、時間の経過や水温の上昇に伴い、
KASやKTWがKDIZよりも小さくなった時はKD
IZを選択するようにしてもよい(703,704)。
After the start, as time elapses and the water temperature rises,
KD when KAS or KTW is smaller than KDIZ
IZ may be selected (703, 704).

【0049】KASとKTWの計算は、吸入空気量の積
算値に応じてゼロにしていく方法でもよい。
The calculation of KAS and KTW may be performed by a method of making the value zero according to the integrated value of the intake air amount.

【0050】吸入空気量が所定値以上の場合、触媒を通
過する排気ガス量が触媒の処理量よりも大きくなり、浄
化率が低下するので、リーン状態やリッチ状態のガスを
触媒に通すと排気レベルが悪化するので、目標空燃比を
ストイキに限定することも必要である。
When the intake air amount is equal to or more than a predetermined value, the amount of exhaust gas passing through the catalyst becomes larger than the amount of processing of the catalyst, and the purification rate decreases. Since the level deteriorates, it is necessary to limit the target air-fuel ratio to stoichiometric.

【0051】REF信号の割り込みで、気筒別に上記R
AMのビットの組み合わせをチェックし、リッチ状態を
選択した場合はKRICHを係数とする。同様にリーン
状態を選択した場合KLEANを係数とする。よって、
気筒別の目標空燃比TABFn はKSTIK,KRICH,
KLEANから選択された値となる。該当気筒の空燃比
と目標空燃比とを比較し、その差分DABFnを求め
る。
When the REF signal is interrupted, the R
The combination of AM bits is checked, and if a rich state is selected, KRICH is used as a coefficient. Similarly, when the lean state is selected, KLEAN is used as a coefficient. Therefore,
The target air-fuel ratio TABFn for each cylinder is KSTIK, KRICH,
The value is selected from KLEAN. The air-fuel ratio of the corresponding cylinder is compared with the target air-fuel ratio, and the difference DABFn is obtained.

【0052】DABFn=TABFn−RABFn 差分DABFnに基づき、PID制御を行う。すなわ
ち、図8に示すように比例部の係数KP,積分部の係数
KI,微分部の係数KDをそれぞれ求め、DABFnに対し
て以下の演算を行いALPHAnを求める。
DABFn = TABFn-RABFn PID control is performed based on the difference DABFn. That is, as shown in FIG. 8, the coefficient KP of the proportional part, the coefficient KI of the integrating part, and the coefficient KD of the differentiating part are respectively obtained, and the following operation is performed on DABFn to obtain ALPHAn.

【0053】ALPHAn=KP*DABFn+KI*
IDABFn+KD*DDABFn ここでIDABFnはDABFnの積算値であり、 IDABFn=DABFn+IDABFn(i−1) である。
ALPHAn = KP * DABFn + KI *
IDABBFn + KD * DDAFn Here, IDABFn is an integrated value of DABFn, and IDABFn = DABFn + IDABFn (i-1).

【0054】また、DDABFnはDABFnの前回値
との差分であり、 DDABFn=DABFn−DABFn(i−1) である。
DDABFn is a difference from the previous value of DABFn, and DDABFn = DABFn-DABFn (i-1).

【0055】KP,KI,KDはそれぞれ、運転状態に
よってマップまたはテーブル検索により求められる値で
ある。
KP, KI, and KD are values obtained by searching a map or a table according to the operating state.

【0056】次に、KSRLの変更方法について図9に
より説明する。KSRLが1つの場合、特定の気筒のみ
リッチまたはリーン状態を続けてしまうので、回転変動
が特定のパターンで生じる可能性がある。そこで、KS
RLを複数用意し、エンジンのクランク軸が2回転する
毎に使用するパターンを切替えることで回転変動を抑え
ることができる。
Next, a method of changing the KSRL will be described with reference to FIG. When the number of KSRLs is one, only a specific cylinder continues to be in a rich or lean state, so that there is a possibility that rotation fluctuation occurs in a specific pattern. So, KS
By preparing a plurality of RLs and switching the pattern to be used every time the crankshaft of the engine makes two rotations, rotation fluctuation can be suppressed.

【0057】例えば、KSRLをk個用意し、エンジン
のクランク軸が2回転する毎にKSRLのl番目(l≦k)
のパターンを使用する。そして、使用するパターンがk
番目になった時、次は1番目に戻るようにする(図9
(a))。または、KSRLのパターン長を気筒数よりも
長くして、エンジンのクランク軸が2回転する毎に、気
筒の該当するビット位置をずらす方法がある(図9
(b))。
For example, k KSRLs are prepared, and every two rotations of the crankshaft of the engine, the l-th (l ≦ k) of the KSRL
Use the pattern And the pattern to use is k
When it comes to the first, the next is to return to the first (Fig. 9
(a)). Alternatively, there is a method in which the pattern length of the KSRL is made longer than the number of cylinders and the corresponding bit position of the cylinder is shifted every two revolutions of the crankshaft of the engine (FIG. 9).
(b)).

【0058】次に、回転変動を求める方法を図10によ
り説明する。図10−(a)に示すように、回転変動
は、各気筒の基準角度位置の時間間隔TDATAを測定
することにより検出する。
Next, a method for determining the rotation fluctuation will be described with reference to FIG. As shown in FIG. 10- (a), the rotation fluctuation is detected by measuring a time interval TDATA of the reference angular position of each cylinder.

【0059】各気筒のTDATA[i](i=1〜気筒
数)から回転数NELEを求める。NELEは所定値K
DATAをTDATAで割り算することにより、 NELE=KDATA/TDATA で求められる。
The rotational speed NELE is obtained from TDATA [i] (i = 1 to the number of cylinders) of each cylinder. NELE is a predetermined value K
By dividing DATA by TDATA, NLE = KDATA / TDATA is obtained.

【0060】回転変動率dNは次のように求める。The rotation fluctuation rate dN is obtained as follows.

【0061】dN=f(NELE) 算出関数f( )は例えばIIRフィルタ形式により算出
する場合、NELEにki0を乗じた値801を入力と
し、過去の演算値802,803にそれぞれ係数を乗じ
て8021,8031との和804を求めて新規の演算
値dNtemp805とする。これらの演算値802,80
3,805に係数8021,8022,8023を乗じ
て和を回転変動率dN806とする。計算は以下のよう
に求められる。
DN = f (NELE) When the calculation function f () is calculated using, for example, an IIR filter format, a value 801 obtained by multiplying NELE by ki0 is input, and past operation values 802 and 803 are multiplied by coefficients to obtain the function f (). , 8031 to obtain a new calculated value dNtemp 805. These calculated values 802 and 80
3,805 is multiplied by the coefficients 8021, 8022, and 8023 to obtain the sum as the rotational fluctuation rate dN806. The calculation is obtained as follows.

【0062】dN=dNtemp+ko1*dNtemp[i−
1]+ko2*dNtemp[i−2] dNtemp=ki0*NELE+ki1*dNtemp[i−
1]+ki2*dNtemp[i−2] 計算方法はIIRに限定されるものではなく、FIR形
でもよい。また、TDATAから直接計算してもよい。
DN = dNtemp + ko1 * dNtemp [i−
1] + ko2 * dNtemp [i-2] dNtemp = ki0 * NELE + ki1 * dNtemp [i-
1] + ki2 * dNtemp [i-2] The calculation method is not limited to IIR, but may be FIR type. Alternatively, it may be calculated directly from TDATA.

【0063】図10−(b)に示すように、回転変動率
dNに応じて、KRICHとKLEANの差を小さくなるよ
うに補正する。すなわち、KDRとKDLを0に近づけ
るようにする。
As shown in FIG. 10- (b), the difference between KRICH and KLEAN is corrected to be small according to the rotation fluctuation rate dN. That is, KDR and KDL are made to approach 0.

【0064】また、同時に点火時期についても補正を加
える。リーン状態で運転している場合、着火性が悪いた
め点火時期をTDC付近にする必要がある。そこで、気
筒別の点火時期について、TDC方向への遅角側にはす
ぐに点火時期が変化し、進角側には所定の変化量のみ点
火時期を進めるダイナミックリミテーションを施す。す
なわち、図11に示すようにKLEANを選択している
気筒には遅角側の点火時期とし、その後KSTIKまた
はKRICHが選択された場合でも点火時期を通常位置
に戻すのではなく、所定の回転数にわたりΔDLS分だ
け点火時期を進めるようにしていく。これにより着火性
を確保しながら回転変動を抑えることができる。
At the same time, the ignition timing is also corrected. When operating in a lean state, it is necessary to set the ignition timing near TDC because of poor ignition performance. Therefore, with respect to the ignition timing for each cylinder, the ignition timing is changed immediately on the retard side in the TDC direction, and dynamic limit is advanced on the advance side by a predetermined change amount. That is, as shown in FIG. 11, the ignition timing of the cylinder on which KLEAN is selected is set to the retarded side ignition timing, and even when KSTIK or KRICH is selected, the ignition timing is not returned to the normal position, but is set to a predetermined rotation speed. , The ignition timing is advanced by ΔDLS. Thus, rotation fluctuation can be suppressed while ensuring ignitability.

【0065】次に図12により空燃比制御の診断を説明
する。診断項目には空燃比センサの異常と制御値の異常
検出がある。まず、空燃比センサの信号電圧が正常範囲
外の場合、または、気筒別に空燃比を変えて運転してい
るときに空燃比センサの信号出力が変化しない場合、空
燃比センサの異常と判定される。この場合は気筒別に空
燃比を変えて制御することを停止し、ストイキで運転す
る。すなわちKSTIKとする。ただし、KTWまたはKA
Sがゼロでない場合はKRICHで運転する。さらに、
DABFnがゼロになるまでの時間TMDABnを計測
し、TMDABnが所定時間以上の場合、空燃比制御の異常が
考えられる。空燃比を制御する気筒番号と該当の気筒の
空燃比センサ出力による空燃比とが一致しない場合、ま
たは、排気系に異常がある場合、または空燃比センサの
応答遅れが初期値よりも大きくなった場合、空燃比制御
の異常となる。この場合も、気筒別の空燃比制御を停止
し、ストイキで運転する。すなわちKSTIKとする。
ただし、KTWまたはKASがゼロでない場合はKRI
CHで運転する。
Next, the diagnosis of the air-fuel ratio control will be described with reference to FIG. The diagnosis items include abnormality of the air-fuel ratio sensor and abnormality detection of the control value. First, if the signal voltage of the air-fuel ratio sensor is out of the normal range, or if the signal output of the air-fuel ratio sensor does not change while operating while changing the air-fuel ratio for each cylinder, it is determined that the air-fuel ratio sensor is abnormal. . In this case, the control by changing the air-fuel ratio for each cylinder is stopped, and the operation is performed with stoichiometry. That is, it is KSTIKE. However, KTW or KA
If S is not zero, run on KRICH. further,
The time TMDABn until DABFn becomes zero is measured, and if TMDABn is equal to or longer than a predetermined time, it is considered that the air-fuel ratio control is abnormal. If the cylinder number for controlling the air-fuel ratio does not match the air-fuel ratio of the corresponding cylinder based on the output of the air-fuel ratio sensor, or if there is an abnormality in the exhaust system, or the response delay of the air-fuel ratio sensor has become larger than the initial value. In this case, the air-fuel ratio control becomes abnormal. Also in this case, the air-fuel ratio control for each cylinder is stopped, and the operation is performed with stoichiometry. That is, it is KSTIK.
However, if KTW or KAS is not zero, KRI
Drive on CH.

【0066】本発明の実施例では、1つの気筒のみの説
明を行ったが、複数の気筒にわたって異なる目標空燃比
を設定し、気筒毎に制御することも可能である。または
複数の気筒をグループ化して、各グループ別に目標空燃
比を設定してもよい。特に、各気筒毎に目標空燃比を設
定することにより、気筒間の空気充填効率の差を補償す
ることが可能である。
In the embodiment of the present invention, only one cylinder has been described. However, it is also possible to set different target air-fuel ratios for a plurality of cylinders and control them for each cylinder. Alternatively, a plurality of cylinders may be grouped, and a target air-fuel ratio may be set for each group. In particular, by setting the target air-fuel ratio for each cylinder, it is possible to compensate for the difference in air charging efficiency between the cylinders.

【0067】[0067]

【発明の効果】本発明により、エンジン始動直後から触
媒への排気ガスの空燃比制御ができるので、触媒活性化
を早めることができエミッションを低減する効果があ
る。
According to the present invention, since the air-fuel ratio of the exhaust gas to the catalyst can be controlled immediately after the start of the engine, the activation of the catalyst can be accelerated and the emission can be reduced.

【0068】また、従来、ノックの発生をとらえて点火
時期をリタードさせてノック制御を行っているが、ノッ
ク発生気筒に対して目標空燃比をリッチ状態に設定する
ことで、ノック発生を回避することも可能である。
Conventionally, knock control is performed by retarding the ignition timing while catching the occurrence of knock. However, the occurrence of knock is avoided by setting the target air-fuel ratio to a rich state for the cylinder in which knock occurs. It is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のエンジン構成図。FIG. 1 is an engine configuration diagram of an embodiment of the present invention.

【図2】空燃比センサの特性図。FIG. 2 is a characteristic diagram of an air-fuel ratio sensor.

【図3】プログラムのブロック図。FIG. 3 is a block diagram of a program.

【図4】エンジン制御装置内の動作図。FIG. 4 is an operation diagram in the engine control device.

【図5】空燃比センサ出力の取り込みタイミング。FIG. 5 is a timing of taking in the output of the air-fuel ratio sensor.

【図6】目標空燃比の計算方法の説明図。FIG. 6 is an explanatory diagram of a calculation method of a target air-fuel ratio.

【図7】シフトパターンデータの選択の説明図。FIG. 7 is an explanatory diagram of selection of shift pattern data.

【図8】PID制御の説明図。FIG. 8 is an explanatory diagram of PID control.

【図9】KSRLの変更方法の説明図。FIG. 9 is an explanatory diagram of a method of changing a KSRL.

【図10】回転変動率の算出説明図。FIG. 10 is an explanatory diagram of calculation of a rotation fluctuation rate.

【図11】点火時期のダイナミックリミテーションの説
明図。
FIG. 11 is an explanatory diagram of dynamic limitation of ignition timing.

【図12】空燃比制御の診断図。FIG. 12 is a diagnosis diagram of air-fuel ratio control.

【符号の説明】[Explanation of symbols]

100…内燃機関、101…インジェクタ、102…点
火プラグ、103…点火コイル、104…スロットル、
105…ISCバルブ、110…水温センサ、111…
クランク角センサ、112…カム角センサ、113…ス
ロットルポジションセンサ、114…吸気管圧力セン
サ、115…吸入空気流量計、116…空燃比センサ、
118…触媒、120…エンジン制御装置、1011…
燃料ポンプ、1012…燃圧制御弁、1013…ノック
センサ。
100: internal combustion engine, 101: injector, 102: spark plug, 103: ignition coil, 104: throttle
105 ... ISC valve, 110 ... water temperature sensor, 111 ...
Crank angle sensor, 112: cam angle sensor, 113: throttle position sensor, 114: intake pipe pressure sensor, 115: intake air flow meter, 116: air-fuel ratio sensor,
118: catalyst, 120: engine control device, 1011 ...
Fuel pump, 1012 ... fuel pressure control valve, 1013 ... knock sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高久 豊 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 Fターム(参考) 3G301 HA06 HA18 JA00 JA21 JA22 JB01 JB09 KA01 LA00 LA04 LB02 MA01 MA11 NA03 NA04 NA05 NA08 NB03 NB07 NC02 ND02 NE01 NE13 NE14 NE15 NE22 NE24 PA01Z PA07Z PA11Z PA17Z PC00Z PC08Z PD03A PE01Z PE02Z PE03Z PE05Z PE08Z  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yutaka Takaku 2520 Odaiba, Hitachinaka-shi, Ibaraki F-term in the Automotive Equipment Group of Hitachi, Ltd. (reference) 3G301 HA06 HA18 JA00 JA21 JA22 JB01 JB09 KA01 LA00 LA04 LB02 MA01 MA11 NA03 NA04 NA05 NA08 NB03 NB07 NC02 ND02 NE01 NE13 NE14 NE15 NE22 NE24 PA01Z PA07Z PA11Z PA17Z PC00Z PC08Z PD03A PE01Z PE02Z PE03Z PE05Z PE08Z

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において、実質的に気筒毎の空燃比を検出す
る手段と、前記検出手段の検出結果に応じて、燃料噴射
量を補正する手段を備え、気筒毎または複数の気筒毎に
異なる空燃比を与えることを特徴とする空燃比制御装
置。
An air-fuel ratio control device for controlling an air-fuel ratio in accordance with an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; means for detecting an air-fuel ratio substantially for each cylinder; An air-fuel ratio control device comprising: means for correcting a fuel injection amount in accordance with a detection result of a detection means, and giving a different air-fuel ratio to each cylinder or a plurality of cylinders.
【請求項2】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において、実質的に気筒毎に空燃比を検出す
る手段と、前記検出手段の検出結果に応じて燃料噴射量
を補正する補正手段を備え、気筒毎または複数の気筒毎
に異なる目標空燃比を設定し、前記目標空燃比に応じて
気筒毎にまたは複数の気筒毎に異なる空燃比となるよう
に前記補正手段により燃料噴射量を補正することを特徴
とする空燃比制御装置。
2. An air-fuel ratio control device comprising a sensor for detecting an air-fuel ratio of exhaust gas and controlling an air-fuel ratio in accordance with an operation state of an engine, means for detecting an air-fuel ratio substantially for each cylinder, Correction means for correcting the fuel injection amount according to the detection result of the detection means is provided, and a different target air-fuel ratio is set for each cylinder or each of a plurality of cylinders, and for each cylinder or for each of a plurality of cylinders according to the target air-fuel ratio. An air-fuel ratio control device, wherein the fuel injection amount is corrected by the correction means so as to obtain a different air-fuel ratio.
【請求項3】請求項1または2において、前記気筒毎ま
たは複数の気筒毎に目標空燃比は理論空燃比とは異なる
空燃比に設定して、気筒毎にまたは複数の気筒毎に交互
に繰り返すことを特徴とする空燃比制御装置。
3. The method according to claim 1, wherein the target air-fuel ratio is set to an air-fuel ratio different from the stoichiometric air-fuel ratio for each cylinder or for each of a plurality of cylinders, and is alternately repeated for each cylinder or for each of a plurality of cylinders. An air-fuel ratio control device comprising:
【請求項4】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に、理論空燃比または理論空燃
比よりもリッチ状態またはリーン状態の目標空燃比を設
定し、理論空燃比状態とリッチ状態とリーン状態の燃焼
を気筒別にまたは複数の気筒毎に交互に繰り返すことを
特徴とする空燃比制御装置。
4. An air-fuel ratio control device for controlling an air-fuel ratio according to an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, and a stoichiometric air-fuel ratio or a target air-fuel ratio richer or leaner than the stoichiometric air-fuel ratio is set for each cylinder or for each of a plurality of cylinders, and the stoichiometric air-fuel ratio state, the rich state, and the lean state are set. An air-fuel ratio control apparatus characterized in that the combustion of the air-fuel ratio is repeated alternately for each cylinder or for each of a plurality of cylinders.
【請求項5】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に、理論空燃比または理論空燃
比よりもリッチ状態またはリーン状態の目標空燃比を設
定し、理論空燃比状態とリッチ状態とリーン状態の燃焼
を気筒別にまたは複数の気筒毎に交互に繰り返し、エン
ジンの回転数に応じて所定の回転後に前記理論空燃比状
態またはリッチ状態またはリーン状態を異なる気筒また
は異なる複数の気筒に割り当てることを特徴とする空燃
比制御装置。
5. An air-fuel ratio control device for controlling an air-fuel ratio according to an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, and a stoichiometric air-fuel ratio or a target air-fuel ratio richer or leaner than the stoichiometric air-fuel ratio is set for each cylinder or for each of a plurality of cylinders, and the stoichiometric air-fuel ratio state, the rich state, and the lean state are set. Is alternately repeated for each cylinder or for each of a plurality of cylinders, and the stoichiometric air-fuel ratio state, the rich state, or the lean state is assigned to a different cylinder or a plurality of different cylinders after a predetermined rotation according to the engine speed. Air-fuel ratio control device.
【請求項6】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に、理論空燃比または理論空燃
比よりもリッチ状態またはリーン状態の目標空燃比を設
定し、理論空燃比状態とリッチ状態とリーン状態の燃焼
を気筒別にまたは複数の気筒毎に交互に繰り返し、エン
ジンの回転数に応じて所定の時間経過後に前記理論空燃
比状態またはリッチ状態またはリーン状態を異なる気筒
または異なる複数の気筒に割り当てることを特徴とする
空燃比制御装置。
6. An air-fuel ratio control device for detecting an air-fuel ratio of exhaust gas, controlling an air-fuel ratio according to an operating state of an engine, measuring an air-fuel ratio for each cylinder, and detecting a fuel according to an output of the air-fuel ratio sensor. A means for correcting the injection amount is provided, and a stoichiometric air-fuel ratio or a target air-fuel ratio richer or leaner than the stoichiometric air-fuel ratio is set for each cylinder or for each of a plurality of cylinders, and the stoichiometric air-fuel ratio state, the rich state, and the lean state are set. Is alternately repeated for each cylinder or for each of a plurality of cylinders, and the stoichiometric air-fuel ratio state, the rich state, or the lean state is assigned to a different cylinder or a plurality of different cylinders after a predetermined time has elapsed according to the engine speed. Characteristic air-fuel ratio control device.
【請求項7】請求項2から6の何れかにおいて、エンジ
ン始動後、気筒毎にまたは複数の気筒毎に異なる目標空
燃比を設定する期間を、吸入空気量に応じて変えること
を特徴とする空燃比制御装置。
7. A method according to claim 2, wherein after the engine is started, a period in which a different target air-fuel ratio is set for each cylinder or for each of a plurality of cylinders is changed in accordance with the intake air amount. Air-fuel ratio control device.
【請求項8】請求項2から6の何れかにおいて、前記理
論空燃比またはリッチ状態またはリーン状態の燃焼を回
転数に応じた燃焼回数分だけ持続させることを特徴とす
る空燃比制御装置。
8. The air-fuel ratio control device according to claim 2, wherein the stoichiometric air-fuel ratio or the combustion in the rich state or the lean state is maintained for the number of times of combustion corresponding to the rotation speed.
【請求項9】請求項2から6の何れかにおいて、前記理
論空燃比またはリッチ状態またはリーン状態の燃焼を所
定の時間燃焼回数分だけ持続させることを特徴とする空
燃比制御装置。
9. The air-fuel ratio control device according to claim 2, wherein the stoichiometric air-fuel ratio or the combustion in the rich state or the lean state is continued for a predetermined number of times of combustion.
【請求項10】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において、気筒別または複数の気筒毎に目標
空燃比を設定し、目標空燃比に達するまでの時間を測定
し、目標空燃比に達するまで時間が所定値以上の場合、
空燃比制御が異常であることを診断することを特徴とす
る空燃比制御装置。
10. An air-fuel ratio control device including a sensor for detecting an air-fuel ratio of exhaust gas and controlling an air-fuel ratio in accordance with an operation state of an engine, wherein a target air-fuel ratio is set for each cylinder or for each of a plurality of cylinders. Measure the time to reach the target air-fuel ratio, if the time to reach the target air-fuel ratio is more than a predetermined value,
An air-fuel ratio control device that diagnoses that air-fuel ratio control is abnormal.
【請求項11】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に理論空燃比よりもリッチ状態
またはリーン状態の目標空燃比を設定し、リッチ状態と
リーン状態の燃焼を気筒別にまたは複数の気筒毎に交互
に繰り返す空燃比制御装置において、エンジンの基準角
度位置で空燃比センサ出力測定を行い、気筒別の空燃比
と気筒別の目標空燃比との比較を行うことを特徴とする
空燃比制御装置。
11. An air-fuel ratio control device for controlling an air-fuel ratio in accordance with an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; A means for correcting the injection amount is provided, a target air-fuel ratio in a rich state or a lean state is set for each cylinder or for each of a plurality of cylinders, which is richer or leaner than the stoichiometric air-fuel ratio, and combustion in the rich state and the lean state is performed for each cylinder or for each of a plurality of cylinders. An air-fuel ratio control device, which alternately repeats the above, performs an air-fuel ratio sensor output measurement at a reference angle position of an engine, and compares the air-fuel ratio for each cylinder with a target air-fuel ratio for each cylinder. .
【請求項12】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に理論空燃比よりもリッチ状態
またはリーン状態の目標空燃比を設定し、リッチ状態と
リーン状態の燃焼を気筒別にまたは複数の気筒毎に交互
に繰り返す空燃比制御装置において、エンジンの基準角
度位置から所定遅れ時間後に空燃比センサ出力測定を行
い、気筒別の空燃比と気筒別の目標空燃比との比較を行
うことを特徴とする空燃比制御装置。
12. An air-fuel ratio control device for controlling an air-fuel ratio in accordance with an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, a target air-fuel ratio in a rich state or a lean state is set for each cylinder or for each of a plurality of cylinders, which is richer or leaner than the stoichiometric air-fuel ratio, and combustion in the rich state and the lean state is performed for each cylinder or for each of a plurality of cylinders. In the air-fuel ratio control device, the air-fuel ratio sensor output measurement is performed after a predetermined delay time from the reference angle position of the engine, and the air-fuel ratio for each cylinder is compared with the target air-fuel ratio for each cylinder. Air-fuel ratio control device.
【請求項13】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に理論空燃比よりもリッチ状態
またはリーン状態の目標空燃比を設定し、リッチ状態と
リーン状態の燃焼を気筒別にまたは複数の気筒毎に交互
に繰り返す空燃比制御装置において、エンジンの基準角
度位置から所定の時間間隔で空燃比センサ出力測定を1
つの気筒に対して複数回行い、前記空燃比センサ出力測
定結果から気筒別の空燃比を演算して求め、気筒別の目
標空燃比との比較を行うことを特徴とする空燃比制御装
置。
13. An air-fuel ratio control device for controlling an air-fuel ratio according to an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, a target air-fuel ratio in a rich state or a lean state is set for each cylinder or for each of a plurality of cylinders, which is richer or leaner than the stoichiometric air-fuel ratio, and combustion in the rich state and the lean state is performed for each cylinder or for each of a plurality of cylinders. In the air-fuel ratio control device which alternately repeats the above, the output measurement of the air-fuel ratio sensor is performed at predetermined time intervals from the reference angle position of the engine.
An air-fuel ratio control apparatus, wherein the air-fuel ratio control is performed for a plurality of cylinders a plurality of times to calculate and calculate an air-fuel ratio for each cylinder from the measurement result of the air-fuel ratio sensor output, and to compare the calculated air-fuel ratio with a target air-fuel ratio for each cylinder.
【請求項14】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に理論空燃比よりもリッチ状態
またはリーン状態の目標空燃比を設定し、リッチ状態と
リーン状態の燃焼を気筒別にまたは複数の気筒毎に交互
に繰り返す空燃比制御装置において、空燃比変動が検出
されない場合、空燃比制御が異常であることを診断する
ことを特徴とする空燃比制御装置。
14. An air-fuel ratio control device for controlling an air-fuel ratio according to an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, a target air-fuel ratio in a rich state or a lean state is set for each cylinder or for each of a plurality of cylinders, which is richer or leaner than the stoichiometric air-fuel ratio, and combustion in the rich state and the lean state is performed for each cylinder or for each of a plurality of cylinders. The air-fuel ratio control device, wherein the air-fuel ratio control device is configured to diagnose that the air-fuel ratio control is abnormal when no air-fuel ratio fluctuation is detected.
【請求項15】排気ガスの空燃比を検出するセンサを備
え、エンジンの運転状態に応じて空燃比を制御する空燃
比制御装置において気筒別に空燃比を測定し、空燃比セ
ンサ出力に応じて燃料噴射量を補正する手段を備え、気
筒別または複数の気筒毎に理論空燃比よりもリッチ状態
またはリーン状態の目標空燃比を設定し、リッチ状態と
リーン状態の燃焼を気筒別にまたは複数の気筒毎に交互
に繰り返す空燃比制御装置において、エンジンの回転変
動を計測する手段を備え、回転変動が所定値以上の場
合、リーン状態の燃焼を所定量理論空燃比に近づけるこ
とを特徴とする空燃比制御装置。
15. An air-fuel ratio control device for controlling an air-fuel ratio in accordance with an operating state of an engine, comprising: a sensor for detecting an air-fuel ratio of exhaust gas; measuring an air-fuel ratio for each cylinder; A means for correcting the injection amount is provided, a target air-fuel ratio in a rich state or a lean state is set for each cylinder or for each of a plurality of cylinders, which is richer or leaner than the stoichiometric air-fuel ratio, and combustion in the rich state and the lean state is performed for each cylinder or for each of a plurality of cylinders. An air-fuel ratio control device that alternately repeats the operation of the air-fuel ratio control, characterized in that a means for measuring engine rotation fluctuation is provided, and when the rotation fluctuation is equal to or greater than a predetermined value, lean-state combustion approaches a predetermined amount to the stoichiometric air-fuel ratio. apparatus.
【請求項16】請求項13または15の何れかにおい
て、空燃比制御が異常の場合全気筒にわたって同じ目標
空燃比を設定して空燃比制御を行うことを特徴とする空
燃比制御装置。
16. The air-fuel ratio control device according to claim 13, wherein when the air-fuel ratio control is abnormal, the same target air-fuel ratio is set for all cylinders to perform the air-fuel ratio control.
【請求項17】請求項15において、回転変動が所定値
以上の場合、全気筒にわたって同じ目標空燃比を設定し
て空燃比制御を行うことを特徴とする空燃比制御装置。
17. The air-fuel ratio control device according to claim 15, wherein when the rotation fluctuation is equal to or greater than a predetermined value, the same target air-fuel ratio is set for all cylinders to perform air-fuel ratio control.
【請求項18】請求項2から14の何れかにおいて、始
動後の吸入空気量の積算値が所定値以上の場合全気筒に
わたって同じ目標空燃比を設定して空燃比制御を行うこ
とを特徴とする空燃比制御装置。
18. The air-fuel ratio control according to claim 2, wherein the same target air-fuel ratio is set for all cylinders when the integrated value of the intake air amount after the start is equal to or more than a predetermined value. Air-fuel ratio control device.
【請求項19】請求項2から14の何れかにおいて、吸
入空気量が所定値以上の場合全気筒にわたって同じ目標
空燃比を設定して空燃比制御を行うことを特徴とする空
燃比制御装置。
19. An air-fuel ratio control apparatus according to claim 2, wherein when the intake air amount is equal to or more than a predetermined value, the same target air-fuel ratio is set for all cylinders to perform air-fuel ratio control.
JP22341699A 1999-08-06 1999-08-06 Air-fuel ratio control device Expired - Fee Related JP3837972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22341699A JP3837972B2 (en) 1999-08-06 1999-08-06 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22341699A JP3837972B2 (en) 1999-08-06 1999-08-06 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2001050082A true JP2001050082A (en) 2001-02-23
JP3837972B2 JP3837972B2 (en) 2006-10-25

Family

ID=16797810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22341699A Expired - Fee Related JP3837972B2 (en) 1999-08-06 1999-08-06 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP3837972B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274800A (en) * 2007-04-26 2008-11-13 Denso Corp Air-fuel ratio control device and engine control system
US7487035B2 (en) 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP2010127122A (en) * 2008-11-26 2010-06-10 Mitsubishi Motors Corp Supercharging pressure control device of cylinder injection type internal combustion engine
JP2011027110A (en) * 2009-07-24 2011-02-10 Harley-Davidson Motor Co Group Llc Vehicle calibration using data collected during normal operation
WO2012049729A1 (en) * 2010-10-12 2012-04-19 トヨタ自動車株式会社 Control device of internal combustion engine
JP2012127305A (en) * 2010-12-17 2012-07-05 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2017198169A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
DE102017108205A1 (en) 2016-04-28 2017-11-02 Toyota Jidosha Kabushiki Kaisha Emission control system for an internal combustion engine
DE102017113408A1 (en) 2016-06-27 2017-12-28 Toyota Jidosha Kabushiki Kaisha Exhaust control system for internal combustion engine and control method for internal combustion engine
JP2019085947A (en) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487035B2 (en) 2006-11-15 2009-02-03 Denso Corporation Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP2008274800A (en) * 2007-04-26 2008-11-13 Denso Corp Air-fuel ratio control device and engine control system
JP2010127122A (en) * 2008-11-26 2010-06-10 Mitsubishi Motors Corp Supercharging pressure control device of cylinder injection type internal combustion engine
JP2011027110A (en) * 2009-07-24 2011-02-10 Harley-Davidson Motor Co Group Llc Vehicle calibration using data collected during normal operation
US9115663B2 (en) 2009-07-24 2015-08-25 Harley-Davidson Motor Company Group, LLC Vehicle calibration using data collected during normal operating conditions
WO2012049729A1 (en) * 2010-10-12 2012-04-19 トヨタ自動車株式会社 Control device of internal combustion engine
JP2012127305A (en) * 2010-12-17 2012-07-05 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
DE102017108205A1 (en) 2016-04-28 2017-11-02 Toyota Jidosha Kabushiki Kaisha Emission control system for an internal combustion engine
JP2017198169A (en) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
DE102017107233A1 (en) 2016-04-28 2017-11-02 Toyota Jidosha Kabushiki Kaisha EXHAUST GAS CLEANING SYSTEM FOR INTERNAL COMBUSTION ENGINE
US10174699B2 (en) 2016-04-28 2019-01-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US10309332B2 (en) 2016-04-28 2019-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
DE102017108205B4 (en) * 2016-04-28 2020-04-16 Toyota Jidosha Kabushiki Kaisha Emission control system for an internal combustion engine
DE102017107233B4 (en) 2016-04-28 2022-07-14 Toyota Jidosha Kabushiki Kaisha EMISSION CONTROL SYSTEM FOR COMBUSTION ENGINE
DE102017113408A1 (en) 2016-06-27 2017-12-28 Toyota Jidosha Kabushiki Kaisha Exhaust control system for internal combustion engine and control method for internal combustion engine
US10247114B2 (en) 2016-06-27 2019-04-02 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and control method for internal combustion engine
DE102017113408B4 (en) 2016-06-27 2020-08-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas control system for internal combustion engine and control method for internal combustion engine
JP2019085947A (en) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP3837972B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP4700079B2 (en) Device for determining an air-fuel ratio imbalance between cylinders
JPH06330741A (en) Air fuel ratio controller of lean burn engine
JP3837972B2 (en) Air-fuel ratio control device
JP3314294B2 (en) Control device for internal combustion engine
JPH04321740A (en) Engine air fuel ratio control device
JPH06213040A (en) Adaptive closed loop type electronic fuel control system simultaneously functioning as fuel paddle compensation
JP5337140B2 (en) Air-fuel ratio control device for internal combustion engine
JP2694729B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JP3813044B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0465224B2 (en)
JP2000328992A (en) Air-fuel ratio control system for engine
JPH06137242A (en) Air-fuel ratio control device of engine
JP3627417B2 (en) Fuel property detection device for internal combustion engine
JP4276136B2 (en) Engine diagnostic equipment
JP2696444B2 (en) Fuel supply control device for internal combustion engine
JP2001090598A (en) Failure diagnosis device for linear air/fuel ratio sensor
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP2684885B2 (en) Fuel injection amount control device for internal combustion engine
JP2884836B2 (en) Engine ignition timing control device
JP3442216B2 (en) Engine control device
JP3726432B2 (en) Air quantity detection device for internal combustion engine
JP6056452B2 (en) Control device for internal combustion engine
JPH0949448A (en) Air-fuel ratio control device for engine
JP2857176B2 (en) Exhaust gas purification device
JPH0528366Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees