JP2010125517A - Laser machining method for pipe - Google Patents

Laser machining method for pipe Download PDF

Info

Publication number
JP2010125517A
JP2010125517A JP2008306485A JP2008306485A JP2010125517A JP 2010125517 A JP2010125517 A JP 2010125517A JP 2008306485 A JP2008306485 A JP 2008306485A JP 2008306485 A JP2008306485 A JP 2008306485A JP 2010125517 A JP2010125517 A JP 2010125517A
Authority
JP
Japan
Prior art keywords
pipe
measured
actual
laser processing
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008306485A
Other languages
Japanese (ja)
Other versions
JP5272223B2 (en
Inventor
Tetsuji Hirano
哲爾 平野
Yukimi Kitamura
幸美 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu NTC Ltd
Original Assignee
Komatsu NTC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu NTC Ltd filed Critical Komatsu NTC Ltd
Priority to JP2008306485A priority Critical patent/JP5272223B2/en
Publication of JP2010125517A publication Critical patent/JP2010125517A/en
Application granted granted Critical
Publication of JP5272223B2 publication Critical patent/JP5272223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for performing fusion cutting of a pipe along its diagonal flat plane, which prevents the occurrence of level differences and deviations of the fusion-cut surface diagonally across the pipe in the shape of a round slice by a simple method and achieves a target fusion-cut surface of the pipe. <P>SOLUTION: A laser beam machining process for the pipe includes: a step of applying a laser beam from a laser machining head 4 to a pipe 1, an object to be machined, from the diagonal direction and performing the fusion cutting through a half of the pipe 1 in the manner of cutting the pipe 1 to make round slices; a step of reversing the pipe 1 by 180 degrees around a central line 6 in the longitudinal direction of the pipe 1 which is used as the axis of rotation; a step of applying the laser beam to the remaining half of the pipe 1 from the diagonal direction, performing fusion cutting of the remaining half in the manner of cutting the pipe to make round slices, thereby performing fusion cutting of the pipe 1 along the diagonal flat plane. Before fusion cutting is carried out, at least either of a top of the pipe 1 and both sides of the pipe 1 is measured by a sensor 7 near the fusion cutting position of the pipe 1, and the actual measured position and the ideal position of the pipe are compared. When correction is required, coordinates for machining are corrected in accordance with the amount of deviations between the actual pipe position and the ideal pipe position. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、レーザ加工ヘッドからのレーザをパイプに斜め方向からあて、パイプを斜め方向の平面にそって輪切り状に溶断するパイプのレーザ加工方法に関する。 The present invention relates to a laser machining method for a pipe in which a laser from a laser machining head is applied to a pipe from an oblique direction, and the pipe is cut in a ring shape along a plane in the oblique direction.

レーザ加工機によって長いパイプを斜め方向の平面にそって輪切り状に溶断するとき、5軸制御可能なレーザ加工ヘッドを利用するとしても、レーザ加工ヘッドは、長いパイプの外周にそって180°にわたって連続的に旋回できないため、輪切り状の溶断加工では、レーザ加工ヘッドのレーザによってパイプの半分を輪切りしてから、パイプの長手方向の中心線を回転軸として、パイプを180度反転させ、次にレーザ加工ヘッドのレーザによってパイプの残り半分を輪切りすることになる。 When a long pipe is blown in a circular shape along an oblique plane by a laser processing machine, even if a laser processing head capable of controlling five axes is used, the laser processing head extends over 180 ° along the outer periphery of the long pipe. Since it is not possible to turn continuously, in the half-cut fusing process, half of the pipe is cut by the laser of the laser processing head, then the pipe is turned 180 degrees around the center line in the longitudinal direction of the pipe, and then The other half of the pipe is cut by the laser of the laser processing head.

ところが、パイプのそりやねじれ、パイプのたわみ変形、特に、反転前の溶断によって、パイプに熱変形が発生すると、パイプの反転前における斜め方向の輪切り状の溶断面と反転後の斜め方向の輪切り状の溶断面とがずれ、それらの輪切り状の溶断面に段差が現れ、目標とする溶断面が得られなくなる。ちなみに、輪切り状の溶断面がパイプの長手方向の中心線に対して垂直であれば、溶断面は、斜め方向の溶断面に比較して大きな段差として現れることはない。 However, if the pipe undergoes thermal deformation due to warping or twisting of the pipe, bending deformation of the pipe, especially fusing before reversal, the slanted cross-section of the cross-section melted before reversing the pipe and the slanted circular cut after reversal. The shape of the melt-shaped cross section deviates, and a step appears in the ring-shaped melt cross section, making it impossible to obtain the target melt cross section. Incidentally, if the ring-shaped molten cross section is perpendicular to the longitudinal center line of the pipe, the molten cross section does not appear as a large step compared to the oblique molten cross section.

一方、例えば特許文献1は、パイプをレーザ加工機によって加工すること、及びパイプの加工位置をセンサにより検出し、ずれに基づいてレーザ加工ヘッドの位置を補正することを開示している。 On the other hand, for example, Patent Document 1 discloses processing a pipe with a laser processing machine, detecting a processing position of the pipe with a sensor, and correcting the position of the laser processing head based on the deviation.

しかし、特許文献1の技術は、加工位置の単純な補正でしかないから、本発明の前提となる技術、すなわちレーザ加工ヘッドのレーザをパイプに斜め方向からあて、パイプの半分を斜め方向に輪切り状に溶断してから、パイプの長手方向の中心線を回転軸として、パイプを180度反転させてた後、レーザ加工ヘッドのレーザをパイプの残り半分に斜め方向からあて、パイプの残り半分を斜め方向に輪切り状に溶断して、パイプを斜め方向の平面にそって溶断すると技術にそのまま応用できない。
特開2004−216440号公報
However, since the technique of Patent Document 1 is only a simple correction of the machining position, the technique which is the premise of the present invention, that is, the laser of the laser machining head is applied to the pipe from an oblique direction, and half of the pipe is cut in an oblique direction. After the pipe is turned 180 degrees around the center line in the longitudinal direction of the pipe as the rotation axis, the laser of the laser processing head is applied to the other half of the pipe from the oblique direction, and the other half of the pipe is If the pipe is melted in an oblique direction and the pipe is melted along an oblique plane, it cannot be applied to the technology as it is.
JP 2004-216440 A

したがって、発明の課題は、上記の前提技術、すなわち、レーザ加工ヘッドのレーザをパイプに斜め方向からあて、パイプの半分を斜め方向に輪切り状に溶断してから、パイプの長手方向の中心線を回転軸として、パイプを180度反転させた後に、レーザ加工ヘッドのレーザをパイプの残り半分に斜め方向からあて、パイプの残り半分を斜め方向に輪切り状に溶断して、パイプを斜め方向の平面にそって溶断する過程において、簡単な手段によって、斜め方向の輪切り状の溶断面の段差やずれの発生を防止し、目標とする溶断面を得られるようにすることである。 Therefore, the object of the invention is to apply the above-mentioned base technology, that is, apply the laser of the laser processing head to the pipe from an oblique direction, melt half of the pipe in an oblique direction, and cut the center line in the longitudinal direction of the pipe. After rotating the pipe 180 degrees as the axis of rotation, the laser of the laser processing head is applied to the other half of the pipe from the oblique direction, and the other half of the pipe is melted in a circular shape in the oblique direction, so that the pipe is flat in the oblique direction. Accordingly, in the process of fusing along the line, it is possible to prevent the occurrence of a step or deviation of the oblique cut surface of the melted section by a simple means so that the target melted section can be obtained.

上記課題のもとに、本発明は、レーザ加工ヘッドからのレーザを加工対象のパイプに斜め方向からあて、パイプの半分を斜め方向に輪切り状に溶断してから、パイプの長手方向の中心線を回転軸として、パイプを180度反転させた後に、レーザ加工ヘッドからのレーザをパイプの残り半分に斜め方向からあて、パイプの残り半分を斜め方向に輪切り状に溶断して、パイプを斜め方向の平面にそって溶断するパイプのレーザ加工において、斜め方向の溶断前に、パイプの溶断位置の近くで、パイプの上面、およびパイプの両側面のうち少なくとも何れかの面をセンサにより測定し、測定した実際のパイプ位置と理想のパイプ位置とを比較し、補正の必要なときに、測定した実際のパイプ位置と理想のパイプ位置とのずれ量に応じて、加工時の座標を補正する、ようにしている。 Based on the above problems, the present invention applies a laser from a laser processing head to a pipe to be processed from an oblique direction, and melts half of the pipe in an oblique direction in a circular shape, and then the center line in the longitudinal direction of the pipe. After rotating the pipe 180 degrees with the rotation axis as the rotation axis, the laser from the laser processing head is applied to the other half of the pipe from the oblique direction, and the other half of the pipe is blown in an oblique direction to cut the pipe obliquely. In laser processing of a pipe that blows along the flat surface of the pipe, before cutting in an oblique direction, at least one of the upper surface of the pipe and both sides of the pipe is measured by a sensor near the fusing position of the pipe, Compare the measured actual pipe position with the ideal pipe position, and when correction is required, depending on the amount of deviation between the measured actual pipe position and the ideal pipe position, Correcting the target, and so on.

加工対象が角型のパイプの場合に、実際のパイプ位置は、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、測定した仮の高さから所定の寸法aだけ下がった位置で実際のパイプ側面を測定し、つぎに、測定した実際のパイプ側面から所定の寸法bだけ水平方向に変位した位置で実際のパイプ上面位置を測定し、上記実際のパイプ側面の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める。 When the object to be processed is a square pipe, the actual pipe position is measured by measuring the provisional height of the actual pipe at the center of the ideal pipe position, and is lowered by a predetermined dimension a from the measured provisional height. The actual pipe side surface is measured at the position, and then the actual pipe top surface position is measured at a position displaced in the horizontal direction by a predetermined dimension b from the measured actual pipe side surface. A correction amount is obtained from the measured value of the actual pipe upper surface position.

加工対象が丸型のパイプの場合に、実際のパイプ位置は、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、測定した仮の高さからパイプ半径rだけ下がった両側面の位置で実際のパイプ側面を測定し、つぎに、測定した両側面の中間点で実際のパイプ上面位置を測定し、上記両側面の中間点の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める。 When the object to be processed is a round pipe, the actual pipe position is measured by measuring the provisional height of the actual pipe at the center of the ideal pipe position, and both sides of the measured provisional height being lowered by the pipe radius r. Measure the actual pipe side surface at the position of the surface, then measure the actual pipe upper surface position at the measured middle point of both side surfaces, and measure the measured value of the intermediate point of the both side surfaces and the actual pipe upper surface position. The correction amount is obtained from the value.

上記のセンサは、レーザ加工機に付属の倣い用のギャップセンサにより構成できる。パイプを斜め方向の輪切り状の溶断面は、1つの平面、または2以上の平面とする。また、加工時の座標は、パイプの実際の変形態様に応じて、上下方向についてのみ補正することもできる。 The above sensor can be constituted by a gap sensor for copying attached to the laser processing machine. The pipe-shaped molten cross section in the diagonal direction is one plane or two or more planes. Further, the coordinates at the time of processing can be corrected only in the vertical direction according to the actual deformation mode of the pipe.

本発明によれば、斜め方向の溶断の前に、溶断位置の近くで実際のパイプ位置をセンサにより測定し、測定した実際のパイプ位置と理想のパイプ位置とのずれ量に応じて、加工時の座標を補正するから、溶断の前に、パイプの変形やパイプに位置ずれがあっても、パイプの180度反転の前後で、斜め方向の輪切り状の溶断面の段差やずれがなくなり、目標とする溶断面が得られる。 According to the present invention, before actual cutting in an oblique direction, an actual pipe position is measured by a sensor in the vicinity of the cutting position, and according to the amount of deviation between the measured actual pipe position and the ideal pipe position, This corrects the coordinates, so even if there is deformation or misalignment of the pipe before fusing, there is no step or deviation of the melted cross section in the diagonal direction before and after 180 degree reversal of the pipe. A molten cross-section is obtained.

加工対象が角型のパイプの場合に、実際のパイプ位置は、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、仮の高さからパラメータaだけだけ下がった位置で実際のパイプ側面を測定し、つぎに、測定した実際のパイプ側面からパラメータbだけ水平方向に変位した位置で実際のパイプ上面位置を測定し、上記実際のパイプ側面の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める。したがって、パイプに上下方向の変形やねじれ変形があっても、最小限度の測定により、加工位置が適切な状態に補正できる。 When the workpiece is a square pipe, the actual pipe position is measured at the center of the ideal pipe position by measuring the actual height of the actual pipe, and the actual pipe position is lowered by the parameter a from the temporary height. Next, the actual pipe upper surface position is measured at a position displaced in the horizontal direction by the parameter b from the measured actual pipe side surface, and the measured value of the actual pipe side surface and the actual pipe upper surface are measured. The correction amount is obtained from the position measurement value. Therefore, even if the pipe is subject to vertical deformation or torsional deformation, the machining position can be corrected to an appropriate state by the minimum measurement.

加工対象が丸型のパイプの場合に、実際のパイプ位置は、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、仮の高さからパイプ半径rだけ下がった両側面の位置で実際のパイプ側面を測定し、つぎに、測定した両側面の中間点で実際のパイプ上面位置を測定し、上記両側面の中間点の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める。パイプに変形やずれが発生しても、パイプ半径rに殆ど変化がないため、加工位置において、丸型のパイプの実際の位置が正確に決定できる。 When the object to be processed is a round pipe, the actual pipe position is measured by measuring the provisional height of the actual pipe at the center of the ideal pipe position, and by reducing the pipe radius r from the provisional height. Measure the actual pipe side surface at the position, then measure the actual pipe upper surface position at the measured middle point of both side surfaces, and measure the measured value of the intermediate point of the both side surfaces and the measured value of the actual pipe upper surface position. From this, the correction amount is obtained. Even if the pipe is deformed or displaced, there is almost no change in the pipe radius r, so that the actual position of the round pipe can be accurately determined at the machining position.

上記のセンサとしてレーザ加工機に付属の倣い用のギャップセンサを利用すると、特別なセンサが必要とされず、実際のパイプ位置の測定が簡単に実行でき、実施が容易となる。また、斜め方向の輪切り状の溶断面が1つの平面のとき、パイプの180度反転の前後の溶断面に段差ができず、仕上がりがよくなり、斜め方向の輪切り面が2以上、例えば2平面のとき、2平面の山の稜線または谷の溝線がずれず、目標の位置に正確に形成できる。さらに、座標の補正を上下方向についてのみとすれば、レーザ加工の過程で、パイプに発生し易い上下方向の熱変形やたわみ変形に対して、簡易に対応できる。 When the gap sensor for copying attached to the laser processing machine is used as the above-described sensor, no special sensor is required, and the actual pipe position can be easily measured, thus facilitating the implementation. In addition, when the slanted circular cross section is a single plane, there is no step in the melt cross section before and after 180-degree reversal of the pipe, the finish is improved, and there are two or more slanted circular cross sections, for example, two planes. In this case, the ridge lines of the peaks of the two planes or the groove lines of the valleys are not shifted and can be accurately formed at the target position. Furthermore, if the correction of coordinates is performed only in the vertical direction, it is possible to easily cope with thermal deformation and deflection deformation in the vertical direction that are likely to occur in the pipe during the laser processing.

図1ないし図6は、本発明に係るパイプのレーザ加工方法を示している。また、図7および図8は、角型のパイプ、丸型のパイプについて、実際のパイプ位置の測定原理を示している。 1 to 6 show a pipe laser processing method according to the present invention. 7 and 8 show the actual pipe position measurement principle for a square pipe and a round pipe.

図1ないし図6において、加工対象(溶断対象)のパイプ1は、一例として角型の金属パイプであり、レーザ加工機8に付属しているインデックス装置2のクランプ手段3によって保持されている。クランプ手段3は、図示の例によると、パイプ1の一端を片持ち状態で固定しているが、パイプ1の両端を固定する両持ち形式でもよい。なお、パイプ1の固定状態で、X軸は、パイプ1の長手方向に、Y軸は水平方向に、Z軸は垂直方向にそれぞれ設定されているものとする。 1 to 6, a pipe 1 to be processed (cutting target) is a rectangular metal pipe as an example, and is held by a clamp means 3 of an index device 2 attached to a laser processing machine 8. According to the illustrated example, the clamp means 3 fixes one end of the pipe 1 in a cantilever state, but may also be a double-supported type in which both ends of the pipe 1 are fixed. In the fixed state of the pipe 1, the X axis is set in the longitudinal direction of the pipe 1, the Y axis is set in the horizontal direction, and the Z axis is set in the vertical direction.

レーザ加工機8は、例えば5軸制御可能なレーザ加工ヘッド4を備え、予め設定されているプログラムおよび数値制御によって、加工時に、レーザ加工機側の基準の座標に基づいて、レーザ加工ヘッド4をパイプ1の加工経路にそって移動させる。なお、レーザ加工ヘッド4の姿勢は、高い自由度のもとに制御できる。しかし、レーザ加工ヘッド4からのレーザを完全な上向き状態として照射できず、また、レーザ加工ヘッド4をパイプ1の外周にそって180°にわたって連続的に旋回させることもできない。 The laser processing machine 8 includes a laser processing head 4 that can control, for example, five axes, and the laser processing head 4 is controlled based on the reference coordinates on the laser processing machine side during processing by a preset program and numerical control. It moves along the processing path of the pipe 1. The attitude of the laser processing head 4 can be controlled with a high degree of freedom. However, the laser beam from the laser processing head 4 cannot be irradiated in a completely upward state, and the laser processing head 4 cannot be continuously swung over 180 ° along the outer periphery of the pipe 1.

図1のパイプ1の固定状態おいて、本発明に係るパイプのレーザ加工方法は、溶断加工前に、パイプ1の溶断位置の近くで、パイプ1の上面、及びパイプ1の両側面のうち少なくとも何れかの面をセンサ7により測定し、測定した実際のパイプ位置と理想のパイプ位置すなわち、ずれのないパイプ位置とを比較し、補正の必要なずれ量のときに、測定した実際のパイプ位置と理想のパイプ位置とのずれ量に応じて加工時の基準の座標を補正する。以上の補正は、数値制御プログラムのローカル機能を利用して行える。 In the fixed state of the pipe 1 shown in FIG. 1, the laser processing method for a pipe according to the present invention is at least one of the upper surface of the pipe 1 and the both side surfaces of the pipe 1 near the fusing position of the pipe 1 before fusing. Any surface is measured by the sensor 7, the measured actual pipe position is compared with the ideal pipe position, that is, the pipe position without any deviation, and the measured actual pipe position when the deviation amount is necessary to be corrected. The reference coordinates at the time of machining are corrected according to the amount of deviation from the ideal pipe position. The above correction can be performed using the local function of the numerical control program.

図7は、角型のパイプ1のずれ量の測定過程を示している。図7において、想像線の部分は理想のパイプ位置を示しており、実線の部分は実際のパイプ位置を示している。パイプ1のずれ量の測定は、レーザ加工機8に付設されている倣い用のギャップセンサなどのセンサ7を利用して、(1)のように、理想のパイプ位置の中心で、センサ7を実際のパイプ1に接近させ、実際のパイプ1の仮の高さを測定してから、(2)仮の高さから所定の寸法aだけ下がった位置で実際のパイプ側面を測定し、つぎに(3)測定した実際のパイプ側面から所定の寸法bだけ水平方向に変位した位置で実際のパイプ上面位置を測定し、これらの測定値をレーザ加工機8の制御ユニット9に記憶させる。なお、所定の寸法aおよび寸法bは、角型のパイプ1の肩部分を測定するための寸法であり、予測されるパイプ1の変位を考慮して対応の辺の長さよりも小さい値として決定される。 FIG. 7 shows a process of measuring the deviation amount of the square pipe 1. In FIG. 7, an imaginary line portion indicates an ideal pipe position, and a solid line portion indicates an actual pipe position. The displacement amount of the pipe 1 is measured by using a sensor 7 such as a scanning gap sensor attached to the laser processing machine 8 and using the sensor 7 at the center of the ideal pipe position as shown in (1). After approaching the actual pipe 1 and measuring the provisional height of the actual pipe 1, (2) measuring the actual pipe side face at a position lower than the provisional height by a predetermined dimension a, and then (3) The actual pipe upper surface position is measured at a position displaced in the horizontal direction by a predetermined dimension b from the measured actual pipe side surface, and these measured values are stored in the control unit 9 of the laser processing machine 8. The predetermined dimension a and dimension b are dimensions for measuring the shoulder portion of the square pipe 1 and are determined as values smaller than the corresponding side length in consideration of the expected displacement of the pipe 1. Is done.

つぎに、制御ユニット9は、上記の(2)でのパイプ側面の測定値、パイプ1の横幅から求めた数値と理想のパイプ位置とから横方向(水平方向)の補正量を求め、上記の(3)でのパイプ側面の測定値と理想のパイプ位置から上下方向(Z軸方向)の補正量を求め、補正の必要なときに加工時の座標(y0,z0)を座標(y1,z1)に補正する。この補正は、ずれ量が許容値を越えているときに、必要となる。 Next, the control unit 9 obtains a lateral (horizontal) correction amount from the measured value of the pipe side in (2) above, the numerical value obtained from the lateral width of the pipe 1 and the ideal pipe position, and A correction amount in the vertical direction (Z-axis direction) is obtained from the measured value of the pipe side surface in (3) and the ideal pipe position, and when correction is necessary, the coordinates (y0, z0) at the time of machining are expressed as coordinates (y1, z1). ). This correction is necessary when the amount of deviation exceeds the allowable value.

図1の加工前において、インデックス装置2の回転軸とレーザ加工機8の直線軸例えばX軸とが正しく平行に設定され、かつ、パイプ1がインデックス装置2のクランプ手段3に対して正しく固定されており、しかも、パイプ1に最初から変形がないならば、測定の結果、補正しなければならない程のずれ量はない。したがって、初期の加工前に、一般に補正は殆ど必要とされない。ここでは補正は必要ないものとする。 Before the processing of FIG. 1, the rotation axis of the index device 2 and the linear axis of the laser processing machine 8, for example, the X axis, are set correctly in parallel, and the pipe 1 is correctly fixed to the clamp means 3 of the index device 2. In addition, if the pipe 1 is not deformed from the beginning, there is no deviation amount to be corrected as a result of the measurement. Therefore, little correction is generally required before the initial machining. Here, no correction is necessary.

つぎに、レーザ加工ヘッド4は、図1に示す目標の溶断線5に対して、図2に示すようにレーザを斜め方向からあて、図3に示すように、パイプ1の長手方向の中心線6を通る水平線の一方の位置を開始位置として左側面、上側面および右側面へと順次に移動し、水平線の他方の位置を終了位置として停止することによって、図2に示すように、パイプ1の上半分を斜め方向に溶断し、上半分を輪切り状とする。なお、加工時に、レーザ加工ヘッド4は、目標の溶断線5を含む平面上を移動することになる。 Next, the laser processing head 4 applies the laser to the target fusing line 5 shown in FIG. 1 from an oblique direction as shown in FIG. 2, and the longitudinal center line of the pipe 1 as shown in FIG. As shown in FIG. 2, the pipe 1 is moved by sequentially moving from one position of the horizontal line passing through 6 to the left side, the upper side and the right side, and stopping at the other position of the horizontal line as the end position. The upper half of the upper half is blown in an oblique direction, and the upper half is cut into a ring shape. During processing, the laser processing head 4 moves on a plane including the target fusing line 5.

この斜め方向の溶断によって、通常、パイプ1は、上半分で溶断時の熱によって、下向きに熱変形を起こす。パイプ1が長く、その肉厚が薄いとき、下向きの熱変形に、自由端の重量による下向きのたわみ変形が加わる。 Due to the melting in the oblique direction, the pipe 1 is usually thermally deformed downward in the upper half due to heat at the time of melting. When the pipe 1 is long and thin, the downward bending deformation due to the weight of the free end is added to the downward thermal deformation.

次に、パイプ1は、インデックス装置2のクランプ手段3によって、パイプ1の長手方向(X軸の方向)の中心線6を回転軸として、図4のように、180度反転させられる。この反転によって目標の溶断線5の傾きは、図4に示すように、図1での目標の溶断線5の傾きに対して逆方向となっている。この反転によって、熱変形が下向きのたわみ変形によって少し打ち消されても、通常、パイプ1は、反転後、図2での溶断にともなう熱変形によって上向きに曲がっている。 Next, the pipe 1 is inverted 180 degrees by the clamp means 3 of the indexing device 2 with the center line 6 in the longitudinal direction (X-axis direction) of the pipe 1 as the rotation axis as shown in FIG. By this inversion, the inclination of the target fusing line 5 is in the opposite direction to the inclination of the target fusing line 5 in FIG. Even if the thermal deformation is slightly canceled by the downward deflection deformation due to this inversion, the pipe 1 is usually bent upward due to the thermal deformation accompanying the fusing in FIG. 2 after the inversion.

反転後の図4の状態で、ここでも溶断加工に先立って、図7の測定によって、実際のパイプ位置が測定され、測定した実際のパイプ位置と理想のパイプ位置とが比較される。そのときのずれ量が許容値を越えているとき、レーザ加工機8の制御ユニット9は、ずれ量に応じて、加工時の座標を補正する。この補正は、数値制御プログラムのローカル機能を利用して行える。 In the state of FIG. 4 after inversion, the actual pipe position is measured by the measurement of FIG. 7 before the fusing process, and the measured actual pipe position is compared with the ideal pipe position. When the deviation amount at that time exceeds the allowable value, the control unit 9 of the laser processing machine 8 corrects the coordinates at the time of processing according to the deviation amount. This correction can be performed using a local function of the numerical control program.

Z軸方向のずれ量、Y軸方向のずれ量があり、補正が必要となったとき、図7のように、加工時の座標(y0,z0)は、それらのずれ量の方向に変位するように補正するために座標(y1,z1)に補正されることになる。熱変形やたわみ変形は、この加工態様によると、いずれも上下方向(Z軸方向)に大きく現れ、一般に、Y軸方向のずれ量が小さいため、実用上、座標の補正は、殆ど上下方向(Z軸方向)のみで足りる。 When there is a deviation amount in the Z-axis direction and a deviation amount in the Y-axis direction and correction is necessary, the coordinates (y0, z0) at the time of machining are displaced in the direction of these deviation amounts as shown in FIG. Thus, the coordinates are corrected to the coordinates (y1, z1). According to this processing mode, thermal deformation and deflection deformation both appear large in the vertical direction (Z-axis direction), and generally the amount of deviation in the Y-axis direction is small. Only in the Z-axis direction) is sufficient.

座標の補正の後、図5および図6に示すように、レーザ加工ヘッド1は、レーザをパイプ1の残り半分に斜め方向からあて、パイプ1の残り半分を斜め方向に輪切りして、パイプ1を斜め方向の平面にそって溶断する。このときも、レーザ加工ヘッド4は、目標の溶断線5を含む平面上を移動している。図5および図6で、細線は補正前のものを、実線は補正後のものを、それぞれ示している。 After the correction of the coordinates, as shown in FIGS. 5 and 6, the laser processing head 1 applies the laser to the remaining half of the pipe 1 from an oblique direction, and cuts the remaining half of the pipe 1 in an oblique direction. Is cut along an oblique plane. Also at this time, the laser processing head 4 is moving on a plane including the target fusing line 5. In FIG. 5 and FIG. 6, the thin line indicates the one before correction, and the solid line indicates the one after correction.

このように180度反転後のレーザ加工において、図5のように、最初の溶断時の熱変形によって、パイプ1に曲がりが発生していたとしても、加工時に座標が補正されているため、パイプ1の輪切り状の溶断位置は、上下方向などにずれない。このため、反転前後の溶断面は、段状とならず、正確に連接することになる。 Thus, in the laser processing after 180 ° reversal, even if the pipe 1 is bent due to thermal deformation at the time of the first fusing as shown in FIG. 5, the coordinates are corrected at the time of processing. The cutting position of the ring-shaped 1 does not shift in the vertical direction. For this reason, the melt cross section before and after inversion does not have a step shape, but is accurately connected.

つぎに、図8は、加工対象として丸型のパイプ1のずれ量の測定過程を示している。図8で、パイプ1の実線部分は理想のパイプ位置を示しており、破線部分は実際のパイプ位置を示している。図8において、パイプ1のずれ量の測定は、倣い用のギャップセンサなどのセンサ7を利用して、(1)のように、パイプ1の理想位置の中心で、実際のパイプ1の仮の高さを測定し、(2)仮の高さからパイプ半径rだけ下がった一方の側面の位置で実際のパイプ側面を測定するとともに、(3)仮の高さからパイプ半径rだけ下がった他方の側面の位置で実際のパイプ側面を測定してから、(4)測定した両側面の中間点で実際のパイプ上面位置を測定し、これらの測定値をレーザ加工機の制御ユニットに記憶させる。 Next, FIG. 8 shows a process of measuring the deviation amount of the round pipe 1 as a processing target. In FIG. 8, the solid line portion of the pipe 1 indicates an ideal pipe position, and the broken line portion indicates an actual pipe position. In FIG. 8, the displacement amount of the pipe 1 is measured using a sensor 7 such as a gap sensor for copying, as shown in (1), at the center of the ideal position of the pipe 1 as shown in FIG. Measure the height, (2) measure the actual side of the pipe at the position of one side that has been lowered from the provisional height by the pipe radius r, and (3) the other that has fallen from the provisional height by the pipe radius r (4) The actual pipe upper surface position is measured at the midpoint between the measured both side surfaces, and these measured values are stored in the control unit of the laser processing machine.

制御ユニット9は、上記の(2)、(3)での中間点の測定値、上記の(4)での測定点の測定値と理想のパイプ位置との差から上下方向(Z軸方向)および水平方向(Y軸方向)の補正量を求め、前記と同様に、補正の必要なときに加工時の座標を補正する。 The control unit 9 moves in the vertical direction (Z-axis direction) based on the difference between the measured value at the intermediate point in (2) and (3) above and the measured value at the measured point in (4) above and the ideal pipe position. Then, the correction amount in the horizontal direction (Y-axis direction) is obtained, and the coordinates at the time of machining are corrected when correction is necessary, as described above.

以上の例において、斜め方向の輪切り状の溶断面(側面から見た溶断線5)は、1つの平面となっているが、溶断面は、図9に例示するように、2以上、例えば2つの平面であってもよい。このような溶断面にあっても、本発明の加工方法によれば、2つの平面による溶断面の山の稜線または谷の溝線は、加工後にずれることなく、実用上、目標の位置に正確に形成される。 In the above example, the melted cross section in the oblique direction (melting line 5 viewed from the side surface) is a single plane, but the melt section has two or more, for example, 2 as illustrated in FIG. There may be two planes. Even in such a molten section, according to the processing method of the present invention, the ridge line or trough groove line of the molten section by two planes is practically accurate at the target position without being shifted after processing. Formed.

なお、反転前の加工や、反転後の加工に際しての測定過程において、インデックス装置2の回転軸とレーザ加工機8の直線軸例えばX軸とが正しく平行に設定されいない場合、パイプ1がインデックス装置2のクランプ手段3に対して正しく固定されていない場合、あるいはパイプ1に最初から変形がある場合に、測定の結果、座標が補正されるならば、それらに基づくずれ量も補正される。 In the measurement process during the processing before reversal or the processing after reversal, if the rotation axis of the index device 2 and the linear axis of the laser processing machine 8, for example, the X axis are not set correctly in parallel, the pipe 1 is used as the index device. If the coordinates are corrected as a result of the measurement when the pipe 1 is not correctly fixed to the clamp means 3 or when the pipe 1 is deformed from the beginning, the deviation amount based on them is also corrected.

図示の例は、インデックス装置2を利用して、パイプ1を反転させているが、パイプ1の反転は、インデックス装置2を用いないで、作業者の手作業によって行うこともできる。また、加工に際して、パイプ1は、水平方向に限らず、垂直方向あるいは傾斜方向として立てて保持することもできる。なお、角型のパイプ1の場合、水平位置が傾いたり、ねじれているとき、それらの傾きや、ねじれは、インデックス装置2側で、パイプ1を回転させることによって修正することもできる。 In the illustrated example, the pipe 1 is inverted using the index device 2, but the pipe 1 can also be inverted manually by an operator without using the index device 2. In processing, the pipe 1 is not limited to the horizontal direction, and can be held upright as a vertical direction or an inclined direction. In the case of the square pipe 1, when the horizontal position is tilted or twisted, the tilt or twist can be corrected by rotating the pipe 1 on the index device 2 side.

本発明は、前記の実施態様のものに限らず、例示以外の形状のパイプや、金属以外の材料のパイプの加工にも利用できる。 The present invention is not limited to the embodiment described above, and can be used for processing pipes having shapes other than those illustrated, and pipes made of materials other than metal.

パイプのレーザ加工方法において測定工程の側面図である。It is a side view of a measurement process in the laser processing method of a pipe. パイプのレーザ加工方法において溶断工程の側面図である。It is a side view of a fusing process in the laser processing method of a pipe. パイプのレーザ加工方法において、レーザ加工ヘッドの経路図である。FIG. 5 is a path diagram of a laser processing head in a pipe laser processing method. パイプのレーザ加工方法において反転後の測定工程の側面図である。It is a side view of the measurement process after inversion in the laser processing method of a pipe. パイプのレーザ加工方法において反転後の溶断工程の側面図である。It is a side view of the fusing process after inversion in the laser laser processing method of a pipe. パイプのレーザ加工方法において、レーザ加工ヘッドの経路図である。FIG. 5 is a path diagram of a laser processing head in a pipe laser processing method. 角型のパイプのずれ測定の説明図である。It is explanatory drawing of the shift measurement of a square-shaped pipe. 丸型のパイプのずれ測定の説明図である。It is explanatory drawing of the shift | offset | difference measurement of a round pipe. 他の溶断面の側面である。It is the side of another melt section.

符号の説明Explanation of symbols

1 パイプ
2 インデック装置
3 クランプ手段
4 レーザ加工ヘッド
5 溶断線
6 中心線
7 センサ
8 レーザ加工機
9 制御ユニット
DESCRIPTION OF SYMBOLS 1 Pipe 2 Index apparatus 3 Clamp means 4 Laser processing head 5 Fusing line 6 Center line 7 Sensor 8 Laser processing machine 9 Control unit

Claims (7)

レーザ加工ヘッドからのレーザを加工対象のパイプに斜め方向からあて、パイプの半分を斜め方向に輪切り状に溶断してから、パイプの長手方向の中心線を回転軸として、パイプを180度反転させた後に、レーザ加工ヘッドからのレーザをパイプの残り半分に斜め方向からあて、パイプの残り半分を斜め方向に輪切り状に溶断して、パイプを斜め方向の平面にそって溶断するパイプのレーザ加工において、
斜め方向の溶断前に、パイプの溶断位置の近くで、パイプの上面、およびパイプの両側面のうち少なくとも何れかの面をセンサにより測定し、測定した実際のパイプ位置と理想のパイプ位置とを比較し、補正の必要なときに、測定した実際のパイプ位置と理想のパイプ位置とのずれ量に応じて、加工時の座標を補正する、ことを特徴とするパイプのレーザ加工方法。
The laser from the laser processing head is applied to the pipe to be processed from an oblique direction, and half of the pipe is melted in a circular cut in an oblique direction, and then the pipe is inverted 180 degrees around the center line in the longitudinal direction of the pipe. After that, the laser from the laser processing head is applied to the remaining half of the pipe from the oblique direction, the remaining half of the pipe is melted in a circular cut in the oblique direction, and the pipe is melted along a plane in the oblique direction. In
Before the cutting in the oblique direction, measure at least one of the upper surface of the pipe and both sides of the pipe with a sensor near the cutting position of the pipe, and determine the measured actual pipe position and the ideal pipe position. A laser processing method for a pipe, characterized in that the coordinates at the time of processing are corrected according to the amount of deviation between the measured actual pipe position and the ideal pipe position when correction is required.
加工対象を角型のパイプの場合に、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、測定した仮の高さから所定の寸法aだけ下がった位置で実際のパイプ側面を測定し、つぎに、測定した実際のパイプ側面から所定の寸法bだけ水平方向に変位した位置で実際のパイプ上面位置を測定し、上記実際のパイプ側面の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める、ことを特徴とする請求項1記載のパイプのレーザ加工方法。 When the object to be processed is a square pipe, the actual height of the actual pipe is measured at the center of the ideal pipe position, and the actual side surface of the pipe is lowered by a predetermined dimension a from the measured temporary height. Next, the actual pipe upper surface position is measured at a position displaced in the horizontal direction by a predetermined dimension b from the measured actual pipe side surface, and the measured value of the actual pipe side surface and the actual pipe upper surface position are measured. The laser processing method for a pipe according to claim 1, wherein a correction amount is obtained from the measured value. 加工対象を丸型のパイプの場合に、理想のパイプ位置の中心で実際のパイプの仮の高さを測定し、測定した仮の高さからパイプ半径rだけ下がった両側面の位置で実際のパイプ側面を測定し、つぎに、測定した両側面の中間点で実際のパイプ上面位置を測定し、上記両側面の中間点の測定値と上記実際のパイプ上面位置の測定値とから補正量を求める、ことを特徴とする請求項1記載のパイプのレーザ加工方法。 When the object to be processed is a round pipe, the temporary height of the actual pipe is measured at the center of the ideal pipe position, and the actual height is measured at the positions on both side surfaces that are lowered by the pipe radius r from the measured temporary height. Measure the pipe side surface, then measure the actual pipe upper surface position at the measured midpoint of both side surfaces, and calculate the correction amount from the measured value of the intermediate point of the both side surfaces and the measured value of the actual pipe upper surface position. The pipe laser processing method according to claim 1, wherein the pipe laser processing method is obtained. センサを倣い用のギャップセンサとする、ことを特徴とする請求項1または請求項2記載のパイプのレーザ加工方法。 3. The pipe laser processing method according to claim 1, wherein the sensor is a copying gap sensor. パイプの溶断面を1つの平面とする、ことを特徴とする請求項1記載のパイプのレーザ加工方法。 2. The pipe laser processing method according to claim 1, wherein the melt cross section of the pipe is a single plane. パイプの溶断面を2以上の平面とする、ことを特徴とする請求項1記載のパイプのレーザ加工方法。 2. The pipe laser processing method according to claim 1, wherein the melt cross section of the pipe is two or more planes. 加工時の座標を上下方向についてのみ補正する、ことを特徴とする請求項1記載のパイプのレーザ加工方法。
The pipe laser processing method according to claim 1, wherein the processing coordinates are corrected only in the vertical direction.
JP2008306485A 2008-12-01 2008-12-01 Laser processing method for pipes Active JP5272223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306485A JP5272223B2 (en) 2008-12-01 2008-12-01 Laser processing method for pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306485A JP5272223B2 (en) 2008-12-01 2008-12-01 Laser processing method for pipes

Publications (2)

Publication Number Publication Date
JP2010125517A true JP2010125517A (en) 2010-06-10
JP5272223B2 JP5272223B2 (en) 2013-08-28

Family

ID=42326260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306485A Active JP5272223B2 (en) 2008-12-01 2008-12-01 Laser processing method for pipes

Country Status (1)

Country Link
JP (1) JP5272223B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20110425A1 (en) * 2011-05-12 2012-11-13 Adige Spa PROCEDURE FOR THE SCANNING OF A TUBE INTENDED TO BE WORKED ON A LASER CUTTING MACHINE
KR101266165B1 (en) 2010-12-30 2013-05-21 한국기계연구원 Calibration Position Device For Thin Tube Of Laser Processing
JP2013158800A (en) * 2012-02-06 2013-08-19 Honda Motor Co Ltd Method and apparatus for manufacturing metal ring
CN104117772A (en) * 2013-04-25 2014-10-29 三菱综合材料株式会社 Laser processing method and laser processing device
CN110238536A (en) * 2018-03-09 2019-09-17 上海海立电器有限公司 A kind of processing method and compressor cylinder of compressor cylinder
CN115071092A (en) * 2022-07-22 2022-09-20 山东祥生新材料科技股份有限公司 Speed-regulating type cutting device for PVC-C plastic pipeline extrusion molding
JP7328474B1 (en) * 2022-12-16 2023-08-16 ファナック株式会社 Numerical controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201819177A2 (en) 2018-12-12 2019-01-21 Durmazlar Makina Sanayi Ve Ticaret Anonim Sirketi LASER CUTTING MACHINE WITH CENTERING UNIT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356386A (en) * 1986-08-28 1988-03-10 Honda Motor Co Ltd Laser beam cutting device
JPH08224665A (en) * 1995-02-23 1996-09-03 Komatsu Ltd Automatic all around machining device
JPH1110377A (en) * 1997-06-20 1999-01-19 Amada Co Ltd Laser beam machine
JPH11254173A (en) * 1998-03-10 1999-09-21 Fanuc Ltd Robot with machining tool and its method for machining
JP2001001174A (en) * 1999-06-23 2001-01-09 Amada Wasino Co Ltd Method for cutting pipe in laser beam machine and device therefor
JP2005186126A (en) * 2003-12-26 2005-07-14 Sango Co Ltd Processing method and system for pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356386A (en) * 1986-08-28 1988-03-10 Honda Motor Co Ltd Laser beam cutting device
JPH08224665A (en) * 1995-02-23 1996-09-03 Komatsu Ltd Automatic all around machining device
JPH1110377A (en) * 1997-06-20 1999-01-19 Amada Co Ltd Laser beam machine
JPH11254173A (en) * 1998-03-10 1999-09-21 Fanuc Ltd Robot with machining tool and its method for machining
JP2001001174A (en) * 1999-06-23 2001-01-09 Amada Wasino Co Ltd Method for cutting pipe in laser beam machine and device therefor
JP2005186126A (en) * 2003-12-26 2005-07-14 Sango Co Ltd Processing method and system for pipe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266165B1 (en) 2010-12-30 2013-05-21 한국기계연구원 Calibration Position Device For Thin Tube Of Laser Processing
ITTO20110425A1 (en) * 2011-05-12 2012-11-13 Adige Spa PROCEDURE FOR THE SCANNING OF A TUBE INTENDED TO BE WORKED ON A LASER CUTTING MACHINE
WO2012153315A1 (en) * 2011-05-12 2012-11-15 Adige S.P.A. Method for scanning a tube intended to be worked on a laser cutting machine using a sensor for measuring the radiation reflected or emitted by the tube
CN103547404A (en) * 2011-05-12 2014-01-29 艾迪奇股份公司 Method for scanning a tube intended to be worked on a laser cutting machine using a sensor for measuring the radiation reflected or emitted by the tube
RU2608868C2 (en) * 2011-05-12 2017-01-25 АДИДЖЕ С.п.А. Method of pipe scanning intended for processing at laser cutting machine, using sensor for measuring radiation reflected or emitted by pipe
JP2013158800A (en) * 2012-02-06 2013-08-19 Honda Motor Co Ltd Method and apparatus for manufacturing metal ring
CN104117772A (en) * 2013-04-25 2014-10-29 三菱综合材料株式会社 Laser processing method and laser processing device
CN110238536A (en) * 2018-03-09 2019-09-17 上海海立电器有限公司 A kind of processing method and compressor cylinder of compressor cylinder
CN115071092A (en) * 2022-07-22 2022-09-20 山东祥生新材料科技股份有限公司 Speed-regulating type cutting device for PVC-C plastic pipeline extrusion molding
CN115071092B (en) * 2022-07-22 2022-11-08 山东祥生新材料科技股份有限公司 Speed-regulating type cutting device for PVC-C plastic pipeline extrusion molding
JP7328474B1 (en) * 2022-12-16 2023-08-16 ファナック株式会社 Numerical controller
WO2024127622A1 (en) * 2022-12-16 2024-06-20 ファナック株式会社 Numerical control device

Also Published As

Publication number Publication date
JP5272223B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272223B2 (en) Laser processing method for pipes
US11167372B2 (en) Axis calibration of beam processing machines
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP2008168327A (en) Laser beam cutting apparatus
EP2821869A1 (en) CNC machine for cutting with plasma, oxy-fuel, and water jet, capable of direct or additional bevel cutting, using autocalibration for self-adjustment, and the method of its adjustment by autocalibration
TW201616256A (en) Method and device for the determination of at least one model parameter of a virtual tool model of a tool
KR20170102250A (en) Adaptive part profile creation via independent side measurement with alignment features
KR20120100967A (en) Bevelling apparatus and method of bevelling
WO2017068836A1 (en) Processing device and program
JP2017124485A (en) Machine tool and correction method of tool tip position
JP6146917B2 (en) Chamfering table flatness measurement method
JP2006026845A (en) Adjustment method for tool position of chamfering machine
JP2010194599A (en) Method and device for correcting heating position with automatic steel sheet bending apparatus
CA2749541A1 (en) Method for machining tubes
JP4734513B2 (en) Butt weld deformation test specimen
JP6967276B2 (en) Break device
JP3190612B2 (en) Laser welding equipment
JP6278611B2 (en) Image processing system and method
JP2003126963A (en) Teaching route correction device for welding robot
CN104807429A (en) Error correcting method for uniform angle index of large spliced plate
JP4333389B2 (en) Apparatus and method for determining weld bead deviation
JP2007054930A (en) Positioning method and device for tool
WO2023276745A1 (en) Laser processing device and automatic correction method for focal point position of laser light
JP2013255984A (en) Cutting apparatus and cutting method
JP5901284B2 (en) Copy welding apparatus and copy welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250